JP2005097752A - Carbon fiber woven or knitted fabric, method for producing the same and gas diffusion layer substrate for fuel cell using the same woven or knitted fabric - Google Patents

Carbon fiber woven or knitted fabric, method for producing the same and gas diffusion layer substrate for fuel cell using the same woven or knitted fabric Download PDF

Info

Publication number
JP2005097752A
JP2005097752A JP2003312616A JP2003312616A JP2005097752A JP 2005097752 A JP2005097752 A JP 2005097752A JP 2003312616 A JP2003312616 A JP 2003312616A JP 2003312616 A JP2003312616 A JP 2003312616A JP 2005097752 A JP2005097752 A JP 2005097752A
Authority
JP
Japan
Prior art keywords
knitted fabric
woven
carbon fiber
carbonized
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003312616A
Other languages
Japanese (ja)
Inventor
Tamiko Yasuda
多美子 安田
Juichi Takeda
重一 武田
Hisao Koba
久雄 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003312616A priority Critical patent/JP2005097752A/en
Publication of JP2005097752A publication Critical patent/JP2005097752A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin and dense carbon fiber woven or knitted fabric having excellent electroconductivity, suitable as a gas diffusion layer substrate for a fuel cell and preventing the lowering of flow rate of the fuel gas and a gas such as oxygen because the woven or knitted fabric is deficient in drapeability and stiff and groove parts of a ribbed separation plate (hereinafter referred to also as a reserve plate) cannot be filled when used as the gas diffusion layer substrate for the fuel cell. <P>SOLUTION: The carbon fiber woven or knitted fabric is composed of a carbonized multifilament textured yarn having 0.1-5 dtex single filament fineness and 20-400 dtex total fineness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素繊維織編物およびその製造方法、該炭素繊維織編物からなる燃料電池用ガス拡散層基材に関する。   The present invention relates to a carbon fiber woven fabric, a method for producing the same, and a gas diffusion layer base material for a fuel cell comprising the carbon fiber woven fabric.

炭素繊維織編物は、従来から主に複合材料の基布として広く生産されている。又、炭素繊維織編物は、導電性が良好なことや機械的強度や耐蝕性に優れていることより、導電性基材としても注目されてきた。   Carbon fiber woven and knitted fabrics have been widely produced mainly as a base material for composite materials. Carbon fiber woven fabrics have also attracted attention as conductive substrates because of their good electrical conductivity and excellent mechanical strength and corrosion resistance.

固体高分子型燃料電池のガス拡散層基材は、ガス拡散性、ガス透過性、保水性、強度、柔軟性、電極製造時や電極を組んだときの圧縮に耐える強度等が必要とされる。また、固体高分子型燃料電池はリン酸型燃料電池に比べて小型のものが要求されているため、ガス拡散層基材も薄型のものが必要とされている。このような固体高分子型燃料電池用のガス拡散層基材としては、炭素繊維紙や炭素繊維織編物を基材としたものが主流となっている。   Gas diffusion layer base materials for polymer electrolyte fuel cells are required to have gas diffusibility, gas permeability, water retention, strength, flexibility, strength to withstand compression during electrode production or when electrodes are assembled, etc. . In addition, since the polymer electrolyte fuel cell is required to be smaller than the phosphoric acid fuel cell, the gas diffusion layer base material is also required to be thin. As the gas diffusion layer base material for such a polymer electrolyte fuel cell, those using carbon fiber paper or carbon fiber knitted fabric as the base material are the mainstream.

特許文献1には、アクリル繊維束を製織後、酸化処理、炭化処理するにあたっての織物形態と焼成工程通過性、CFRP機械特性の好ましい相関をパラメータ化したものが提案されている。しかし、アクリル繊維束の糸加工については製織性向上のみを目的としており、その性能面に関して十分に記載しているとは言えない。
特許文献2には、炭化可能な原料有機繊維を編地としてから炭化した活性炭布帛が提案されているが、皺を抑える為に焼成温度を1000℃以下としており、これでは導電性に優れたものは得られなかった。
Patent Document 1 proposes a parameterization of a preferable correlation between a woven fabric form, a firing process passability, and CFRP mechanical properties when an acrylic fiber bundle is woven, oxidized, and carbonized. However, the yarn processing of the acrylic fiber bundle is intended only for improving the weaving property, and it cannot be said that the performance is sufficiently described.
Patent Document 2 proposes an activated carbon fabric obtained by carbonizing a raw material organic fiber that can be carbonized, but has a firing temperature of 1000 ° C. or less in order to suppress wrinkles. Was not obtained.

特許文献3には、耐炎化繊維を交絡処理後賦活処理する方法が提案されている。この方法は、織編物にする加工性、糸強度保持には有効であるものの、酸化処理−空気交絡−賦活処理と、焼成工程を2回通過せねばならず、効率的な生産やコスト抑制には適している
とは言い難い。
特許文献4には、通気性と剛性を兼ね備えた導電性炭素質繊維シートが提案されている。しかし剛性を得るためにはバインダーによる繊維相互の結着が必要であった。
特許文献5には、ポリアクリルニトリル系酸化繊維を空気交絡後織物とし、圧縮処理して繊維断面形状を扁平とする炭化繊維織物が提案されている。しかし、エア交絡の効果が圧縮処理でどの程度まであるのか不明瞭であった。
Patent Document 3 proposes a method of performing activation treatment after entanglement treatment of flameproof fibers. Although this method is effective for maintaining the workability and yarn strength to make a woven or knitted fabric, it must pass through an oxidation treatment-air entanglement-activation treatment and a firing process twice, for efficient production and cost reduction. Is not suitable.
Patent Document 4 proposes a conductive carbon fiber sheet having both air permeability and rigidity. However, in order to obtain rigidity, it was necessary to bind the fibers with a binder.
Patent Document 5 proposes a carbonized fiber woven fabric in which polyacrylonitrile-based oxidized fiber is used as a woven fabric after air entanglement, and the fiber cross-sectional shape is flattened by compression treatment. However, it is unclear to what extent the effect of air entanglement is present in the compression process.

特開昭56−101917号公報JP-A-56-101917 特開昭58−213615号公報JP 58-213615 A 特開昭59−227705号公報JP 59-227705 A 特開2002−327355号公報JP 2002-327355 A 特開2003−64539号公報JP 2003-64539 A

本発明は、上記のような問題点を克服し、効率良く、ガス拡散性、導電性に優れ且つ薄い燃料電池用ガス拡散層基材に適した織編物およびその製造方法、並びに、低加湿環境下でも良好な電池性能を発揮可能な燃料電池用ガス拡散層基材を提供することを目的とする。   The present invention overcomes the above-mentioned problems, and provides a woven or knitted fabric suitable for a gas diffusion layer substrate for fuel cells that is efficient, excellent in gas diffusibility and conductivity, and a method for producing the same, and a low humidification environment. An object of the present invention is to provide a gas diffusion layer base material for a fuel cell that can exhibit good battery performance even underneath.

本発明の第一の要旨は、単繊維繊度0.1〜5dtex、総繊度20〜400dtexの炭素化したマルチフィラメント加工糸からなる炭素繊維織編物である。
第二の要旨は、単繊維繊度0.2〜6dtex、総繊度50〜500dtexの炭素化可能なマルチフィラメントを糸加工した後、織編物とし、炭素化する前記炭素繊維織編物の製造方法である。
The first gist of the present invention is a carbon fiber woven or knitted fabric made of carbonized multifilament processed yarn having a single fiber fineness of 0.1 to 5 dtex and a total fineness of 20 to 400 dtex.
The second gist is a method for producing the carbon fiber woven knitted fabric, in which a carbonized multifilament having a single fiber fineness of 0.2 to 6 dtex and a total fineness of 50 to 500 dtex is processed into a knitted fabric and then carbonized. .

本発明は、薄く緻密で導電性に優れた、燃料電池用ガス拡散層基材に適した織編物を得ることができる。又、本発明の炭素繊維織編物はドレープ性に欠け剛直なので、燃料電池用ガス拡散層基材として使用した際、リブ付き分離板(リザーブプレートともいう。)の溝部を埋めることがないので燃料ガスおよび酸素等のガスの流量低下を防ぐことができる。更に、一貫した焼成工程や従来から広く普及した設備を用いることで、低コストで生産が可能である。   INDUSTRIAL APPLICABILITY According to the present invention, a woven or knitted fabric suitable for a gas diffusion layer base material for fuel cells, which is thin and dense and has excellent conductivity, can be obtained. Further, since the carbon fiber woven fabric of the present invention lacks draping properties and is rigid, when used as a gas diffusion layer base material for a fuel cell, the groove portion of a ribbed separator (also referred to as a reserve plate) is not filled. It is possible to prevent a decrease in the flow rate of gases such as gas and oxygen. Furthermore, it is possible to produce at a low cost by using a consistent firing process and equipment that has been widely used.

本発明の炭素繊維織編物は、炭素化可能なマルチフィラメントを炭素化した後に織編物としたものでも、織編物にした後に炭素化したものでも良い。
炭素化可能なマルチフィラメントの原料としても、ポリアクリロニトリル系繊維、レーヨン繊維、ピッチなどいずれであっても良いが、炭素化した際マルチフィラメントの機械的強度が比較的高いポリアクリロニトリル系繊維が好ましい。
The carbon fiber woven or knitted fabric of the present invention may be a woven or knitted fabric after carbonizing a carbonizable multifilament, or may be carbonized after forming a woven or knitted fabric.
The carbonizable multifilament raw material may be any of polyacrylonitrile fiber, rayon fiber, pitch and the like, but polyacrylonitrile fiber having a relatively high mechanical strength of the multifilament when carbonized is preferable.

ここでいうポリアクリロニトリル系繊維とは、原料としてアクリロニトリルを主成分とするポリマーを用いて製造されるものである。ポリアクリロニトリル系繊維は200〜400℃の空気雰囲気中で該繊維を加熱焼成して酸化繊維に転換する耐炎化工程、窒素、アルゴン、ヘリウム等の不活性雰囲気中でさらに300〜2500℃に加熱して炭化する炭化工程を経て、炭素化したマルチフィラメントとなる。   The polyacrylonitrile fiber here is produced using a polymer containing acrylonitrile as a main component as a raw material. The polyacrylonitrile fiber is heated to 300 to 2500 ° C. in an inert atmosphere such as nitrogen, argon, helium, etc. in a flameproofing process in which the fiber is heated and fired in an air atmosphere of 200 to 400 ° C. to convert it into oxidized fibers. The carbonized multifilament is obtained through a carbonization process.

本発明においては、炭素化したマルチフィラメントが単繊維繊度0.1〜5dtex、総繊度20〜400dtexであることが必要である。炭素化したマルチフィラメントの単繊維繊度が0.1dtex未満の場合は、毛羽が発生しやすく、強度の劣るものとなり、逆に5dtexを越える場合は柔軟性に欠けたものとなる。更に単繊維繊度の下限は、0.5dtex以上が導電性効果があり好ましく、上限は1.5dtex以下が取り扱い性においても好ましい。   In the present invention, the carbonized multifilament needs to have a single fiber fineness of 0.1 to 5 dtex and a total fineness of 20 to 400 dtex. When the single fiber fineness of the carbonized multifilament is less than 0.1 dtex, fluff is likely to occur and the strength is inferior, and conversely when it exceeds 5 dtex, the flexibility is lacking. Further, the lower limit of the single fiber fineness is preferably 0.5 dtex or more because of the conductive effect, and the upper limit is preferably 1.5 dtex or less in terms of handleability.

炭素化したマルチフィラメントの繊度が20dtex未満の場合は、緻密で肉薄な織編物を形成しやすいものの製造コストが高くなり、逆に400dtexを越える場合は、ガス拡散層基材に適した緻密で肉薄な織編物とは成り難い。更に繊度の下限は、100dtex以上が耐圧縮性の面で好ましく、上限は350dtex以下が柔軟性の面で好ましい。   When the fineness of the carbonized multifilament is less than 20 dtex, it is easy to form a dense and thin woven or knitted fabric, but the manufacturing cost is high. Conversely, when it exceeds 400 dtex, the fine and thin thickness suitable for the gas diffusion layer substrate is increased. It is hard to be a woven or knitted fabric. Further, the lower limit of the fineness is preferably 100 dtex or more in terms of compression resistance, and the upper limit is preferably 350 dtex or less in terms of flexibility.

又、本発明においては、炭素化したマルチフィラメントが加工糸であることが必要である。本発明で加工糸とは、一般的に実施される糸加工によって形成される形態を有する糸を言い、具体的には、フィラメント束の単繊維同士で交絡やループを有するもの、実撚を有するもの、合燃されたもの、捲縮を有するもの、芯鞘構造を有したもの等が挙げられる。本発明の加工糸の形態は、織物構造に起因し経糸と緯糸の組織拘束によって付与されたり、編物構造に起因し形成されるクリンプとは異なる。一般的に、炭素化されたマルチフィラメントは直線状の方が強度維持でき好ましいとされるが、形成された織編物については、単繊維同士が何らかの形で集束していないと単繊維の折れや毛羽の発生によりかえって強度維持に不利になる。
又、燃料電池用ガス拡散層基材とした場合は、フィラメント束や単繊維の変形により適度な嵩高が得られ耐圧縮性が向上する方が好ましい。
In the present invention, it is necessary that the carbonized multifilament is a processed yarn. In the present invention, the processed yarn refers to a yarn having a form formed by generally performed yarn processing. Specifically, the yarn having an entanglement or loop between single fibers of a filament bundle, and having a real twist And those having a combusted flame, those having crimps, those having a core-sheath structure, and the like. The form of the processed yarn of the present invention is different from the crimp formed by the structure constraint of warp and weft due to the woven structure or formed due to the knitted structure. Generally, carbonized multifilaments are preferred to be straight, since the strength can be maintained. However, in the formed woven or knitted fabric, if the single fibers are not bundled in any way, On the contrary, it is disadvantageous to maintain strength due to the occurrence of fluff.
Moreover, when it is set as the gas diffusion layer base material for fuel cells, it is preferable that moderate bulkiness is obtained by deformation of the filament bundle or single fiber, and the compression resistance is improved.

本発明の炭素繊維織編物は、JIS L1096 8.19.1A法による剛軟度が15cm以上である。この測定方法では、試料長が約15cmとされているので、事実上、測定台と非接触ということになり、剛直であることを意味する。本発明の炭素繊維織編物は、剛直であることで、燃料電池用ガス拡散層基材として使用し、セルスタックを組む際にもセパレーターの溝部に埋まることがないので、ガスや水の拡散性能の低下を防ぐことができる。   The carbon fiber woven or knitted fabric of the present invention has a bending resistance of 15 cm or more according to the JIS L1096 8.19.1A method. In this measurement method, since the sample length is about 15 cm, it is practically non-contact with the measurement table, which means that it is rigid. The carbon fiber woven or knitted fabric of the present invention is rigid and used as a gas diffusion layer base material for a fuel cell, and does not embed in the groove of the separator even when assembling a cell stack. Can be prevented.

本発明では、炭素化したマルチフィラメント加工糸が交絡糸であることが望ましい。
本発明で交絡糸とは、フィラメント束の単繊維同士が絡んだものやループを有するものをいう。交絡の程度は特に限定されないが、交絡部数が20〜250個/mであることが燃料電池用ガス拡散層基材として好適である。交絡部数が20個/m未満だと良好な集束を維持できず、250個/mより多いと単繊維の屈曲が多くなり過ぎ、毛羽の発生につながりやすい。より好ましくは50〜100個/mであり、安定した交絡形態を維持できる。
In the present invention, it is desirable that the carbonized multifilament processed yarn is an entangled yarn.
In the present invention, the entangled yarn means one in which single fibers of a filament bundle are entangled or have a loop. The degree of entanglement is not particularly limited, but the number of entangled parts is preferably 20 to 250 / m as the fuel cell gas diffusion layer base material. When the number of entangled portions is less than 20 / m, good focusing cannot be maintained, and when the number is more than 250 / m, the bending of the single fiber is excessive, and fluff is likely to occur. More preferably, it is 50-100 pieces / m, and a stable entangled form can be maintained.

又、最大非交絡部長が15mm以下であることが望ましい。最大非交絡部長とは、マルチフィラメント長手方向に有する連続した交絡部の間の長さのことであり、次のように測定する。
長さ約1mの交絡糸の一方の端を固定し、もう一方の端に総繊度(dtex)×0.03(mN)の荷重をかけ垂直に垂らし、固定した所から5cm下を起点として、針状のものの直径0.5mm以下の部分をマルチフィラメント束の中央(フィラメント本数をほぼ同数ずつに分ける)に刺し、荷重を総繊度(dtex)×0.3(mN)掛けつつ、速度2cm/秒で下降させ、速度を維持できなくなったところの長さを測る。起点から最初に針が抵抗を受けて下降できなくなる地点までの長さを、非交絡部長とする。なお、この単繊維同士がよく交絡しているた
めに針が下降できない部分が交絡部である。
Further, it is desirable that the maximum unentangled portion length is 15 mm or less. The maximum unentangled part length is a length between continuous entangled parts in the longitudinal direction of the multifilament, and is measured as follows.
Fix one end of the entangled yarn of about 1 m in length, apply a load of total fineness (dtex) x 0.03 (mN) to the other end and hang it vertically, starting from 5 cm below where it was fixed, A needle-like portion having a diameter of 0.5 mm or less is stabbed into the center of the multifilament bundle (the number of filaments is divided into almost the same number), and the load is applied to the total fineness (dtex) × 0.3 (mN), and the speed is 2 cm / Decrease in seconds and measure the length where the speed can no longer be maintained. The length from the starting point to the point at which the needle cannot first descend due to resistance is defined as the unentangled part length. In addition, since the single fibers are well entangled, the portion where the needle cannot descend is the entangled portion.

停止した針は、その交絡部の直下を起点として同様に非交絡部長を繰り返し測定する。連続して50cm以上測定し、最大となる非交絡部の長さを最大非交絡部長とする。   For the stopped needle, the length of the non-entangled portion is measured repeatedly in the same manner, starting from directly below the entangled portion. Continuously measure 50 cm or more, and the maximum length of the unentangled part is the maximum unentangled part length.

最大非交絡部長が15mmより長いと良好な集束性が得られない。より好ましくは3〜10mmが安定した集束性を得られる。また、各非交絡部長はバラツキが少なく均一な交絡形態であることが好ましい。   If the maximum unentangled part length is longer than 15 mm, good convergence cannot be obtained. More preferably, a stable focusing property of 3 to 10 mm can be obtained. Moreover, it is preferable that each unentangled part length is a uniform entanglement form with little variation.

本発明では、炭素化したマルチフィラメント加工糸が実撚糸であることも望ましい。本発明で実撚糸とは、追撚糸、複数のフィラメント束の合撚糸や諸撚糸、壁撚糸等をいう。実撚数は特に限定されない。炭素化したマルチフィラメントに適した集束性を付与する程度であれば良い。例えば、追撚糸の場合、実撚数が20t/m以上であれば集束は得られるが、より好ましくは100t/m以上がマルチフィラメントの形態が安定する。   In the present invention, it is also desirable that the carbonized multifilament processed yarn is a real twist yarn. In the present invention, the actual twisted yarn refers to additional twisted yarn, combined twisted yarn of a plurality of filament bundles, twisted yarn, wall twisted yarn and the like. The actual twist number is not particularly limited. What is necessary is just a grade which provides the focusing property suitable for the carbonized multifilament. For example, in the case of a twisted yarn, bundling can be obtained if the actual number of twists is 20 t / m or more, but more preferably, the shape of the multifilament is stable when the number is 100 t / m or more.

以上の炭素化されたマルチフィラメントからなる織編物は、燃料電池用ガス拡散層基材として好適である。本発明において織編物の組織は限定されず、一般的に製造・使用されているもので構わない。例えば、織物では、平織、綾織、朱子織等の基本組織の他、変化組織でも構わない。必要に応じて多重織にしても良い。編物では、経編でも横編でも丸編でもよく、平編、ゴム編等の基本組織の他、変化組織でも構わない。   The woven or knitted fabric made of the above carbonized multifilament is suitable as a gas diffusion layer base material for a fuel cell. In the present invention, the structure of the woven or knitted fabric is not limited and may be one that is generally manufactured and used. For example, the woven fabric may be a changed structure in addition to a basic structure such as plain weave, twill weave, and satin weave. Multiple weaves may be used as necessary. The knitted fabric may be a warp knitting, a flat knitting, or a circular knitting, and may be a basic organization such as a flat knitting or a rubber knitting, or a change organization.

燃料電池用ガス拡散層基材としてより好ましくは、織編密度の高いものが良い。目視によって織編目間の空隙が見えないもの、つまり、見掛カバーファクターが高く、且つガス拡散性の良好なものが好ましい。   More preferably, the fuel cell gas diffusion layer base material has a high weaving and knitting density. It is preferable that the gaps between the woven and stitches are not visible by visual inspection, that is, those having a high apparent cover factor and good gas diffusibility.

特に、基本的な平織(1本ずつ経糸と緯糸が交錯するもの)で、使用するマルチフィラメントの最大打ち込み本数で構成されたものが好ましい。基本的な平織は、単位面積当たりの経糸と緯糸の交錯点が多く、その際のマルチフィラメントの屈曲も大きくなるため、炭素化後の厚み方向の導電性も良好になる。   In particular, a basic plain weave (one where warps and wefts intersect each other), which is composed of the maximum number of multifilaments used, is preferred. The basic plain weave has many intersections of warp and weft per unit area, and the multifilament bends at that time also increase, so that the conductivity in the thickness direction after carbonization becomes good.

本発明の織編物は、そのまま焼成しても、また、織編物に炭素化可能物質を含浸後焼成しても、燃料電池用ガス拡散層基材、特に固体高分子型燃料電池のガス拡散層基材として用いることができる。
本発明の織編物からなる燃料電池ガス拡散層基材は、厚みが0.05〜0.5mmでかつ嵩密度0.3〜0.8g/cmであることが好ましい。厚みが0.05mm未満であると、厚み方向の強度が弱くなり、セルスタックを組んだときのハンドリングに耐えられなくなる。また、0.5mmを越えるとその電気抵抗が高くなり、スタックを積層した際にトータルの厚みが大きくなる。
The woven or knitted fabric of the present invention may be fired as it is, or may be fired after impregnating the carbonizable material into the woven or knitted fabric, and a gas diffusion layer base material for a fuel cell, particularly a gas diffusion layer of a polymer electrolyte fuel cell It can be used as a substrate.
The fuel cell gas diffusion layer substrate made of the woven or knitted fabric of the present invention preferably has a thickness of 0.05 to 0.5 mm and a bulk density of 0.3 to 0.8 g / cm 3 . When the thickness is less than 0.05 mm, the strength in the thickness direction is weakened, and it becomes impossible to withstand handling when the cell stack is assembled. On the other hand, when the thickness exceeds 0.5 mm, the electric resistance increases, and the total thickness increases when the stack is stacked.

嵩密度は、0.3〜0.8g/cmであることが好ましく、嵩密度が0.3g/cm未満である場合、電気抵抗が高くなるうえ、満足できる柔軟性も得られない。また、0.8g/cmを越えるとガス透過性が悪くなり、燃料電池の性能が低下する。0.4〜0.7g/cmがより好ましい。なお、本発明のガス拡散層基材の厚みは、厚み測定用ダイヤルシックネスゲージを使用し、測定する。このときの測定子の大きさは、直径10mmで測定圧力は1.5kPaで行う。 The bulk density is preferably 0.3 to 0.8 g / cm 3, when the bulk density is less than 0.3 g / cm 3, after which the electrical resistance increases, not even have the flexibility satisfactory. On the other hand, if it exceeds 0.8 g / cm 3 , the gas permeability is deteriorated and the performance of the fuel cell is deteriorated. 0.4 to 0.7 g / cm 3 is more preferable. The thickness of the gas diffusion layer substrate of the present invention is measured using a thickness thickness dial thickness gauge. At this time, the size of the probe is 10 mm in diameter and the measurement pressure is 1.5 kPa.

嵩密度は、実測した厚みを用いて、以下の式により算出する。
嵩密度(g/cm)=目付(g/m)/(1000×厚み(mm))
The bulk density is calculated by the following formula using the actually measured thickness.
Bulk density (g / cm 3 ) = Weight per unit (g / m 2 ) / (1000 × Thickness (mm))

本発明の織編物からなる燃料電池ガス拡散層基材の面抵抗は15Ω・cm以下、更に好ましくは10Ω・cm以下で経方向と緯方向の比が1.5以下であることが好ましく、貫通抵抗は15Ω・cm以下、更には5Ω・cm以下であることが好ましい。なお、面抵抗は、ガス拡散層基材の片面に2cmの間隔をあけて銅線をのせ、10mA/cmの電流密度で電流を流した時の抵抗を測定する。 The surface resistance of the fuel cell gas diffusion layer substrate comprising the woven or knitted fabric of the present invention is preferably 15 Ω · cm or less, more preferably 10 Ω · cm or less, and the ratio of the warp direction to the weft direction is preferably 1.5 or less. resistance 15 [Omega] · cm 2 or less, more is preferably 5 [Omega · cm 2 or less. In addition, sheet resistance measures resistance when a copper wire is put on one side of the gas diffusion layer base material with an interval of 2 cm and a current is passed at a current density of 10 mA / cm 2 .

本発明の織編物からなる燃料電池ガス拡散層基材の貫通抵抗は、ガス拡散層基材を銅板にはさみ、銅板の上下から1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求める。
貫通抵抗(Ω・cm2)=測定抵抗値(Ω)×試料面積(cm2)
The penetration resistance of the fuel cell gas diffusion layer substrate made of the woven or knitted fabric of the present invention was such that the gas diffusion layer substrate was sandwiched between copper plates, pressed at 1 MPa from the top and bottom of the copper plate, and a current was passed at a current density of 10 mA / cm 2 . Measure the resistance value and calculate from the following formula.
Penetration resistance (Ω · cm 2 ) = Measured resistance value (Ω) × Sample area (cm 2 )

次に、本発明の織編物の製造方法について説明する。
本発明の製造方法では、得られる織編物のガス拡散層基材としての適性の面で、繊度50〜500dtex、単繊維繊度0.2〜6dtexの炭素化可能なマルチフィラメントを糸加工した後に織編物とし炭素化する。
Next, the manufacturing method of the woven or knitted fabric of the present invention will be described.
In the production method of the present invention, in view of suitability of the resulting woven or knitted fabric as a gas diffusion layer base material, a carbonizable multifilament having a fineness of 50 to 500 dtex and a single fiber fineness of 0.2 to 6 dtex is processed into yarn and then woven. Carbonized as a knitted fabric.

先述にもある通り、炭素化可能なマルチフィラメントとは、ポリアクリロニトリル系繊維、レーヨン繊維、ピッチなど、炭素化可能な原料をマルチフィラメントとしたものである。炭素化していないので剛直さや脆さもなく、糸加工性および製織性が良好である。   As described above, the carbonizable multifilament is a carbonized raw material such as polyacrylonitrile-based fiber, rayon fiber, or pitch, which is multifilament. Since it is not carbonized, there is no rigidity and brittleness, and thread processability and weaving are good.

また、本発明でいう糸加工とは、一般的に広く実施される糸加工をいう。具体的には、空気交絡加工、攪乱流加工、旋回流加工、撚糸、合撚、仮撚、芯鞘捲回加工等が挙げられる。これらの処理は、紡糸の最終段階で行っても良いし、紡糸とは別工程で行っても良い。可能ならば紡糸と一貫して行った方がコスト抑制および品質の安定に効果的である。また、これらの処理は単独でも良いし、複数組み合わせても良い。実施の順番も規定されない。   In addition, the yarn processing referred to in the present invention refers to yarn processing that is generally widely performed. Specific examples include air entanglement processing, turbulent flow processing, swirling flow processing, twisted yarn, combined twist, false twist, and core-sheath winding processing. These treatments may be performed at the final stage of spinning, or may be performed in a separate process from spinning. If possible, it is more effective to reduce costs and stabilize quality by consistently performing spinning. Further, these processes may be performed alone or in combination. The order of implementation is not specified.

本発明の製造方法においては、炭素化可能なマルチフィラメントの単繊維繊度0.2〜6dtex、総繊度が50〜500dtexであることが必要である。   In the production method of the present invention, the multifilament capable of carbonization needs to have a single fiber fineness of 0.2 to 6 dtex and a total fineness of 50 to 500 dtex.

炭素化可能なマルチフィラメントの単繊維繊度が0.2dtex未満では、毛羽が発生しやすく、強度の劣るものとなり、逆に6dtexを超えると柔軟性に欠け、繊維間の結着点が少なく、このような炭素化可能なマルチフィラメントを用いて作製したガス拡散層基材は抵抗が大きくなってしまう。更に単繊維繊度の下限は、0.5dtex以上がマルチフィラメントの製造上も好ましく、上限は1.5dtex以下が取り扱い性においても好ましい。このような細い単繊維を用いることにより、織編物とした時に柔軟性や高い導電性を得ることができる。   When the single fiber fineness of the carbonizable multifilament is less than 0.2 dtex, fluff is likely to occur and the strength is inferior. Conversely, when it exceeds 6 dtex, the flexibility is insufficient, and there are few binding points between the fibers. A gas diffusion layer substrate produced using such a carbonizable multifilament has a large resistance. Furthermore, the lower limit of the single fiber fineness is preferably 0.5 dtex or more from the viewpoint of the production of multifilaments, and the upper limit is preferably 1.5 dtex or less in terms of handleability. By using such thin single fibers, flexibility and high conductivity can be obtained when a woven or knitted fabric is obtained.

炭素化可能なマルチフィラメントの総繊度が50dtex未満の場合は、緻密で肉薄な織編物を形成しやすいものの製造コストが高くなり、逆に500dtexを越える場合は、緻密な織編物の形成が困難となり、ガス拡散層基材とした場合に性能の均一さに劣るものとなる。更に繊度の下限は、100dtex以上が耐圧縮性や柔軟性があり好ましく、上限は400dtex以下が好適な厚みを得られやすく好ましい。   When the total fineness of the carbonizable multifilament is less than 50 dtex, it is easy to form a dense and thin woven or knitted fabric, but the manufacturing cost is high. Conversely, when it exceeds 500 dtex, it is difficult to form a dense woven or knitted fabric. When the gas diffusion layer substrate is used, the performance is inferior. Further, the lower limit of the fineness is preferably 100 dtex or more because of compression resistance and flexibility, and the upper limit is preferably 400 dtex or less because a suitable thickness can be easily obtained.

本発明の織編物の製造方法では、炭素化可能なマルチフィラメントに予め交絡処理を施した後織編物とし炭素化するのが好適である。   In the method for producing a woven or knitted fabric of the present invention, it is preferable to carbonize a multi-filament that can be carbonized as a woven or knitted fabric after having been entangled in advance.

炭素化可能なマルチフィラメント製造時に紡糸撚や巻き取り油剤を付与し、糸条としての集束性を持たせることは一般的に行われているが、本発明ではより集束性が良く製織性良好な糸条とする為に、炭素化可能なマルチフィラメントのフィラメント束に更に交絡処理を施すことが望ましい。   Generally, it is common practice to provide spinning twist or a winding oil agent in the production of carbonizable multifilament to give the yarn as a bundle, but in the present invention, it has better bundle and better weaving. In order to obtain a yarn, it is desirable to further entangle the filament bundle of multifilaments that can be carbonized.

ここでいう交絡処理とは、一般的な糸加工で広く実施されている交絡処理方法をいう。特に、ノズルを使用し圧縮空気流によって単繊維同士を混繊させるもの、微小ループを形成させるものなどが代表的である。この場合のノズルの選定や空気圧や糸条供給率の設定は、マルチフィラメントが損傷を受けず良好な形態を維持できるようであれば構わない。より好ましくは、交絡部数が20〜250個/m、非交絡部長が15mm以下となるように条件設定すると、燃料電池用ガス拡散層基材に好適な炭素繊維織編物の形成に適した糸条を得ることができる。   The entanglement process here refers to an entanglement process method widely implemented in general yarn processing. In particular, typical examples include those in which single fibers are mixed by compressed air flow using a nozzle, and those in which a micro loop is formed. In this case, the selection of the nozzle and the setting of the air pressure and the yarn supply rate may be any as long as the multifilament can be maintained in a good form without being damaged. More preferably, when conditions are set so that the number of entangled portions is 20 to 250 pieces / m and the length of unentangled portions is 15 mm or less, the yarn suitable for forming a carbon fiber woven fabric suitable for a gas diffusion layer substrate for a fuel cell. Can be obtained.

本発明では、炭素化可能なマルチフィラメントに予め撚糸加工を施した後織編物とし炭素化することが好適である。ここでいう撚糸加工とは、一般的な糸加工で広く実施されている撚糸方法をいう。単純な追撚だけでなく、複数本の糸条の合撚や諸撚、壁撚でも構わない。撚糸数、撚方向は特に制限されないが、マルチフィラメントが損傷を受けず、糸条自身のトルクで工程通過性に悪影響を及ぼさない範囲に設定するのが好ましい。より好ましくは、実撚数が100t/m以上であると好適な集束性を維持できて良い。撚糸加工に使用する装置も限定されない。例えば、一般的に広く使用されているダウンツイスター、アップツイスター、ダブルツイスター、意匠撚糸機が挙げられる。   In the present invention, it is preferable to carbonize a multi-filament that can be carbonized as a post-woven knitted fabric that has been previously twisted. As used herein, the term “twisting” refers to a twisting method widely used in general yarn processing. Not only simple additional twisting, but also multiple twisting, multiple twisting, and wall twisting of a plurality of yarns may be used. The number of twisted yarns and the twisting direction are not particularly limited, but it is preferably set in a range in which the multifilament is not damaged and the processability is not adversely affected by the torque of the yarn itself. More preferably, when the actual number of twists is 100 t / m or more, suitable convergence can be maintained. The apparatus used for twisting is also not limited. For example, the down twister, the up twister, the double twister, and the design twisting machine which are generally used widely are mentioned.

その他、糸加工の例として仮撚加工が挙げられるが、一般的な糸加工で広く実施されている仮撚方法をいう。例えば、加撚−熱固定−解撚により捲縮を付与する方法、加熱されたボックスの中に糸条を押し込むことによって捲縮を付与する方法、ギア等の凹凸のあるもので加圧して捲縮を付与する方法等が挙げられる。
いずれの場合においても、マルチフィラメントが毛羽立たない程度の条件に設定することが好ましい。毛羽があると、織編物製造工程通過性に影響する他、織編物に炭素化可能物質を含浸する際や焼成を行う際に、毛羽脱落が起こる場合も有り、強力や外観の面でも好ましくない。
Other examples of yarn processing include false twisting, which refers to false twisting methods widely used in general yarn processing. For example, a method of imparting crimp by twisting, heat fixing, and untwisting, a method of imparting crimp by pushing a yarn into a heated box, and pressurizing with an object having irregularities such as a gear Examples include a method of imparting shrinkage.
In any case, it is preferable to set the conditions such that the multifilament is not fluffed. If there is fluff, it will affect the knitting and knitting manufacturing process passability, and when the woven or knitted fabric is impregnated with a carbonizable substance or when firing, fluff may come off, which is not preferable in terms of strength and appearance. .

予めマルチフィラメントに好ましい集束性を付与することで、織編物製造の際の工程通過性が向上し、また、織編物の品位も安定する。更に、燃料電池用ガス拡散層基材として本発明の炭素繊維織編物を使用するに際しても、マルチフィラメントや織編物設計に加え、糸加工条件の選択によって、ガス拡散層基材として要求される多様な特性を実現できる。
本発明のガス拡散層基材を使用した固体高分子型燃料電池は、同一の燃料電池運転環境下において、カソードガスの種類による発電特性の差がほとんど無い。つまり、通常は酸素供給の方が良好な性能を得られるが、本発明においては供給ガスが酸素であっても空気であっても同等の電池性能が得られる。これは、ガスおよび生成水の拡散性能に優れることに起因する。
By preliminarily imparting a favorable bundling property to the multifilament, the process passability during the production of the woven or knitted fabric is improved, and the quality of the woven or knitted fabric is also stabilized. Furthermore, when using the carbon fiber woven or knitted fabric of the present invention as a gas diffusion layer substrate for a fuel cell, in addition to multifilament and woven / knitted fabric design, various types of gas diffusion layer substrates required by selecting yarn processing conditions Special characteristics can be realized.
The polymer electrolyte fuel cell using the gas diffusion layer substrate of the present invention has almost no difference in power generation characteristics depending on the type of cathode gas under the same fuel cell operating environment. In other words, the oxygen supply usually provides better performance, but in the present invention, the same battery performance can be obtained regardless of whether the supply gas is oxygen or air. This is due to excellent gas and product water diffusion performance.

また、本発明のガス拡散層基材を使用した固体高分子型燃料電池は、燃料電池運転時の内部抵抗が、セル温度によって余り変化せず、セル温度80℃の燃料電池運転時の内部抵抗とセル温度60℃の燃料電池運転時の内部抵抗との差が15mΩ以下である。通常は高加湿環境下では電解質膜が十分に保湿されるため内部抵抗は良好であるが、低加湿環境下では電解質膜の乾燥等により内部抵抗が高くなる。ところが、本発明のガス拡散層基材は電解質膜の保水性に優れるため、低加湿環境下でも内部抵抗の上昇が抑えられる。   Further, in the polymer electrolyte fuel cell using the gas diffusion layer base material of the present invention, the internal resistance during operation of the fuel cell does not change much depending on the cell temperature, and the internal resistance during operation of the fuel cell at a cell temperature of 80 ° C. And the internal resistance when the fuel cell is operated at a cell temperature of 60 ° C. is 15 mΩ or less. Normally, the internal resistance is good because the electrolyte membrane is sufficiently moisturized in a highly humidified environment, but the internal resistance becomes high due to drying of the electrolyte membrane in a low humidified environment. However, since the gas diffusion layer substrate of the present invention is excellent in water retention of the electrolyte membrane, an increase in internal resistance can be suppressed even in a low humidified environment.

本発明において、炭素化可能なマルチフィラメントからなる織編物の組織は限定されず、一般的に製造・使用されているもので構わない。例えば、織物では、平織、綾織、朱子織等の基本組織の他、変化組織でも構わない。必要に応じて多重織にしても良い。編物では、経編でも横編でも丸編でもよく、平編、ゴム編等の基本組織の他、変化組織でも構わない。   In the present invention, the structure of the woven or knitted fabric made of carbonizable multifilaments is not limited and may be generally manufactured and used. For example, the woven fabric may be a changed structure in addition to a basic structure such as plain weave, twill weave, and satin weave. Multiple weaves may be used as necessary. The knitted fabric may be a warp knitting, a flat knitting, or a circular knitting, and may be a basic organization such as a flat knitting or a rubber knitting, or a change organization.

炭素化可能なマルチフィラメントからなる織編物は、炭素化により収縮することを前提として設計するのが好ましい。
本発明の炭素繊維織編物は、その構成からドレープ性に欠け剛直なので、燃料電池用ガス拡散層基材として使用した際、リブ付き分離板(リザーブプレートともいう。)の溝部を埋めることがないので燃料ガスおよび酸素等のガスの流量低下を防ぐことができる。
The woven or knitted fabric made of carbonizable multifilament is preferably designed on the assumption that it shrinks due to carbonization.
The carbon fiber woven or knitted fabric of the present invention lacks drapability and is rigid due to its structure, and therefore, when used as a gas diffusion layer base material for a fuel cell, the groove portion of a ribbed separator (also referred to as a reserve plate) is not filled. Therefore, it is possible to prevent a decrease in the flow rate of gas such as fuel gas and oxygen.

本発明の織編物の製造に使用する織機、編機は公知のものが使用でき特に限定しない。炭素化可能な非導電性マルチフィラメントを使用可能なため、電気的な安全対策を特別にする必要もなく、一般に広く普及しているレピア織機、エアジェットルーム、横編機、丸編機等が使用でき、特別な設備が不要な為、コスト的にもメリットがある。   Known looms and knitting machines can be used for the production of the woven or knitted fabric of the present invention, and are not particularly limited. Since non-conductive multifilaments that can be carbonized can be used, there is no need for special electrical safety measures, and rapier looms, air jet looms, flat knitting machines, circular knitting machines, etc. that are widely used in general Since it can be used and no special equipment is required, there is a merit in terms of cost.

炭素化可能なマルチフィラメントによる織編物は、200〜400℃の空気雰囲気中で加熱焼成して酸化繊維に転換する耐炎化工程、窒素、アルゴン、ヘリウム等の不活性雰囲気中でさらに300〜2500℃に加熱して炭化する炭化工程を経て、炭素繊維織編物となる。これらの工程は連続加工可能であり、作業性およびコスト抑制に効果的である。   Carbonized multifilament knitted or knitted fabric is a flameproofing process in which it is heated and fired in an air atmosphere at 200 to 400 ° C. to convert it into oxidized fibers, and further 300 to 2500 ° C. in an inert atmosphere such as nitrogen, argon or helium. A carbon fiber woven or knitted fabric is obtained through a carbonization step in which it is heated and carbonized. These processes can be continuously processed, and are effective for workability and cost reduction.

本発明の織編物からなる燃料電池ガス拡散層基材は、炭素化する前の織編物、若しくは炭素化した織編物に熱硬化性樹脂を含浸し、加熱加圧により硬化し、次いで炭素化することにより燃料電池ガス拡散層基材としても良い。
本発明の織編物の炭素化は、全長にわたって連続で行うことが好ましい。ガス拡散層基材が長尺であれば、ガス拡散層基材の生産性が高くなるだけでなく、その後工程のMEA(Membrane Electrode Assembly:膜電極接合体)製造も連続で行うことができ、燃料電池のコスト低減化に大きく寄与することができる。
The fuel cell gas diffusion layer base material comprising the woven or knitted fabric of the present invention is impregnated with a thermosetting resin in a woven or knitted fabric before carbonization or a carbonized woven or knitted fabric, cured by heating and pressing, and then carbonized. Thus, a fuel cell gas diffusion layer substrate may be used.
The carbonization of the woven or knitted fabric of the present invention is preferably performed continuously over the entire length. If the gas diffusion layer substrate is long, not only the productivity of the gas diffusion layer substrate is increased, but also MEA (Membrane Electrode Assembly) production in the subsequent process can be continuously performed. This can greatly contribute to cost reduction of the fuel cell.

以上から最終的に得られるガス拡散層基材は、少なくとも外径50cm以下、さらに好ましくは外径40cm以下のロールに巻き取ることが好ましい。外径50cm以下のロールに巻き取ることができれば、ガス拡散層基材としての製品形態をコンパクトにでき、梱包や輸送コストの面でも有利である。   The gas diffusion layer base material finally obtained from the above is preferably wound around a roll having an outer diameter of 50 cm or less, more preferably 40 cm or less. If it can be wound on a roll having an outer diameter of 50 cm or less, the product form as the gas diffusion layer substrate can be made compact, which is advantageous in terms of packaging and transportation costs.

実施例
以下、本発明を実施例により、説明する。
なお、各実施例、比較例で使用する炭素化可能なマルチフィラメントおよびその加工糸の性状と織密度、得られた炭素繊維織編物の特性評価結果を表1に示す。
なお、炭素繊維織編物の剛軟度は、JIS L 1096 8.19.1 A法によった。
以下、本発明を実施例により説明する。
Examples Hereinafter, the present invention will be described by way of examples.
Table 1 shows the properties of carbonized multifilaments used in each example and comparative example, the properties and woven density of the processed yarn, and the property evaluation results of the obtained carbon fiber knitted fabric.
In addition, the bending resistance of the carbon fiber woven fabric was in accordance with JIS L 1096 8.19.1 A method.
Hereinafter, the present invention will be described with reference to examples.

アクリロニトリル系マルチフィラメント360dtex/300fに紡糸巻取り前に15t/m(S方向)の実撚を加えたものに、空気交絡ノズルで間歇的に交絡部を付与し、集束性良好な加工糸を得た。なお、空気交絡処理後には紡糸巻取り時に付与した実撚は不明瞭となった。この加工糸でレピア織機を用いて平織物を製織した。次いで空気雰囲気中で300℃、更に窒素雰囲気中で2000℃に加熱して焼成し、炭素繊維織物を得た。この織物は、貫通抵抗、面抵抗共低く、ガス拡散層基材に適したものであった。   Acrylonitrile-based multifilament 360dtex / 300f with a real twist of 15t / m (S direction) before winding and spinning is intermittently provided with an entangled portion with an air entanglement nozzle to obtain a processed yarn with good convergence. It was. In addition, after the air entanglement treatment, the actual twist imparted at the time of winding the spinning became unclear. A plain fabric was woven with this processed yarn using a rapier loom. Next, it was heated to 300 ° C. in an air atmosphere and further heated to 2000 ° C. in a nitrogen atmosphere to obtain a carbon fiber fabric. This fabric was low in both penetration resistance and surface resistance, and was suitable for a gas diffusion layer substrate.

実施例1と同様にして得られた加工糸360dtex/300fで、レピア織機を用いて朱子織物を製織した。次いで同様に焼成したところ、実施例1で得られたものより厚手の、ガス拡散層基材に適した炭素繊維織物が得られた。   A satin fabric was woven using a rapier loom with the processed yarn 360 dtex / 300f obtained in the same manner as in Example 1. Next, when fired in the same manner, a carbon fiber fabric suitable for the gas diffusion layer base material, thicker than that obtained in Example 1, was obtained.

実施例1と同様にして得られた360dtex/300fに、ダウンツイスターで100t/m(S方向)の実撚を付与した。この実撚糸で実施例1同様に織物とした後焼成したところ、実施例1で得られた織物よりは貫通抵抗、面抵抗に劣るもののガス拡散層基材に適した炭素繊維織物が得られた。   The actual twist of 100 t / m (S direction) was applied to 360 dtex / 300f obtained in the same manner as in Example 1 with a down twister. When this real twisted yarn was made into a woven fabric in the same manner as in Example 1, and then baked, a carbon fiber woven fabric suitable for a gas diffusion layer substrate was obtained, although the penetration resistance and surface resistance were inferior to those of the woven fabric obtained in Example 1. .

紡糸巻取り前に15t/m(S方向)の実撚を加えたアクリロニトリル系マルチフィラメント190dtex/160fに、空気交絡ノズルで間歇的に交絡部を付与し、集束性良好な加工糸を得た。なお、空気交絡処理後には紡糸巻取り時に付与した実撚は不明瞭となった。この加工糸でレピア織機を用いて平織物を製織した。次いで空気雰囲気中で300℃、更に窒素雰囲気中で2000℃に加熱して焼成し、この炭素繊維織物を得た。この織物は、実施例1〜3より薄手で、貫通抵抗、面抵抗共低く、ガス拡散層基材に適したものであった。
この炭素繊維織物にポリテトラフルオロエチレンを10%付着させて撥水処理し、MEAを作成し電池性能評価を行ったところ、図1のような発電性能であった。同一の燃料電池運転環境下(セル温度80℃、60℃)において、カソードガスが酸素でも空気でも同等の性能が得られた。
また、カソードガスに酸素を供給し、セル温度80℃と60℃とでそれぞれ内部抵抗を測定した。図2のようにセル温度の変化による内部抵抗の変化は小さく(最大でも5mΩ)、低加湿下でも良好な性能が得られた。
(比較例1)
An entangled portion was intermittently imparted with an air entangled nozzle to acrylonitrile-based multifilament 190 dtex / 160f to which an actual twist of 15 t / m (S direction) was added before winding of the spinning to obtain a processed yarn with good convergence. In addition, after the air entanglement treatment, the actual twist imparted at the time of winding the spinning became unclear. A plain fabric was woven with this processed yarn using a rapier loom. Subsequently, the carbon fiber woven fabric was obtained by heating and baking at 300 ° C. in an air atmosphere and further at 2000 ° C. in a nitrogen atmosphere. This woven fabric was thinner than Examples 1 to 3, and had low penetration resistance and surface resistance, and was suitable for a gas diffusion layer substrate.
When 10% of polytetrafluoroethylene was adhered to the carbon fiber fabric and subjected to water repellent treatment, an MEA was prepared and the battery performance was evaluated. As a result, the power generation performance was as shown in FIG. Under the same fuel cell operating environment (cell temperature 80 ° C., 60 ° C.), the same performance was obtained whether the cathode gas was oxygen or air.
In addition, oxygen was supplied to the cathode gas, and the internal resistance was measured at cell temperatures of 80 ° C. and 60 ° C., respectively. As shown in FIG. 2, the change in internal resistance due to the change in cell temperature was small (5 mΩ at the maximum), and good performance was obtained even under low humidification.
(Comparative Example 1)

実施例1のアクリルニトリル系マルチフィラメントを、そのまま特に糸加工を実施せずに実施例1と同様の規格の平織物を製織しようとしたところ、経糸同士の擦れによる毛羽の発生とその伝染が顕著であり、製織困難であった。   When we tried to weave a plain woven fabric of the same standard as in Example 1 without carrying out any yarn processing as it was, the generation of fluff due to rubbing between warps and its transmission were remarkable. It was difficult to weave.

Figure 2005097752
Figure 2005097752

上記のような問題点を克服し、効率良く、ガス拡散性、導電性に優れ且つ薄い燃料電池用ガス拡散層基材に適した織編物およびその製造方法、並びに、低加湿環境下でも良好な電池性能を発揮可能な燃料電池用ガス拡散層基材を提供できる。   Overcoming the above problems, efficient, gas diffusivity, excellent conductivity and thin knitted fabric suitable for a gas diffusion layer base material for fuel cells and a method for producing the same, and good in a low humidified environment A gas diffusion layer base material for a fuel cell capable of exhibiting battery performance can be provided.

実施例4の燃料電池運転時の電圧〔Cell voltage(V)〕の電流密度〔Current Density(mA/cm)〕依存性を示したグラフである。グラフ中の凡例は以下の意味。 O2(80)・・・カソードガスに酸素を供給、セル温度80℃運転時の電圧 O2(60)・・・カソードガスに酸素を供給、セル温度60℃運転時の電圧 air(80)・・・カソードガスに空気を供給、セル温度80℃運転時の電圧 air(60)・・・カソードガスに空気を供給、セル温度60℃運転時の電圧It is the graph which showed the current density [Current Density (mA / cm < 2 >)] dependence of the voltage [Cell voltage (V)] at the time of the fuel cell driving | operation of Example 4. FIG. The legend in the graph has the following meanings. O2 (80): Supplying oxygen to cathode gas, voltage when operating at a cell temperature of 80 ° C. O2 (60): Supplying oxygen to cathode gas, voltage when operating at a cell temperature of 60 ° C. air (80)・ Air supply to cathode gas, voltage when operating at cell temperature of 80 ° C. air (60)... Air supply to cathode gas, voltage when operating at cell temperature of 60 ° C. 実施例4の燃料電池運転時の内部抵抗〔Internal resistance(mΩ)〕の電流密度〔Current Density(mA/cm)〕依存性を示したグラフである。グラフ中の凡例は以下の意味。 O2(80)・・・カソードガスに酸素を供給、セル温度80℃運転時の内部抵抗 O2(60)・・・カソードガスに酸素を供給、セル温度60℃運転時の内部抵抗It is the graph which showed the current density [Current Density (mA / cm < 2 >)] dependence of the internal resistance [Internal resistance (m (omega | ohm))] at the time of the fuel cell driving | operation of Example 4. FIG. The legend in the graph has the following meanings. O2 (80): Supplying oxygen to the cathode gas, internal resistance when operating at a cell temperature of 80 ° C. O2 (60): Supplying oxygen to the cathode gas, internal resistance when operating at a cell temperature of 60 ° C.

Claims (10)

単繊維繊度0.1〜5dtex、総繊度20〜400dtexの炭素化したマルチフィラメント加工糸からなる炭素繊維織編物。   A carbon fiber woven or knitted fabric made of carbonized multifilament processed yarn having a single fiber fineness of 0.1 to 5 dtex and a total fineness of 20 to 400 dtex. JIS L 1096 8.19.1 A法による剛軟度15cm以上である、請求項1記載の炭素繊維織編物。   The carbon fiber woven or knitted fabric according to claim 1, which has a bending resistance of 15 cm or more according to JIS L 1096 8.19.1 A method. 炭素化したマルチフィラメント加工糸が交絡糸である請求項1又は2記載の炭素繊維織編物。   The carbon fiber woven or knitted fabric according to claim 1 or 2, wherein the carbonized multifilament processed yarn is an entangled yarn. 炭素化したマルチフィラメント加工糸が実撚糸である請求項1又は2記載の炭素繊維織編物。   The carbon fiber woven or knitted fabric according to claim 1 or 2, wherein the carbonized multifilament processed yarn is a real twisted yarn. 請求項1〜4のいずれか一項記載の炭素繊維織編物からなる燃料電池用ガス拡散層基材。   A gas diffusion layer base material for a fuel cell comprising the carbon fiber woven or knitted fabric according to any one of claims 1 to 4. 単繊維繊度0.2〜6dtex、総繊度50〜500dtexの炭素化可能なマルチフィラメントを糸加工した後、織編物とし、炭素化する請求項1〜4のいずれか一項の炭素繊維織編物の製造方法。   The carbon fiber woven or knitted fabric according to any one of claims 1 to 4, wherein the carbonized multifilament having a single fiber fineness of 0.2 to 6 dtex and a total fineness of 50 to 500 dtex is processed into a knitted fabric and then carbonized. Production method. 炭素化可能なマルチフィラメントに交絡処理を施した後織編物とし炭素化する、請求項6記載の炭素繊維織編物の製造方法。   The method for producing a carbon fiber woven or knitted fabric according to claim 6, wherein the carbonized multifilament is carbonized as a post-woven knitted fabric obtained by subjecting the multifilament to an entanglement treatment. 炭素化可能なマルチフィラメントに撚糸加工を施した後織編物とし炭素化する、請求項6記載の炭素繊維織編物の製造方法。   The method for producing a carbon fiber woven or knitted fabric according to claim 6, wherein the carbonized multifilament is carbonized as a post-woven knitted fabric obtained by twisting a multifilament. 同一の燃料電池運転環境下において、カソードガスの種類による発電特性の差がない燃料電池用ガス拡散層基材。   A fuel cell gas diffusion layer base material that has no difference in power generation characteristics depending on the type of cathode gas under the same fuel cell operating environment. セル温度80℃の燃料電池運転時の内部抵抗とセル温度60℃の燃料電池運転時の内部抵抗との差が15mΩ以下である燃料電池用ガス拡散層基材。   A gas diffusion layer base material for a fuel cell, wherein a difference between an internal resistance during operation of the fuel cell having a cell temperature of 80 ° C. and an internal resistance during operation of the fuel cell having a cell temperature of 60 ° C. is 15 mΩ or less.
JP2003312616A 2002-09-04 2003-09-04 Carbon fiber woven or knitted fabric, method for producing the same and gas diffusion layer substrate for fuel cell using the same woven or knitted fabric Pending JP2005097752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312616A JP2005097752A (en) 2002-09-04 2003-09-04 Carbon fiber woven or knitted fabric, method for producing the same and gas diffusion layer substrate for fuel cell using the same woven or knitted fabric

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002259292 2002-09-04
JP2003298656 2003-08-22
JP2003312616A JP2005097752A (en) 2002-09-04 2003-09-04 Carbon fiber woven or knitted fabric, method for producing the same and gas diffusion layer substrate for fuel cell using the same woven or knitted fabric

Publications (1)

Publication Number Publication Date
JP2005097752A true JP2005097752A (en) 2005-04-14

Family

ID=34468217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312616A Pending JP2005097752A (en) 2002-09-04 2003-09-04 Carbon fiber woven or knitted fabric, method for producing the same and gas diffusion layer substrate for fuel cell using the same woven or knitted fabric

Country Status (1)

Country Link
JP (1) JP2005097752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242250A (en) * 2006-03-03 2007-09-20 National Univ Corp Shizuoka Univ Solid polymer fuel cell electrode, membrane electrode assembly, and solid polymer type fuel cell
JP2012031526A (en) * 2010-07-28 2012-02-16 Shinshu Univ Carbon fiber multi-ply woven fabric and method of manufacturing the same, and seat-like fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242250A (en) * 2006-03-03 2007-09-20 National Univ Corp Shizuoka Univ Solid polymer fuel cell electrode, membrane electrode assembly, and solid polymer type fuel cell
JP2012031526A (en) * 2010-07-28 2012-02-16 Shinshu Univ Carbon fiber multi-ply woven fabric and method of manufacturing the same, and seat-like fuel cell

Similar Documents

Publication Publication Date Title
KR100661785B1 (en) Carbon fiber sheet and method for producing the same
US9837667B2 (en) Carbon-fiber nonwoven cloth and gas diffusion electrode for polymer electrolyte fuel cell using same, polymer electrolyte fuel cell, method for manufacturing carbon-fiber nonwoven cloth, and composite sheet
US20050260909A1 (en) Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell
KR101156316B1 (en) Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using same
US20060257720A1 (en) Conductive carbonaceous fiber woven cloth and solid polymer-type fuel cell
RU2318932C2 (en) Tar-based graphite fabrics and needle stitched felts for gas diffusion layer substrates of fuel cell, and reinforced high thermal conductivity composites
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP6547936B2 (en) Method of manufacturing carbon fiber fabric for fuel cell
JP2005097752A (en) Carbon fiber woven or knitted fabric, method for producing the same and gas diffusion layer substrate for fuel cell using the same woven or knitted fabric
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP6188135B2 (en) Fabric for gas diffusion layer sheet for fuel cell and method for producing gas diffusion layer sheet for fuel cell using the same
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP4282964B2 (en) Carbon fiber woven fabric
JP5873248B2 (en) Carbon fiber spun yarn fabric, carbon fiber precursor spun yarn fabric, and method for producing carbon fiber spun yarn fabric
JP3934974B2 (en) High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof
JP2003064539A (en) Carbon fiber fabric and method for producing the same
JP6818223B2 (en) Manufacturing method of carbon fiber woven fabric for fuel cells
JP6818222B2 (en) Carbon fiber fabric for fuel cells
JP2004084147A (en) Carbonaceous fiber woven cloth
JP2007039843A (en) Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber
JP2023124646A (en) Carbon fiber electrode material, gas diffusion electrode base material for fuel cell, method for manufacturing fuel cell and carbon fiber electrode material
JPH07216690A (en) Connected pile web for conductive material
JP2013108188A (en) Carbon fiber sheet with multiple layer structure, method of producing the same, and electrode comprising the same
JPH08144153A (en) Carbon fiber pile web