JP2005097698A - 酸化物薄膜の形成方法 - Google Patents

酸化物薄膜の形成方法 Download PDF

Info

Publication number
JP2005097698A
JP2005097698A JP2003335162A JP2003335162A JP2005097698A JP 2005097698 A JP2005097698 A JP 2005097698A JP 2003335162 A JP2003335162 A JP 2003335162A JP 2003335162 A JP2003335162 A JP 2003335162A JP 2005097698 A JP2005097698 A JP 2005097698A
Authority
JP
Japan
Prior art keywords
target
thin film
oxide thin
gas
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003335162A
Other languages
English (en)
Inventor
Takeshi Kobayashi
猛 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2003335162A priority Critical patent/JP2005097698A/ja
Publication of JP2005097698A publication Critical patent/JP2005097698A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

【課題】 酸化物薄膜の品質を向上することができ、かつ酸化物薄膜を形成する際のコストを低減することができる酸化物薄膜の形成方法を提供する。
【解決手段】 本発明の酸化物薄膜の形成方法は、ターゲット3から発生したプラズマプルーム13により基板6上に酸化物薄膜を形成する酸化物薄膜の形成方法であって、アルゴンガスと酸素ガスとを供給した真空チャンバ2内において、ターゲット3と基板6との間に磁場を加えた状態で、ターゲット3からプラズマプルーム13を発生させる。
【選択図】 図1

Description

本発明は、酸化物薄膜の形成方法に関し、より特定的には、ターゲットから発生したプラズマプルームにより基板上に酸化物薄膜を形成する酸化物薄膜の形成方法に関する。
従来、酸化物薄膜を形成する技術の一つとして、PLD(Pulsed Laser Deposition)法が知られている。PLD法においては、まず、焼結体などターゲットの表面に強いレーザ光を照射しターゲットが局所的に加熱される。これにより、ターゲットの表面からイオン、電子、および原子などを含んだ粒子が気体中に飛散し、プラズマプルームが発生する。そして、この飛散した原子などが基板の上に堆積することにより基板上に所定の酸化物薄膜が形成される。このようなPLD法において酸化物薄膜を形成する際には、酸化物薄膜中への酸素の取り込み不足による酸化物薄膜の品質の低下が深刻な問題となっていた。この問題を解決可能な酸化物薄膜の形成方法が、たとえば特開平6−306603号公報(特許文献1)に開示されている。
上記特許文献1に開示された酸化物薄膜の形成方法においては、ターゲットと、被スパッタ基板とが真空チャンバ内に配置され、ターゲットと被スパッタ部材との間に磁場発生手段が配置される。そして、真空チャンバ内に酸素ガスが供給された状態でターゲットにレーザ光が照射され、ターゲットの原子あるいは分子が飛散してプラズマプルームが発生する。そして、ターゲットの原子あるいは分子はプラズマプルーム中において特に酸素ガスと衝突し、これにより、ターゲットの原子あるいは分子に酸化反応が起きる。このとき、磁場発生装置から発生された磁場がプラズマプルームに作用し、プラズマと磁場との相互作用(ローレンツ力によるピンチ効果)によってプラズマプルームがその中心方向に絞られる。その結果、プラズマプルームのプラズマ密度(粒子のイオン化率)が上昇し、プラズマプルーム中におけるターゲットの原子あるいは分子と、酸素との衝突速度が増加し、また、ラジカルな酸素の量が増える。したがって、ターゲットの原子あるいは分子と、酸素との反応性が向上し、被スパッタ部材の上に形成された酸化物薄膜の品質を向上することができる。このような酸化物薄膜の形成方法は、たとえば特開平4−311565号公報(特許文献2)にも開示されている。
特開平6−306603号公報 特開平4−311565号公報
しかしながら、真空チャンバ内に供給される酸素ガスは高い電子親和力を有しているので、プラズマプルーム中の電子はこの酸素ガスに吸収されやすく、プラズマプルーム中の電子密度が十分に高くならない。このため、プラズマプルーム中の粒子のイオン化率が低く、ターゲットの粒子と酸素との反応性が低いという問題があった。ターゲットの粒子と酸素との反応性が低ければ、酸化物薄膜の品質が悪化してしまう。ここで、上記特許文献1においては、プラズマプルームに磁場を加えることでプラズマ密度を向上し、酸化物薄膜の品質を向上しているが、酸化物薄膜の品質をさらに向上することができる方法が求められていた。また、従来の酸化物薄膜の形成方法においては、基板を加熱することにより基板上における化合物の反応性を向上し、酸化物薄膜の品質を向上していた。このため、酸化物薄膜を形成する際のコストが増大するという問題があった。
したがって、本発明の目的は、酸化物薄膜の品質を向上することができ、かつ酸化物薄膜を形成する際のコストを低減することができる酸化物薄膜の形成方法を提供することである。
本発明の酸化物薄膜の形成方法は、ターゲットから発生したプラズマプルームにより基板上に酸化物薄膜を形成する酸化物薄膜の形成方法であって、希ガス元素よりなるガスと酸素ガスとよりなる雰囲気において、ターゲットと基板との間に磁場を加えた状態で、ターゲットからプラズマプルームを発生させる。
本発明の酸化物薄膜の形成方法によれば、反応性が低く電子親和力が小さいという希ガス元素の性質により、電子と希ガス元素の原子とが衝突すると、希ガス元素の原子は他の物質と反応することなく電子を放出する。これにより、プラズマプルーム中の電子密度が増加する。その結果、ターゲットの中性粒子と電子との衝突確率が高くなり、プラズマプルーム中のターゲットの粒子のイオン化率が向上する。したがって、ターゲットの粒子と酸素との反応性が向上するので、酸化物薄膜の品質を向上することができる。また、本発明の酸化物薄膜の形成方法によれば、ターゲットの粒子のイオン化率が向上されるので、基板を加熱することなく基板上での化合物の反応性を高めることができる。したがって、酸化物薄膜を形成する際のコストを低減することができる。
上記製造方法において用いられる希ガス元素よりなるガスとしては、ヘリウム(He)ガス、ネオン(Ne)ガス、アルゴン(Ar)ガス、クリプトン(Kr)ガス、キセノン(Xe)ガスおよびラドン(Rn)ガスがあり、いずれのガスが用いられてもよいが、特にアルゴンガスが好ましい。
上記製造方法において好ましくは、雰囲気における希ガス元素よりなるガスの分圧は1Pa以上10Pa以下である。
雰囲気における希ガス元素よりなるガスの分圧を1Pa以上とすることにより、希ガス元素の原子密度が十分に高くなるので、電子と希ガスの原子との衝突を十分に起こすことができる。したがって、希ガスの原子が電子を放出し、プラズマプルーム中の電子密度を十分に増加させることができる。また、雰囲気における希ガス元素よりなるガスの分圧を10Pa以下とすることにより、希ガス元素の原子密度を高すぎない程度に保つことができる。したがって、電子と希ガスの原子との衝突が過度に起こることを抑制でき、過度の衝突により電子のエネルギが消耗することが抑制されるので、プラズマプルーム中の電子密度を効率良く増加させることができる。
本発明の酸化物薄膜の形成方法によれば、反応性が低く電子親和力が小さいという希ガス元素の性質により、電子と希ガス元素の原子とが衝突すると、希ガス元素の原子は他の物質と反応することなく電子を放出する。これにより、プラズマプルーム中の電子密度が増加する。その結果、ターゲットの中性粒子と電子との衝突確率が高くなり、プラズマプルーム中のターゲットの粒子のイオン化率が向上する。したがって、ターゲットの粒子と酸素との反応性が向上するので、酸化物薄膜の品質を向上することができる。また、本発明の酸化物薄膜の形成方法によれば、ターゲットの粒子のイオン化率が向上されるので、基板を加熱することなく基板上での化合物の反応性を高めることができる。したがって、酸化物薄膜を形成する際のコストを低減することができる。
以下、本発明の一実施の形態について図に基づいて説明する。
図1は、本発明の一実施の形態における酸化物薄膜形成装置の構成を示す模式図である。
図1を参照して、酸化物薄膜形成装置1は、真空チャンバ2と、ターゲットホルダ4と、基板ホルダ7と、磁石8と、レーザ発振器9とを主に備えている。ターゲットホルダ4は、真空チャンバ2内の下部において回転軸5に支持されており、ターゲットホルダ4の上にたとえばY1Ba2Cu3xの焼結体などよりなるターゲット3が保持されている。真空チャンバ2内の上部には基板ホルダ7が配置されており、基板ホルダ7の表面にたとえば多結晶金属よりなる基板6が保持されている。ターゲット3と基板6との間には磁石8が配置されており、この磁石8によりターゲット3と基板6との間に磁場が発生される。磁石8としては、電磁石あるいは永久磁石のいずれも採用可能である。
また、真空チャンバ2にはガス導入口10が設けられている。たとえばアルゴンガスと、酸素ガスとが反応ガスとしてガス導入口10から真空チャンバ2内に導入される。反応ガスの導入量はバルブ11により制御可能である。
さらに、真空チャンバ2には窓12が形成されている。レーザ発振器9からたとえばArFエキシマレーザ(波長193nm)などのレーザ光9aが窓12を介してターゲット3に照射可能である。ここで、回転軸5の動力を受けてターゲット3を所定速度で回転させるとともに、ターゲット3に照射されるレーザ光9aの中心位置をターゲット3の回転軸から少しずらすことにより、ターゲット3の同じ部分にレーザ光9aが照射されないようにすることができる。
続いて、本実施の形態における酸化物薄膜の形成方法について説明する。
真空チャンバ2内の基板ホルダ7の表面に基板6が保持される。また、真空チャンバ2内のターゲットホルダ4の上にターゲット3が保持される。そして、真空排気装置(図示なし)を駆動して真空チャンバ2内が真空状態にされる。次に、ガス導入口10から酸素ガスとアルゴンガスとが供給され、真空チャンバ2内がアルゴンガスと酸素ガスとよりなる雰囲気とされる。なお、真空チャンバ2内のアルゴンガスの分圧は1Pa以上10Pa以下とされることが好ましい。
このように、アルゴンガスと酸素ガスとが供給された真空チャンバ2内において、ターゲット3と基板6との間に磁場が発生している状態で、レーザ発振器9からレーザ光9aがターゲット3に照射される。これにより、ターゲット3の粒子がアブレーションされ、ターゲット3の近傍にプラズマプルーム13が発生する。
図2は、プラズマプルーム中における電子の運動を模式的に示す図である。
図1および図2を参照して、プラズマプルーム13中には、ターゲット3の原子から解離した電子と、ターゲット3のイオンと、ターゲット3の中性粒子とが含まれており、これらのターゲット3の粒子の各々は、基板6へ向かって高速で移動する。ここで、ターゲット3の粒子のうち電子は、ターゲット3のイオンおよび中性粒子と比較して質量が小さいため、イオンおよび中性粒子よりも高速で移動する。このため、プラズマプルーム13中において、プラズマプルーム13中のターゲット3の粒子は、前方(基板6の方向)の電子集団と後方(ターゲット3の方向)のイオン・中性粒子集団とに分かれて移動することになる。
このうち、基板6へ向かって移動する電子集団の電子は、真空チャンバ2内に一様に存在するアルゴン原子と高い確率で衝突する。アルゴン原子は電子親和力が特に小さいので、衝突により電子を放出しやすい性質を有している。その結果、電子集団は電子密度を大きく増加させながら移動する。
プラズマプルーム13中の電子は、磁場14が強い位置(磁石8付近)に接近するにつれ、ミラー磁場の効果を受けて移動速度が徐々に小さくなっていく。最終的に電子は反跳し、逆方向に移動方向を変える。そして、電子は後方のイオン・粒子集団の中に突入し、ターゲット3のイオンおよび中性粒子と衝突を繰り返す。その結果、ターゲット3のイオンおよび中性粒子に運動エネルギを供給し、中性粒子のイオン化が大きく促進される(イオン化率が増加する)。また、反跳した電子がアルゴン原子と衝突することにより、アルゴン原子は電子を放出する。これにより、さらに電子集団の電子密度が増加し、電子集団の電子はターゲット3のイオンおよび中性粒子と衝突を繰り返す。
その後、ターゲット3の粒子と、真空チャンバ2内に一様に存在する酸素分子とが衝突し、ターゲット3の粒子が酸化反応を起こす。これにより、酸素の取り込み不足が解消される。そして、酸化物薄膜を構成する原子が基板6上に堆積し、酸化物薄膜が基板6上に形成される。
図3(a)は、アルゴンを供給せず、かつ磁場を加えない場合におけるチャンバ内のターゲットの粒子のイオン化率の分布を示す図である。図3(b)は、アルゴンを供給せずに磁場を加える場合におけるチャンバ内のターゲットの粒子のイオン化率の分布を示す図である。図3(c)は、本発明の一実施の形態におけるチャンバ内のターゲットの粒子のイオン化率の分布を示す図である。
図3(a)を参照して、アルゴンを供給せず、かつ磁場を加えない場合においては、ミラー磁場の効果がないので、電子が逆方向に移動方向を変えることがない。このため、プラズマプルーム13中では、前方の電子集団と後方のイオン・中性粒子集団とが分離したままであるので、電子と中性粒子とが衝突してイオン化しにくい状況にある。また、チャンバ内にアルゴンガスが存在しないので、電子とアルゴン原子との衝突によりアルゴン原子が電子を放出する効果を得ることができず、電子集団の電子密度を増加することができない。以上の理由により、ターゲットの粒子のイオン化率は全体的に低く、ターゲット側から基板側へ緩やかに減少している。
図3(b)を参照して、アルゴンを供給せずに磁場を加える場合においては、ミラー磁場の効果により電子が逆方向に移動方向を変える。これにより、プラズマプルーム13中で前方の電子集団と後方のイオン・中性粒子集団との衝突が促進される。しかしながら、チャンバ内にアルゴンガスが存在しないので、電子とアルゴン原子との衝突によりアルゴン原子が電子を放出する効果を得ることができず、電子集団の電子密度を増加することができない。以上の理由により、ターゲットの粒子のイオン化率は、磁石の位置の近傍で局所的に増加しているが、ターゲットの粒子のイオン化率は全体的に低いままである。
図3(c)を参照して、本実施の形態においては、ミラー磁場の効果により電子が逆方向に移動方向を変える。これにより、プラズマプルーム13中で前方の電子集団と後方のイオン・中性粒子集団との衝突が促進される。また、チャンバ内にアルゴンガスが存在しているので、電子とアルゴン原子との衝突によりアルゴン原子が電子を放出し、電子集団の電子密度を増加することができる。以上の理由により、ターゲットの粒子のイオン化率は全体的に高くなっており、また、磁石の位置の近傍で局所的に増加している。
本実施の形態の酸化物薄膜の形成方法によれば、反応性が低く電子親和力が小さいというアルゴンの性質により、電子とアルゴン原子とが衝突すると、アルゴン原子は他の物質と反応することなく電子を放出する。これにより、プラズマプルーム13中の電子密度が増加する。その結果、ターゲット3の中性粒子と電子との衝突確率が高くなり、プラズマプルーム13中のターゲット3の粒子のイオン化率が向上する。したがって、ターゲット3の粒子と酸素との反応性が向上するので、酸化物薄膜の品質を向上することができる。また、本実施の形態の酸化物薄膜の形成方法によれば、ターゲット3の粒子のイオン化率が向上されるので、基板6を加熱することなく基板6上での化合物の反応性を高めることができる。したがって、酸化物薄膜を形成する際のコストを低減することができる。
本願発明者らは、上記の効果を確認すべく、本実施の形態における酸化物薄膜の形成方法において発生したプラズマプルームについて、以下の測定を行なった。
具体的には、アルゴンガスと酸素ガスとを供給したチャンバ内において、ターゲットと基板との間に磁場を加えた状態で(本実施の形態の酸化物薄膜の形成方法により)、有機EL(electroluminescence)用材料であるアルミキノリノール錯体(Alq3)をターゲットとしてArFエキシマレーザ(波長193nm)を照射し、発生したプラズマプルームについて分光測定を行なった。また、ガスを供給しないチャンバ内において、ターゲットと基板との間に磁場を加えない状態で(従来のPLD法により)、発生したプラズマプルームについて同様の分光測定を行なった。
図4は、プラズマプルームの分光測定結果を示す図である。
図4を参照して、従来のPLD法を用いた場合のプラズマプルームにおいては、300nm〜800nmの範囲に波長ピークは見られなかった。一方、本実施の形態の酸化物薄膜の形成方法を用いた場合のプラズマプルームにおいては、400nm〜500nmの範囲と、700nm〜800nmの範囲とに複数の波長ピークが見られた。このうち、400nm〜500nmの範囲の波長ピークは、プラズマプルーム中のアルミキノリノール錯体の発光によるものである。また、700nm〜800nmの範囲の波長ピークは、プラズマプルーム中のアルゴンの発光によるものである。以上の結果により、本実施の形態の酸化物薄膜の形成方法を用いた場合のプラズマプルーム中のターゲットの粒子は、高いエネルギを有していることがわかる。したがって、本実施の形態の酸化物薄膜の形成方法により、ターゲットの粒子のイオン化率が向上され、酸化物薄膜の品質を向上することができる。
上記製造方法において好ましくは、真空チャンバ2内におけるアルゴンガスの分圧は1Pa以上10Pa以下である。
真空チャンバ2内におけるアルゴンガスの分圧を1Pa以上とすることにより、真空チャンバ2内のアルゴン原子の密度が十分に高くなるので、電子とアルゴン原子との衝突を十分に起こすことができる。したがって、アルゴン原子が電子を放出し、プラズマプルーム13中の電子密度を十分に増加させることができる。また、真空チャンバ2内におけるアルゴンガスの分圧を10Pa以下とすることにより、真空チャンバ2内のアルゴン原子の密度を高すぎない程度に保つことができる。したがって、電子とアルゴン原子との衝突が過度に起こることを抑制でき、過度の衝突により電子のエネルギが消耗することが抑制されるので、プラズマプルーム13中の電子密度を効率良く増加させることができる。
なお、本実施の形態においては、アルゴンガスと酸素ガスとが真空チャンバ2内に供給される場合について示した。しかしながら、本発明はこのような場合に限定されるものではなく、希ガス元素よりなるガスと酸素ガスとよりなる雰囲気であればよい。
以上に開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものと意図される。
本発明の一実施の形態における酸化物薄膜形成装置の構成を示す模式図である。 プラズマプルーム中における電子の運動を模式的に示す図である。 (a)はアルゴンを供給せず、かつ磁場を加えない場合におけるチャンバ内のターゲットの粒子のイオン化率の分布を示す図である。(b)はアルゴンを供給せずに磁場を加える場合におけるチャンバ内のターゲットの粒子のイオン化率の分布を示す図である。(c)は本発明の一実施の形態におけるチャンバ内のターゲットの粒子のイオン化率の分布を示す図である。 プラズマプルームの分光測定結果を示す図である。
符号の説明
1 酸化物薄膜形成装置、2 真空チャンバ、3 ターゲット、4 ターゲットホルダ、5 回転軸、6 基板、7 基板ホルダ、8 磁石、9 レーザ発振器、9a、レーザ光、10 ガス導入口、11 バルブ、12 窓、13 プラズマプルーム、14 磁場。

Claims (3)

  1. ターゲットから発生したプラズマプルームにより基板上に酸化物薄膜を形成する酸化物薄膜の形成方法であって、
    希ガス元素よりなるガスと酸素ガスとよりなる雰囲気において、前記ターゲットと前記基板との間に磁場を加えた状態で、前記ターゲットから前記プラズマプルームを発生させることを特徴とする、酸化物薄膜の形成方法。
  2. 前記希ガス元素よりなるガスはアルゴンガスであることを特徴とする、請求項1に記載の酸化物薄膜の形成方法。
  3. 前記雰囲気における前記希ガス元素よりなるガスの分圧は1Pa以上10Pa以下であることを特徴とする、請求項1または2に記載の酸化物薄膜の形成方法。
JP2003335162A 2003-09-26 2003-09-26 酸化物薄膜の形成方法 Withdrawn JP2005097698A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335162A JP2005097698A (ja) 2003-09-26 2003-09-26 酸化物薄膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335162A JP2005097698A (ja) 2003-09-26 2003-09-26 酸化物薄膜の形成方法

Publications (1)

Publication Number Publication Date
JP2005097698A true JP2005097698A (ja) 2005-04-14

Family

ID=34462621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335162A Withdrawn JP2005097698A (ja) 2003-09-26 2003-09-26 酸化物薄膜の形成方法

Country Status (1)

Country Link
JP (1) JP2005097698A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519051A (ja) * 2007-02-23 2010-06-03 ピコデオン・リミテッド・オサケユキテュア 設備

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519051A (ja) * 2007-02-23 2010-06-03 ピコデオン・リミテッド・オサケユキテュア 設備
US8828506B2 (en) 2007-02-23 2014-09-09 Picodeon Ltd Oy Arrangement
KR101565099B1 (ko) 2007-02-23 2015-11-03 피코데온 리미티드 오와이 타겟의 광자 융발을 위한 방법 및 장치

Similar Documents

Publication Publication Date Title
Harilal et al. Influence of ambient gas on the temperature and density of laser produced carbon plasma
CA2190086C (en) An electron jet vapor deposition system
Duncan Invited review article: laser vaporization cluster sources
US4664769A (en) Photoelectric enhanced plasma glow discharge system and method including radiation means
US7470329B2 (en) Method and system for nanoscale plasma processing of objects
JP6244103B2 (ja) 反応性スパッタ堆積のための方法および反応性スパッタ堆積システム
Yushkov et al. Effect of the pulse repetition rate on the composition and ion charge-state distribution of pulsed vacuum arcs
JP2021533572A (ja) 中性原子ビームを使用した被加工物処理のためのシステムおよび方法
JP3542031B2 (ja) 冷陰極形成方法、及び電子放出素子並びにその応用デバイス
Abdelli-Messaci et al. Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment
JP2004047610A (ja) 基板の表面処理方法
JP2005097698A (ja) 酸化物薄膜の形成方法
Kerdja et al. Dynamics of laser‐produced carbon plasma in an inert atmosphere
Outlaw et al. Small ultrahigh vacuum compatible hyperthermal oxygen atom generator
JP3647507B2 (ja) ガスクラスターおよびガスクラスターイオンの 形成方法
Inoue et al. Effect of filament material and area on the extracted current from a volume H-ion source
Ageev et al. Electron-stimulated desorption of sodium atoms from an oxidized molybdenum surface
Thomann et al. A contribution to the understanding of the plasma ignition mechanism above a metal target under UV laser irradiation
JP2001003160A (ja) 膜形成方法およびその装置
US6787478B2 (en) Method of forming deposited film
RU2142519C1 (ru) Установка для обработки лент и фольги
JP2006114241A (ja) 電子線発生装置、クラスターイオンビーム装置
WO2024024061A1 (ja) イオンミリング装置およびイオンミリング方法
Ageev et al. Electron-stimulated desorption of lithium atoms from oxygen-covered molybdenum surfaces
Vorontsov et al. Charge-transfer pumping for XUV lasers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205