JP5342178B2 - Shape measuring apparatus and shape measuring method - Google Patents

Shape measuring apparatus and shape measuring method Download PDF

Info

Publication number
JP5342178B2
JP5342178B2 JP2008151666A JP2008151666A JP5342178B2 JP 5342178 B2 JP5342178 B2 JP 5342178B2 JP 2008151666 A JP2008151666 A JP 2008151666A JP 2008151666 A JP2008151666 A JP 2008151666A JP 5342178 B2 JP5342178 B2 JP 5342178B2
Authority
JP
Japan
Prior art keywords
measured
shape measuring
imaging
measuring apparatus
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008151666A
Other languages
Japanese (ja)
Other versions
JP2009300100A5 (en
JP2009300100A (en
Inventor
西川  孝
Original Assignee
株式会社ニコンインステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコンインステック filed Critical 株式会社ニコンインステック
Priority to JP2008151666A priority Critical patent/JP5342178B2/en
Publication of JP2009300100A publication Critical patent/JP2009300100A/en
Publication of JP2009300100A5 publication Critical patent/JP2009300100A5/ja
Application granted granted Critical
Publication of JP5342178B2 publication Critical patent/JP5342178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring apparatus and its shape measuring method which can accurately measure the surface shape of a glossy surface in a short time. <P>SOLUTION: The shape measuring apparatus 1 includes an imaging section 25 for picking up surface images of a sample 15 put on a sample stand 16 for a microscope, a piezoelectric drive controller which moves an imaging optical system relatively to the sample 15 periodically along the optical axis of the imaging optical system of the imaging section 25, and stores and outputs amounts of travel, a two-beam interference objective lens 14 which laps intensity unevenness of reflected light from the surface of the sample 15 reflecting the unevenness of the surface of the sample 15 over the surface image, and a controlling processor 27 for acquiring the surface shape of the sample 15 by calculating a relative height of the surface of the sample 15, on the basis of a travel distance value at which a degree of focusing of a plurality of surface images picked up by the imaging section 25 for picking up the surface images over which the intensity unevenness of the reflected light is lapped over with the objective lens 14 becomes maximum, among the travel distance values of the imaging section 25 output from the piezoelectric drive controller. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、光学顕微鏡を用いて被測定物の表面高さを演算して被測定物の表面形状を求める形状測定装置、およびその形状測定方法に関する。   The present invention relates to a shape measuring apparatus that calculates the surface height of an object to be measured by using an optical microscope and obtains the surface shape of the object to be measured, and a shape measuring method thereof.

光学顕微鏡を用いて被測定物の表面高さを算出して表面形状を求める装置として、従来種々のものが提案されており、その一例として特許文献1に開示された装置がある。この特許文献1に開示された形状測定装置500について、図9を参照しながら簡単に説明すると、顕微鏡用対物レンズ540をピエゾ駆動装置530により、例えば1秒間に15回の割合で連続的に所定の上下幅、つまり顕微鏡の光軸に沿った方向に往復走査させる。このように往復走査させながら、顕微鏡用対物レンズ540により結像された試料550の画像が、1/900秒間に1枚の割合で高速度カメラ510により撮像されるとともに、ディジタル信号に変換されて制御用プロセッサ590に出力される。制御用プロセッサ590は、入力された画像の各画素について合焦度(合焦の度合い)を計算し、顕微鏡の光軸に沿った方向の上限位置から下限位置までの1周期内において、画素毎に最も高い合焦度が検出された光軸方向位置を、その点の相対高さと決定するように構成されている。このような構成の形状測定装置500によれば、被測定物の表面形状を比較的短時間のうちに測定できる。
特許第3737483号公報
Various devices have been proposed in the past as devices for calculating the surface height of an object to be measured using an optical microscope, and there is a device disclosed in Patent Document 1 as an example. The shape measuring apparatus 500 disclosed in Patent Document 1 will be briefly described with reference to FIG. 9. The microscope objective lens 540 is continuously predetermined by the piezo drive device 530 at a rate of, for example, 15 times per second. Are scanned back and forth in the direction along the optical axis of the microscope. While reciprocally scanning in this manner, the image of the sample 550 formed by the microscope objective lens 540 is picked up by the high-speed camera 510 at a rate of one piece per 1/900 second and converted into a digital signal. The data is output to the control processor 590. The control processor 590 calculates the degree of focus (degree of focus) for each pixel of the input image, and for each pixel within one cycle from the upper limit position to the lower limit position in the direction along the optical axis of the microscope. The position in the optical axis direction where the highest degree of focus is detected is determined as the relative height of that point. According to the shape measuring apparatus 500 having such a configuration, the surface shape of the object to be measured can be measured in a relatively short time.
Japanese Patent No. 3737483

ところで、例えば研磨加工された金属表面やガラス表面等の光沢面には、人間の眼では焦点を合わせて見ることができないような約10μm程度の微細な切削痕が形成されているものがある。上記の形状測定装置500を用いて、このような切削痕の形状(光沢面の表面形状)を短時間のうちに測定しようとした場合、測定に用いる画像信号のS/N比(測定に用いる画像の濃淡)が極めて低いため、例えば図8(a)に示すように、約10μm程度の微細な切削痕の形状を正確に測定することが困難であった。   By the way, for example, a polished surface such as a polished metal surface or glass surface may have fine cutting marks of about 10 μm that cannot be seen with the human eye in focus. When the shape measuring device 500 is used to measure the shape of such a cut mark (surface shape of the glossy surface) in a short time, the S / N ratio (used for measurement) of the image signal used for the measurement is measured. For example, as shown in FIG. 8A, it is difficult to accurately measure the shape of a fine cutting mark of about 10 μm.

本発明は、このような問題に鑑みてなされたものであり、短時間のうちに光沢面の表面形状を正確に測定できる形状測定装置およびその形状測定方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a shape measuring apparatus and a shape measuring method thereof that can accurately measure the surface shape of a glossy surface in a short time.

このような目的を達成するために、本発明に係る形状測定装置は、ステージに載置された被測定物の表面像を撮像する撮像部と、前記撮像部の撮像光学系の光軸に沿って、前記撮像光学系を前記被測定物に対して往復相対移動させ、移動量を記憶して出力する移動制御部と、前記被測定物の表面からの反射光と参照光を重ねて、前記被測定物の表面の凹凸を反映した干渉縞を発生させる干渉縞発生光学系と、前記撮像光学系を前記被測定物に対して往復相対移動させながら前記撮像部により前記干渉縞を含んだ前記表面像を撮像し、前記撮像部を構成する撮像面の所定領域毎に前記往復相対移動のそれぞれにおいて最大の合焦度が得られるときの移動量を求め、前記往復相対移動のそれぞれについて求められた複数の前記移動量に基づいて前記所定領域毎に前記被測定物の表面の相対高さを演算して前記被測定物の表面形状を求める演算部と、を有して構成される。 In order to achieve such an object, a shape measuring device according to the present invention is provided along an optical axis of an imaging unit that captures a surface image of an object to be measured placed on a stage, and an imaging optical system of the imaging unit. The imaging optical system is reciprocally moved relative to the object to be measured, a movement control unit that stores and outputs a movement amount, and the reflected light and the reference light from the surface of the object to be measured are overlapped, An interference fringe generation optical system that generates interference fringes reflecting the irregularities on the surface of the object to be measured, and the interference fringes included by the image pickup unit while reciprocally moving the imaging optical system relative to the object to be measured. A surface image is picked up, and a movement amount when the maximum degree of focus is obtained in each of the reciprocal relative movements for each predetermined area of the imaging surface constituting the image pickup unit, and is obtained for each of the reciprocal relative movements. Based on a plurality of said movement amounts Configured with a, a calculation section for the every predetermined area and calculates the relative height of the surface of the object to be measured determine the surface shape of the object to be measured.

また、上述の形状測定装置において、前記演算部は、前記撮像面を構成する画素で検出される信号強度の二次微分値を基にして合焦度を求めることにより、最大の合焦度が得られるときの移動量を求め、前記画素毎に前記被測定物の表面の相対高さを演算することが好ましい。 Further, in the above-described shape measuring apparatus, the calculating unit, by Rukoto determined focus degree based on the second derivative value of the signal intensity detected by the pixels constituting the imaging surface, the maximum degree of focus It is preferable to calculate the relative height of the surface of the object to be measured for each of the pixels, by obtaining the amount of movement when the value is obtained .

上述の形状測定装置において、前記ステージは、前記被測定物の被測定面が前記撮像光学系の光軸に対して傾斜するように前記被測定物を支持可能であることが好ましい。また、上述の形状測定装置において、前記干渉縞発生光学系の参照面に、複数の小孔が規則的に並ぶように形成されたマスクを配置した構成でも良い。 In the above-described shape measuring apparatus, it is preferable that the stage can support the object to be measured such that a surface to be measured of the object to be measured is inclined with respect to the optical axis of the imaging optical system. Further, in the above-described shape measuring apparatus, a configuration in which a mask formed so that a plurality of small holes are regularly arranged may be arranged on the reference surface of the interference fringe generating optical system.

ここで、上述の形状測定装置において、前記演算部は、往復相対移動周期のそれぞれにおいて最大の合焦度が得られるときの移動量を記憶することが好ましい。 Here, in the above-described shape measuring apparatus, it is preferable that the calculation unit stores a movement amount when the maximum degree of focus is obtained in each of the reciprocating relative movement cycles .

また、上述の形状測定装置において、前記演算部は、前記撮像面を構成する画素毎に所定閾値以上の合焦度となる相対高さの算術平均をとる構成も好ましい。 Moreover, in the above-described shape measuring apparatus, it is also preferable that the calculation unit take an arithmetic average of relative heights at which the degree of focus is not less than a predetermined threshold for each pixel constituting the imaging surface .

さらに、上述の形状測定装置において、前記演算部は、前記撮像面を構成する画素毎に所定閾値以上の合焦度となる相対高さの出現頻度分布に確率密度関数を当てはめて、確率が最大となる相対高さを求める構成でも良い。なお、上述の形状測定装置において、前記確率密度関数は、正規分布であることが好ましい。 Furthermore, in the above-described shape measuring apparatus, the calculation unit applies a probability density function to the appearance frequency distribution of the relative height that achieves a degree of focus equal to or greater than a predetermined threshold for each pixel constituting the imaging surface, so that the probability is maximum. The structure which calculates | requires the relative height to become may be sufficient. In the shape measuring apparatus described above, the probability density function is preferably a normal distribution.

また、上述の形状測定装置において、前記演算部は、前記撮像面を構成する画素毎に所定閾値以上の合焦度となる相対高さの出現頻度分布の最大頻度近傍を二次曲線で近似し、最大頻度となる相対高さを求める構成も好ましい。 Further, in the above-described shape measuring apparatus, the calculation unit approximates the vicinity of the maximum frequency of the appearance frequency distribution of the relative height that achieves a focusing degree equal to or greater than a predetermined threshold for each pixel constituting the imaging surface by a quadratic curve. In addition, a configuration for obtaining the relative height at which the maximum frequency is obtained is also preferable.

本発明に係る形状測定方法は、上述のように構成された形状測定装置を用いて、前記移動制御部により前記撮像光学系を前記被測定物に対して相対移動させながら、前記撮像部により撮像されて得られた複数の前記表面像を基にして得られる合焦度に基づいて前記被測定物の表面の相対高さを演算して前記被測定物の表面形状を求めるときに、前記撮像部は、前記干渉縞発生光学系により生成され、前記表面像に重ねられた干渉縞を含む前記表面像を撮像するようになっている。 In the shape measuring method according to the present invention, the shape measuring device configured as described above is used to capture an image by the imaging unit while moving the imaging optical system relative to the object to be measured by the movement control unit. When obtaining the surface shape of the object to be measured by calculating the relative height of the surface of the object to be measured based on the degree of focus obtained based on the plurality of surface images obtained The unit captures the surface image including the interference fringes generated by the interference fringe generation optical system and superimposed on the surface image.

本発明によれば、短時間のうちに光沢面の表面形状を正確に測定できる。   According to the present invention, the surface shape of the glossy surface can be accurately measured in a short time.

以下、本発明の好ましい実施形態である実施例1および実施例2について、図面を参照しながら説明する。   Examples 1 and 2 as preferred embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明を適用した実施例1に係る形状測定装置1の概略図を示しており、この図1を参照しながら形状測定装置1の構成について説明する。形状測定装置1は、撮像部25、顕微鏡本体26および制御用プロセッサ27を主体に構成される。顕微鏡本体26は、顕微鏡用試料台16、顕微鏡ベース18および傾斜板20を主体に構成されており、顕微鏡用試料台16の上面に傾斜板20が載置されている。よって、測定対象物である例えば略直方体の試料15を、この傾斜板20の上面に載置して測定を行うことにより、例えば光沢面となっている試料15の測定面(上面)を、撮像部25を構成する撮像光学系の光軸に対して斜めに位置させた状態で測定できるようになっている。   FIG. 1 shows a schematic diagram of a shape measuring apparatus 1 according to a first embodiment to which the present invention is applied. The configuration of the shape measuring apparatus 1 will be described with reference to FIG. The shape measuring apparatus 1 mainly includes an imaging unit 25, a microscope body 26, and a control processor 27. The microscope main body 26 mainly includes a microscope sample stage 16, a microscope base 18, and an inclined plate 20, and the inclined plate 20 is placed on the upper surface of the microscope sample stage 16. Therefore, for example, the measurement surface (upper surface) of the sample 15 which is a glossy surface is imaged by placing the measurement object, for example, a substantially rectangular parallelepiped sample 15 on the upper surface of the inclined plate 20 and performing the measurement. Measurement can be performed in a state of being inclined with respect to the optical axis of the imaging optical system constituting the unit 25.

撮像部25は、高速度カメラ11、顕微鏡鏡筒装置12、ピエゾ駆動装置13、二光束干渉対物レンズ14および顕微鏡用照明装置17を主体に構成される。顕微鏡用照明装置17は、照明光を出射する光源17aおよびビームスプリッタ17bを備えている。二光束干渉対物レンズ14は、図2に示すように、ビームスプリッタ31、参照面用明視野対物レンズ32、参照面33および対象物用明視野対物レンズ34を主体に構成され、本実施例においてはリニーク型の干渉光学系を例示している。顕微鏡鏡筒装置12は、その内部に結像レンズ(図示せず)を備えて構成され、後述するように干渉縞を含んだ干渉像光を高速度カメラ11の撮像面上に結像させる。高速度カメラ11は、例えば1/900秒間に1枚の割合で撮像可能な構成となっており,その撮像した画像をディジタル信号に変換して、後述する高速画像プロセッサ42に出力するようになっている(図3を参照)。   The imaging unit 25 is mainly composed of a high-speed camera 11, a microscope barrel device 12, a piezo drive device 13, a two-beam interference objective lens 14, and a microscope illumination device 17. The microscope illumination device 17 includes a light source 17a that emits illumination light and a beam splitter 17b. As shown in FIG. 2, the two-beam interference objective lens 14 is mainly composed of a beam splitter 31, a reference surface bright field objective lens 32, a reference surface 33, and an object bright field objective lens 34. Exemplifies a linique type interference optical system. The microscope barrel device 12 is configured to include an imaging lens (not shown) therein, and forms interference image light including interference fringes on the imaging surface of the high-speed camera 11 as will be described later. The high-speed camera 11 is configured to be able to capture images at a rate of, for example, 1/900 seconds, and converts the captured image into a digital signal and outputs the digital signal to a high-speed image processor 42 described later. (See FIG. 3).

ピエゾ駆動装置13は、印加電圧を変えることにより体積が変化するピエゾ素子を用いて構成されており、本実施例においては、例えば1秒間に15回の割合で連続的に所定幅を往復移動可能となっている。このピエゾ駆動装置13が、二光束干渉対物レンズ14の上端部に取り付けられているため、ピエゾ駆動装置13が駆動されることにより、二光束干渉対物レンズ14は、撮像部25を構成する撮像光学系の光軸に沿った方向(図1における上下方向)に往復移動される。また、ピエゾ駆動装置13は、後述するピエゾ駆動制御装置41と接続されて駆動が制御されるようになっている(図3を参照)。制御用プロセッサ27は、図3に示すように、ピエゾ駆動制御装置41、高速画像プロセッサ42および制御用コンピュータ43を主体に構成されており、これらの詳しい作動に関しては後述する。   The piezo driving device 13 is configured by using a piezo element whose volume changes by changing the applied voltage. In this embodiment, the piezo driving device 13 can continuously reciprocate a predetermined width at a rate of 15 times per second, for example. It has become. Since the piezo driving device 13 is attached to the upper end portion of the two-beam interference objective lens 14, the two-beam interference objective lens 14 is driven by the imaging optical that constitutes the imaging unit 25 when the piezo driving device 13 is driven. It is reciprocated in the direction along the optical axis of the system (vertical direction in FIG. 1). Further, the piezo drive device 13 is connected to a piezo drive control device 41, which will be described later, and the drive is controlled (see FIG. 3). As shown in FIG. 3, the control processor 27 is mainly composed of a piezo drive control device 41, a high-speed image processor 42, and a control computer 43, and detailed operations thereof will be described later.

以上、形状測定装置1の構成部分について説明したが、以下に、形状測定装置1を用いて試料15の測定面の表面形状を測定するときの測定方法について、各構成部分の作動と併せて説明する。まず、光源17aから出射されてビームスプリッタ17bにおいて反射された照明光は、二光束干渉対物レンズ14の中のビームスプリッタ31に到達する(図1および図2を参照)。そして、照明光はビームスプリッタ31において分割されて、一方は対象物用明視野対物レンズ34を通過して試料15の測定面に照射されるとともに、他方は参照面用明視野対物レンズ32を通過して参照面33に照射される。そして、試料15の測定面および参照面33において反射された照明光は、ビームスプリッタ31で再び重ね合わされることにより干渉縞が発生し、この干渉縞を含んだ干渉像光が高速度カメラ11の撮像面上に結像される。   Although the constituent parts of the shape measuring apparatus 1 have been described above, the measurement method for measuring the surface shape of the measurement surface of the sample 15 using the shape measuring apparatus 1 will be described together with the operation of each constituent part. To do. First, the illumination light emitted from the light source 17a and reflected by the beam splitter 17b reaches the beam splitter 31 in the two-beam interference objective lens 14 (see FIGS. 1 and 2). The illumination light is split by the beam splitter 31, one passing through the object bright field objective lens 34 and irradiating the measurement surface of the sample 15, and the other passing through the reference plane bright field objective lens 32. Then, the reference surface 33 is irradiated. The illumination light reflected on the measurement surface of the sample 15 and the reference surface 33 is overlapped again by the beam splitter 31 to generate interference fringes, and the interference image light including the interference fringes is emitted from the high-speed camera 11. An image is formed on the imaging surface.

上記測定時において、ピエゾ駆動装置13は、ピエゾ駆動制御装置41によって連続的に往復移動されているため、二光束干渉対物レンズ14(対象物用明視野対物レンズ34)がそれぞれの位置に移動された状態における干渉像光が、高速度カメラ11の撮像面上に結像される。本実施例においては高速度カメラ11を用いているため、ピエゾ駆動装置13の駆動に対して、それぞれの移動位置における画像を確実に撮像できるようになっている。ここで、上記干渉縞は、試料15の測定面からの反射光と、参照面33からの反射光との位相差(光路差)に基づいて発生するため、以下のようにこの干渉縞を含んだ画像を演算処理することにより、試料15の測定面の相対高さを測定して表面形状を求めることができる。   At the time of the measurement, since the piezo drive device 13 is continuously reciprocated by the piezo drive control device 41, the two-beam interference objective lens 14 (the bright field objective lens 34 for the object) is moved to each position. The interference image light in this state is imaged on the imaging surface of the high-speed camera 11. In this embodiment, since the high-speed camera 11 is used, it is possible to reliably capture an image at each moving position with respect to driving of the piezo driving device 13. Here, since the interference fringes are generated based on the phase difference (optical path difference) between the reflected light from the measurement surface of the sample 15 and the reflected light from the reference surface 33, the interference fringes are included as follows. By calculating the image, it is possible to determine the surface shape by measuring the relative height of the measurement surface of the sample 15.

そこで、制御用プロセッサ27において、試料15の測定面の相対高さを測定して測定面の形状を求める方法について、以下の4つの測定方法(測定方法1〜4)を挙げて説明する。   Therefore, a method for obtaining the shape of the measurement surface by measuring the relative height of the measurement surface of the sample 15 in the control processor 27 will be described with reference to the following four measurement methods (measurement methods 1 to 4).

(測定方法1)
まず、高速画像プロセッサ42は、図3に示すように、ピエゾ駆動制御装置41に対して、ピエゾ駆動装置13を所定の走査距離だけ移動させるための作動信号を連続的に出力するとともに、この作動信号の出力に同期して、高速度カメラ11で撮像されてディジタル信号に変換された画像を入力する。こうすることにより、高速画像プロセッサ42は、撮像部25を構成する撮像光学系の光軸方向に沿った移動距離情報と、それぞれの移動位置における画像とを保存することができる構成となっている。さらに、高速画像プロセッサ42は、ピエゾ駆動制御装置41に対して作動信号を出力することにより、所定の走査幅内においてピエゾ駆動装置13を連続して循環的に駆動させる。
(Measurement method 1)
First, as shown in FIG. 3, the high-speed image processor 42 continuously outputs an operation signal for moving the piezo drive device 13 by a predetermined scanning distance to the piezo drive control device 41, and this operation. In synchronization with the output of the signal, an image captured by the high-speed camera 11 and converted into a digital signal is input. By doing so, the high-speed image processor 42 can store the movement distance information along the optical axis direction of the imaging optical system constituting the imaging unit 25 and the image at each movement position. . Further, the high-speed image processor 42 outputs an operation signal to the piezo drive control device 41 to drive the piezo drive device 13 continuously and cyclically within a predetermined scanning width.

そして、高速画像プロセッサ42は、入力された画像の各画素について合焦度を算出する。このとき、上記合焦度を求める手法としては、二次微分値(画素の信号強度の変化率)または分散値等を用いて求めることができ、本実施例においては二次微分値を用いている。なお、画素の合焦度は、例えばその周囲の画素の情報を用いた二次微分値に基づくフィルタ(ラプラシアンフィルタ)を使って求めることも可能である。   Then, the high speed image processor 42 calculates the degree of focus for each pixel of the input image. At this time, as a technique for obtaining the degree of focus, it can be obtained by using a secondary differential value (change rate of the signal intensity of the pixel) or a variance value. In this embodiment, the secondary differential value is used. Yes. Note that the degree of focus of a pixel can be obtained by using, for example, a filter (Laplacian filter) based on a secondary differential value using information of surrounding pixels.

さらに、高速画像プロセッサ42は、入力された各情報を基にして、ピエゾ駆動装置13が上下に1循環する間に1枚の割合で、原高さ画像42aと合焦度画像42bとを生成し、それぞれを制御用コンピュータ43に出力する。上記原高さ画像42aとは、画素毎に、上下に1循環する間に得られた最も真の高さに近いと高速画像プロセッサ42が判断した値が格納されたものであり、上記合焦度画像42bとは、画素毎に、その画素の合焦度が格納されたものである。   Furthermore, the high-speed image processor 42 generates the original height image 42a and the focus degree image 42b at a rate of one sheet while the piezo drive device 13 circulates up and down once based on each input information. Each of them is output to the control computer 43. The original height image 42a is a value stored by the high-speed image processor 42 that is determined to be closest to the true height obtained during one cycle of vertical movement for each pixel. The degree image 42b stores the degree of focus of each pixel for each pixel.

制御用コンピュータ43は、所定期間内において得られた複数の原高さ画像42aおよび複数の合焦度画像42bを入力し、より一層真の高さ画像に近い高さ画像を算出する。ここで、制御用コンピュータ43における上記高さ画像の算出方法について、図4に示すグラフを参照しながら具体的に説明する。図4(a)の縦軸は合焦度を、横軸は時間を表しており、図4(a)のグラフ中の各プロットは、1循環中に1枚出力される上記合焦度画像のうちから任意に抽出された1画素についての値を示している。また、図4(b)の縦軸は高さを、横軸は時間を表しており、図4(b)のグラフ中の各プロットは、1循環中に1枚出力される上記高さ画像のうちから任意に抽出された1画素についての値を示しており、説明の便宜上、図4(a)と図4(b)とは同一の画素について示しているものとする。このとき、所定期間内での最大の合焦度を示す時点、例えばプロット51における高さを示したプロット61の高さを、その画素の相対高さとして決定する。   The control computer 43 inputs a plurality of original height images 42a and a plurality of focus degree images 42b obtained within a predetermined period, and calculates a height image closer to the true height image. Here, the calculation method of the height image in the control computer 43 will be specifically described with reference to the graph shown in FIG. The vertical axis in FIG. 4 (a) represents the degree of focus, and the horizontal axis represents time. Each plot in the graph of FIG. 4 (a) is the above-mentioned focus degree image that is output in one cycle. A value for one pixel arbitrarily extracted from among them is shown. In addition, the vertical axis in FIG. 4B represents height, and the horizontal axis represents time, and each plot in the graph of FIG. 4B represents the height image that is output in one cycle. The values for one pixel arbitrarily extracted from these are shown, and for convenience of explanation, FIG. 4 (a) and FIG. 4 (b) are shown for the same pixel. At this time, the time point indicating the maximum degree of focus within a predetermined period, for example, the height of the plot 61 indicating the height in the plot 51 is determined as the relative height of the pixel.

上記のような演算を全ての画素について行って、全ての画素の相対高さを決定することにより、より一層真の高さ画像に近い高さ画像43a(試料15の測定面の表面形状)を求めることができる。そして、求められた高さ画像43aを、図3に示す例えばモニタ44に出力することにより、モニタ44で試料15の測定面の表面形状を観察可能となる。   By performing the above calculation for all the pixels and determining the relative heights of all the pixels, a height image 43a (surface shape of the measurement surface of the sample 15) closer to the true height image is obtained. Can be sought. Then, by outputting the obtained height image 43 a to, for example, the monitor 44 shown in FIG. 3, the surface shape of the measurement surface of the sample 15 can be observed by the monitor 44.

(測定方法2)
測定方法2は、上述の測定方法1と比較して、制御用コンピュータ43において上述の図4(a)および図4(b)を作成する過程までは同一となっているため、測定方法1と同一部分の説明は省略して、測定方法1と異なる部分を中心に説明する。制御用コンピュータ43は、上述のように、所定期間内において得られた複数の原高さ画像42aおよび合焦度画像42bを入力することにより、制御用コンピュータ43において例えば図4(a)および図4(b)に示すグラフが作成されたとする。ここで、図4(a)において、例えば所定の閾値52以上の合焦度が検出されたプロットの高さ(例えば図4(b)における、プロット61,62a,62b,62c,62d,62e,62f,62g)の平均値を求めることにより、その画素の相対高さを決定する。上記のような演算を全ての画素について行って、全ての画素の相対高さを決定することにより、高さ画像43aを求めることができる。
(Measurement method 2)
Since the measurement method 2 is the same as the measurement method 1 described above up to the process of creating the above-described FIG. 4A and FIG. 4B in the control computer 43, the measurement method 1 and The description of the same part is omitted, and the part different from the measuring method 1 will be mainly described. As described above, the control computer 43 inputs the plurality of original height images 42a and the focus degree images 42b obtained within a predetermined period, so that the control computer 43 receives, for example, FIG. Assume that the graph shown in 4 (b) is created. Here, in FIG. 4A, for example, the height of the plot in which the degree of focus greater than or equal to the predetermined threshold value 52 is detected (for example, plots 61, 62a, 62b, 62c, 62d, 62e in FIG. 4B). 62f, 62g) is determined to determine the relative height of the pixel. The height image 43a can be obtained by performing the above calculation for all the pixels and determining the relative heights of all the pixels.

(測定方法3)
測定方法3は、上述の測定方法1と比較して、制御用コンピュータ43において上述の図4(a)および図4(b)を作成する過程までは同一となっているため、測定方法1と同一部分の説明は省略して、測定方法1と異なる部分を中心に説明する。制御用コンピュータ43は、上述のように、所定期間内において得られた複数の原高さ画像42aおよび合焦度画像42bを入力することにより、制御用コンピュータ43において例えば図4(a)および図4(b)に示すグラフが作成されたとする。
(Measurement method 3)
Since the measuring method 3 is the same as the measuring method 1 described above until the process shown in FIGS. 4A and 4B is created in the control computer 43, the measuring method 1 and The description of the same part is omitted, and the part different from the measuring method 1 will be mainly described. As described above, the control computer 43 inputs the plurality of original height images 42a and the focus degree images 42b obtained within a predetermined period, so that the control computer 43 receives, for example, FIG. Assume that the graph shown in 4 (b) is created.

ここで、図4(a)において、例えば所定の閾値52以上の合焦度が検出されたプロットの高さ(例えば図4(b)における、プロット61,62a,62b,62c,62d,62e,62f,62g)について、図5に示すように縦軸に高さを、横軸に出現頻度をとり、所定高さの区間71毎の出現頻度分布を作成する。そして、この作成された出現頻度分布に確率密度関数(例えば正規分布72)を当てはめることにより、この正規分布72において最大の出現頻度を与える高さ(例えば、図5に示す高さ71a)を、その画素の相対高さと決定する。上記のような演算を全ての画素について行って、全ての画素の相対高さを決定することにより、高さ画像43aを求めることができる。   Here, in FIG. 4A, for example, the height of the plot in which the degree of focus greater than or equal to the predetermined threshold value 52 is detected (for example, plots 61, 62a, 62b, 62c, 62d, 62e in FIG. 4B). 62f, 62g), as shown in FIG. 5, the vertical axis indicates the height and the horizontal axis indicates the appearance frequency, and an appearance frequency distribution for each section 71 having a predetermined height is created. Then, by applying a probability density function (for example, normal distribution 72) to the created appearance frequency distribution, a height (for example, height 71a shown in FIG. 5) that gives the maximum appearance frequency in the normal distribution 72 is obtained. The relative height of the pixel is determined. The height image 43a can be obtained by performing the above calculation for all the pixels and determining the relative heights of all the pixels.

(測定方法4)
上述の測定方法3において、正規分布72を用いる構成は一例であって、正規分布72以外の確率密度関数を出現頻度分布に当てはめることも可能である。そこで、測定方法4においては、確率密度関数として2次曲線を用いた場合を、図6を参照しながら説明する。なお、測定方法4は、上述の測定方法3と比較して、図5に示す区間71毎の出現頻度分布を作成する過程までは同一となっているため、測定方法3と同一部分の説明は省略して、測定方法3と異なる部分を中心に説明する。
(Measurement method 4)
In the measurement method 3 described above, the configuration using the normal distribution 72 is an example, and a probability density function other than the normal distribution 72 can be applied to the appearance frequency distribution. Therefore, in the measurement method 4, a case where a quadratic curve is used as the probability density function will be described with reference to FIG. The measurement method 4 is the same as the measurement method 3 described above until the process of creating the appearance frequency distribution for each section 71 shown in FIG. A description will be omitted, focusing on the differences from the measurement method 3.

上述のようにして、例えば図6に示す出現頻度分布が作成されたとする。そして、この図6に示す出現頻度分布のうちで、最大の出現頻度を示す頻度分布の高さ値(例えば、図6においてハッチングを施した頻度分布81の高さ値)を中心とし、指定された区間(例えば、図6に示す区間82)の出現頻度値分布に対して2次曲線83を当てはめて、そのとき最大の出現頻度を与える高さをその画素の相対高さを決定する。上記のような演算を全ての画素について行って、全ての画素の相対高さを決定することにより、高さ画像43aを求めることができる。   For example, it is assumed that the appearance frequency distribution shown in FIG. 6 is created as described above. Then, among the appearance frequency distributions shown in FIG. 6, the frequency distribution showing the maximum appearance frequency (for example, the height value of the hatched frequency distribution 81 in FIG. 6) is designated as the center. A quadratic curve 83 is applied to the appearance frequency value distribution in the section (for example, section 82 shown in FIG. 6), and the relative height of the pixel is determined as the height giving the maximum appearance frequency at that time. The height image 43a can be obtained by performing the above calculation for all the pixels and determining the relative heights of all the pixels.

形状測定装置1において、ピエゾ駆動装置13を駆動させて二光束干渉対物レンズ14を繰り返し往復走査させたとき、画素毎に焦点面が試料15の測定面を通過したときに干渉縞が現れる。しかしながら、試料15の測定面を通過するすべての場合において、画素毎に十分に高い合焦度が検出できるとは限らない。特に、試料15の測定面が光沢面である場合には、測定に用いる画像信号のS/N比(測定に用いる画像の濃淡)が極めて低いため、表面形状を正確に測定するために必要とされる十分に高い合焦度が検出できない場合がある。このような場合に、形状測定装置1において上述の測定方法1〜4のいずれかを用いることにより、画素毎に有効な合焦度(表面形状が忠実に反映された画像信号)のみを使用して、相対高さおよび表面形状を求めることが可能となる。例えば、従来の形状測定装置500では、上述のように約10μm程度の微細な切削痕の形状を正確に測定することが困難であったが(図8(a)を参照)、本発明に係る形状測定装置1によれば、約10μmの切削痕を鮮明に測定することが可能となる(図8(b)を参照)。なお、図8(a)と図8(b)とは、同一光沢面の同一視野を測定した場合の結果を示している。   In the shape measuring apparatus 1, when the piezo driving device 13 is driven and the two-beam interference objective lens 14 is repeatedly reciprocated, interference fringes appear when the focal plane passes through the measurement surface of the sample 15 for each pixel. However, in all cases that pass through the measurement surface of the sample 15, a sufficiently high degree of focus cannot be detected for each pixel. In particular, when the measurement surface of the sample 15 is a glossy surface, the S / N ratio of the image signal used for the measurement (the density of the image used for the measurement) is extremely low, which is necessary for accurately measuring the surface shape. In some cases, a sufficiently high degree of focus cannot be detected. In such a case, by using any one of the above-described measurement methods 1 to 4 in the shape measuring apparatus 1, only the effective focus degree (image signal in which the surface shape is faithfully reflected) is used for each pixel. Thus, the relative height and the surface shape can be obtained. For example, in the conventional shape measuring apparatus 500, it is difficult to accurately measure the shape of a fine cutting mark of about 10 μm as described above (see FIG. 8A), but according to the present invention. According to the shape measuring apparatus 1, it becomes possible to measure a cutting trace of about 10 μm clearly (see FIG. 8B). 8A and 8B show the results when the same field of view of the same glossy surface is measured.

仮に、傾斜板20を用いることなく、試料15を顕微鏡用試料台16の上面に載置すると、撮像部25を構成する撮像光学系の光軸が、試料15の測定面に対して略直交する場合がある。このような場合、画素の大きさに対して干渉縞の幅および間隔が大きくなりすぎてしまい、画素毎の二次微分値が小さくなって、表面形状を正確に測定するために必要とされる十分に高い合焦度が検出できないことがある。そこで、上述の実施例1に示すように、試料15を傾斜板20の上面に載置して撮像光学系の光軸に対して斜めに位置させた状態で測定を行うことにより、干渉縞の幅および間隔を狭くすることができて、十分に高い合焦度を検出可能となる。よって、試料15の測定面に形成された、例えば約10μm程度の微細な切削痕の形状を正確に測定することができる。   If the sample 15 is placed on the upper surface of the microscope sample stage 16 without using the inclined plate 20, the optical axis of the imaging optical system constituting the imaging unit 25 is substantially orthogonal to the measurement surface of the sample 15. There is a case. In such a case, the width and interval of the interference fringes become too large with respect to the size of the pixel, and the secondary differential value for each pixel becomes small, which is necessary for accurately measuring the surface shape. A sufficiently high degree of focus may not be detected. Therefore, as shown in Example 1 described above, the measurement is performed with the sample 15 placed on the upper surface of the inclined plate 20 and positioned obliquely with respect to the optical axis of the imaging optical system. The width and interval can be reduced, and a sufficiently high degree of focus can be detected. Therefore, it is possible to accurately measure the shape of a fine cutting mark of, for example, about 10 μm formed on the measurement surface of the sample 15.

本発明を適用した実施例2に係る形状測定装置2の概略図を、図1に示している。この形状測定装置2は、上述の実施例1に係る形状測定装置1と大部分の構成が同一となっており、形状測定装置1と同一部分は同一番号を付して説明は省略し、以下において形状測定装置1と異なる部分を中心に説明する。形状測定装置2は、上述の形状測定装置1に設けられていた傾斜板20を取り除くとともに、図2に示す二光束干渉対物レンズ14の参照面33に、図7に示すマスク35が装着された構成となっている。このマスク35の表面全体には、直径約2μmの複数の貫通孔35aが、互いに約2.5μmの間隔を有して形成されている。   A schematic diagram of a shape measuring apparatus 2 according to a second embodiment to which the present invention is applied is shown in FIG. This shape measuring apparatus 2 is substantially the same in configuration as the shape measuring apparatus 1 according to the first embodiment, and the same parts as the shape measuring apparatus 1 are denoted by the same reference numerals and description thereof is omitted. However, it demonstrates centering on a different part from the shape measuring apparatus 1. FIG. The shape measuring device 2 removes the inclined plate 20 provided in the above-described shape measuring device 1, and the mask 35 shown in FIG. 7 is attached to the reference surface 33 of the two-beam interference objective lens 14 shown in FIG. It has a configuration. A plurality of through holes 35 a having a diameter of about 2 μm are formed on the entire surface of the mask 35 with a distance of about 2.5 μm from each other.

上記のように構成された形状測定装置2は、参照面33において貫通孔35aが形成された部分では照明光が反射されるが、マスク35の貫通孔35aが形成されていない部分(図7において黒く示された部分)では照明光が反射されない構成となっている。よって、試料15の測定面および参照面33において反射された照明光が、ビームスプリッタ31で再び重ね合わされて干渉縞が発生するとき、参照面33からの照明光は、貫通孔35aが形成された部分からのみの照明光となっているので、干渉縞に干渉縞消失領域(濃淡の模様)が形成される。この干渉縞消失領域が形成されることよって、測定に用いる画像信号のS/N比を高めることができる。   In the shape measuring apparatus 2 configured as described above, the illumination light is reflected at the portion of the reference surface 33 where the through hole 35a is formed, but the portion of the mask 35 where the through hole 35a is not formed (in FIG. 7). In the portion (shown in black), the illumination light is not reflected. Therefore, when the illumination light reflected from the measurement surface of the sample 15 and the reference surface 33 is superimposed again by the beam splitter 31 and an interference fringe is generated, the illumination light from the reference surface 33 is formed with a through hole 35a. Since the illumination light is only from the portion, an interference fringe disappearing region (light and shade pattern) is formed in the interference fringe. By forming the interference fringe disappearing region, the S / N ratio of the image signal used for measurement can be increased.

そして、このような干渉縞消失領域が形成された干渉縞を含んだ干渉像光が、高速度カメラ11の撮像面上に結像されるとともに、形状測定装置1と同様に、上述の測定方法1から4のいずれかを用いることにより、試料15の測定面の相対高さが求められる。このとき、干渉縞に干渉縞消失領域が形成されることにより、測定に用いる画像の濃淡にめりはりを付けることができて、表面形状を正確に測定するために必要とされる十分に高い合焦度を検出可能となる。そのため、光沢面となった測定面に形成された、例えば約0.1μm程度以下の微細形状を正確に測定することができる。このようなことから、形状測定装置2による測定は、上述の形状測定装置1のように傾斜板20上に試料15を載置しても、例えば測定面の一部が、撮像部25を構成する撮像光学系の光軸と略直交するような場合に有効である。   Then, the interference image light including the interference fringe in which such an interference fringe disappearing region is formed is imaged on the imaging surface of the high-speed camera 11 and, similarly to the shape measuring apparatus 1, the measurement method described above. By using any one of 1 to 4, the relative height of the measurement surface of the sample 15 is obtained. At this time, an interference fringe disappearing region is formed in the interference fringes, so that the image used for measurement can be shaded and sufficiently high as required to accurately measure the surface shape. The degree of focus can be detected. Therefore, it is possible to accurately measure a fine shape of, for example, about 0.1 μm or less formed on the measurement surface that has become a glossy surface. For this reason, even when the sample 15 is placed on the inclined plate 20 as in the above-described shape measuring device 1, the measurement by the shape measuring device 2, for example, part of the measurement surface constitutes the imaging unit 25. This is effective when it is substantially orthogonal to the optical axis of the imaging optical system.

以上述べたように、本発明に係る形状測定装置によれば、短時間のうちに光沢面の表面形状を正確に測定できる。さらには、材料開発の効率を大幅に向上させることが可能となるとともに、材料の幾何形状検査の高速化にも寄与できる。   As described above, according to the shape measuring apparatus according to the present invention, the surface shape of the glossy surface can be accurately measured in a short time. Furthermore, it is possible to greatly improve the efficiency of material development and contribute to speeding up the geometrical inspection of materials.

上述の実施形態において、干渉縞を生成する方法として二光束干渉光学系を用いた構成を例示したが、この構成に限定されず、例えば微分干渉光学系を用いて干渉縞を生成する構成でも良く、さらには、縞投影法を用いて干渉縞を生成する構成でも良い。   In the above-described embodiment, the configuration using the two-beam interference optical system is exemplified as a method for generating the interference fringes. However, the configuration is not limited to this configuration. For example, a configuration in which the interference fringes are generated using the differential interference optical system may be used. Furthermore, a configuration in which interference fringes are generated using a fringe projection method may be used.

なお、以上のような本発明は、上記実施形態に限定されるものではなく、本発明に係る要旨を逸脱しない範囲であれば適宜改良可能である。   The present invention as described above is not limited to the above-described embodiment, and can be appropriately improved as long as it does not depart from the gist of the present invention.

本発明に係る形状測定装置を示した概略図である。It is the schematic which showed the shape measuring apparatus which concerns on this invention. 二光束干渉対物レンズの構成を示した概略図である。It is the schematic which showed the structure of the two-beam interference objective lens. 本発明に係る形状測定装置の構成を示したブロック図である。It is the block diagram which showed the structure of the shape measuring apparatus which concerns on this invention. 測定方法1および2を説明するためのグラフであって、(a)は合焦度と時間との関係を示し、(b)は高さと時間との関係を示している。It is a graph for demonstrating the measuring methods 1 and 2, Comprising: (a) shows the relationship between a focus degree and time, (b) has shown the relationship between height and time. 測定方法3を説明するためのグラフであって、高さと出現頻度との関係を示している。It is a graph for demonstrating the measuring method 3, Comprising: The relationship between height and appearance frequency is shown. 測定方法4を説明するためのグラフであって、高さと出現頻度との関係を示している。It is a graph for demonstrating the measuring method 4, Comprising: The relationship between height and appearance frequency is shown. 本発明の実施例2に係る形状測定装置に用いられるマスクを示した図である。It is the figure which showed the mask used for the shape measuring apparatus which concerns on Example 2 of this invention. 光沢面の表面形状を測定した結果を示す図であって、(a)は従来の形状測定装置を用いて測定した場合、(b)は本発明に係る形状測定装置を用いて測定した場合を示している。It is a figure which shows the result of having measured the surface shape of a glossy surface, Comprising: When (a) is measured using the conventional shape measuring apparatus, (b) is the case where it measures using the shape measuring apparatus based on this invention. Show. 従来の形状測定装置を示した概略図である。It is the schematic which showed the conventional shape measuring apparatus.

符号の説明Explanation of symbols

1 形状測定装置
14 二光束干渉対物レンズ(反射光強度ムラ生成光学系)
15 試料(被測定物)
16 顕微鏡用試料台(ステージ)
25 撮像部
27 制御用プロセッサ(演算部)
35 マスク
35a 貫通孔(小孔)
41 ピエゾ駆動制御装置(移動制御部)
DESCRIPTION OF SYMBOLS 1 Shape measuring apparatus 14 Two-beam interference objective lens (Optical system which produces unevenness of reflected light intensity)
15 Sample (object to be measured)
16 Microscope sample stage (stage)
25 Imaging unit 27 Control processor (calculation unit)
35 Mask 35a Through hole (small hole)
41 Piezo drive control device (movement control unit)

Claims (10)

ステージに載置された被測定物の表面像を撮像する撮像部と、
前記撮像部の撮像光学系の光軸に沿って、前記撮像光学系を前記被測定物に対して往復相対移動させ、移動量を記憶して出力する移動制御部と、
前記被測定物の表面からの反射光と参照光を重ねて、前記被測定物の表面の凹凸を反映した干渉縞を発生させる干渉縞発生光学系と、
前記撮像光学系を前記被測定物に対して往復相対移動させながら前記撮像部により前記干渉縞を含んだ前記表面像を撮像し、前記撮像部を構成する撮像面の所定領域毎に前記往復相対移動のそれぞれにおいて最大の合焦度が得られるときの移動量を求め、前記往復相対移動のそれぞれについて求められた複数の前記移動量に基づいて前記所定領域毎に前記被測定物の表面の相対高さを演算して前記被測定物の表面形状を求める演算部と、を有して成ることを特徴とする形状測定装置。
An imaging unit that captures a surface image of the object to be measured placed on the stage;
A movement control unit that reciprocally moves the imaging optical system relative to the object to be measured along the optical axis of the imaging optical system of the imaging unit, and stores and outputs a movement amount;
An interference fringe generating optical system for generating interference fringes reflecting the unevenness of the surface of the object to be measured by overlapping the reflected light from the surface of the object to be measured and the reference light ;
While the imaging optical system is reciprocally moved relative to the object to be measured, the imaging unit captures the surface image including the interference fringes, and the reciprocating relative is performed for each predetermined region of the imaging surface constituting the imaging unit. The amount of movement when the maximum degree of focus is obtained in each of the movements is obtained, and the surface relative to the surface of the object to be measured is determined for each predetermined region based on the plurality of movement amounts obtained for each of the reciprocal relative movements. A shape measuring apparatus comprising: a calculating unit that calculates a surface shape of the object to be measured by calculating a height.
前記演算部は、前記撮像面を構成する画素で検出される信号強度の二次微分値を基にして合焦度を求めることにより、最大の合焦度が得られるときの移動量を求め、前記画素毎に前記被測定物の表面の相対高さを演算することを特徴とする請求項1に記載の形状測定装置。 The arithmetic unit, by Rukoto determined focus degree based on the second derivative value of the signal intensity detected by the pixels constituting the imaging surface, determine the amount of movement when the maximum degree of focus is obtained 2. The shape measuring apparatus according to claim 1 , wherein a relative height of the surface of the object to be measured is calculated for each of the pixels . 前記ステージは、前記被測定物の被測定面が前記撮像光学系の光軸に対して傾斜するように前記被測定物を支持可能であることを特徴とする請求項1又は2に記載の形状測定装置。 The shape according to claim 1, wherein the stage can support the object to be measured such that a surface to be measured of the object to be measured is inclined with respect to an optical axis of the imaging optical system. measuring device. 前記干渉縞発生光学系の参照面に、複数の小孔が規則的に並ぶように形成されたマスクを配置したことを特徴とする請求項1又は2に記載の形状測定装置。   The shape measuring apparatus according to claim 1, wherein a mask formed so that a plurality of small holes are regularly arranged is arranged on a reference surface of the interference fringe generating optical system. 前記演算部は、往復相対移動周期のそれぞれにおいて最大の合焦度が得られるときの移動量を記憶することを特徴とする請求項1から4のいずれか一項に記載の形状測定装置。 5. The shape measuring apparatus according to claim 1 , wherein the calculation unit stores a movement amount when a maximum in-focus degree is obtained in each of the reciprocating relative movement cycles . 前記演算部は、前記撮像面を構成する画素毎に所定閾値以上の合焦度となる相対高さの算術平均をとることを特徴とする請求項1からのいずれか一項に記載の形状測定装置。 The arithmetic unit, the shape of claimed in any one of 5, characterized in that taking the arithmetic mean of the relative height of a predetermined threshold value or more focus degree for each pixel constituting the imaging surface measuring device. 前記演算部は、前記撮像面を構成する画素毎に所定閾値以上の合焦度となる相対高さの出現頻度分布に確率密度関数を当てはめて、確率が最大となる相対高さを求めることを特徴とする請求項1からのいずれか一項に記載の形状測定装置。 The calculation unit applies a probability density function to an appearance frequency distribution of a relative height that achieves a degree of focus equal to or greater than a predetermined threshold for each pixel constituting the imaging surface, and obtains a relative height that maximizes the probability. shape measuring apparatus according to any one of claims 1 to 5, wherein. 前記確率密度関数は、正規分布であることを特徴とする請求項7に記載の形状測定装置。   The shape measuring apparatus according to claim 7, wherein the probability density function is a normal distribution. 前記演算部は、前記撮像面を構成する画素毎に所定閾値以上の合焦度となる相対高さの出現頻度分布の最大頻度近傍を二次曲線で近似し、最大頻度となる相対高さを求めることを特徴とする請求項1からのいずれか一項に記載の形状測定装置。 The calculation unit approximates the vicinity of the maximum frequency of the appearance frequency distribution of the relative height that is a focus degree equal to or greater than a predetermined threshold for each pixel constituting the imaging surface by a quadratic curve, and calculates the relative height that is the maximum frequency. shape measuring apparatus according to claim 1, any one of 5, wherein the determination. 請求項1から9のいずれか一項に記載の形状測定装置を用いて行う形状測定方法であって、
前記移動制御部により前記撮像光学系を前記被測定物に対して相対移動させながら、前記撮像部により撮像されて得られた複数の前記表面像を基にして得られる合焦度に基づいて前記被測定物の表面の相対高さを演算して前記被測定物の表面形状を求めるときに、
前記撮像部は、前記干渉縞発生光学系により生成され、前記表面像に重ねられた干渉縞を含む前記表面像を撮像することを特徴とする形状測定方法。
A shape measuring method performed using the shape measuring apparatus according to any one of claims 1 to 9,
While moving the imaging optical system relative to the object to be measured by the movement control unit, based on the degree of focus obtained based on a plurality of the surface images obtained by the imaging unit. When calculating the surface height of the object to be measured by calculating the relative height of the surface of the object to be measured,
The shape measurement method, wherein the imaging unit captures the surface image including the interference fringes generated by the interference fringe generation optical system and superimposed on the surface image.
JP2008151666A 2008-06-10 2008-06-10 Shape measuring apparatus and shape measuring method Active JP5342178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151666A JP5342178B2 (en) 2008-06-10 2008-06-10 Shape measuring apparatus and shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151666A JP5342178B2 (en) 2008-06-10 2008-06-10 Shape measuring apparatus and shape measuring method

Publications (3)

Publication Number Publication Date
JP2009300100A JP2009300100A (en) 2009-12-24
JP2009300100A5 JP2009300100A5 (en) 2011-09-15
JP5342178B2 true JP5342178B2 (en) 2013-11-13

Family

ID=41547178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151666A Active JP5342178B2 (en) 2008-06-10 2008-06-10 Shape measuring apparatus and shape measuring method

Country Status (1)

Country Link
JP (1) JP5342178B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138874A1 (en) * 2010-05-07 2011-11-10 株式会社ニコン Height measuring method and height measuring device
CN102506745B (en) * 2011-11-15 2014-02-12 天津理工大学 Corrosion pit three-dimensional information measuring method based on single microscopic image
JP2023139925A (en) * 2022-03-22 2023-10-04 株式会社東京精密 Three-dimensional shape measuring device and three-dimensional shape measuring method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061167B2 (en) * 1988-05-17 1994-01-05 日本鋼管株式会社 Measuring method and device for three-dimensional curved surface shape
JP3300791B2 (en) * 1993-02-04 2002-07-08 株式会社日立製作所 Pattern defect detection method and apparatus
JPH08201034A (en) * 1995-01-27 1996-08-09 Tokyo Seimitsu Co Ltd Method and device for measuring non-contact surface shape
JPH1068616A (en) * 1996-08-28 1998-03-10 Fuji Xerox Co Ltd Shape measuring equipment
JPH11108625A (en) * 1997-10-06 1999-04-23 Canon Inc Surface shape measuring apparatus
JP2000136918A (en) * 1998-10-30 2000-05-16 Mitsutoyo Corp Parallelism inspection apparatus for micrometer
JP2003029129A (en) * 2001-07-11 2003-01-29 Olympus Optical Co Ltd Focusing position detector
JP2006153509A (en) * 2004-11-25 2006-06-15 Sharp Corp Surface shape measuring instrument, surface shape measuring method, surface shape measuring program, and recording medium
JP2007212268A (en) * 2006-02-09 2007-08-23 Epson Imaging Devices Corp Inspection device, inspection method of substrate for electro-optical device, and manufacturing method of substrate for electro-optical device

Also Published As

Publication number Publication date
JP2009300100A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP6469368B2 (en) Machine vision inspection system and method for performing high speed focused height measurement operation
JP5941395B2 (en) Image acquisition device and focus method of image acquisition device
JP5592763B2 (en) Method and apparatus for determining height map of object surface
JP5500462B2 (en) Shape measuring apparatus, observation apparatus, and image processing method
US20100321773A1 (en) Method and system for three-dimensional polarization-based confocal microscopy
CN107121084B (en) Measurement method measurement program
CN104034276A (en) Shape Measuring Apparatus
JP5385703B2 (en) Inspection device, inspection method, and inspection program
JP7093915B2 (en) Surface shape measurement method
JP2009511932A (en) Image measuring apparatus and method
JP5342178B2 (en) Shape measuring apparatus and shape measuring method
JP5301642B2 (en) Image acquisition device and focus method of image acquisition device
JP2010276540A (en) Living tissue surface analyzer, living tissue surface analysis program, and living tissue surface analysis method
WO2015133014A1 (en) Scanning probe microscope and sample measurement method using same
JP2010164377A (en) Surface profile measurement device and surface profile measuring method
US20170069110A1 (en) Shape measuring method
CN107121058B (en) Measuring method
JPH11108625A (en) Surface shape measuring apparatus
JP2009216702A (en) Optical measuring instrument
JP2018173338A (en) Three-dimensional shape measuring method using scanning white interference microscope
JP2009036631A (en) Device of measuring three-dimensional shape and method of manufacturing same
JP2022031956A (en) Method for determining scan range
JP6270264B2 (en) Information processing apparatus, information processing method, program, measurement apparatus, and measurement method
JP2004029537A5 (en)
JP2010117253A (en) Device for capturing image invariant optical speckle and method for the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250