JP6818223B2 - Manufacturing method of carbon fiber woven fabric for fuel cells - Google Patents

Manufacturing method of carbon fiber woven fabric for fuel cells Download PDF

Info

Publication number
JP6818223B2
JP6818223B2 JP2019018448A JP2019018448A JP6818223B2 JP 6818223 B2 JP6818223 B2 JP 6818223B2 JP 2019018448 A JP2019018448 A JP 2019018448A JP 2019018448 A JP2019018448 A JP 2019018448A JP 6818223 B2 JP6818223 B2 JP 6818223B2
Authority
JP
Japan
Prior art keywords
woven fabric
carbon fiber
fuel cell
fiber woven
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019018448A
Other languages
Japanese (ja)
Other versions
JP2019106381A (en
Inventor
一郎 吉野
一郎 吉野
久司 永井
久司 永井
順 高木
順 高木
犬山 久夫
久夫 犬山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2019018448A priority Critical patent/JP6818223B2/en
Publication of JP2019106381A publication Critical patent/JP2019106381A/en
Application granted granted Critical
Publication of JP6818223B2 publication Critical patent/JP6818223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、車両、船舶、航空機等の交通機関に搭載される燃料電池用途の炭素繊維織物の製造方法に関する。 The present invention relates to a method for producing a carbon fiber woven fabric for a fuel cell used in transportation such as a vehicle, a ship, and an aircraft.

従来、環境問題の関心の高さから新たなエネルギー源として燃料電池による発電が注目されており、その電極として炭素繊維製の織物が有用である。その中でも家庭用や車両用として主流である固体高分子形燃料電池(以下、燃料電池またはFCとする)は、高分子膜の両面に電極が接合された膜・触媒接合体(以下、CCMとする)と、燃料ガス、酸化剤ガスを電極反応域に導くガス拡散層(以下、GDLとする)と、ガス導入・排出溝を持つセパレータやシール材等からなる単位ユニット(以下、セルとする)が繰り返し積層されており、概略A4版サイズの面積で数百枚のセルを積層して組み上げ、これらを両側から板で締め上げる構造である。 Conventionally, power generation by fuel cells has been attracting attention as a new energy source due to high concern about environmental problems, and carbon fiber woven fabric is useful as an electrode thereof. Among them, polymer electrolyte fuel cells (hereinafter referred to as fuel cells or FC), which are the mainstream for home use and vehicles, are membrane-catalyst conjugates (hereinafter referred to as CCM) in which electrodes are bonded to both sides of a polymer membrane. A unit unit (hereinafter referred to as a cell) consisting of a gas diffusion layer (hereinafter referred to as GDL) that guides fuel gas and oxidant gas to the electrode reaction region, a separator having a gas introduction / discharge groove, a sealing material, etc. ) Are repeatedly laminated, and several hundred cells are laminated and assembled in an area of approximately A4 size, and these are fastened with plates from both sides.

GDLは一般的に1mm以下の薄いシート状に形成された部材で、外部からの水素を含む燃料ガス、或いは酸素を含む酸化剤ガスの2つの反応ガスを電極触媒層に円滑に供給できる機能を有することが第一である。この他に、GDLの基本的な機能として、1)電気エネルギーを効率的に取り出すために十分に低い電気抵抗をすること、2)大電流を取り出すための十分なガス透過性および電池で生成する生成水の排出性からなる良好な拡散性を有すること、3)積層部材の厚みムラを吸収できるクッション性(弾力性)を有すること、4)強酸性や強アルカリ性にも耐える耐腐食性を有すること、などが必要となる。 GDL is a member generally formed in the form of a thin sheet of 1 mm or less, and has a function of smoothly supplying two reaction gases, a fuel gas containing hydrogen and an oxidant gas containing oxygen, to the electrode catalyst layer from the outside. Having is the first. In addition to this, the basic functions of GDL are 1) low electrical resistance to efficiently extract electrical energy, 2) sufficient gas permeability to extract large current, and battery generation. It has good diffusivity due to the discharge of generated water, 3) has cushioning property (elasticity) that can absorb uneven thickness of laminated members, and 4) has corrosion resistance that can withstand strong acidity and strong alkalinity. Things, etc. are required.

そのため、現在市場で安定的に提供されているGDLはアクリル繊維を220〜260℃程度で熱処理を行う「耐炎化」の前処理工程、そして900〜2800℃の高温において不活性ガス雰囲気で行なう「炭化」および「黒鉛化」で炭素繊維を得た後、さらに所望の長さに切り揃えた後、抄紙工程で紙状とし、熱硬化性樹脂で節止めし、さらに導電性をあげるために炭化熱処理を行う等、複数回の熱処理の為、多くのエネルギーが必要であり、複雑でコストの掛かるプロセスを経ている。 Therefore, GDL, which is stably provided in the market at present, has a "flame resistance" pretreatment process in which acrylic fibers are heat-treated at about 220 to 260 ° C., and "flame resistance" is performed in an inert gas atmosphere at a high temperature of 900 to 2800 ° C. After obtaining carbon fibers by "carbonization" and "graphitization", they are further trimmed to the desired length, then made into a paper shape in the papermaking process, fastened with a thermosetting resin, and carbonized to further increase conductivity. Since heat treatment is performed multiple times, a large amount of energy is required, and the process is complicated and costly.

また、そのようなGDLは紙構造であるため、上記のガス透過性が不十分であり、厚みムラを吸収するクッション性も低く、何よりもエネルギーを消費する工程が多いので、製造コストがかかるという問題があった。したがって、燃料電池システムを普及させるには低い電気抵抗、十分なガス拡散性、適度なクッション性、十分な耐腐食性をもち、省エネ工程かつ低コストであることが決定的に重要であった。 Further, since such a GDL has a paper structure, the above-mentioned gas permeability is insufficient, the cushioning property for absorbing thickness unevenness is low, and above all, there are many steps that consume energy, so that the manufacturing cost is high. There was a problem. Therefore, in order to popularize the fuel cell system, it is crucially important to have low electric resistance, sufficient gas diffusivity, appropriate cushioning property, sufficient corrosion resistance, energy saving process and low cost.

そこで、特許文献1においては、短い炭素繊維を抄紙して紙状にしたのち、熱硬化性樹脂を含浸させ樹脂含浸紙を得て、加熱プレス成形して樹脂硬化シートを得て、それを不活性雰囲気下の焼成炉内に走行させて、その樹脂硬化シートを焼成することにより多孔質炭素電極を得るとしている。 Therefore, in Patent Document 1, short carbon fibers are made into a paper shape, then impregnated with a thermosetting resin to obtain a resin-impregnated paper, and heat-press molded to obtain a resin-cured sheet. It is said that a porous carbon electrode is obtained by running the resin in a firing furnace in an active atmosphere and firing the resin-cured sheet.

また、特許文献2においてはアクリルの長繊維を織物とし、その後耐炎化、炭化、黒鉛化して高強度一般部品用の自由曲面を得やすい1000デニール以上の太い炭素繊維織物を製造する技術が開示されている。 Further, Patent Document 2 discloses a technique for producing a thick carbon fiber woven fabric of 1000 denier or more, which is made of long acrylic fibers as a woven fabric and then flame-resistant, carbonized, and graphitized to easily obtain a free curved surface for high-strength general parts. ing.

さらに、特許文献3においては、アクリルの紡績糸を耐炎化繊維としたのち織物とし、プレスして、炭化もしくは黒鉛化することでその織物の繊維の断面形状は、面方向が長径、厚さ方向が短径として、長径/ 短径の比が2 以上の楕円形で近似することができると説明されている。 Further, in Patent Document 3, the acrylic spun yarn is made into a flame-resistant fiber and then made into a woven fabric, which is then pressed to be carbonized or graphitized so that the cross-sectional shape of the fiber of the woven fabric has a major axis in the surface direction and a thickness direction. It is explained that the minor axis can be approximated by an elliptical shape with a major axis / minor axis ratio of 2 or more.

特開2011−065926号公報Japanese Unexamined Patent Publication No. 2011-06592 特開昭56−101917号公報Japanese Unexamined Patent Publication No. 56-101917 特開2004−100102号公報Japanese Unexamined Patent Publication No. 2004-100102

しかし、特許文献1の開示されている紙状の炭素繊維は、必要以上に高強度となる炭素繊維の製造に多大のエネルギーを使っており、FC自動車を普及させるための目標価格に届いていない。また、炭素繊維が紙構造であるためガス拡散性が不十分であり、車両用途として大電流が取り出せず、またクッション性も不十分であるという問題があった。 However, the paper-like carbon fiber disclosed in Patent Document 1 uses a large amount of energy for producing carbon fiber having higher strength than necessary, and has not reached the target price for popularizing FC automobiles. .. Further, since the carbon fiber has a paper structure, the gas diffusibility is insufficient, a large current cannot be taken out for vehicle use, and the cushioning property is also insufficient.

また、特許文献2に開示されている炭素繊維織物は、織物であるFC用途のGDLではなく、扁平とすることや電気抵抗に関しては説明されておらず、薄くて良好な電気抵抗となる燃料電池用のGDLに適さないという問題があった。 Further, the carbon fiber woven fabric disclosed in Patent Document 2 is not a GDL for FC use, which is a woven fabric, and is not described for flattening or electrical resistance, and is a fuel cell that is thin and has good electrical resistance. There was a problem that it was not suitable for GDL.

さらに、特許文献3に開示されている織物はCCMやセパレータとの接触抵抗を下げるには不十分であり、それらとの接触面積を増やす必要があるという問題があった。また、繊維として耐炎化工程を経るため、織物を直接耐炎化するよりエネルギーコストや設備コストが高くなるという問題もあった。 Further, the woven fabric disclosed in Patent Document 3 is insufficient to reduce the contact resistance with the CCM and the separator, and there is a problem that it is necessary to increase the contact area with them. Further, since the fiber undergoes a flame resistance process, there is a problem that the energy cost and the equipment cost are higher than the direct flame resistance of the woven fabric.

そこで、本発明においては燃料電池内に積層した場合の厚みを小さくし、接触時の電気抵抗を下げることのできる燃料電池用炭素繊維織物の製造方法を提供することを課題とする。同時に、燃料電池内にて優れたガス拡散性を有し、大電流を発電できる燃料電池用炭素繊維織物の製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for producing a carbon fiber woven fabric for a fuel cell, which can reduce the thickness when laminated in a fuel cell and reduce the electric resistance at the time of contact. At the same time, it is an object of the present invention to provide a method for producing a carbon fiber woven fabric for a fuel cell, which has excellent gas diffusibility in the fuel cell and can generate a large current.

前述した課題を解決するために、本発明者は燃料電池用炭素繊維織物の製造方法としてアクリル繊維のスライバーを消失繊維で包み込むように巻き付けた複合糸,中央に消失繊維があって消失繊維に実質無撚りのアクリル繊維が巻きついている紡績糸,アクリル繊維の下撚数に対し消失繊維の上撚数をほぼ同数にして逆方向に撚りを入れた合糸,のいずれかを用いて燃料電池用炭素繊維織物素材を製織する第1工程と、その後に燃料電池用炭素繊維織物素材から水または有機溶剤を用いて消失繊維を除去する第2工程と、その後に燃料電池用炭素繊維織物素材を酸化雰囲気中で耐炎化処理する第3工程と、その後に燃料電池用炭素繊維織物素材を炭化処理する第4工程と、を有する燃料電池用炭素繊維織物の製造方法とした。 In order to solve the above-mentioned problems, the present inventor has a composite yarn in which a sliver of acrylic fiber is wound so as to be wrapped with vanishing fiber as a method for producing a carbon fiber woven fabric for a fuel cell, and the vanishing fiber is substantially in the center. For fuel cells, use either spun yarn around which untwisted acrylic fiber is wound, or synthetic yarn in which the number of upper twists of lost fibers is approximately the same as the number of lower twists of acrylic fibers and twisted in the opposite direction. The first step of weaving the carbon fiber woven material, the second step of removing the lost fibers from the carbon fiber woven material for fuel cells using water or an organic solvent, and then the oxidation of the carbon fiber woven material for fuel cells. A method for producing a carbon fiber woven fabric for a fuel cell, which comprises a third step of flame-resistant treatment in an atmosphere and a fourth step of carbonizing the carbon fiber woven material for the fuel cell thereafter.

また、炭化処理を行う第4工程においては、燃料電池用炭素繊維織物素材上に荷重を負荷した状態で処理しても構わない。その際に、燃料電池用炭素繊維織物素材に負荷する荷重を、1cm当たり0.1〜5Nの範囲とすることができる。 Further, in the fourth step of performing the carbonization treatment, the treatment may be carried out with a load applied on the carbon fiber woven fabric material for a fuel cell. At that time, the load applied to the carbon fiber woven fabric material for the fuel cell can be in the range of 0.1 to 5 N per 1 cm 2 .

本発明の製造方法による燃料電池用炭素繊維織物を構成している糸束が実質的に無撚であるため、その繊維断面を扁平に薄く変形させることができ、燃料電池の積層方向の寸法を短くできる。さらに、挟まれている部材との接触面積を増やせるように、糸束断面の輪郭線が直線部を持ちながら扁平になるため、接触電気抵抗を低下させることができ、高効率な燃料電池となる。また、撚繊維に比べて単繊維間に細かい隙間を確保することができ、優れたガス拡散性が得られ、大電流の発電にも適するという効果を奏する。 Since the yarn bundle constituting the carbon fiber woven fabric for a fuel cell according to the manufacturing method of the present invention is substantially untwisted, the fiber cross section can be deformed flat and thin, and the dimensions in the stacking direction of the fuel cell can be adjusted. Can be shortened. Further, since the contour line of the thread bundle cross section is flattened while having a straight portion so that the contact area with the sandwiched member can be increased, the contact electrical resistance can be reduced, and the fuel cell becomes highly efficient. .. In addition, as compared with twisted fibers, fine gaps can be secured between single fibers, excellent gas diffusibility can be obtained, and the effect of being suitable for power generation of a large current is achieved.

消失繊維に紡績糸が解撚されて巻き付いている炭化前の原料糸の拡大図である。It is an enlarged view of the raw material yarn before carbonization that the spun yarn is untwisted and wound around the vanishing fiber. 下撚りと同数の上撚りを与えた紡績双糸の原料糸の説明用拡大図である。It is an enlarged view for explanation for the raw material yarn of the spun twin yarn which gave the same number of upper twists as the lower twist. 別の実施例で炭化硬化後の断面拡大図である。In another embodiment, it is an enlarged cross-sectional view after carbonization and curing. 本発明の燃料電池用炭素繊維織物を製造する際に用いる均一荷重式製造装置の模式断面図である。It is a schematic cross-sectional view of the uniform load type manufacturing apparatus used when manufacturing the carbon fiber woven fabric for a fuel cell of this invention. 本発明の燃料電池用炭素繊維織物を製造する際に用いる一定張力式製造装置の模式断面図である。It is a schematic cross-sectional view of the constant tension type manufacturing apparatus used when manufacturing the carbon fiber woven fabric for a fuel cell of this invention.

本発明の実施の形態の一例について図面を用いて製造工程と合わせて説明する。本発明の燃料電池用炭素繊維織物は、大きく分けて(1)製糸工程、(2)製織工程、(3)炭化工程、(4)硬化処理工程の順序で製造される。以下、上記(1)〜(4)の各工程を詳細に説明する。 An example of the embodiment of the present invention will be described with reference to the drawings together with the manufacturing process. The carbon fiber woven fabric for a fuel cell of the present invention is roughly divided into (1) a yarn-making step, (2) a weaving step, (3) a carbonization step, and (4) a curing treatment step. Hereinafter, each of the above steps (1) to (4) will be described in detail.

(1)製糸工程
まず、出発原料として使用する繊維としては、天然セルロース(綿、竹繊維など)再生セルロース(レーヨン、アセテート)ポリアクリロニトリル系、ピッチ系、ポリノジック系、フェノール樹脂系、ポリパラフェニレンテレフタルアミド、あるいはこれらの混合物からなる繊維が使用できる。
(1) Thread-making process First, the fibers used as starting materials are natural cellulose (cotton, bamboo fiber, etc.), regenerated cellulose (rayon, acetate), polyacrylonitrile-based, pitch-based, polynosic-based, phenol-resin-based, polyparaphenylene terephthal. Fibers consisting of amides or mixtures thereof can be used.

ここで、焼成により残重量率が30%以下になるが市場性に優れる木綿や、耐炎化工程を必要とするが、強度的にも安定しているポリアクリロニトリルを主成分する繊維は、出発原料として望ましい。さらに、燃料電池用のGDLは積み重ねて使用し引っ張り強度より圧縮強度や曲げ強度のほうが重要であり、構造物強度材として使用するような炭素繊維強度を必要以上に求めなく良いため、アクリル繊維を織物にしたのち、耐炎化工程と炭化工程および硬化処理を行えば、耐炎化繊維を織物にするより、トータルのエネルギーコストを低減できるという特徴がある。 Here, cotton having a residual weight ratio of 30% or less by firing but having excellent marketability, and fibers containing polyacrylonitrile as a main component, which requires a flame resistance process but is stable in strength, are starting materials. Desirable as. Furthermore, since GDL for fuel cells is used in a stacked manner, compressive strength and bending strength are more important than tensile strength, and carbon fiber strength used as a structural strength material is not required more than necessary. Therefore, acrylic fiber is used. If the woven fabric is then subjected to a flame resistance step, a carbonization step, and a hardening treatment, the total energy cost can be reduced as compared with the case where the flame proof fiber is made into a woven fabric.

次に、製糸方法としては織物の素材に紡績糸を使用する場合、その下撚数A、撚方向Zの紡績糸Bと製織後に消失させる繊維Cを合糸させることができる。その時の上撚数もAとほぼ同じで撚方向S(下撚りを戻す方向)とすればよい。(図1無撚糸の原料)によると、中央のまっすぐな繊維が織物後消失させる繊維Cでこれに巻き付いているのが、引張強度に寄与しない撚角であり、実質的に無撚になった紡績糸Bである。 Next, as a yarn-making method, when a spun yarn is used as the material of the woven fabric, the spun yarn B having the lower twist number A and the twist direction Z and the fiber C disappearing after weaving can be combined. The number of upper twists at that time is also substantially the same as A, and the twist direction S (direction for returning the lower twist) may be used. According to (Fig. 1 raw material for untwisted yarn), the straight fiber in the center is the fiber C that disappears after weaving, and it is the twist angle that does not contribute to the tensile strength, which is substantially untwisted. It is a spun yarn B.

ここで、消失繊維は製織工程の安定化に寄与し、その後は水や有機溶剤で容易に消失でき低コストであればよい。形状としてはフィラメントでも紡績糸でもよく、原料としては経糸の強度を確保するために使用する糊剤と同様な繊維が望ましく、PVA繊維やでんぷんを繊維とし製織後洗い落せばよい。ほかに、アルカリで溶けるSSTポリマー繊維(5ナトリウムスルフォイソフタル酸ジメチル)でもよい。また、温水で溶解可能な澱粉糊で固着した紡績糸を撚り戻して製織してもよい。更に、ドラフト後の紡績スライバーを消失繊維で包み込むように巻きつけた複合糸でもよい。すなわち、製織後にこれらの溶解除去可能なものであれば限定されない。溶解残液の環境負荷、コストの面、安定した技術などの点からPVA繊維が好ましい。 Here, the lost fibers contribute to the stabilization of the weaving process, and after that, they can be easily lost with water or an organic solvent, and the cost may be low. The shape may be a filament or a spun yarn, and the raw material is preferably a fiber similar to the glue used to secure the strength of the warp, and PVA fiber or starch may be used as a fiber and washed off after weaving. Alternatively, an alkali-soluble SST polymer fiber (dimethyl 5-sodium sulfoisophthalate) may be used. Alternatively, the spun yarn fixed with starch paste that can be dissolved in warm water may be twisted back and woven. Further, a composite yarn in which the spun sliver after drafting is wrapped so as to be wrapped with vanishing fibers may be used. That is, it is not limited as long as it can be dissolved and removed after weaving. PVA fiber is preferable from the viewpoint of environmental load of the dissolved residual liquid, cost, and stable technology.

また、織物の素材に双糸を使用する場合でもその条件を適切に選択すれば扁平にさせやすい繊維になる。上撚数は繊維長1m当たりで、300回/m〜1000回/m、好ましくは800回/m以下である。下撚数が小さいと毛羽数が大きくなりやすく、下撚数が大きいと、加撚時に糸切れ発生確率が増加し太さむらが増加する場合もある。ここで単位長さあたりの毛羽数が多くなる場合は毛羽焼き工程を入れることが望ましい。この下撚数に対し上撚数をほぼ同数にして逆方向に撚りを入れて合糸すれば、(図2双糸)のように、各単糸の撚が巻き戻され、両単糸の糸束どうしが相互に巻きつく形態になり、実質的に無撚とは言えないが、各単糸は相互に巻き付き、ピッチの長手方向の範囲では概略平行に並び、織物にしたのちの圧縮工程で厚み方向に扁平に押しつぶされ、その糸束断面の輪郭線に直線部を得やすくなる。(図3扁平な断面) Further, even when twin yarns are used as the material of the woven fabric, the fibers can be easily flattened if the conditions are appropriately selected. The number of top twists is 300 times / m to 1000 times / m, preferably 800 times / m or less per 1 m of fiber length. If the number of lower twists is small, the number of fluffs tends to be large, and if the number of lower twists is large, the probability of yarn breakage during twisting increases and the thickness unevenness may increase. Here, when the number of fluffs per unit length is large, it is desirable to include a fluff baking step. If the number of upper twists is almost the same as the number of lower twists and the yarns are twisted in the opposite directions to combine the yarns, the twists of each single yarn are rewound as shown in (Fig. 2 twin yarn), and both single yarns are wound. The yarn bundles are wound around each other, which is not practically untwisted, but each single yarn is wound around each other, arranged substantially parallel in the longitudinal range of the pitch, and then compressed into a woven fabric. It is crushed flat in the thickness direction, and it becomes easy to obtain a straight portion on the contour line of the thread bundle cross section. (Fig. 3 Flat cross section)

一方、引張強度を持つような撚のある単糸からなる織物は単糸群が扁平に変形できないので、薄くならず接触面積も少なく電気抵抗は高止まりする。なお図1において、相互に巻き付いている撚ピッチより織ピッチのほうが短いほうが望ましいことは言うまでもない。 On the other hand, in a woven fabric made of twisted single yarn having tensile strength, since the single yarn group cannot be deformed flatly, it is not thinned, the contact area is small, and the electric resistance remains high. Needless to say, in FIG. 1, it is desirable that the weaving pitch is shorter than the twist pitch that is wound around each other.

さらに、長繊維の場合では交絡数の少ない糸からなる織物であれば、言うまでもなく、実質的に無撚であり扁平に変形しやすい炭素繊維織物となる。ただし先にあげたアクリルの長繊維は望ましい出発原料ではあるが、250dtexまでの長繊維は用途が限られるため市場性は低い。また長繊維は交絡数が少ないと、単糸切れが多発するなど、価格的な課題が残る。この点が、長繊維より市場性の高い紡績糸が望ましい理由である。 Further, in the case of long fibers, it goes without saying that a woven fabric made of threads having a small number of entanglements is a carbon fiber woven fabric that is substantially untwisted and easily deformed flat. However, although the acrylic long fibers mentioned above are desirable starting materials, long fibers up to 250 dtex have limited applications and are not marketable. In addition, if the number of entangled fibers is small, long fibers have many price problems such as single yarn breakage. This is the reason why spun yarn, which is more marketable than long fibers, is desirable.

なお、使用する素材の形状としては、紡績糸なら双糸、単繊維のいずれであってもよいが、一般に双糸の方が単繊維より、繊維の引張強度が大きくなる。 The shape of the material used may be either twin yarn or single fiber as long as it is a spun yarn, but in general, twin yarn has a higher tensile strength of the fiber than single fiber.

また、紡績糸の太さについては単糸の場合の太さは、メートル番手表示で、太いほうは1/20Nm以下、好ましくは1/30Nm以下の太さであり、細いほうは通常1/100Nm以上、好ましくは1/64Nm以上である。また双糸の場合はメートル番手表示で、太いほうは通常2/26Nm以下、好ましくは2/34Nm以下の太さであり、細いほうは通常2/120Nm以上、好ましくは2/100Nm以上の太さである。 Regarding the thickness of the spun yarn, the thickness in the case of a single yarn is expressed in meters, the thicker one is 1/20 Nm or less, preferably 1/30 Nm or less, and the thinner one is usually 1/100 Nm. As mentioned above, it is preferably 1/64 Nm or more. In the case of twin yarn, the metric count is displayed, the thicker one is usually 2/26 Nm or less, preferably 2/34 Nm or less, and the thinner one is usually 2/120 Nm or more, preferably 2/100 Nm or more. Is.

さらに、紡績糸の撚数については、JIS L1095(一般紡績糸試験方法)に準拠する。単糸の場合の撚数は、繊維長1m当たりで、通常は300回/m〜1000回/m、であるが、糸束断面を扁平にするには、すくなければ少ないほど望ましい。ここで、糸にならないほど少ない撚数の紡績糸を実質的に無撚糸と定義し、この繊維からなる織物を得た後の工程で圧縮することにより、多数の単繊維からなる糸束断面を扁平に変形させることができる。
Further, the number of twists of the spun yarn is based on JIS L1095 (general spun yarn test method). In the case of a single yarn, the number of twists per 1 m of fiber length is usually 300 times / m to 1000 times / m, but in order to flatten the cross section of the yarn bundle, it is desirable that the number is as small as possible. Here, a spun yarn having a small number of twists that does not become a yarn is defined as a substantially untwisted yarn, and by compressing in a process after obtaining a woven fabric made of this fiber, a yarn bundle cross section made of a large number of single fibers can be obtained. It can be deformed flat.

(2)製織工程
この工程では燃料電池用として、その目的に応じて選択できる。織り方は平織、綾織でもよいが、織物面はCCM面に対しては平滑であることが望ましく、3,4、5本朱子織とし、前記した実質無撚もしくはそれに近い合糸した糸束が表となり、各単繊維が接触面積を増やすように広がり、CCM面に当てることが望ましい。ただし、8本朱子織は飛び部分が長く不安定になるため、避けるべきである。
(2) Weaving process In this process, it can be selected for a fuel cell according to its purpose. The weaving method may be plain weave or twill weave, but it is desirable that the woven surface is smooth with respect to the CCM surface, and 3, 4, or 5 satin weaves are used, and the above-mentioned substantially untwisted or near-untwisted yarn bundle is used. It is desirable that each single fiber spreads so as to increase the contact area and hits the CCM surface. However, eight satin weaves should be avoided because the flying part is long and unstable.

次に、織物の密度は糸の太さと、打ち込み本数からなる経糸と緯糸のカバーファクターの合計となる織物カバーファクターKcは下記どおりと定義する。
Kt=経糸カバーファクター=ntx√10000/Nt
Ky=緯糸カバーファクター=nyx√10000/Ny
nt=インチあたりの経糸密度、ny=インチあたりの緯糸密度
Nt=経糸のメートル番手、Ny=緯糸のメートル番手
Next, the density of the woven fabric is defined as the woven fabric cover factor Kc, which is the sum of the thickness of the yarn and the cover factors of the warp and weft yarns, which consist of the number of threads to be driven.
Kt = warp cover factor = ntx√10000 / Nt
Ky = Weft Cover Factor = nyx√10000 / Ny
nt = warp density per inch, ny = weft density per inch Nt = metric count of warp, Ny = metric count of weft

織物組織により異なるが、例えば5枚朱子の場合には、Kc=700〜2500、好ましくは1000〜2500の範囲である。平織はKcの範囲が小さくなり、朱子織ではKcの範囲が大きくなる。綾織はその中間の範囲である。 双糸の時も紡績糸の番手、縦横織物密度の関係は同様である。長繊維は紡績糸よりも見かけ太さが小さいのでKcの範囲はやや高めに設定することになる。長繊維の時はフラットヤーンでもよいが嵩高加工を施してもよい。経糸と緯糸のカバーファクターは揃うにこしたことはなく、先に述べ織物後消失する繊維の重量は除くものとする。 Although it depends on the woven fabric structure, for example, in the case of 5 pieces of Zhu Xi, Kc = 700 to 2500, preferably 1000 to 2500. Plain weave has a smaller Kc range, and satin weave has a larger Kc range. Twill is in the middle range. The relationship between the count of spun yarn and the density of warp and weft fabrics is the same for twin yarns. Since the long fibers have an apparent thickness smaller than that of the spun yarn, the range of Kc is set to be slightly higher. In the case of long fibers, flat yarn may be used, but bulky processing may be applied. The cover factors of the warp and weft have never been aligned, and the weight of the fiber that disappears after weaving as described above is excluded.

(3)炭化工程
市販されている炭素繊維の95%以上はアクリル繊維を耐炎化、炭化、黒鉛化しているが、良好な電気特性と耐食性を必要とする燃料電池向けとしては、剛性を上げるための黒鉛化も必須ではなく、むしろ市販性が高く低価格なセルロース繊維やアクリル繊維が望ましい。それ以外でも出発原料の項で述べた材料でもよく、これらを不活性ガス中で800℃〜1200℃で炭化すればよい。またレーヨンのようなセルロース繊維織物が1958年に製造されており、この方法を踏襲すればよく、さらに耐炎化繊維と綿を交織織物する方法でもよい。アクリル繊維の場合は、これを織物とし、酸化雰囲気で収縮を許しながら、235℃〜260℃、2時間〜5時間程度の耐炎化処理を行ったのち、不活性ガス中で800℃〜1200℃で炭化すればよい。
(3) Carbonization process 95% or more of commercially available carbon fibers are made of acrylic fibers flame-resistant, carbonized, and graphitized, but for fuel cells that require good electrical characteristics and corrosion resistance, in order to increase rigidity. Graphitization is not essential, but rather highly commercially available and inexpensive cellulose fibers and acrylic fibers are desirable. Other than that, the materials described in the section of starting material may be used, and these may be carbonized at 800 ° C. to 1200 ° C. in an inert gas. Further, a cellulose fiber woven fabric such as rayon was manufactured in 1958, and this method may be followed, and a method of interweaving flame-resistant fibers and cotton may be used. In the case of acrylic fiber, this is used as a woven fabric, and after undergoing flame resistance treatment at 235 ° C to 260 ° C for 2 hours to 5 hours while allowing shrinkage in an oxidizing atmosphere, the temperature is 800 ° C to 1200 ° C in an inert gas. It may be carbonized with.

織物工程や前述の耐炎化工程で得られた燃料電池用炭素繊維織物を炭化処理する工程の詳細を図4を用いて説明する。焼成(炭素化)装置100は、上部開口11aを有する焼成箱11の底板11bの上に平滑で望ましくは0.1mm以下の平面度である平板16を敷き、その上に鉄などの金属が介在しないようにして前述の燃料電池用炭素繊維織物(以下、織物という)20が皺(しわ)にならず、はみ出さないように置く。その上に同様のセラミック板と織物20を順次繰り返し積み上げて、最上段に均一荷重が掛かるように、おもり17を載せる。この焼成箱11は上部開口11aを有する焼成加熱炉1の本体2に格納されている。焼成加熱炉1の上部開口11aは蓋3で閉じられ、グラファイトシートのシール4を介して蓋3をボルト5a・ナット5bで挟持螺着され密閉されている。 The details of the step of carbonizing the carbon fiber woven fabric for a fuel cell obtained in the woven fabric step and the flameproofing step described above will be described with reference to FIG. In the firing (carbonization) device 100, a flat plate 16 having a flatness of 0.1 mm or less, which is smooth and preferably 0.1 mm or less, is laid on the bottom plate 11b of the firing box 11 having the upper opening 11a, and a metal such as iron is interposed therein. The above-mentioned carbon fiber woven fabric for fuel cells (hereinafter referred to as woven fabric) 20 is placed so as not to wrinkle and protrude. The same ceramic plate and the woven fabric 20 are sequentially and repeatedly stacked on the same, and the weight 17 is placed on the uppermost stage so that a uniform load is applied. The firing box 11 is housed in the main body 2 of the firing heating furnace 1 having the upper opening 11a. The upper opening 11a of the firing and heating furnace 1 is closed by a lid 3, and the lid 3 is sandwiched and screwed by bolts 5a and nuts 5b via a seal 4 of a graphite sheet to be sealed.

次に、焼成加熱炉1の本体2にはガス供給配管6が接続され、図示しないガス源から不活性ガスが供給可能にされている。また、本体2にはガス排出口7が接続されており、パイプ8を通って排ガストラップ31に接続されている。排ガストラップ31の本体32には、水34が入れられ、パイプ8の先端8aは水34内に水没されている。排ガストラップ31の本体32は排ガストラップ排出口35を有する蓋33により密閉されている。排ガストラップ排出口35はパイプ36を介して浄化装置37等に接続され、無害とされた排ガスを外部へ排出するようにされている。排ガストラップ31では水の液面を視認又は成分を検出できるようにしておくことや、焼成加熱炉内の温度・圧力の確認や、分解発生するガスを分析する弁を設けておくと良い。また、排ガス燃焼装置を設けておくとなお良い。このような装置構成を用いた炭化処理は、不活性ガスを焼成箱11内に投入するとともに、焼成箱11内で分解・発生するガスを排出しながら、炭化が可能な温度800〜1200℃に加熱し、10分〜1時間保持後、冷却することにより行う。 Next, the gas supply pipe 6 is connected to the main body 2 of the firing and heating furnace 1, so that the inert gas can be supplied from a gas source (not shown). Further, a gas discharge port 7 is connected to the main body 2, and is connected to the exhaust gas trap 31 through a pipe 8. Water 34 is put into the main body 32 of the exhaust gas trap 31, and the tip 8a of the pipe 8 is submerged in the water 34. The main body 32 of the exhaust gas trap 31 is sealed by a lid 33 having an exhaust gas trap discharge port 35. The exhaust gas trap discharge port 35 is connected to a purification device 37 or the like via a pipe 36 so as to discharge harmless exhaust gas to the outside. It is preferable that the exhaust gas trap 31 is provided with a valve for visually recognizing the liquid level of water or detecting components, checking the temperature and pressure in the firing and heating furnace, and analyzing the gas generated by decomposition. It is even better to provide an exhaust gas combustion device. In the carbonization treatment using such an apparatus configuration, an inert gas is charged into the firing box 11, and the gas decomposed and generated in the firing box 11 is discharged to a temperature of 800 to 1200 ° C. where carbonization is possible. It is carried out by heating, holding for 10 minutes to 1 hour, and then cooling.

なお、不活性ガスの投入量は1kPaの圧力で3分間あたり焼成加熱炉1内のガス体積となるようにするのが好ましく、酸素濃度は150℃以上では5ppm以下が望ましい。また、平板16による織物20に加える荷重は0.1〜5N/cmであり、より好ましくは0.4〜2N/cmである。また、平板16の平面度(平滑度)はA4版サイズあたり、0.1mm以内が好ましく、傷がなく冷間圧延板程度の面精度でよい。ここで、織物20の仕上がり厚みより10〜50%薄いシムを織物20の周りに挟むと厚みムラは少なく、熱収縮による織物割れの問題も少なくなる。また、織物20は炭化時に収縮変形するが、このとき糸束断面において単繊維からなる輪郭線が直線部を持つように押しつぶされるとともに、単繊維が繊維長手方向に並ぶように熱固定されることが重要である。 The amount of the inert gas input is preferably 1 kPa and the volume of gas in the firing and heating furnace 1 per 3 minutes, and the oxygen concentration is preferably 5 ppm or less at 150 ° C. or higher. The load applied to the woven fabric 20 by the flat plate 16 is 0.1 to 5 N / cm 2 , more preferably 0.4 to 2 N / cm 2 . Further, the flatness (smoothness) of the flat plate 16 is preferably 0.1 mm or less per A4 plate size, and the surface accuracy of the cold rolled plate is sufficient without any scratches. Here, if a shim 10 to 50% thinner than the finished thickness of the woven fabric 20 is sandwiched around the woven fabric 20, the thickness unevenness is small and the problem of woven fabric cracking due to heat shrinkage is also reduced. Further, the woven fabric 20 is contracted and deformed during carbonization. At this time, the contour line made of single fibers is crushed so as to have a straight portion in the cross section of the yarn bundle, and the single fibers are heat-fixed so as to line up in the longitudinal direction of the fibers. is important.

次に、織物工程や前述の耐炎化工程で得られた織物に一定張力を掛けて、炭化する工程の一例を図5に示す。この時の装置と焼成方法は、焼成箱21までは図4に示す一定加圧の炭化法と同じであり、その中身(内容物)を入れ替えればよい。まず、長尺の炭化すべき織物20を上下に配置した複数の上丸棒24および下丸棒26に折り返し吊り下げることにより織物20に対して一定張力を得るようにしたものである。 Next, FIG. 5 shows an example of a step of applying a constant tension to the woven fabric obtained in the woven fabric step or the above-mentioned flame resistance step to carbonize the woven fabric. The apparatus and the firing method at this time are the same as the carbonization method of constant pressure shown in FIG. 4 up to the firing box 21, and the contents (contents) thereof may be replaced. First, a long woven fabric 20 to be carbonized is folded back and hung on a plurality of upper round bars 24 and lower round bars 26 arranged one above the other to obtain a constant tension with respect to the woven fabric 20.

上部開口21aを有する焼成箱21の長手方向の両上辺には、U字又はV字等の溝25が等間隔で設けられている。溝25には上丸棒24が載置されている。また、長手方向両上辺端にはクリップ22、23が設けられている。さらに、焼成箱21の長手方向の両側面下方には、上下方向を長軸とする長穴27が等間隔に設けられている。下丸棒26の両端は長穴27に挿通されている。溝25と長穴27とは半ピッチずれて設けられている。 Grooves 25 having a U-shape or a V-shape are provided at equal intervals on both upper sides of the firing box 21 having the upper opening 21a in the longitudinal direction. An upper round bar 24 is placed in the groove 25. Clips 22 and 23 are provided at both upper ends in the longitudinal direction. Further, elongated holes 27 having a major axis in the vertical direction are provided at equal intervals below both side surfaces in the longitudinal direction of the firing box 21. Both ends of the lower round bar 26 are inserted into the elongated holes 27. The groove 25 and the elongated hole 27 are provided with a deviation of half a pitch.

長尺の織物20の一方をクリップ22で保持し、織物20の他方を下丸棒26、上丸棒24の順に順次折り返しながら通過させ、他端のクリップ23で固定する。固定にあたっては焼成前後を通じて、下丸棒26は長穴27の上端又は下端に触れないようにされる。これにより、織物20が焼成加熱炉1内で昇温時に延びたり焼成時に収縮したりしても、下丸棒26の荷重で織物20に一定の張力を与えることができる。さらに、織物20の繊維方向に掛かる張力は下丸棒26の両端に重りを加えることで調整できる。また、下丸棒26は上下には移動可能とするが、左右方向には揺れないように規制する。また、下丸棒26の両端は直角に曲げてあり、焼成箱21の長穴27から外れないようにしてある。 One side of the long woven fabric 20 is held by the clip 22, the other side of the woven fabric 20 is passed through in the order of the lower round bar 26 and the upper round bar 24 while being folded back in order, and fixed by the clip 23 at the other end. In fixing, the lower round bar 26 is prevented from touching the upper end or the lower end of the elongated hole 27 before and after firing. As a result, even if the woven fabric 20 is stretched or contracted during firing in the firing heating furnace 1, a constant tension can be applied to the woven fabric 20 by the load of the lower round bar 26. Further, the tension applied to the fiber direction of the woven fabric 20 can be adjusted by adding weights to both ends of the lower round bar 26. Further, the lower round bar 26 is movable up and down, but is regulated so as not to swing in the left-right direction. Further, both ends of the lower round bar 26 are bent at right angles so as not to come off from the elongated holes 27 of the firing box 21.

ここで、投入する織物20の長さを調整して長穴27の上限で下丸棒26がそれ以上持ち上がらないようにして、収縮長さを規制し、しわを少なくしても良い。なお、張力は、織物20の繊維の番手と総本数をデニール換算し、5×10-6〜200×10-6cN/デニールの張力とするのがよく、2×10−6〜300×10−6cN/デニールの張力とするのが好ましい。もちろん上丸棒24の代わりに、適当な間隔でピン付き織物挟みを使って位置決めしても良い。下丸棒26や上丸棒24は傷のない平滑面を持つセラミック製や耐熱チタン合金製の棒もしくは薄肉パイプが望ましい。 Here, the length of the woven fabric 20 to be put in may be adjusted so that the lower round bar 26 is not lifted any more at the upper limit of the elongated hole 27, the shrinkage length may be regulated, and wrinkles may be reduced. The tension is preferably 5 × 10-6 to 200 × 10-6 cN / denier by converting the count and the total number of fibers of the woven fabric 20 into denier, and is 2 × 10 -6 to 300 × 10 −. The tension is preferably 6 cN / denier. Of course, instead of the upper round bar 24, positioning may be performed using a woven fabric sandwich with pins at appropriate intervals. The lower round bar 26 and the upper round bar 24 are preferably ceramic or heat-resistant titanium alloy rods or thin-walled pipes having a smooth surface without scratches.

さらに、下丸棒26、上丸棒24にピンを等間隔に植え込み、想定収縮代を余らせて織物20をこのピンに差し込み、焼成すれば、縦方向の収縮幅もほぼそろえることができる。量産するときは不活性雰囲気を確保できる連続炭化炉に図4に示す焼成箱11や図5に示す焼成箱21を連続的に投入し、加熱冷却すると良い。また、連続炭化炉に引っ掛かりのない表面を持つ耐熱メッシュベルトにのせて加熱搬送し、経糸方向および緯糸方向の収縮を許しながら、しわの出ないようにして焼成し、取り出せばよい。 Further, if pins are implanted in the lower round bar 26 and the upper round bar 24 at equal intervals, the woven fabric 20 is inserted into the pins with an assumed shrinkage allowance, and the fabric 20 is fired, the shrinkage width in the vertical direction can be substantially made uniform. In mass production, the firing boxes 11 shown in FIG. 4 and the firing boxes 21 shown in FIG. 5 may be continuously charged into a continuous carbonization furnace capable of ensuring an inert atmosphere, and heated and cooled. Further, it may be carried by heating on a heat-resistant mesh belt having a surface that does not get caught in a continuous carbonization furnace, and may be fired without wrinkles while allowing shrinkage in the warp and weft directions, and then taken out.

(4)硬化処理工程
凹状溝があるセパレータでGDL(燃料電池用炭素繊維織物)をCCMに押し当てるため、溝部でもCCMにGDLから適切な接触圧力が加わるように、燃料電池用炭素繊維織物に硬化処理が必要となる。すなわち、前記工程で得た燃料電池用炭素繊維織物にレゾール型の熱硬化樹脂を分散させた液に含浸させ、乾燥させた後、不活性ガス雰囲気内で、平滑板で圧縮し、加熱・冷却することにより、糸束断面が扁平に変形するように硬化させる。この際、炭化処理時と同じ要領で加圧し、不活性ガス中で樹脂が低抵抗になる300℃〜800℃の温度範囲で焼成する。
(4) Hardening process Since GDL (carbon fiber woven fabric for fuel cells) is pressed against the CCM with a separator having concave grooves, the carbon fiber woven fabric for fuel cells is pressed so that an appropriate contact pressure is applied to the CCM from the GDL even in the grooves. Hardening treatment is required. That is, the carbon fiber woven fabric for fuel cells obtained in the above step is impregnated with a liquid in which a resole-type thermosetting resin is dispersed, dried, and then compressed with a smooth plate in an inert gas atmosphere to be heated and cooled. By doing so, the thread bundle is hardened so as to be flatly deformed. At this time, the pressure is applied in the same manner as in the carbonization treatment, and the resin is fired in a temperature range of 300 ° C. to 800 ° C. in which the resin has low resistance in an inert gas.

また、レゾール型熱硬化樹脂としては水フェノールが好ましい。カーボンブラックやグラファイトを均一に分散させた液体(インキ)を燃料電池用炭素繊維織物の表面に塗布すれば、前述の半分程度に焼成温度を下げても、適正な電気抵抗を確保できる。塗布法としては、グラビア印刷方式やドクターブレード法でもよく、また均一口金幅のダイによる直接塗布法でもよい。いずれの方法でも、燃料電池用炭素繊維織物の重量に対して、分散液を塗布し、加熱硬化させた増加重量が5〜50%の範囲が望ましい。 Further, water phenol is preferable as the resol type thermosetting resin. If a liquid (ink) in which carbon black or graphite is uniformly dispersed is applied to the surface of the carbon fiber woven fabric for a fuel cell, appropriate electric resistance can be secured even if the firing temperature is lowered to about half of the above. The coating method may be a gravure printing method, a doctor blade method, or a direct coating method using a die having a uniform base width. In either method, it is desirable that the weight of the carbon fiber woven fabric for the fuel cell is increased by 5 to 50% after the dispersion is applied and heat-cured.

これまでの工程をまとめると、実質的に無撚であるため糸束が扁平断面になりやすく、硬化処理を必要としない用途には一定加圧の炭化時に扁平化すればよく、硬化処理を必要とする用途には、一定張力で炭化した炭素繊維織物をバインダーで硬化処理すればよい。 Summarizing the steps so far, since the yarn bundle is substantially untwisted, the yarn bundle tends to have a flat cross section, and for applications that do not require hardening treatment, it may be flattened during carbonization under constant pressure, and hardening treatment is required. In this application, a carbon fiber woven fabric carbonized at a constant tension may be cured with a binder.

Claims (3)

アクリル繊維のスライバーを消失繊維で包み込むように巻き付けた複合糸,中央に消失繊維があって前記消失繊維に実質無撚りのアクリル繊維が巻きついている紡績糸,アクリル繊維の下撚数に対し消失繊維との上撚数をほぼ同数にして互いに逆方向の撚りを入れ合わせることで前記アクリル繊維の撚りが撚り戻されて前記アクリル繊維と前記消失繊維の糸束どうしが相互に巻き付いている合糸,のいずれかを用いて燃料電池用炭素繊維織物素材を製織する第1工程と、前記第1工程後に前記燃料電池用炭素繊維織物素材から水または有機溶剤を用いて前記消失繊維を除去する第2工程と、前記第2工程後に前記燃料電池用炭素繊維織物素材を酸化雰囲気中で耐炎化処理する第3工程と、前記第3工程後に前記燃料電池用炭素繊維織物素材を炭化処理する第4工程と、を有することを特徴とする燃料電池用炭素繊維織物の製造方法。 Composite yarn in which a sliver of acrylic fiber is wrapped so as to be wrapped with vanishing fiber, spun yarn in which there is vanishing fiber in the center and substantially untwisted acrylic fiber is wound around the vanishing fiber, vanishing fiber with respect to the number of lower twists of acrylic fiber By making the number of upper twists of the fibers substantially the same and twisting them in opposite directions, the twists of the acrylic fibers are untwisted and the yarn bundles of the acrylic fibers and the disappearing fibers are wound around each other . A first step of weaving a carbon fiber woven material for a fuel cell using any of the above, and a second step of removing the lost fiber from the carbon fiber woven material for a fuel cell using water or an organic solvent after the first step. A third step of flame-resistant treatment of the carbon fiber woven material for fuel cells in an oxidizing atmosphere after the second step, and a fourth step of carbonizing the carbon fiber woven material for fuel cells after the third step. A method for producing a carbon fiber woven fabric for a fuel cell, which comprises. 前記第4工程では、前記燃料電池用炭素繊維織物素材上に荷重を負荷した状態で炭化処理することを特徴とする請求項1に記載の燃料電池用炭素繊維織物の製造方法。 The method for producing a carbon fiber woven fabric for a fuel cell according to claim 1, wherein in the fourth step, carbonization treatment is performed on the carbon fiber woven fabric material for a fuel cell in a state where a load is applied. 前記燃料電池用炭素繊維織物素材に負荷する荷重は、1cm当たり0.1〜5Nの範囲であることを特徴とする請求項2に記載の燃料電池用炭素繊維織物の製造方法。 The method for producing a carbon fiber woven fabric for a fuel cell according to claim 2, wherein the load applied to the carbon fiber woven fabric material for a fuel cell is in the range of 0.1 to 5 N per 1 cm 2 .
JP2019018448A 2019-02-05 2019-02-05 Manufacturing method of carbon fiber woven fabric for fuel cells Active JP6818223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019018448A JP6818223B2 (en) 2019-02-05 2019-02-05 Manufacturing method of carbon fiber woven fabric for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019018448A JP6818223B2 (en) 2019-02-05 2019-02-05 Manufacturing method of carbon fiber woven fabric for fuel cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015016779A Division JP6547936B2 (en) 2015-01-30 2015-01-30 Method of manufacturing carbon fiber fabric for fuel cell

Publications (2)

Publication Number Publication Date
JP2019106381A JP2019106381A (en) 2019-06-27
JP6818223B2 true JP6818223B2 (en) 2021-01-20

Family

ID=67062507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019018448A Active JP6818223B2 (en) 2019-02-05 2019-02-05 Manufacturing method of carbon fiber woven fabric for fuel cells

Country Status (1)

Country Link
JP (1) JP6818223B2 (en)

Also Published As

Publication number Publication date
JP2019106381A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP4439922B2 (en) Electrolyte membrane electrode assembly, fuel cell using the same, and manufacturing method thereof
US20060257720A1 (en) Conductive carbonaceous fiber woven cloth and solid polymer-type fuel cell
EP1237214A2 (en) Conductive carbonaceous-fiber sheet and solid polymer electrolyte fuel cell
EP1550766A1 (en) Carbonaceous fiber fabric, roll of carbonaceous fiber fabric, gas diffusion layer material for solid polymer fuel cell, method for production of carbonaceous fiber fabric, and method for production of solid polymer fuel cell
JP6547936B2 (en) Method of manufacturing carbon fiber fabric for fuel cell
JP2009283259A (en) Porous carbon electrode base material
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP6818223B2 (en) Manufacturing method of carbon fiber woven fabric for fuel cells
JP6818222B2 (en) Carbon fiber fabric for fuel cells
JP6188135B2 (en) Fabric for gas diffusion layer sheet for fuel cell and method for producing gas diffusion layer sheet for fuel cell using the same
JP6167562B2 (en) Carbon fiber nonwoven fabric manufacturing method and nonwoven fabric
JP4282964B2 (en) Carbon fiber woven fabric
JPH09231984A (en) Carbon fiber for porous electrode base board for phosphoric acid fuel cell
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP2005240224A (en) High-density nonwoven fabric of flame-resistant fiber, nonwoven fabric of carbon fiber, and method for producing them
JP3993151B2 (en) Method for producing carbon fiber woven fabric and method for producing gas diffusion layer material for polymer electrolyte fuel cell
JP2023124646A (en) Carbon fiber electrode material, gas diffusion electrode base material for fuel cell, method for manufacturing fuel cell and carbon fiber electrode material
JPS61158669A (en) Electrode plate for bipolar-type fuel cell
JP2003017076A (en) Carbon fiber structure
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP4333106B2 (en) Method for producing carbon fiber woven fabric
JP3525159B2 (en) Carbon fiber for porous electrode substrate of phosphoric acid type fuel cell
JP2012201996A (en) Carbon fiber spun yarn woven fabric, method for producing carbon fiber spun yarn woven fabric, and gas diffusion electrode for fuel cell
JP2004084147A (en) Carbonaceous fiber woven cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201208

R150 Certificate of patent or registration of utility model

Ref document number: 6818223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350