JP2006162523A - Speed-measuring apparatus and displacement measurement apparatus for periodically movable object - Google Patents

Speed-measuring apparatus and displacement measurement apparatus for periodically movable object Download PDF

Info

Publication number
JP2006162523A
JP2006162523A JP2004357443A JP2004357443A JP2006162523A JP 2006162523 A JP2006162523 A JP 2006162523A JP 2004357443 A JP2004357443 A JP 2004357443A JP 2004357443 A JP2004357443 A JP 2004357443A JP 2006162523 A JP2006162523 A JP 2006162523A
Authority
JP
Japan
Prior art keywords
measured
displacement
light
contrast
interference fringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004357443A
Other languages
Japanese (ja)
Inventor
Nobuhiro Morita
展弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004357443A priority Critical patent/JP2006162523A/en
Publication of JP2006162523A publication Critical patent/JP2006162523A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a speed-measuring apparatus and a displacement measuring apparatus for a periodic movable object, acquiring the displacement speed distribution and the displacement amount distribution of a movable object having a mirror plane, in a short measurement time and with high spatial resolution, even when the amount of deformation of the surface to be measured is large. <P>SOLUTION: The speed-measuring apparatus for a periodic movable object comprises a light source 2 for irradiating the object to be measured, which moves substantially periodically, with a pulsed light; a timing adjustment means 12 for adjusting the timing between the displacement of the object to be measured 1 and the emission of the pulsed light by the light source 2, an interference optical system 6 for allowing reflected light from the object to be measured 1 and the reference light to interfere with each other; a photographic means 8 for photographic interference fringes by the interference optical system 6; and an arithmetic unit 11 which detects the contrast of the interference fringes from the image of the interference fringes by the photographic means 8 and determines the displacement speed, in a direction substantially normal to the surface of the object to be measured 1, on the basis of the correlation between the contrast of the interference fringes and the displacement speed in a direction substantially normal to the surface of the object to be measured 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光応用計測分野及び可動物の動作性能評価分野において略周期運動をする鏡面可動物の変位速度、または変位量を測定する周期可動物の速度測定装置及び変位測定装置に関するものである。   The present invention relates to a velocity measuring device and a displacement measuring device for a periodically movable object that measures the displacement speed or the amount of displacement of a mirror surface movable object that moves substantially periodically in the field of optical applied measurement and the performance evaluation of a movable object. .

従来から略周期運動をする鏡面可動物の変位速度、または変位量を測定する装置が存在しており、共振中のミラー面には共振に伴う慣性力の影響が懸念されるため、共振中のミラー面の挙動を評価するようになされることが知られている(例えば特許文献1乃至4参照)。
図7は測定対象の一例である共振ミラーを示す概略斜視図である。共振ミラー1は計測器や画像表示装置などの様々な用途において、ビーム走査に使用される部品である。
図7において、共振ミラー1は、ミラー面1aがベース1bに取り付いていて軸1cを回転軸にして矢印の方向に共振(揺動)することにより、ミラー面1aに照射された光ビームを走査する。
この場合に、共振中のミラー面1aには共振に伴う慣性力の影響が懸念されるため、上述したように、共振中のミラー面の挙動を評価したいという要求が存在する。
可動物の挙動の測定方法として、特許文献1に示すレーザドップラ方式や、特許文献2に示すレーザ干渉計(測長器)方式がある。
これらの方法では細いレーザビームの当たる領域のみの速度を測定する、所謂点計測であるため、被測定物の面全体で変位や速度を求めるには照射するレーザビームを二次元的に走査する必要があり、測定に時間を要する。また、面内の空間分解能が照射するレーザのビーム径により決まるため、空間分解能が上がらないという問題がある。
また二次元画像を収録して速度を求める方法として、特許文献3に示すスペックルパターンを用いる方法があるが、スペックル方式では、スペックルパターンを発生させるために被測定物は微視的に複雑な表面形状である必要がある。ミラー面ではスペックルパターンが発生しないため、被測定物が鏡面可動物である場合対応が困難である。
また特許文献4には、被測定物に被測定物の変位速度に対して時間的に十分短いパルス光を照射して干渉縞を発生させ、取得した干渉縞から変位中の被測定物の表面形状を求める技術が開示されている。
特許第2807782号 特許第2592254号 特許第3353365号 特許第3150239号
Conventionally, there are devices that measure the displacement speed or amount of a mirror-moving object that moves in a substantially periodic motion, and there is a concern about the influence of inertial force associated with resonance on the mirror surface during resonance. It is known that the behavior of the mirror surface is evaluated (see, for example, Patent Documents 1 to 4).
FIG. 7 is a schematic perspective view showing a resonant mirror which is an example of a measurement object. The resonant mirror 1 is a component used for beam scanning in various applications such as measuring instruments and image display devices.
In FIG. 7, the resonance mirror 1 scans the light beam irradiated to the mirror surface 1a by resonating (swinging) in the direction of the arrow with the mirror surface 1a attached to the base 1b and having the axis 1c as the rotation axis. To do.
In this case, since there is a concern about the influence of the inertial force accompanying the resonance on the mirror surface 1a during resonance, there is a demand for evaluating the behavior of the mirror surface during resonance as described above.
As a method for measuring the behavior of a movable object, there are a laser Doppler method shown in Patent Document 1 and a laser interferometer (length measuring device) method shown in Patent Document 2.
Since these methods are so-called point measurement that measures the velocity of only the area where the thin laser beam is hit, it is necessary to scan the irradiation laser beam two-dimensionally to obtain the displacement and velocity over the entire surface of the object to be measured. And takes time to measure. Further, since the in-plane spatial resolution is determined by the beam diameter of the laser to be irradiated, there is a problem that the spatial resolution does not increase.
In addition, as a method for obtaining a speed by recording a two-dimensional image, there is a method using a speckle pattern shown in Patent Document 3, but in the speckle method, an object to be measured is microscopically generated in order to generate a speckle pattern. It needs to have a complex surface shape. Since a speckle pattern does not occur on the mirror surface, it is difficult to cope with the object to be measured being a mirror surface movable object.
Further, Patent Document 4 discloses that the surface of the object to be measured being displaced from the obtained interference fringes is generated by irradiating the object to be measured with pulse light that is sufficiently short in time with respect to the displacement speed of the object to be measured. A technique for obtaining a shape is disclosed.
Patent No. 2807778 Patent No. 2592254 Japanese Patent No. 3353365 Japanese Patent No. 3150239

ところで、特許文献4に示す方法ではパルス光を照射した瞬間の表面形状は測定できるが、共振中のミラー面の挙動を全て取得できない。また被測定物の変形量が面の場所によって大きく異なると、干渉縞が空間的に密になりすぎて撮像手段のサンプリングピッチより細かくなって測定ができなくなるという問題が生じる。
さらに、被測定物に光を照射し、その反射光から干渉縞を形成する。光の照射中に被測定面が変位すると、変位に応じてパターンを変化させる干渉縞が照射パルス光のパルス幅の時間内で重ね合わされ、重ね合わされた結果撮像手段にて取得される干渉縞画像のコントラストが低下する。
そこで、本発明は上述した実情を考慮して、短い測定時間、高い空間分解能で、被測定面の変形量が大きい場合でも、鏡面可動物の変位速度分布及び変位量分布を取得することができる周期可動物の速度測定装置及び変位測定装置を提供することを目的とする。
また、本発明は、被測定物の変位速度に対する測定の汎用性を向上させ、測定レンジを拡大させ、さらに干渉縞の取得条件に起因する測定誤差を低減させることができる周期可動物の速度測定装置及び変位測定装置を提供することを目的とする。
By the way, in the method shown in Patent Document 4, the surface shape at the moment of irradiation with pulsed light can be measured, but the behavior of the mirror surface during resonance cannot be acquired. In addition, if the deformation amount of the object to be measured varies greatly depending on the location of the surface, the interference fringes become too spatially dense and finer than the sampling pitch of the imaging means, making it impossible to measure.
Further, the object to be measured is irradiated with light, and interference fringes are formed from the reflected light. When the surface to be measured is displaced during light irradiation, interference fringes that change the pattern according to the displacement are superimposed within the pulse width of the irradiation pulse light, and the resulting interference fringe image is acquired by the imaging means. The contrast of the image is reduced.
Therefore, the present invention can acquire the displacement velocity distribution and the displacement amount distribution of the mirror surface movable object even in the case where the deformation amount of the surface to be measured is large with a short measurement time and high spatial resolution in consideration of the above-described situation. An object of the present invention is to provide a velocity measuring device and a displacement measuring device for a periodic movable object.
In addition, the present invention improves the versatility of measurement with respect to the displacement speed of the object to be measured, expands the measurement range, and further reduces the measurement error caused by the interference fringe acquisition conditions, thereby measuring the speed of a periodically movable object. An object is to provide a device and a displacement measuring device.

上記目的を達成するため、請求項1に記載の発明は、略周期運動する被測定物にパルス光を照射するための光源と、前記被測定物の変位と前記光源によるパルス光の発光とのタイミングを調整するタイミング調整手段と、前記被測定物からの反射光と参照光とを干渉させるための干渉光学系と、前記干渉光学系による干渉縞を撮像するための撮像手段と、前記撮像手段による干渉縞画像から干渉縞のコントラストを検出し、前記干渉縞のコントラストと前記被測定物の面の略法線方向への変位速度との相関関係から前記被測定物の面の略法線方向への変位速度を求める演算手段と、を備える周期可動物の速度測定装置を特徴とする。
また請求項2に記載の発明は、前記光源からのパルス光のパルス幅の変化に付随して前記光源から前記被測定物に照射する光の光量を調整するための照射光量調整手段をさらに備える請求項1記載の周期可動物の速度測定装置を特徴とする。
また請求項3に記載の発明は、前記撮像手段にて取得した干渉縞画像をフーリエ変換し、周波数空間で干渉縞の傾き成分を取り除いたのち逆フーリエ変換して得られる複素振幅の振幅情報、あるいは振幅の二乗の情報を前記干渉縞のコントラストとする請求項1又は2に記載の周期可動物の速度測定装置を特徴とする。
また請求項4に記載の発明は、前記被測定物の面の法線方向への変位速度をVとし、前記光源の波長をλとし、前記干渉縞のコントラストがほぼなくなるときのパルス幅をtとし、V=λ/(2・t)の関係から前記Vを求める請求項2記載の周期可動物の速度測定装置を特徴とする。
In order to achieve the above-mentioned object, the invention described in claim 1 includes a light source for irradiating a measured object that moves substantially periodically with pulsed light, displacement of the measured object, and emission of pulsed light by the light source. Timing adjustment means for adjusting timing, interference optical system for causing reflected light from the object to be measured and reference light to interfere, imaging means for imaging interference fringes by the interference optical system, and the imaging means The contrast of the interference fringe is detected from the interference fringe image obtained from the above, and the substantially normal direction of the surface of the object to be measured is determined from the correlation between the contrast of the interference fringe and the displacement speed of the surface of the object to be measured in the substantially normal direction. And a means for calculating a displacement speed of the periodic movable object.
The invention according to claim 2 further includes an irradiation light amount adjusting means for adjusting the light amount of the light emitted from the light source to the object to be measured in association with a change in the pulse width of the pulsed light from the light source. A speed measuring device for a periodic movable object according to claim 1.
The invention according to claim 3 is the amplitude information of the complex amplitude obtained by Fourier transforming the interference fringe image acquired by the imaging means, removing the tilt component of the interference fringe in the frequency space, and then performing inverse Fourier transform. Alternatively, the periodic movable object speed measurement device according to claim 1, wherein information on the square of the amplitude is used as a contrast of the interference fringes.
According to a fourth aspect of the present invention, the displacement speed in the normal direction of the surface of the object to be measured is V, the wavelength of the light source is λ, and the pulse width when the contrast of the interference fringes is almost eliminated is t. The speed measuring device for a periodic movable object according to claim 2, wherein V is obtained from a relationship of V = λ / (2 · t).

また請求項5に記載の発明は、前記照射光量検出手段の機能を前記撮像手段に持たせた請求項2記載の周期可動物の速度測定装置を特徴とする。
また請求項6に記載の発明は、略周期運動する被測定物にパルス光を照射するための光源と、前記被測定物の変位と前記光源によるパルス光の発光とのタイミングを調整するタイミング調整手段と、前記被測定物からの反射光と参照光とを干渉させるための干渉光学系と、前記干渉光学系による干渉縞を撮像するための撮像手段と、前記撮像手段による干渉縞画像から干渉縞のコントラストを検出し、前記干渉縞のコントラストと前記被測定物の面の略法線方向への変位量との相関関係から被測定物の面の略法線方向への変位量を求める演算手段と、を備える周期可動物の変位測定装置を特徴とする。
また請求項7に記載の発明は、前記光源からのパルス光のパルス幅の変化に付随して前記光源から前記被測定物に照射する光の光量を調整するための照射光量調整手段をさらに備える請求項6記載の周期可動物の変位測定装置を特徴とする。
また請求項8に記載の発明は、前記撮像手段にて取得した干渉縞画像をフーリエ変換し、周波数空間で干渉縞の傾き成分を取り除いたのち逆フーリエ変換して得られる複素振幅の振幅情報、あるいは振幅の二乗の情報を前記干渉縞のコントラストとする請求項6または7記載の周期可動物の変位測定装置を特徴とする。
また請求項9に記載の発明は、前記被測定物の変位量をAとし、前記光源の波長をλとし、前記被測定物の変位周波数をfとし、前記干渉縞のコントラストがほぼ無くなるときのパルス幅をtとし、A=λ/(4・f・t)の関係から前記Aを求める請求項7記載の周期可動物の変位測定装置を特徴とする。
また請求項10に記載の発明は、前記照射光量検出手段の機能を前記撮像手段に持たせた請求項7記載の周期可動物の変位測定装置を特徴とする。
According to a fifth aspect of the present invention, there is provided the periodic movable object speed measuring device according to the second aspect, wherein the imaging unit has the function of the irradiation light amount detection unit.
According to a sixth aspect of the present invention, there is provided a light source for irradiating the object to be measured that moves substantially periodically with a pulsed light, and a timing adjustment for adjusting the timing of the displacement of the object to be measured and the emission of the pulsed light by the light source. An interference optical system for causing the reflected light from the object to be measured and the reference light to interfere with each other, an imaging means for imaging an interference fringe by the interference optical system, and interference from an interference fringe image by the imaging means Calculation for detecting the contrast of the fringe and calculating the displacement of the surface of the object to be measured in the direction of the normal line from the correlation between the contrast of the interference fringes and the amount of displacement of the surface of the object to be measured in the direction of the normal line Means for measuring the displacement of the periodic movable object.
The invention according to claim 7 further includes irradiation light amount adjusting means for adjusting the light amount of the light irradiated from the light source to the object to be measured accompanying the change in the pulse width of the pulsed light from the light source. A displacement measuring apparatus for a periodic movable object according to claim 6.
The invention according to claim 8 is the amplitude information of the complex amplitude obtained by Fourier transforming the interference fringe image acquired by the imaging means, removing the tilt component of the interference fringe in the frequency space, and then performing inverse Fourier transform. Alternatively, the periodic movable object displacement measuring device according to claim 6 or 7, wherein the information of the square of the amplitude is used as the contrast of the interference fringes.
According to a ninth aspect of the present invention, when the amount of displacement of the object to be measured is A, the wavelength of the light source is λ, the displacement frequency of the object to be measured is f, and the contrast of the interference fringes is almost eliminated. The periodic movable object displacement measuring device according to claim 7, wherein the pulse width is t, and A is obtained from a relationship of A = λ / (4 · f · t).
The invention according to claim 10 is characterized in that the displacement measuring device for a periodic movable object according to claim 7, wherein the imaging means has the function of the irradiation light quantity detection means.

請求項1、6の発明によれば、被測定物に光を照射して、その反射光から干渉縞を形成するようにしているため、光の照射中に被測定面が変位すると、変位に応じてパターンを変化させる干渉縞が照射パルス光のパルス幅時間内で重ね合わされ、その結果、撮像手段にて取得される干渉縞画像のコントラストが低下するが、干渉縞画像のコントラストと被測定物の変位速度、または変位量との間には相関があるため、演算手段により干渉縞のコントラストを検出することにより、被測定物の変位速度分布と変位量分布を得ることができる。このようにすれば、面計測が可能になるため、測定に時間を要さず、高い空間分解能を得ることができ、またスペックルパターンを必要としないため鏡面物体であっても測定することができるようになる。
また被測定面の変位速度を検出して面の変形を得るため、面のある瞬間での情報ではなく挙動の総合的な情報を取得でき、面の変形量が大きい場合も情報を取得することができる。
また請求項2の発明によれば、照射光量調整手段によりパルス幅を変化させるようにしているため、幅広い被測定物の変位速度に対して対処することができる。これにより、被測定物の変位速度に対する測定の汎用性の向上、測定レンジの拡大を図ることができ、さらに干渉縞の取得条件に起因する測定誤差を低減させることができる。
請求項3、8の発明によれば、二次元FFT演算などでフーリエ変換すれば高速に処理できるため、処理時間、測定時間を短縮することができる。
請求項4の発明によれば、干渉縞のコントラストがほぼなくなるときの照射パルス光のパルス幅から被測定物との変位速度を理論計算で求めることにより、実験的に取得した相関関係のデータを取得しないため、測定誤差の低減、相関データ取得のための手間を省くことができる。
請求項5、10の発明によれば、照射光量検出手段の機能を干渉縞撮像手段にもたせることにより、光量検出のための追加部品を付加しないで済むため、構成の簡素化及びコストの低減を図ることができる。
また請求項7の発明によれば、照射光量調整手段によりパルス幅を変化させるようにしているため、幅広い被測定物の変位量に対して対処することができる。これにより、被測定物の変位速度に対する測定の汎用性の向上、測定レンジの拡大を図ることができ、さらに干渉縞の取得条件に起因する測定誤差を低減させることができる。
請求項9の発明によれば、干渉縞のコントラストがほぼなくなるときの照射パルス光のパルス幅から被測定物との変位量を理論計算で求めることにより、実験的に取得した相関関係のデータを取得しないため、測定誤差の低減、相関データ取得のための手間を省くことができる。
According to the first and sixth aspects of the present invention, the object to be measured is irradiated with light, and interference fringes are formed from the reflected light. Therefore, if the surface to be measured is displaced during light irradiation, the object is displaced. Interference fringes that change the pattern accordingly are superimposed within the pulse width time of the irradiation pulse light, and as a result, the contrast of the interference fringe image acquired by the imaging means decreases, but the contrast of the interference fringe image and the object to be measured Since there is a correlation between the displacement speed or the displacement amount, the displacement velocity distribution and the displacement amount distribution of the object to be measured can be obtained by detecting the contrast of the interference fringes by the calculation means. In this way, since surface measurement is possible, it takes less time to measure, and high spatial resolution can be obtained, and speckle patterns are not required, so even specular objects can be measured. become able to.
In addition, since the surface deformation is detected by detecting the displacement speed of the surface to be measured, it is possible to acquire comprehensive information on behavior rather than information at a certain moment of the surface, and to acquire information even when the amount of surface deformation is large Can do.
According to the invention of claim 2, since the pulse width is changed by the irradiation light amount adjusting means, it is possible to cope with a wide range of displacement speeds of the object to be measured. Thereby, the versatility of the measurement with respect to the displacement speed of the object to be measured can be improved, the measurement range can be expanded, and the measurement error due to the interference fringe acquisition condition can be reduced.
According to the third and eighth aspects of the present invention, if Fourier transform is performed by a two-dimensional FFT operation or the like, processing can be performed at high speed, so that processing time and measurement time can be shortened.
According to the invention of claim 4, the correlation data obtained experimentally is obtained by theoretically calculating the displacement speed with the object to be measured from the pulse width of the irradiation pulse light when the contrast of the interference fringes almost disappears. Since it is not acquired, it is possible to reduce the measurement error and save the time for acquiring correlation data.
According to the fifth and tenth aspects of the present invention, since the function of the irradiation light quantity detecting means is also provided to the interference fringe imaging means, it is not necessary to add an additional part for detecting the light quantity, thereby simplifying the configuration and reducing the cost. I can plan.
According to the invention of claim 7, since the pulse width is changed by the irradiation light amount adjusting means, it is possible to cope with a wide range of displacement of the object to be measured. Thereby, the versatility of the measurement with respect to the displacement speed of the object to be measured can be improved, the measurement range can be expanded, and the measurement error due to the interference fringe acquisition condition can be reduced.
According to the invention of claim 9, experimentally obtained correlation data is obtained by calculating the amount of displacement with the object to be measured from the pulse width of the irradiation pulse light when the contrast of the interference fringes is almost lost. Since it is not acquired, it is possible to reduce the measurement error and save the time for acquiring correlation data.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。
図1は第1の実施の形態に係る周期可動物の変位測定装置の構成を示した概略図である。
図1に示す周期可動物の変位測定装置Aにおいて、光源2である半導体レーザは半導体レーザドライバ3にて駆動され、所定の時間幅(パルス幅)のパルス光を発光する。半導体レーザ2からの光の強度を調整するためにNDフィルタ4が設けられ、続いてビームエキスパンダ5が配置される。ビームエキスパンダ5にて拡大された光の一部はビームスプリッタ6を透過し、一部はビームスプリッタ6で反射される。
ビームスプリッタ6を透過した光は被測定物1に照射される。被測定物1にて反射された光は光路を逆行して、ビームスプリッタ6にて反射され、レンズ7を介してCCDカメラ8に到達する。
一方、ビームスプリッタ6にて反射された光はミラー9で反射される。ミラー9による反射光は光路を逆行してビームスプリッタ6を透過し、レンズ7を介してCCDカメラ8に到達する。
被測定物1にて反射された物体光とミラー9にて反射された参照光について、物体光の光路長と参照光の光路長との差を光源の半導体レーザ2のコヒーレンス長以下に設定しておき、物体光と参照光の光軸を略一致させたとき、被測定物1が静止していれば両者は干渉を起こして干渉縞が発生する。
レンズ7は被測定物1の像がCCDカメラ8の撮像面上で結像するように、その位置が調整されている。被測定物1は、図7に示したような共振ミラーである。物体光と参照光との間で発生した干渉縞はCCDカメラ8にて撮像される。
撮像された干渉縞はフレームグラバ10にて捕捉されてコンピュータ11に転送され、コンピュータ11のメモリに記憶されるとともにコンピュータ11のモニタに表示される。NDフィルタ4は干渉縞強度を調整するのに使用される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of a periodic movable object displacement measuring apparatus according to a first embodiment.
In the periodic movable object displacement measuring apparatus A shown in FIG. 1, a semiconductor laser as a light source 2 is driven by a semiconductor laser driver 3 to emit pulsed light having a predetermined time width (pulse width). In order to adjust the intensity of light from the semiconductor laser 2, an ND filter 4 is provided, followed by a beam expander 5. A part of the light expanded by the beam expander 5 passes through the beam splitter 6, and a part thereof is reflected by the beam splitter 6.
The light that has passed through the beam splitter 6 is irradiated onto the DUT 1. The light reflected by the DUT 1 travels back along the optical path, is reflected by the beam splitter 6, and reaches the CCD camera 8 via the lens 7.
On the other hand, the light reflected by the beam splitter 6 is reflected by the mirror 9. The reflected light from the mirror 9 travels backward along the optical path, passes through the beam splitter 6, and reaches the CCD camera 8 through the lens 7.
For the object light reflected by the DUT 1 and the reference light reflected by the mirror 9, the difference between the optical path length of the object light and the optical path length of the reference light is set to be equal to or less than the coherence length of the semiconductor laser 2 as the light source. In addition, when the optical axes of the object light and the reference light are substantially matched, if the DUT 1 is stationary, the two interfere with each other to generate interference fringes.
The position of the lens 7 is adjusted so that the image of the DUT 1 is formed on the imaging surface of the CCD camera 8. The DUT 1 is a resonant mirror as shown in FIG. Interference fringes generated between the object light and the reference light are imaged by the CCD camera 8.
The captured interference fringes are captured by the frame grabber 10, transferred to the computer 11, stored in the memory of the computer 11, and displayed on the monitor of the computer 11. The ND filter 4 is used to adjust the interference fringe intensity.

被測定物1が図の破線の矢印方向に振動したとき、被測定面が測定光学系の光軸に対して略垂直になるタイミングでCCDカメラ8の露光を行い、このCCDカメラ8の露光時間(シャッタースピード)内における被測定面の変位量が光源波長の半分より小さいとき干渉縞が発生する。
即ち、被測定面の任意の位置x,yにおける面の法線方向の変位速度をV(x,y)とし、CCDカメラ8の露光時間をtとし、半導体レーザの波長をλとすると、

Figure 2006162523
・・・(1)
を満たすとき干渉縞が発生する。
被測定物1の共振とCCDカメラ8の露光とのタイミングは、例えば被測定物1を駆動するための信号発生器とCCDカメラ8へ露光トリガを与えるための信号発生器とに共通のものを用いる。
そこで、そのタイミングは、信号発生器の一方のチャンネルで被測定物1を駆動し、他方のチャンネルで被測定物1の駆動周波数と同じ周波数か、もしくは約数の周波数の信号でCCDカメラ8へ露光のトリガをかけ、両チャンネル間の信号の位相を調整することにより調整することができる。図1において、符号12は2チャンネルの出力を有する信号発生器であり、符号13は共振ミラー1のドライバである。 When the DUT 1 vibrates in the direction of the broken arrow in the figure, the CCD camera 8 is exposed at a timing at which the measurement surface becomes substantially perpendicular to the optical axis of the measurement optical system. When the amount of displacement of the surface to be measured within (shutter speed) is smaller than half of the light source wavelength, interference fringes are generated.
That is, when the displacement speed in the normal direction of the surface at an arbitrary position x, y on the surface to be measured is V (x, y), the exposure time of the CCD camera 8 is t, and the wavelength of the semiconductor laser is λ,
Figure 2006162523
... (1)
Interference fringes are generated when the condition is satisfied.
The timing of the resonance of the DUT 1 and the exposure of the CCD camera 8 is common to, for example, a signal generator for driving the DUT 1 and a signal generator for giving an exposure trigger to the CCD camera 8. Use.
Therefore, the timing is such that the device under test 1 is driven in one channel of the signal generator and the same frequency as the drive frequency of the device under test 1 is used in the other channel or a signal of a divisor frequency to the CCD camera 8. It can be adjusted by triggering exposure and adjusting the phase of the signal between both channels. In FIG. 1, reference numeral 12 denotes a signal generator having two channel outputs, and reference numeral 13 denotes a driver of the resonant mirror 1.

図2は図1に示した光学系により観測される被測定面の像と被測定面上に発生した干渉縞の様子を示す模式図である。図2では、図1に示した光学系により観測される被測定面(図7のミラー面に対応)1aの像とこの被測定面1a上に発生した干渉縞1dの様子を示している。符号11aはコンピュータモニタを表す。
図2では、被測定面1aの法線方向への変位が殆どない軸1c付近で最も干渉縞のコントラスト(干渉縞の暗い部分と明るい部分のCCD強度の比)が高くなり、軸1cから最も離れた位置の変位量が最も大きい部分で干渉縞のコントラストが最も低くなる。
変位量が大きい部分では変位速度が速くなり、被測定面1aの位置変化に伴いパターンが変化した干渉縞がCCDカメラ8(図1参照)の露光時間内で重ね合わされることによってコントラストが低下する。
図2に示すように干渉縞画像を取得し、被測定面1aの場所ごとで干渉縞の暗い部分と明るい部分の比を求め、予め求めておいた被測定面1aの変位速度と干渉縞のコントラストとの相関関係から、被測定面1aの変位速度を求めることができる。
被測定面1aに振動に伴う慣性力の影響によって変形(うねり)が生じた場合に、それに伴い面の場所ごとで変位速度が異なってくるため、その変位速度分布が測定される。
干渉縞の本数(暗い部分と明るい部分のペアの数)を多く発生させれば面内の空間分解能を上げることができる。被測定面1aの変位速度と干渉縞のコントラストとの相関関係データは、例えば、後述の治具を用いて取得する。
図3は被測定面の変位速度と干渉縞のコントラストとの相関関係データを取得するのに用いる治具を示す概略図である。
図3において、ミラー14はピエゾ素子15を介してベース16に接着されている。ピエゾ素子15に電圧を印加することでミラー面14aを矢印方向に変位させることができる。
図3の治具を図1の光学系に被測定物1として設置し干渉縞を発生させる。ピエゾ素子15への印加信号の電圧、もしくは周波数を変化させてミラー14面の変位速度を変化させてそのとき得られる干渉縞のコントラストを検出する。
FIG. 2 is a schematic diagram showing an image of the measurement surface observed by the optical system shown in FIG. 1 and the appearance of interference fringes generated on the measurement surface. FIG. 2 shows an image of a measured surface (corresponding to the mirror surface in FIG. 7) 1a observed by the optical system shown in FIG. 1 and the state of interference fringes 1d generated on the measured surface 1a. Reference numeral 11a represents a computer monitor.
In FIG. 2, the contrast of the interference fringe (ratio of the CCD intensity between the dark part and the bright part of the interference fringe) becomes the highest near the axis 1c where there is almost no displacement in the normal direction of the measured surface 1a. The contrast of the interference fringes becomes the lowest at the part where the displacement amount at the distant position is the largest.
In a portion where the amount of displacement is large, the displacement speed increases, and the interference fringes whose pattern changes with the change in the position of the surface to be measured 1a are superimposed within the exposure time of the CCD camera 8 (see FIG. 1), thereby reducing the contrast. .
As shown in FIG. 2, an interference fringe image is acquired, the ratio of the dark part and the bright part of the interference fringe is obtained for each location of the surface to be measured 1a, and the displacement speed of the surface to be measured 1a and the interference fringe obtained in advance are obtained. From the correlation with contrast, the displacement speed of the surface to be measured 1a can be obtained.
When deformation (swell) is generated on the surface to be measured 1a due to the influence of inertial force accompanying vibration, the displacement speed varies depending on the location of the surface, and the displacement speed distribution is measured.
If the number of interference fringes (the number of pairs of dark portions and bright portions) is increased, the spatial resolution in the plane can be increased. Correlation data between the displacement speed of the surface to be measured 1a and the contrast of the interference fringes is obtained, for example, using a jig described later.
FIG. 3 is a schematic diagram showing a jig used to acquire correlation data between the displacement speed of the surface to be measured and the contrast of interference fringes.
In FIG. 3, the mirror 14 is bonded to the base 16 via the piezo element 15. By applying a voltage to the piezo element 15, the mirror surface 14a can be displaced in the direction of the arrow.
The jig of FIG. 3 is installed as the DUT 1 in the optical system of FIG. 1 to generate interference fringes. By changing the voltage or frequency of the signal applied to the piezo element 15 to change the displacement speed of the mirror 14 surface, the contrast of the interference fringes obtained at that time is detected.

図4は変位速度とコントラストの相関関係をグラフで表す図である。
干渉縞のコントラストの検出から、図4のように変位速度VとコントラストCの相関関係を表すデータを取得できる。
ピエゾ素子15への印加信号の電圧、もしくは周波数とミラー14面の変位速度との関係は、別途変位計などを用いて取得しておけばよい。また図4のグラフから近似式を求め、干渉縞のコントラストの値から変位速度を算出するようにしても良い。
被測定面1aの変位速度に対してCCDカメラ8(図1参照)の露光時間が長過ぎて、上記式(1)を満たさないと干渉縞が消えてしまい、CCDカメラ8の露光時間が短すぎると干渉縞のコントラスト変化が微小になって検出できなくなる。このため、被測定物1の変位速度の仕様値を基に、上記式(1)から、例えば被測定物1の最大変位速度と露光時間との積が光源波長の半分とほぼ同じ値になるような適切な露光時間に設定しておく必要がある。
このように第1の実施の形態では被測定物1に光を照射し、その反射光から干渉縞を形成する。干渉縞画像のコントラストと被測定物1の変位速度、あるいは変位量との間には相関があるため、干渉縞のコントラストを検出することによって、被測定物1の面の法線方向への変位速度分布と変位量分布を得ることができる。被測定物1の反射光を撮像手段に到達させるために、被測定物1の変位と撮像手段(CCDカメラ)8における露光とのタイミングが調整される。面計測であるため、測定に時間を要さず、高い空間分解能を得ることができる。また、スペックルパターンを必要としないため鏡面物体であっても測定が可能である。
さらに、被測定面1aの変位に伴う干渉縞のコントラスト変化を検出するため、面のある瞬間での情報ではなく挙動の総合的な情報を取得でき、面の変形量が大きい場合も情報を取得できる。
FIG. 4 is a graph showing the correlation between the displacement speed and the contrast.
From the detection of the interference fringe contrast, data representing the correlation between the displacement speed V and the contrast C can be acquired as shown in FIG.
The relationship between the voltage or frequency of the signal applied to the piezo element 15 and the displacement speed of the mirror 14 surface may be acquired separately using a displacement meter or the like. Further, an approximate expression may be obtained from the graph of FIG. 4, and the displacement speed may be calculated from the contrast value of the interference fringes.
The exposure time of the CCD camera 8 (see FIG. 1) is too long with respect to the displacement speed of the surface to be measured 1a. If the above equation (1) is not satisfied, the interference fringes disappear and the exposure time of the CCD camera 8 is short. If it is too large, the contrast change of the interference fringes becomes too small to be detected. For this reason, based on the specification value of the displacement speed of the DUT 1, the product of the maximum displacement speed of the DUT 1 and the exposure time, for example, is approximately the same value as half the light source wavelength. It is necessary to set an appropriate exposure time.
As described above, in the first embodiment, the object to be measured 1 is irradiated with light, and interference fringes are formed from the reflected light. Since there is a correlation between the contrast of the interference fringe image and the displacement speed or displacement of the object to be measured 1, the displacement of the surface of the object to be measured 1 in the normal direction is detected by detecting the contrast of the interference fringes. A velocity distribution and a displacement distribution can be obtained. In order for the reflected light of the device under test 1 to reach the image pickup means, the timing of the displacement of the device under test 1 and the exposure in the image pickup means (CCD camera) 8 is adjusted. Since it is surface measurement, time is not required for measurement and high spatial resolution can be obtained. Further, since a speckle pattern is not required, measurement is possible even for a specular object.
In addition, since the contrast change of the interference fringes due to the displacement of the surface to be measured 1a is detected, comprehensive information on the behavior can be acquired instead of information at a certain moment of the surface, and information can be acquired even when the deformation amount of the surface is large. it can.

上述した実施の形態において、被測定物1の変位速度と干渉縞のコントラストとの相関関係データの代わりに、被測定物1の変位量と干渉縞のコントラストとの相関関係データを予め取得しておいて、測定光学系において取得した干渉縞画像のコントラストから被測定物1の変位量分布を求めることができる。また、上述した実施の形態に記載の方法で被測定物1の変位速度分布を求め、それに被測定物1の共振周期を乗じることで変位量分布を求めても良い。
ここでは、CCDカメラ8の露光時間を可変とし、例えば、初期状態ではCCDカメラ8の露光時間を短くしておいて、干渉縞を取得しながら露光時間を除々に長くしていく。そうすれば初期状態では干渉縞コントラストが高くても露光時間が長くなって、上記式(1)の干渉縞発生条件の境界に近づくにつれ干渉縞のコントラストが低下していく。
そして干渉縞のコントラストがほぼ無くなった(暗い部分と明るい部分のCCD強度が等しい)ときのCCD露光時間を記憶する。干渉縞のコントラストがほぼ無くなるときの露光時間と被測定物1の変位速度との相関関係データを予め取得しておけば、干渉縞のコントラストがほぼ無くなるときのCCD露光時間から被測定物1の変位速度を求めることができる。
本実施の形態によれば、撮像手段における露光時間を除々に変化させながら干渉縞のコントラストを検出して、干渉縞のコントラストがほぼ無くなるときの露光時間を被測定面1aの場所ごとで求める。そしてその露光時間と被測定物1の変位速度との相関関係から被測定物1の変位速度を求める。露光時間を変化させるため幅広い被測定物1の変位速度に対して対処できる。
In the above-described embodiment, instead of the correlation data between the displacement speed of the DUT 1 and the contrast of the interference fringes, correlation data between the displacement amount of the DUT 1 and the contrast of the interference fringes is acquired in advance. Therefore, the displacement distribution of the DUT 1 can be obtained from the contrast of the interference fringe image acquired in the measurement optical system. Alternatively, the displacement rate distribution of the device under test 1 may be obtained by the method described in the above-described embodiment, and the displacement amount distribution may be obtained by multiplying it by the resonance period of the device under test 1.
Here, the exposure time of the CCD camera 8 is variable. For example, the exposure time of the CCD camera 8 is shortened in the initial state, and the exposure time is gradually increased while acquiring interference fringes. Then, in the initial state, even if the interference fringe contrast is high, the exposure time becomes long, and the interference fringe contrast decreases as it approaches the boundary of the interference fringe generation condition of the above formula (1).
Then, the CCD exposure time when the contrast of the interference fringes is almost lost (the CCD intensity in the dark part and the bright part is equal) is stored. If the correlation data between the exposure time when the interference fringe contrast is almost lost and the displacement speed of the DUT 1 are acquired in advance, the CCD exposure time when the interference fringe contrast is almost lost is obtained from the CCD exposure time. The displacement speed can be determined.
According to the present embodiment, the contrast of the interference fringes is detected while gradually changing the exposure time in the imaging means, and the exposure time when the contrast of the interference fringes almost disappears is obtained for each location of the surface to be measured 1a. Then, the displacement speed of the device under test 1 is obtained from the correlation between the exposure time and the displacement speed of the device under test 1. Since the exposure time is changed, a wide range of displacement speeds of the DUT 1 can be dealt with.

図5は測定手順の概略を示すフローチャートである。
図5においてtはCCD露光時間の初期値、Δtは露光時間を変化させるピッチ、iは整数(0,1,2,・・・)、Nは露光時間を変化させる回数、t(x,y)はCCD画像の座標x,yにおける干渉縞のコントラストがほぼ無くなるときの露光時間、V(x,y)はCCD画像の座標x,yにおける変位速度である。
図5を参照して、露光時間>=t+Δt・iとし(S1)、干渉縞を収録する(S2)。次いでコントラストを検出し(S3)、i<Nかどうかを判断し(S4)、i<Nならば、画素ごとでコントラストが最小になるときの露光時間t(x,y)を取得する(S5)。t(x,y)から画素ごとで速度V(x,y)を取得する(S6)。
干渉縞のコントラストがほぼ無くなるときのCCD露光時間は、背景光の影響を受けにくいため、より高精度な測定を実施することができる。また或る特定のCCD露光時間では発生しなかった干渉縞であっても、露光時間を変化させることにより発生するようになる。
または、逆にある特定のCCD露光時間ではほとんど干渉縞のコントラスト変化が見られなかった干渉縞であっても露光時間を変化させることによりコントラストに変化がみられるようになったりして、測定のレンジを広げることもできる。
本実施の形態では、撮像手段(CCDカメラ)8における露光時間を除々に変化させながら干渉縞のコントラストを検出して、干渉縞のコントラストがほぼなくなるときの露光時間を被測定面の場所ごとで求める。そしてその露光時間と被測定物の変位量との相関関係から被測定物の変位量を求める。
露光時間を変化させるために幅広い被測定物1の変位量に対して対処することができる。また、被測定物の変位量に対する測定の汎用性を向上させ、測定レンジを拡大させること、さらに干渉縞の取得条件に起因する測定誤差を低減させることができる。
干渉縞のコントラストがほぼ無くなるときのCCD露光時間と被測定物1の変位速度との相関関係データの代わりに、被測定物1の変位量と干渉縞のコントラストがほぼ無くなるときのCCD露光時間との相関関係データを予め取得しておいて、測定において取得したCCD露光時間から被測定物1の変位量分布を求めることができる。
被測定物1の反射光と参照光との干渉により生じる干渉縞からフーリエ変換法の原理により干渉縞の振幅スペクトルを求め、振幅スペクトルを干渉縞コントラストとしても良い。
FIG. 5 is a flowchart showing an outline of the measurement procedure.
In FIG. 5, t 0 is the initial value of the CCD exposure time, Δt is the pitch for changing the exposure time, i is an integer (0, 1, 2,...), N is the number of times for changing the exposure time, and t (x, y) is the exposure time when the contrast of interference fringes at the coordinates x and y of the CCD image is almost eliminated, and V (x, y) is the displacement speed at the coordinates x and y of the CCD image.
Referring to FIG. 5, exposure time> = t 0 + Δt · i (S1), and interference fringes are recorded (S2). Next, contrast is detected (S3), and it is determined whether i <N (S4). If i <N, an exposure time t (x, y) when the contrast is minimized for each pixel is obtained (S5). ). The speed V (x, y) is acquired for each pixel from t (x, y) (S6).
The CCD exposure time when the contrast of the interference fringes is almost eliminated is not easily affected by the background light, so that more accurate measurement can be performed. Even interference fringes that did not occur during a specific CCD exposure time are generated by changing the exposure time.
Or, conversely, even if an interference fringe has almost no change in contrast at a specific CCD exposure time, a change in the contrast can be seen by changing the exposure time. You can also expand the range.
In this embodiment, the contrast of the interference fringes is detected while gradually changing the exposure time in the image pickup means (CCD camera) 8, and the exposure time when the contrast of the interference fringes almost disappears is determined for each location on the surface to be measured. Ask. Then, the amount of displacement of the object to be measured is obtained from the correlation between the exposure time and the amount of displacement of the object to be measured.
In order to change the exposure time, it is possible to cope with a wide range of displacement of the DUT 1. In addition, the versatility of measurement with respect to the amount of displacement of the object to be measured can be improved, the measurement range can be expanded, and measurement errors due to interference fringe acquisition conditions can be reduced.
Instead of the correlation data between the CCD exposure time when the interference fringe contrast is almost eliminated and the displacement speed of the DUT 1, the CCD exposure time when the displacement amount of the DUT 1 and the contrast of the interference fringes are almost eliminated The correlation amount distribution of the object to be measured 1 can be obtained from the CCD exposure time acquired in the measurement.
The amplitude spectrum of the interference fringe may be obtained from the interference fringes generated by the interference between the reflected light of the DUT 1 and the reference light by the principle of the Fourier transform method, and the amplitude spectrum may be used as the interference fringe contrast.

上述したように領域ごとで干渉縞の暗い部分と明るい部分の強度の比を求めてコントラストを求める場合に対して、高速な演算処理が可能となる。また、この方法で被測定物の変位速度分布を求め、それに被測定物の振動周期を乗じることで変位量分布を求めても良い。
上述した装置において、干渉縞のコントラストを検出する場合、干渉縞の明部と暗部の比をとっても良いが、処理が複雑になり時間がかかる。本発明では前記撮像手段にて取得した干渉縞画像をフーリエ変換し、周波数空間で干渉縞の傾き成分を取り除いたのち逆フーリエ変換して得られる複素振幅の振幅情報、あるいは振幅の二乗の情報を用いて前記干渉縞のコントラストとする。
二次元FFT演算などでフーリエ変換すれば高速に処理できるため、処理時間、測定時間を短縮することができる。これにより測定における演算処理を簡略化し、処理速度を向上させることができる。
干渉縞のコントラストを検出しながらCCDカメラ7の露光時間を変化させ、干渉縞のコントラストがほぼ無くなるときの露光時間を求める。そしてそれを次の式(2)におけるt(x,y)に代入することにより被測定面1aの場所ごとで変位速度V(x,y)を算出することができる。

Figure 2006162523
・・・(2)
実験的に取得した相関関係のデータを取得しないため、測定誤差の低減、相関データ取得のための手間を省ける。
干渉縞のコントラストを検出しながらCCDカメラ8の露光時間を変化させ、干渉縞のコントラストがほぼ無くなるときの露光時間を求める。そしてそれを次の式(3)におけるt(x,y)に代入することにより被測定面1aの場所ごとで変位量A(x,y)を算出することができる。

Figure 2006162523
・・・(3)
実験的に取得した相関関係のデータを取得しないため、測定誤差の低減、相関データ取得のための手間を省くことができる。 As described above, it is possible to perform high-speed arithmetic processing when the contrast is obtained by obtaining the ratio of the intensity of the dark part and the bright part of the interference fringes for each region. Further, the displacement amount distribution may be obtained by obtaining the displacement velocity distribution of the object to be measured by this method and multiplying it by the vibration period of the object to be measured.
In the apparatus described above, when detecting the contrast of interference fringes, the ratio of the bright part to the dark part of the interference fringes may be taken, but the processing becomes complicated and takes time. In the present invention, the amplitude information of the complex amplitude or the square of the amplitude obtained by Fourier-transforming the interference fringe image acquired by the imaging means and removing the slope component of the interference fringe in the frequency space and then performing the inverse Fourier transform is obtained. The contrast of the interference fringes is used.
If the Fourier transform is performed by a two-dimensional FFT calculation or the like, the processing time and the measurement time can be shortened because the processing can be performed at high speed. This simplifies the calculation process in the measurement and improves the processing speed.
While detecting the interference fringe contrast, the exposure time of the CCD camera 7 is changed to obtain the exposure time when the interference fringe contrast is almost eliminated. Then, by substituting it into t (x, y) in the following equation (2), the displacement velocity V (x, y) can be calculated for each location on the surface to be measured 1a.
Figure 2006162523
... (2)
Since experimentally acquired correlation data is not acquired, the measurement error can be reduced and the labor for acquiring correlation data can be saved.
The exposure time of the CCD camera 8 is changed while detecting the contrast of the interference fringes, and the exposure time when the contrast of the interference fringes almost disappears is obtained. Then, by substituting it into t (x, y) in the following equation (3), the displacement amount A (x, y) can be calculated for each location of the measured surface 1a.

Figure 2006162523
... (3)
Since experimentally acquired correlation data is not acquired, it is possible to reduce measurement errors and save time for acquiring correlation data.

CCDカメラ8の露光時間を変化させると、撮像面に露光される光の量が多くなったり少なくなったりするので、撮像される干渉縞画像が全体的に明るくなったり、暗くなったりする。
露光時間に伴う光量の変化が大きくなると、干渉縞のコントラストを検出するときにSN比が変化し、検出誤差が発生する場合がある。本発明では、例えばCCDカメラ8の露光時間の変化に応じて、光源の半導体レーザ2への注入電流により被測定物1への照射光量を変化させる。
露光時間が短い場合は画像の光量が少なくなるため、半導体レーザ2への注入電流を増やして強い光を被測定物1に照射する。露光時間が長い場合は画像の光量が多くなるため、半導体レーザ2への注入電流を減らして弱い光を被測定物1に照射する。予め注入電流と露光時間との相関関係データを取得しておき、測定のさい、露光時間に応じて注入電流を変化させれば良い。
パソコン11から信号発生器12などを介してCCDカメラ8の露光時間を変化させ、DA変換器などを介して半導体レーザ2への注入電流を変化させれば自動調整、自動測定が可能である。半導体レーザ2への注入電流を変化させる代わりに、照射光路内に強度フィルタを設置し、フィルタ強度を変化させることで照射光量を調整しても良い。
上記の装置では、注入電流と露光時間との相関関係データに基づいて照射光強度を調整したが、本発明では、例えば干渉縞画像における干渉縞の明るい部分のCCD画素強度を検出して干渉縞画像の明るさを検出する。
例えば、上述した図5の測定手順において、初期状態で干渉縞画像を収録した後に干渉縞の明るい部分を構成しているCCD画素強度I(x,y)を検出し、基準強度として記憶しておく。そして、露光時間を変化させた後干渉縞画像を収録し、さきほどと同じ位置のCCD画素での強度I(x,y)を検出する。I(x,y)が基準値I(x,y)と異なっていれば、両者がほぼ同じ値となるように半導体レーザ2への注入電流を調整する。露光時間を変化させるたびに上記のCCD画素強度の検出と半導体レーザ2への注入電流調整を行えば良い。
When the exposure time of the CCD camera 8 is changed, the amount of light exposed to the imaging surface increases or decreases, so that the captured interference fringe image becomes brighter or darker as a whole.
If the change in the amount of light accompanying the exposure time increases, the SN ratio may change when detecting the contrast of the interference fringes, and a detection error may occur. In the present invention, for example, according to a change in exposure time of the CCD camera 8, the amount of light applied to the object to be measured 1 is changed by an injection current to the semiconductor laser 2 of the light source.
When the exposure time is short, the amount of light of the image decreases, so that the current to be measured 1 is irradiated with strong light by increasing the injection current to the semiconductor laser 2. When the exposure time is long, the amount of light of the image increases. Therefore, the current to be measured 1 is irradiated with weak light by reducing the injection current to the semiconductor laser 2. Correlation data between the injection current and the exposure time may be acquired in advance, and the injection current may be changed according to the exposure time during measurement.
Automatic adjustment and automatic measurement are possible by changing the exposure time of the CCD camera 8 from the personal computer 11 via the signal generator 12 and the like, and changing the injection current to the semiconductor laser 2 via the DA converter or the like. Instead of changing the injection current to the semiconductor laser 2, an intensity filter may be installed in the irradiation optical path, and the irradiation light quantity may be adjusted by changing the filter intensity.
In the above-described apparatus, the irradiation light intensity is adjusted based on the correlation data between the injection current and the exposure time. Detect the brightness of the image.
For example, in the measurement procedure of FIG. 5 described above, after recording an interference fringe image in the initial state, the CCD pixel intensity I 0 (x, y) constituting the bright part of the interference fringe is detected and stored as the reference intensity. Keep it. Then, after changing the exposure time, an interference fringe image is recorded, and the intensity I (x, y) at the CCD pixel at the same position as before is detected. If I (x, y) is different from the reference value I 0 (x, y), the injection current to the semiconductor laser 2 is adjusted so that both are substantially the same value. It is only necessary to detect the CCD pixel intensity and adjust the injection current to the semiconductor laser 2 each time the exposure time is changed.

図6は第2の実施の形態に係る周期可動物の変位測定装置の構成を示した概略図である。第1の実施の形態に係る変位測定装置では、注入電流とパルス幅との相関関係データに基づいて照射光強度を調整したが、第2の実施の形態では、例えば、図6のような装置を用いて半導体レーザからの光の照射強度を検出する。
図6において、図1に示した変位測定装置と同一部位には同一の符号を付して詳しい説明は省略する。
図6に示した変位測定装置では、光源2の半導体レーザからの光の一部を取り出すビームサンプラ17、このビームサンプラ17にて取り出された光の強度を検出するためのフォトダイオード18を設けるようにした点が、上記図1に示した変位測定装置と異なるとされる。
フォトダイオード18の出力はオシロスコープ19にてモニタされる。例えば図5に示した測定手順において、初期状態で干渉縞画像を収録した後にフォトダイオード出力Iを検出し、基準強度として記憶しておく。そしてパルス幅を変化させた後干渉縞画像を収録し、フォトダイオード出力Iを検出する。
オシロスコープ19でモニタしながらフォトダイオード出力Iが基準強度Iと異なっていれば、両者がほぼ同じ値となるように半導体レーザへの注入電流を調整する。
パルス幅を変化させるたびに上記のフォトダイオード出力Iの検出と半導体レーザへの注入電流調整を行えばよい。フォトダイオード出力Iを、AD変換器などを介してパソコンに取り込んで半導体レーザへの電流注入と協働させて自動測定を行っても良い。
光源からのパルス光のパルス幅を変化させながら干渉縞のコントラストを検出する場合に、パルス幅を変化させると取得される干渉縞画像の全体光量が変化する。そのためパルス幅を変化させるたびにコントラストの検出精度が変わってくるため、それにより測定誤差が生じる場合がある。
本実施の形態では、パルス幅の変化に付随して光源から被測定物に照射する光の光量を調整するための照射光量調整手段を構成に付加して、パルス幅の変化に応じて被測定物への照射光の光量を調整するようにしている。
これにより、パルス幅の変化に拘わらず、常に略一定の干渉縞画像の全体光量が得られるため、パルス幅の変化に伴うコントラストの検出精度変化を抑えることができる。パルス幅の変化に伴う測定誤差を低減させることができる。
FIG. 6 is a schematic diagram showing a configuration of a periodic movable object displacement measuring apparatus according to the second embodiment. In the displacement measuring apparatus according to the first embodiment, the irradiation light intensity is adjusted based on the correlation data between the injection current and the pulse width. In the second embodiment, for example, an apparatus as shown in FIG. Is used to detect the irradiation intensity of light from the semiconductor laser.
In FIG. 6, the same parts as those of the displacement measuring apparatus shown in FIG.
In the displacement measuring apparatus shown in FIG. 6, a beam sampler 17 for extracting a part of light from the semiconductor laser of the light source 2 and a photodiode 18 for detecting the intensity of the light extracted by the beam sampler 17 are provided. It is assumed that the difference is different from the displacement measuring apparatus shown in FIG.
The output of the photodiode 18 is monitored by an oscilloscope 19. For example, in the measurement procedure shown in FIG. 5, after recording the interference fringe image in the initial state, the photodiode output I 0 is detected and stored as the reference intensity. Then, after changing the pulse width, an interference fringe image is recorded and the photodiode output I is detected.
If the photodiode output I is different from the reference intensity I 0 while being monitored by the oscilloscope 19, the injection current to the semiconductor laser is adjusted so that both values are substantially the same.
The detection of the photodiode output I and the adjustment of the injection current to the semiconductor laser may be performed each time the pulse width is changed. Photodiode output I may be taken into a personal computer via an AD converter or the like and automatically measured in cooperation with current injection into the semiconductor laser.
When detecting the contrast of the interference fringes while changing the pulse width of the pulsed light from the light source, changing the pulse width changes the total light amount of the acquired interference fringe image. For this reason, every time the pulse width is changed, the contrast detection accuracy changes, which may cause a measurement error.
In this embodiment, an irradiation light amount adjusting means for adjusting the amount of light emitted from the light source to the object to be measured is added to the configuration accompanying the change in the pulse width, and the measurement is performed according to the change in the pulse width. The amount of light applied to the object is adjusted.
Accordingly, since the entire light amount of the interference fringe image is always obtained regardless of the change in the pulse width, it is possible to suppress the change in contrast detection accuracy due to the change in the pulse width. Measurement errors due to changes in pulse width can be reduced.

なお、第2の実施の形態に係る変位測定装置では、半導体レーザ2からの光の一部を取り出して照射光強度を検出したが、これはあくまでも一例であり、本発明では、例えば干渉縞画像における干渉縞の明るい部分のCCD画素強度を検出して干渉縞画像の明るさを検出するようにしてもよい。
例えば、図5の測定手順において、初期状態で干渉縞画像を収録した後に干渉縞の明るい部分を構成しているCCD画素強度I(x,y)を検出し、基準強度として記憶しておく。そしてパルス幅を変化させたのち干渉縞画像収録し、さきほどと同じCCD画素での強度I(x,y)を検出する。
強度I(x,y)が基準強度I(x,y)と異なっていれば、ほぼ同じ値となるように半導体レーザへの注入電流を調整する。パルス幅を変化させるたびに上記のCCD画素強度の検出と半導体レーザへの注入電流調整を行えばよい。
本発明によれば、照射パルス光のパルス幅の変化に付随して前記光源から前記被測定物に照射する光の光量を検出するための照射光量検出手段を構成に付加し、照射光量検出手段の出力に基づいて被測定物への照射光の光量を調整する。
これにより、パルス幅の変化に関わらず、常に略一定の干渉縞画像の全体光量が得られるため、パルス幅の変化に伴うコントラストの検出精度変化を抑えることができ、また相関関係データを使用しないため、相関関係データ取得時と測定時との間の条件の差異による照射光量の調整誤差が生じない。パルス幅の変化に伴う測定誤差を低減させることができる。
照射光量検出手段の機能を干渉縞撮像手段に持たせることにより、光量検出のための追加部品を付加しないで済む。装置構成の簡素化、装置コストの低減を図ることができる。
In the displacement measuring apparatus according to the second embodiment, a part of the light from the semiconductor laser 2 is extracted and the irradiation light intensity is detected. However, this is merely an example, and in the present invention, for example, an interference fringe image is used. The brightness of the interference fringe image may be detected by detecting the CCD pixel intensity of the bright part of the interference fringe.
For example, in the measurement procedure of FIG. 5, after recording the interference fringe image in the initial state, the CCD pixel intensity I 0 (x, y) constituting the bright part of the interference fringe is detected and stored as the reference intensity. . Then, after changing the pulse width, an interference fringe image is recorded, and the intensity I (x, y) at the same CCD pixel as before is detected.
If the intensity I (x, y) is different from the reference intensity I 0 (x, y), the injection current to the semiconductor laser is adjusted so as to be almost the same value. It is sufficient to detect the CCD pixel intensity and adjust the injection current to the semiconductor laser each time the pulse width is changed.
According to the present invention, an irradiation light amount detection means for detecting the light amount of light irradiated from the light source to the object to be measured accompanying the change in the pulse width of the irradiation pulse light is added to the configuration. The amount of light irradiated to the object to be measured is adjusted based on the output of.
As a result, the entire light amount of the interference fringe image can always be obtained regardless of the change in the pulse width, so that the change in contrast detection accuracy due to the change in the pulse width can be suppressed, and the correlation data is not used. Therefore, there is no adjustment error in the amount of irradiation light due to the difference in conditions between the correlation data acquisition time and the measurement time. Measurement errors due to changes in pulse width can be reduced.
By providing the interference fringe imaging means with the function of the irradiation light quantity detection means, it is not necessary to add an additional component for light quantity detection. The apparatus configuration can be simplified and the apparatus cost can be reduced.

本発明の第1の実施の形態に係る周期可動物の変位測定装置の構成を示した概略図。Schematic which showed the structure of the displacement measuring apparatus of the periodic movable object which concerns on the 1st Embodiment of this invention. 図1に示した光学系により観測される被測定面の像と被測定面上に発生した干渉縞の様子を示した模式図。FIG. 2 is a schematic diagram showing an image of a measurement surface observed by the optical system shown in FIG. 1 and the state of interference fringes generated on the measurement surface. 被測定面の変位速度と干渉縞のコントラストとの相関関係データを取得するのに使用する治具の概略図。Schematic of the jig | tool used for acquiring the correlation data of the displacement speed of a to-be-measured surface, and the contrast of an interference fringe. 変位速度とコントラストの相関関係をグラフ図。The graph of the correlation between displacement speed and contrast. 測定手順の概略を示すフローチャート。The flowchart which shows the outline of a measurement procedure. 第2の実施の形態に係る周期可動物の変位測定装置の構成を示した概略図。Schematic which showed the structure of the displacement measuring apparatus of the periodic movable object which concerns on 2nd Embodiment. 測定対象の一項である共振ミラーを示す概略斜視図。The schematic perspective view which shows the resonance mirror which is one term of a measuring object.

符号の説明Explanation of symbols

A 周期可動物の速度及び変位測定装置、1 被測定物(共振ミラー)、1a 被測定面、2 光源(半導体レーザ)、4 NDフィルタ(照射光量調整手段)、5 干渉光学系(レンズ)、6 干渉光学系(ビームスプリッタ)、8 撮像手段(CCDカメラ)、9 干渉光学系(ミラー)、11 演算器(コンピュータ)、11a コンピュータモニタ、12 タイミング調整手段(信号発生器)、18 照射光量検出手段(フォトダイオード)
A Periodic movable object velocity and displacement measuring device, 1 object to be measured (resonant mirror), 1a surface to be measured, 2 light source (semiconductor laser), 4 ND filter (irradiation light amount adjusting means), 5 interference optical system (lens), 6 Interfering optical system (beam splitter), 8 Imaging means (CCD camera), 9 Interfering optical system (mirror), 11 Calculator (computer), 11a Computer monitor, 12 Timing adjusting means (signal generator), 18 Irradiation light quantity detection Means (photodiode)

Claims (10)

略周期運動する被測定物にパルス光を照射するための光源と、前記被測定物の変位と前記光源によるパルス光の発光とのタイミングを調整するタイミング調整手段と、前記被測定物からの反射光と参照光とを干渉させるための干渉光学系と、前記干渉光学系による干渉縞を撮像するための撮像手段と、前記撮像手段による干渉縞画像から干渉縞のコントラストを検出し、前記干渉縞のコントラストと前記被測定物の面の略法線方向への変位速度との相関関係から前記被測定物の面の略法線方向への変位速度を求める演算手段と、を備えることを特徴とする周期可動物の速度測定装置。   A light source for irradiating pulsed light to the object to be measured that moves substantially periodically; timing adjusting means for adjusting timing of displacement of the object to be measured and emission of pulsed light by the light source; and reflection from the object to be measured An interference optical system for causing light and reference light to interfere with each other, an imaging means for imaging an interference fringe by the interference optical system, a contrast of the interference fringe from an interference fringe image by the imaging means, and the interference fringe Calculating means for obtaining a displacement speed in a direction substantially normal to the surface of the object to be measured from a correlation between the contrast of the surface of the object to be measured and a displacement speed in a direction substantially normal to the surface of the object to be measured. Speed measuring device for periodic moving objects. 前記光源からのパルス光のパルス幅の変化に付随して前記光源から前記被測定物に照射する光の光量を調整するための照射光量調整手段をさらに備えることを特徴とする請求項1記載の周期可動物の速度測定装置。   2. The irradiation light amount adjusting means for adjusting a light amount of light emitted from the light source to the object to be measured accompanying a change in a pulse width of the pulsed light from the light source. Speed measurement device for periodic movable objects. 前記撮像手段にて取得した干渉縞画像をフーリエ変換し、周波数空間で干渉縞の傾き成分を取り除いたのち逆フーリエ変換して得られる複素振幅の振幅情報、あるいは振幅の二乗の情報を前記干渉縞のコントラストとすることを特徴とする請求項1又は2に記載の周期可動物の速度測定装置。   The interference fringe image acquired by the imaging means is Fourier transformed, and the amplitude information of the complex amplitude or the square of the amplitude obtained by performing inverse Fourier transform after removing the inclination component of the interference fringe in the frequency space is used for the interference fringe. The apparatus for measuring a speed of a periodic movable object according to claim 1 or 2, wherein the contrast of 前記被測定物の面の法線方向への変位速度をVとし、前記光源の波長をλとし、前記干渉縞のコントラストがほぼなくなるときのパルス幅をtとし、V=λ/(2・t)の関係から前記Vを求めることを特徴とする請求項2記載の周期可動物の速度測定装置。   The displacement speed in the normal direction of the surface of the object to be measured is V, the wavelength of the light source is λ, the pulse width when the contrast of the interference fringes is almost lost is t, and V = λ / (2 · t The velocity measuring device for periodic movable objects according to claim 2, wherein V is obtained from the relationship of 前記照射光量検出手段の機能を前記撮像手段に持たせたことを特徴とする請求項2記載の周期可動物の速度測定装置。   The apparatus for measuring a speed of a periodic movable object according to claim 2, wherein the imaging means has a function of the irradiation light quantity detection means. 略周期運動する被測定物にパルス光を照射するための光源と、前記被測定物の変位と前記光源によるパルス光の発光とのタイミングを調整するタイミング調整手段と、前記被測定物からの反射光と参照光とを干渉させるための干渉光学系と、前記干渉光学系による干渉縞を撮像するための撮像手段と、前記撮像手段による干渉縞画像から干渉縞のコントラストを検出し、前記干渉縞のコントラストと前記被測定物の面の略法線方向への変位量との相関関係から被測定物の面の略法線方向への変位量を求める演算手段と、を備えることを特徴とする周期可動物の変位測定装置。   A light source for irradiating pulsed light to the object to be measured that moves substantially periodically; timing adjusting means for adjusting timing of displacement of the object to be measured and emission of pulsed light by the light source; and reflection from the object to be measured An interference optical system for causing light and reference light to interfere with each other, an imaging means for imaging an interference fringe by the interference optical system, a contrast of the interference fringe from an interference fringe image by the imaging means, and the interference fringe Calculating means for obtaining a displacement amount of the surface of the object to be measured in a substantially normal direction from a correlation between the contrast of the surface of the object to be measured and a displacement amount of the surface of the object to be measured in a substantially normal direction. Displacement measuring device for periodic movable objects. 前記光源からのパルス光のパルス幅の変化に付随して前記光源から前記被測定物に照射する光の光量を調整するための照射光量調整手段をさらに備えることを特徴とする請求項6記載の周期可動物の変位測定装置。   The irradiation light quantity adjusting means for adjusting the light quantity of the light emitted from the light source to the object to be measured accompanying the change in the pulse width of the pulsed light from the light source. Displacement measuring device for periodic movable objects. 前記撮像手段にて取得した干渉縞画像をフーリエ変換し、周波数空間で干渉縞の傾き成分を取り除いたのち逆フーリエ変換して得られる複素振幅の振幅情報、あるいは振幅の二乗の情報を前記干渉縞のコントラストとすることを特徴とする請求項6または7記載の周期可動物の変位測定装置。   The interference fringe image acquired by the imaging means is Fourier-transformed, the amplitude component of the complex amplitude obtained by performing inverse Fourier transform after removing the interference fringe tilt component in the frequency space, or the square information of the amplitude is obtained as the interference fringe. The apparatus for measuring a displacement of a periodic movable object according to claim 6 or 7, wherein the contrast of 前記被測定物の変位量をAとし、前記光源の波長をλとし、前記被測定物の変位周波数をfとし、前記干渉縞のコントラストがほぼ無くなるときのパルス幅をtとし、A=λ/(4・f・t)の関係から前記Aを求めることを特徴とする請求項7記載の周期可動物の変位測定装置。   The displacement amount of the object to be measured is A, the wavelength of the light source is λ, the displacement frequency of the object to be measured is f, the pulse width when the contrast of the interference fringes is almost eliminated is t, and A = λ / The apparatus for measuring a displacement of a periodic movable object according to claim 7, wherein A is obtained from a relationship of (4 · f · t). 前記照射光量検出手段の機能を前記撮像手段に持たせたことを特徴とする請求項7記載の周期可動物の変位測定装置。   8. The periodic movable object displacement measuring device according to claim 7, wherein the imaging means has a function of the irradiation light quantity detection means.
JP2004357443A 2004-12-09 2004-12-09 Speed-measuring apparatus and displacement measurement apparatus for periodically movable object Pending JP2006162523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357443A JP2006162523A (en) 2004-12-09 2004-12-09 Speed-measuring apparatus and displacement measurement apparatus for periodically movable object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357443A JP2006162523A (en) 2004-12-09 2004-12-09 Speed-measuring apparatus and displacement measurement apparatus for periodically movable object

Publications (1)

Publication Number Publication Date
JP2006162523A true JP2006162523A (en) 2006-06-22

Family

ID=36664700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357443A Pending JP2006162523A (en) 2004-12-09 2004-12-09 Speed-measuring apparatus and displacement measurement apparatus for periodically movable object

Country Status (1)

Country Link
JP (1) JP2006162523A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041101A1 (en) * 2013-09-17 2015-03-26 シャープ株式会社 Resonance frequency calculation device, image capture device, resonance frequency calculation program, and resonance frequency calculation method
WO2017082245A1 (en) * 2015-11-12 2017-05-18 Ntn株式会社 Height detection device and coating apparatus provided with same
JP2017096916A (en) * 2015-11-12 2017-06-01 Ntn株式会社 Height detection device and coating applicator incorporating the same
CN107024427A (en) * 2017-04-17 2017-08-08 金华职业技术学院 A kind of device for the tribology for studying monolayer
CN107132181A (en) * 2017-04-17 2017-09-05 金华职业技术学院 A kind of method for the tribology for studying monolayer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041101A1 (en) * 2013-09-17 2015-03-26 シャープ株式会社 Resonance frequency calculation device, image capture device, resonance frequency calculation program, and resonance frequency calculation method
WO2017082245A1 (en) * 2015-11-12 2017-05-18 Ntn株式会社 Height detection device and coating apparatus provided with same
JP2017096916A (en) * 2015-11-12 2017-06-01 Ntn株式会社 Height detection device and coating applicator incorporating the same
CN108291802A (en) * 2015-11-12 2018-07-17 Ntn株式会社 Height detecting device and the applying device for carrying the height detecting device
US11326871B2 (en) 2015-11-12 2022-05-10 Ntn Corporation Height detection apparatus and coating apparatus equipped with the same
US11402195B2 (en) 2015-11-12 2022-08-02 Ntn Corporation Height detection apparatus and coating apparatus equipped with the same
CN107024427A (en) * 2017-04-17 2017-08-08 金华职业技术学院 A kind of device for the tribology for studying monolayer
CN107132181A (en) * 2017-04-17 2017-09-05 金华职业技术学院 A kind of method for the tribology for studying monolayer

Similar Documents

Publication Publication Date Title
US20050279172A1 (en) Visualization, measurement and analysis of vibrating objects
JP3955899B2 (en) Deformation measurement method and apparatus using electronic speckle interferometry
US20130329953A1 (en) Optical non-contacting apparatus for shape and deformation measurement of vibrating objects using image analysis methodology
US7274466B2 (en) Method and apparatus for measuring dynamic configuration surface
US20110261347A1 (en) Method for interferometric detection of surfaces
JP2007240344A (en) Dynamic shape measuring method and dynamic shape measuring device
US7495777B2 (en) Method and apparatus for contact free measurement of periodically moving objects
JP4216679B2 (en) Displacement meter and displacement measurement method
US20130235385A1 (en) Surface shape measurement method and measurement apparatus
JP2006162523A (en) Speed-measuring apparatus and displacement measurement apparatus for periodically movable object
US20200370947A1 (en) Devices and methods for vibration analysis
JP2006119099A (en) Device for measuring displacement of periodically movable object
JP2004177225A (en) Device and method for measuring dynamic shape and dynamic position simultaneously
JP3996561B2 (en) Laser Doppler vibrometer
JP5544679B2 (en) Step surface shape measuring method and measuring device
JP5518187B2 (en) Deformation measurement method
JP2003098040A (en) Optical system evaluation device and method
JP4765140B2 (en) Interference measurement method and interference measurement apparatus
JP6386954B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2005331254A (en) Micro-height measuring device using low coherence interferometry
JP2005345246A (en) Interference fringe analysis method, interference fringe analysis program and interference measuring device
US6906806B2 (en) Method and apparatus for measuring motion
JP4177188B2 (en) Method, apparatus and optical element for simultaneous measurement of dynamic shape and dynamic position
JP2004347426A (en) Shape measuring apparatus and measuring method
JP2004279137A (en) Apparatus for measuring dynamic shape and dynamic position at once