JP2005095786A - Purifying method of ammonia-containing exhaust gas and ammonia-containing waste water - Google Patents

Purifying method of ammonia-containing exhaust gas and ammonia-containing waste water Download PDF

Info

Publication number
JP2005095786A
JP2005095786A JP2003333292A JP2003333292A JP2005095786A JP 2005095786 A JP2005095786 A JP 2005095786A JP 2003333292 A JP2003333292 A JP 2003333292A JP 2003333292 A JP2003333292 A JP 2003333292A JP 2005095786 A JP2005095786 A JP 2005095786A
Authority
JP
Japan
Prior art keywords
ammonia
nitrous oxide
gas
exhaust gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003333292A
Other languages
Japanese (ja)
Other versions
JP4246584B2 (en
Inventor
Atsushi Okamura
淳志 岡村
Kazunori Yoshino
和徳 吉野
Katsunori Miyoshi
勝則 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003333292A priority Critical patent/JP4246584B2/en
Publication of JP2005095786A publication Critical patent/JP2005095786A/en
Application granted granted Critical
Publication of JP4246584B2 publication Critical patent/JP4246584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purifying method of ammonia-containing exhaust gas efficiently purifying ammonia-containing exhaust gas by remarkably reducing a discharge amount of nitrous oxide, and a purifying method of ammonia-containing waste water efficiently treating the ammonia-containing exhaust gas generated in the case of purifying the ammonium-containing waste water by stripping ammonia from the ammonia-containing waste water, by remarkably reducing a discharge amount of nitrous oxide. <P>SOLUTION: Ammonia is decomposed by bringing the ammonia-containing exhaust gas into contact with an ammonia decomposing catalyst, then bringing the treated gas into contact with the nitrous oxide decomposing catalyst to decompose nitrous oxide contained in the treated gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はアンモニア含有排ガスの浄化方法およびアンモニア含有排水の浄化方法に関する。   The present invention relates to a method for purifying ammonia-containing exhaust gas and a method for purifying ammonia-containing waste water.

アンモニア含有排ガスをアンモニア分解触媒に接触させて排ガス中のアンモニアを窒素ガスと水とに分解して浄化する際、分解後の処理ガス中には未分解アンモニアのほかに、副生する一酸化窒素や二酸化窒素(以下、まとめて「NOx」という。)および亜酸化窒素(NO)が含まれている。しかし、これらアンモニア、NOxおよび亜酸化窒素は環境に対して有害物質であり、これらを含む処理ガスをそのまま大気中に放出することは環境上好ましくない。 When the ammonia-containing exhaust gas is contacted with an ammonia decomposition catalyst to decompose and purify ammonia in the exhaust gas into nitrogen gas and water, the treated gas in addition to undecomposed ammonia is a by-product of nitric oxide. And nitrogen dioxide (hereinafter collectively referred to as “NOx”) and nitrous oxide (N 2 O). However, these ammonia, NOx, and nitrous oxide are harmful substances to the environment, and it is not environmentally preferable to discharge the processing gas containing them into the atmosphere as they are.

上記問題を解決するために、NOxを残留アンモニアとともに還元触媒に接触させて、窒素ガスと水とに分解することが提案されている(特許文献1参照)。しかし、ここでは亜酸化窒素は除去されず処理後のガス中には亜酸化窒素が残留し、この亜酸化窒素は地球の温暖化やオゾン層破壊に影響を及ぼす有害な物質であることから、環境への悪影響が問題となる。   In order to solve the above problem, it has been proposed that NOx is brought into contact with a reduction catalyst together with residual ammonia to be decomposed into nitrogen gas and water (see Patent Document 1). However, nitrous oxide is not removed here, and nitrous oxide remains in the treated gas. This nitrous oxide is a harmful substance that affects global warming and the destruction of the ozone layer. The negative impact on the environment becomes a problem.

上記亜酸化窒素の生成を防止することを目的として、アンモニア含有排ガスをアンモニア酸化触媒層および窒素酸化還元触媒層からなる二段触媒層に導入し、後段の窒素酸化還元触媒層からの処理ガス中の窒素酸化物濃度を測定し、その窒素酸化物濃度が所定濃度となるように処理ガスの一部を分割して、後段の窒素酸化還元触媒層に注入する方法が提案されている(特許文献2)。   For the purpose of preventing the generation of nitrous oxide, ammonia-containing exhaust gas is introduced into a two-stage catalyst layer comprising an ammonia oxidation catalyst layer and a nitrogen oxidation-reduction catalyst layer, A method has been proposed in which the nitrogen oxide concentration of the gas is measured, a part of the processing gas is divided so that the nitrogen oxide concentration becomes a predetermined concentration, and injected into the subsequent nitrogen redox catalyst layer (Patent Document) 2).

また、上記方法と同様に、アンモニア酸化触媒層および窒素酸化還元触媒層からなる二段触媒層を用い、アンモニア酸化触媒での未反応アンモニア濃度に対し、窒素酸化物濃度が常時50ppm以下となるように前段のアンモニア酸化触媒層の温度を制御する方法が提案されている(特許文献3)。   Similarly to the above method, using a two-stage catalyst layer comprising an ammonia oxidation catalyst layer and a nitrogen oxidation-reduction catalyst layer, the nitrogen oxide concentration is always 50 ppm or less relative to the unreacted ammonia concentration in the ammonia oxidation catalyst. A method of controlling the temperature of the ammonia oxidation catalyst layer in the previous stage has been proposed (Patent Document 3).

特許文献2および3に記載の技術は、前段触媒層で亜酸化窒素ができるだけ生成しないようにアンモニアを分解し、後段触媒層では前段触媒層で副生したNOxを、処理ガスから予め分割注入されたアンモニア、あるいは前段アンモニア酸化触媒層温度を制御することで残留させた未反応アンモニアを利用して亜酸化窒素を生成させないようにバランスよく分解し、プロセス全体として亜酸化窒素を低減しようとするものである。   In the techniques described in Patent Documents 2 and 3, ammonia is decomposed so that nitrous oxide is not generated as much as possible in the preceding catalyst layer, and NOx produced as a by-product in the preceding catalyst layer is dividedly injected from the processing gas in advance in the latter catalyst layer. By using the remaining ammonia or unreacted ammonia remaining by controlling the temperature of the previous stage ammonia oxidation catalyst layer, it is decomposed in a well-balanced manner so as not to generate nitrous oxide, and the entire process is attempted to reduce nitrous oxide. It is.

アンモニア含有排水の浄化に際しては、アンモニア含有排水をストリッピング処理に供し、得られるアンモニア含有排ガスを触媒に接触させてアンモニアを分解することが一般に行われており、このアンモニア含有排ガスの処理に際しても上記のような亜酸化窒素の生成という問題が生じる。   When purifying ammonia-containing wastewater, it is generally performed that ammonia-containing wastewater is subjected to stripping treatment, and the ammonia-containing exhaust gas thus obtained is brought into contact with a catalyst to decompose ammonia. The problem of nitrous oxide generation occurs.

そこで、アンモニアを分解するに際して、発生する亜酸化窒素濃度が所定の範囲となるように、触媒層でのガス流量を調整するか、あるいは触媒層でのガスの接触時間を調整する方法が提案されている(特許文献4)。   Therefore, a method for adjusting the gas flow rate in the catalyst layer or adjusting the contact time of the gas in the catalyst layer is proposed so that the concentration of nitrous oxide generated when decomposing ammonia is within a predetermined range. (Patent Document 4).

また、アンモニアを分解するに際して、発生する亜酸化窒素濃度が所定の範囲となるように、触媒層に導入するガス中の酸素濃度を調整する方法が提案されている(特許文献5)。   Further, a method has been proposed in which the oxygen concentration in the gas introduced into the catalyst layer is adjusted so that the generated nitrous oxide concentration falls within a predetermined range when decomposing ammonia (Patent Document 5).

特許文献4および5に記載の技術は、特定組成の触媒からなる一段触媒層を用い、触媒層でのガス流量を調整したり、あるいはガス中の酸素濃度を調整することにより、亜酸化窒素の副生を抑制しながらアンモニアを窒素と水とに分解するというものである。   The techniques described in Patent Documents 4 and 5 use a single-stage catalyst layer composed of a catalyst having a specific composition, adjust the gas flow rate in the catalyst layer, or adjust the oxygen concentration in the gas, thereby reducing nitrous oxide. This is to decompose ammonia into nitrogen and water while suppressing by-products.

特開昭54−1978857号公報Japanese Patent Laid-Open No. 54-1978857 特開平10−309437号公報JP-A-10-309437 特開平10−314548号公報Japanese Patent Laid-Open No. 10-314548 特開2002−52381号公報JP 2002-52381 A 特開2002−66538号公報JP 2002-66538 A

前記従来技術のいずれにおいても、亜酸化窒素濃度を低減させるためには、運転条件を厳密に規定する必要があり、またこれを実現するために複雑な制御系が必要である。このため、処理しようとする排ガス中のアンモニアやNOxの濃度が変動したりするときには、応答に遅れが生じて亜酸化窒素が排出される可能性がある。   In any of the above prior arts, in order to reduce the nitrous oxide concentration, it is necessary to strictly define the operating conditions, and a complicated control system is necessary to realize this. For this reason, when the concentration of ammonia or NOx in the exhaust gas to be treated fluctuates, there is a possibility that the response is delayed and nitrous oxide is discharged.

そこで、本発明は、アンモニアを含有する排ガスを、亜酸化窒素の排出を著しく低減して、効率よく浄化するアンモニア含有排ガスの浄化方法を提供しようとするものである。   Therefore, the present invention is intended to provide a method for purifying ammonia-containing exhaust gas that efficiently purifies ammonia-containing exhaust gas by significantly reducing nitrous oxide emissions.

また、本発明は、アンモニアを含有する排水からアンモニアをストリッピング処理して浄化するに際し、発生するアンモニア含有排ガスを、亜酸化窒素の排出を著しく低減して、効率よく処理する、アンモニア含有排水の浄化方法を提供しようとするものである   In addition, the present invention is an ammonia-containing wastewater that efficiently treats ammonia-containing exhaust gas that is generated by stripping ammonia from wastewater containing ammonia, significantly reducing emission of nitrous oxide. It is intended to provide a purification method

本発明者らの研究によれば、前記目的は下記発明により達成できることがわかった。
(1)アンモニアを含有する排ガスを下記工程を含むプロセスにしたがって浄化することを特徴とするアンモニア含有排ガスの浄化方法。
(a)アンモニア含有排ガスをアンモニア分解触媒に接触させてアンモニアを分解する工程。
(b)工程(a)からの処理ガスを亜酸化窒素分解触媒に接触させて処理ガス中の亜酸化窒素を分解する工程。
(2)アンモニアを含有する排水を下記工程を含むプロセスにしたがって浄化することを特徴とするアンモニア含有排水の浄化方法。
(c)アンモニア含有排水をストリッピング処理に供してアンモニアを気相中に移行させる工程。
(d)工程(c)からのアンモニア含有ガスをアンモニア分解触媒に接触させてアンモニアを分解する工程。
(e)工程(d)からの処理ガスを亜酸化窒素分解触媒に接触させて処理ガス中の亜酸化窒素を分解する工程。
According to the studies by the present inventors, it has been found that the object can be achieved by the following invention.
(1) A method for purifying ammonia-containing exhaust gas, which purifies exhaust gas containing ammonia according to a process including the following steps.
(A) A process of decomposing ammonia by bringing ammonia-containing exhaust gas into contact with an ammonia decomposition catalyst.
(B) A step of bringing the processing gas from step (a) into contact with a nitrous oxide decomposition catalyst to decompose nitrous oxide in the processing gas.
(2) A method for purifying ammonia-containing wastewater, comprising purifying ammonia-containing wastewater according to a process including the following steps.
(C) A step of transferring ammonia into the gas phase by subjecting the ammonia-containing waste water to a stripping treatment.
(D) A step of decomposing ammonia by bringing the ammonia-containing gas from step (c) into contact with an ammonia decomposition catalyst.
(E) A step of decomposing nitrous oxide in the processing gas by bringing the processing gas from step (d) into contact with a nitrous oxide decomposition catalyst.

本発明によれば、厳密な運転条件の維持、あるいはこれを実現するための複雑な制御系を設置することなく、アンモニア含有排ガスやアンモニア含有排水を効率よく浄化することができる。   According to the present invention, it is possible to efficiently purify ammonia-containing exhaust gas and ammonia-containing wastewater without maintaining strict operating conditions or installing a complicated control system for realizing this.

本発明によれば、浄化処理後の排出ガス中に含まれる残留アンモニア、NOxおよび亜酸化窒素の濃度を環境上問題がない程度まで低減することができる。   According to the present invention, it is possible to reduce the concentrations of residual ammonia, NOx and nitrous oxide contained in the exhaust gas after the purification treatment to such an extent that there is no environmental problem.

また、本発明によれば、処理しようとする排ガス中のアンモニア濃度が変動しても、これに即応して、浄化処理後の排出ガス中の残留アンモニア、NOxおよび亜酸化窒素の濃度を環境上問題がない程度まで低減することができる。   Further, according to the present invention, even if the ammonia concentration in the exhaust gas to be treated fluctuates, the concentration of residual ammonia, NOx and nitrous oxide in the exhaust gas after the purification treatment is promptly changed in response to this. It can be reduced to the extent that there is no problem.

最初に本発明のアンモニア含有排ガスの浄化方法について説明する。   First, the method for purifying ammonia-containing exhaust gas of the present invention will be described.

本発明の方法は、基本的に、(a)アンモニア含有排ガスをアンモニア分解触媒に接触させてアンモニアを分解する工程と(b)工程(a)からの処理ガスを亜酸化窒素分解触媒に接触させて処理ガス中の亜酸化窒素を分解する工程とからなるものである。   The method of the present invention basically comprises (a) a step of bringing ammonia-containing exhaust gas into contact with an ammonia decomposition catalyst, and (b) a step of bringing the treatment gas from step (a) into contact with a nitrous oxide decomposition catalyst. And the step of decomposing nitrous oxide in the processing gas.

工程(a)においては、環境上問題がない程度まで、NOxの副生を抑制しながら、排ガス中のアンモニアを分解する。したがって、工程(a)を実施する際の使用触媒、処理条件などは、上記のように、環境上問題がない程度まで、NOxの副生を抑制しながら、排ガス中のアンモニアを分解できるように適宜選択すればよい。   In the step (a), ammonia in the exhaust gas is decomposed while suppressing by-product generation of NOx to the extent that there is no environmental problem. Therefore, the catalyst used, the processing conditions, etc. when carrying out the step (a) are such that, as described above, ammonia in the exhaust gas can be decomposed while suppressing by-product generation of NOx to the extent that there is no environmental problem. What is necessary is just to select suitably.

なお、本発明の環境上問題がない程度の濃度とは、アンモニアは5ppm以下、NOxは50ppm以下、また亜酸化窒素は50ppm以下を意味する。したがって、工程(a)では、処理ガス中のアンモニア濃度およびNOx濃度が、それぞれ、5ppm以下および50ppm以下となるようにアンモニアの酸化分解を行う。   It should be noted that the concentration of the present invention that does not cause environmental problems means that ammonia is 5 ppm or less, NOx is 50 ppm or less, and nitrous oxide is 50 ppm or less. Therefore, in the step (a), ammonia is oxidatively decomposed so that the ammonia concentration and the NOx concentration in the processing gas become 5 ppm or less and 50 ppm or less, respectively.

アンモニア分解触媒を例示すると次のとおりである。
(1)Co、CeおよびMnからなる酸化物触媒
(2)第一活性成分としてCu、第二活性成分としてFe、Ni、V、Mo、W、Na、K、Li、Mg、BaおよびSnから選ばれた1種以上の酸化物が酸化物担体に担持された構成の触媒
(3)酸化物担体とAg、あるいはAgとFe、Mn、Zn、Mo、WおよびWから選ばれた1種以上の元素を含有する触媒
(4)(A)Ti−Si、Ti−ZrまたはTi−Si−Zrの複合酸化物、(B)V、WおよびMoから選ばれるも少なくとも1種の酸化物、(C)Pt、Pd、Rh、RuおよびIrから選ばれる少なくとも1種の貴金属またはその化合物を含む触媒
(5)Cuイオンを交換ZSM−5にPtを担持させた触媒
(6)γ−Al担体にNi、Mn酸化物を担持させた触媒
(7)A’xA1−xBO3−y(A’:Ca、Sr、A*La、B:Mn、Fe、Co)で表されるペロブスカイト系酸化物触媒
(8)Cuイオン交換Y型ゼオライト、またはCu担持Al触媒
(9)MoO担持SiO触媒
(10)BaMnAl1119で表される複合酸化物触媒
(11)Pt、Pd、Rh、RuおよびIrから選ばれる少なくとも1種の貴金属またはその化合物を酸化物担体に担持させた触媒
(12)Cu−Mn複合酸化物を活性成分とする触媒
本発明で浄化するアンモニア含有排ガスは、通常、アンモニア濃度が100〜30,000ppm程度のものである。工程(a)では、このようなアンモニアを酸化分解するために、常法にしたがって、必要量の、具体的には、当量以上の酸素を空気や酸素含有ガスとして供給する。
Examples of the ammonia decomposition catalyst are as follows.
(1) Oxide catalyst comprising Co, Ce and Mn (2) Cu as the first active component, Fe, Ni, V, Mo, W, Na, K, Li, Mg, Ba and Sn as the second active component Catalyst having a structure in which one or more selected oxides are supported on an oxide support (3) One or more selected from oxide support and Ag, or Ag and Fe, Mn, Zn, Mo, W and W (4) (A) a composite oxide of Ti-Si, Ti-Zr or Ti-Si-Zr, (B) at least one oxide selected from V, W and Mo, C) Catalyst containing at least one precious metal selected from Pt, Pd, Rh, Ru and Ir or a compound thereof (5) Catalyst in which Cu ions are exchanged and Pt is supported on ZSM-5 (6) γ-Al 2 O 3 carrier Ni, it was supported Mn oxide Perovskite oxide catalyst represented by medium (7) A′xA1-xBO3-y (A ′: Ca, Sr, A * La, B: Mn, Fe, Co) (8) Cu ion exchange Y-type zeolite, Or Cu supported Al 2 O 3 catalyst (9) MoO 3 supported SiO 2 catalyst (10) Composite oxide catalyst represented by BaMnAl 11 O 19 (11) At least one selected from Pt, Pd, Rh, Ru and Ir (12) Catalyst containing Cu-Mn composite oxide as an active component The ammonia-containing exhaust gas to be purified in the present invention usually has an ammonia concentration of about 100 to 30,000 ppm. belongs to. In the step (a), in order to oxidatively decompose such ammonia, a necessary amount, specifically, an equivalent amount or more of oxygen is supplied as air or an oxygen-containing gas according to a conventional method.

工程(a)からの処理ガス中には亜酸化窒素が含まれているので、工程(a)からの処理ガスは工程(b)に導入し、ここで処理ガスを亜酸化窒素分解触媒に接触させて亜酸化窒素を環境上問題がない程度まで分解する。したがって、工程(b)を実施する際の使用触媒、処理条件などについては、処理ガス中の亜酸化窒素を環境上問題がない程度まで、具体的には50ppm以下にまで分解できるように適宜選択すればよい。   Since the processing gas from step (a) contains nitrous oxide, the processing gas from step (a) is introduced into step (b), where the processing gas contacts the nitrous oxide decomposition catalyst. To decompose nitrous oxide to an extent that there is no environmental problem. Therefore, the catalyst used and the treatment conditions for carrying out the step (b) are appropriately selected so that the nitrous oxide in the treatment gas can be decomposed to an extent that there is no environmental problem, specifically to 50 ppm or less. do it.

亜酸化窒素分解触媒を例示すると次のとおりである。
(13)AgをBET表面積5〜25m/gのアルミナ担体に担持した触媒
(14)示性式(SiO55で示されるケイ素と酸素とからなるゼオライトにCuを担持した触媒
(15)SiOまたはSiO−AlにRh、PdおよびRuから選ばれる少なくとも1種の貴金属を担持した触媒
(16)Feイオン交換β型ゼオライト
(17)RhまたはCoおよびこれらの混合物からなる触媒
(18)Zn(II)イオン、Rh(II)イオンおよびAl(III)イオンを含むハイドロタルサイト型化合物を焼成して得られる酸化物亜鉛のみが結晶状態で存在する複合酸化物触媒
アンモニア分解触媒、亜酸化窒素分解触媒は上記したものを適宜使用することができるが、アンモニア分解触媒に(1)または(4)を用い、かつ亜酸化窒素分解触媒として(15)または(17)を用いた場合、NOxを殆ど副生することなく、また亜酸化窒素も大幅に低減しながらアンモニア含有排ガスを効率よく浄化できるので好ましい。
Examples of the nitrous oxide decomposition catalyst are as follows.
(13) A catalyst in which Ag is supported on an alumina carrier having a BET surface area of 5 to 25 m 2 / g (14) A catalyst in which Cu is supported on a zeolite composed of silicon and oxygen represented by the formula (SiO 2 ) 55 (15) Catalyst comprising at least one noble metal selected from Rh, Pd and Ru on SiO 2 or SiO 2 —Al 2 O 3 (16) Fe ion exchange β-type zeolite (17) Rh 2 O 3 or Co 2 O 3 and Catalyst composed of these mixtures (18) A composite in which only zinc oxide obtained by firing a hydrotalcite-type compound containing Zn (II) ions, Rh (II) ions and Al (III) ions exists in a crystalline state Oxide catalyst The above-mentioned ammonia decomposition catalyst and nitrous oxide decomposition catalyst can be used as appropriate. Alternatively, when (4) is used and (15) or (17) is used as a nitrous oxide decomposition catalyst, NOx is hardly produced as a by-product, and ammonia-containing exhaust gas is reduced while greatly reducing nitrous oxide. This is preferable because it can be efficiently purified.

この場合、アンモニア分解触媒(1)または(4)におけるガス温度は、250〜450℃、好ましくは300〜400℃であり、空間速度(SV)は500〜100000hr−1、好ましくは1000〜50000hr−1である。また、亜酸化窒素分解触媒(15)または(17)におけるガス温度は300〜600℃、好ましくは350〜550℃であり、空間速度(SV)は1000〜100000hr−1、好ましくは3000〜50000hr−1である。 In this case, the gas temperature in the ammonia decomposition catalyst (1) or (4) is 250 to 450 ° C., preferably 300 to 400 ° C., and the space velocity (SV) is 500 to 100,000 hr −1 , preferably 1000 to 50000 hr −. 1 . Further, the gas temperature in the nitrous oxide decomposition catalyst (15) or (17) is 300 to 600 ° C., preferably 350 to 550 ° C., and the space velocity (SV) is 1000 to 100,000 hr −1 , preferably 3000 to 50000 hr −. 1 .

アンモニア分解触媒および亜酸化窒素分解触媒はそれぞれ異なる2つの反応管に充填しても、あるいは一つの反応管にアンモニア分解触媒および亜酸化窒素分解触媒を2段に分けて充填してもよい。   The ammonia decomposition catalyst and the nitrous oxide decomposition catalyst may be charged in two different reaction tubes, or the ammonia decomposition catalyst and the nitrous oxide decomposition catalyst may be charged in two stages in one reaction tube.

上記工程(a)、(b)を経て得られる処理ガス中に含まれるアンモニア、NOxおよび亜酸化窒素の濃度は環境上問題がない程度のものであるので、処理ガスはそのまま大気中に放出することができる。   Since the concentrations of ammonia, NOx and nitrous oxide contained in the processing gas obtained through the above steps (a) and (b) are such that there is no environmental problem, the processing gas is released into the atmosphere as it is. be able to.

次に、アンモニア含有排水の浄化方法について説明する。   Next, a method for purifying ammonia-containing wastewater will be described.

本発明の方法は、基本的に、(c)アンモニア含有排水をストリッピング処理に供してアンモニアを気相中に移行させる工程、(d)工程(c)からのアンモニア含有ガスをアンモニア分解触媒に接触させてアンモニアを分解する工程、および(e)工程(d)からの処理ガスを亜酸化窒素分解触媒に接触させて処理ガス中の亜酸化窒素を分解する工程からなるものである。   The method of the present invention basically includes (c) a step of subjecting ammonia-containing wastewater to stripping treatment to transfer ammonia into the gas phase, and (d) ammonia-containing gas from step (c) as an ammonia decomposition catalyst. It comprises a step of decomposing ammonia by contacting, and (e) a step of decomposing nitrous oxide in the processing gas by contacting the processing gas from step (d) with a nitrous oxide decomposition catalyst.

工程(c)では、アンモニア含有排水中のアンモニアをストリッピングして気相中に移行させる。このストリッピング処理は、一般に知られている方法にしたがって行うことができる。キャリヤーガスとしては、水蒸気や加熱空気などを用いることができる。   In the step (c), ammonia in the ammonia-containing waste water is stripped and transferred to the gas phase. This stripping process can be performed according to a generally known method. As the carrier gas, water vapor or heated air can be used.

工程(d)は、工程(c)で得られたアンモニア含有排ガス中のアンモニアを分解するものであり、前記の工程(a)と同一である。したがって、工程(d)は、前記の工程(a)で説明したと同様に実施すればよい。   Step (d) is for decomposing ammonia in the ammonia-containing exhaust gas obtained in step (c), and is the same as step (a). Therefore, step (d) may be performed in the same manner as described in step (a) above.

工程(e)は、工程(d)からの処理ガス中に含まれる亜酸化窒素を分解するものであり、前記の工程(b)と同一である。したがって、工程(e)は、前記の工程(b)で説明したと同様に実施すればよい。   Step (e) decomposes nitrous oxide contained in the processing gas from step (d), and is the same as step (b). Therefore, step (e) may be performed in the same manner as described in step (b) above.

上記工程(d)、(e)を経て得られる処理ガス中に含まれるアンモニア、NOxおよび亜酸化窒素の濃度は環境上問題がない程度のものであるので、処理ガスはそのまま大気中に放出することができる。   Since the concentrations of ammonia, NOx and nitrous oxide contained in the processing gas obtained through the above steps (d) and (e) are such that there is no environmental problem, the processing gas is released into the atmosphere as it is. be able to.

本発明によれば、アンモニア以外の含窒素化合物、例えばメチルアミン、ジメチルアミン、トリメチルアミンなどのアミン類、エチレンイミンなどのイミン類、アセトニトリルなどのニトリル類および青酸を含むガスも同様に浄化することができる。本発明の「アンモニアを含有する排ガス」との用語は、アンモニア含有排ガスのほかに、上記のような含窒素化合物を含むガスも包含するものである。同様に、本発明の「アンモニアを含有する排水」との用語は、アンモニア含有排水のほかに、アンモニアと同様にストリッピング処理により排水から気相に移行させることができるメチルアミン、ジメチルアミン、トリメチルアミンのような含窒素化合物を含む排水も包含するものである。   According to the present invention, nitrogen-containing compounds other than ammonia, for example, amines such as methylamine, dimethylamine, and trimethylamine, imines such as ethyleneimine, nitriles such as acetonitrile, and gas containing hydrocyanic acid can be similarly purified. it can. In the present invention, the term “exhaust gas containing ammonia” includes gases containing nitrogen-containing compounds as described above in addition to ammonia-containing exhaust gases. Similarly, the term “wastewater containing ammonia” in the present invention means methylamine, dimethylamine, and trimethylamine that can be transferred from the wastewater to the gas phase by stripping treatment in the same manner as ammonia in addition to ammonia-containing wastewater. Such waste water containing nitrogen-containing compounds is also included.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

<アンモニア分解触媒1>
硝酸コバルト(II)6水和物873g、硝酸セリウム(II)6水和物1303gおよび硝酸マンガン(II)6水和物1292gを純水に均一に溶解した。この水溶液を加熱することで水分を蒸発させCo、Ce、Mnを含む混合粉体を得た。次いで、この混合粉体を550℃にて5時間焼成してCo、Ce、Mnからなる酸化物粉体を調製した。この酸化物粉体800gにγ−アルミナ粉体400gを添加、混合して球状(平均粒子径5mm)に成形した後、120℃にて5時間乾燥し、次いで550℃で3時間焼成してCo−Ce−Mn系アンモニア分解触媒を得た。この触媒組成は、Co:CeO:MnO:Al=1:2.1:1.6:2.4(質量比)であった。
<アンモニア分解触媒2>
チタン酸化物粉体(ミレニアム社製、商品名DT−51)を球状(平均粒径5mm)に成形した後、120℃にて5時間乾燥し、次いで500℃にて3時間焼成した。この球状チタン酸化物を硝酸銀水溶液に含浸した。含浸後、120℃にて5時間乾燥し、次いで500℃にて3時間焼成した。次いで、硫酸第一鉄水溶液に含浸し、120℃にて5時間乾燥し、次いで500℃にて3時間焼成してアンモニア分解触媒2を得た。この触媒の組成は、TiO:Ag:Fe=80:17:3(質量比)であった。
<亜酸化窒素分解触媒>
所定の濃度に調整した硝酸ロジウム水溶液にγ−アルミナペレット(住友化学工業(株)製、平均粒子径5mm)を5分間浸漬し、その後、120℃にて5時間乾燥した後、600℃で5時間焼成してRh担持γ−Al触媒を調製した。この触媒組成は、Rh:Al=5:95(質量比)であった。
実施例1
内径45mm、長さ950mmのステンレス鋼製反応管のガス入口側に上記アンモニア分解触媒1140mlを充填し、ガス出口側に上記亜酸化窒素分解触媒140mlを充填した。そして、アンモニア濃度4000ppm、水蒸気濃度 20%、残り空気からなる模擬アンモニア含有ガスを所定の温度(360℃、380℃および400℃)に加熱、調整した後、供給速度12L/min(STP)でアンモニア分解触媒層、次いで亜酸化窒素分解触媒層に流した。各触媒層の温度が模擬アンモニア含有ガスの温度とほぼ同じになった時点で、亜酸化窒素分解触媒層からの処理ガス中のアンモニア濃度、NOx濃度および亜酸化窒素濃度を下記の方法にしたがって測定し、またアンモニア転化率を下記の式にしたがって求めた。結果を表1に示す。
アンモニア濃度:
0.5質量%のホウ酸水溶液を含む吸収瓶に一定量のガスを通気させてガス中に含まれているアンモニアをホウ酸水溶液に吸収させ、吸収操作後のアンモニアを含むホウ酸水溶液を純水にて所定量に調節した後、日立製作所製陽イオンクロマトグラフにて液中のNH を定量することで吸収されたアンモニアを算出しガス中のアンモニア濃度を計算した。
NOx濃度:
日本サーモエレクトロン製NOx計 MODEL42Cを用い、化学発光法により測定した。
亜酸化窒素濃度:
島津製作所製ガスクロマトグラフ(TCD)にて測定した。
アンモニア転化率(%):
(4000ppm−処理ガス中のアンモニア濃度(ppm))/(4000ppm)(×100)
実施例2
実施例1において、アンモニア分解触媒1をアンモニア分解触媒2に変更した以外は実施例1と同様にして模擬アンモニア含有ガスの処理を行った。結果を表1に示す。
比較例1
実施例1において、後段の亜酸化窒素分解触媒層を設けなかった以外は実施例1と同様にして模擬アンモニア含有ガスの処理を行った。結果を表1に示す。
<Ammonia decomposition catalyst 1>
873 g of cobalt (II) nitrate hexahydrate, 1303 g of cerium (II) nitrate hexahydrate and 1292 g of manganese (II) nitrate hexahydrate were uniformly dissolved in pure water. The aqueous solution was heated to evaporate water and obtain a mixed powder containing Co, Ce, and Mn. Next, this mixed powder was fired at 550 ° C. for 5 hours to prepare an oxide powder composed of Co, Ce, and Mn. After adding 400 g of γ-alumina powder to 800 g of this oxide powder, mixing to form a spherical shape (average particle diameter 5 mm), drying at 120 ° C. for 5 hours, and then firing at 550 ° C. for 3 hours to obtain Co A -Ce-Mn based ammonia decomposition catalyst was obtained. The catalyst composition was Co 3 O 4 : CeO 2 : MnO 2 : Al 2 O 3 = 1: 2.1: 1.6: 2.4 (mass ratio).
<Ammonia decomposition catalyst 2>
Titanium oxide powder (trade name DT-51, manufactured by Millennium Co., Ltd.) was formed into a spherical shape (average particle size 5 mm), dried at 120 ° C. for 5 hours, and then fired at 500 ° C. for 3 hours. This spherical titanium oxide was impregnated with an aqueous silver nitrate solution. After impregnation, it was dried at 120 ° C. for 5 hours and then calcined at 500 ° C. for 3 hours. Next, it was impregnated with an aqueous ferrous sulfate solution, dried at 120 ° C. for 5 hours, and then calcined at 500 ° C. for 3 hours to obtain an ammonia decomposition catalyst 2. The composition of this catalyst was TiO 2 : Ag: Fe = 80: 17: 3 (mass ratio).
<Nitrous oxide decomposition catalyst>
Γ-alumina pellets (manufactured by Sumitomo Chemical Co., Ltd., average particle size 5 mm) are immersed in an aqueous rhodium nitrate solution adjusted to a predetermined concentration for 5 minutes, then dried at 120 ° C. for 5 hours, and then at 600 ° C. for 5 hours. Rh-supported γ-Al 2 O 3 catalyst was prepared by calcining for a period of time. The catalyst composition was Rh: Al 2 O 3 = 5: 95 (mass ratio).
Example 1
A gas inlet side of a stainless steel reaction tube having an inner diameter of 45 mm and a length of 950 mm was filled with 1140 ml of the ammonia decomposition catalyst, and the gas outlet side was filled with 140 ml of the nitrous oxide decomposition catalyst. Then, a simulated ammonia-containing gas composed of an ammonia concentration of 4000 ppm, a water vapor concentration of 20%, and the remaining air is heated and adjusted to a predetermined temperature (360 ° C., 380 ° C. and 400 ° C.), and then ammonia is supplied at a supply rate of 12 L / min (STP). It flowed to the cracking catalyst layer and then to the nitrous oxide cracking catalyst layer. When the temperature of each catalyst layer becomes almost the same as the temperature of the simulated ammonia-containing gas, measure the ammonia concentration, NOx concentration and nitrous oxide concentration in the treated gas from the nitrous oxide decomposition catalyst layer according to the following method The ammonia conversion rate was determined according to the following formula. The results are shown in Table 1.
Ammonia concentration:
A certain amount of gas is passed through an absorption bottle containing 0.5 mass% boric acid aqueous solution to absorb the ammonia contained in the gas into the boric acid aqueous solution, and the boric acid aqueous solution containing ammonia after the absorption operation is purified. After adjusting to a predetermined amount with water, the absorbed ammonia was calculated by quantifying NH 4 + in the liquid with a cation chromatograph manufactured by Hitachi, Ltd., and the ammonia concentration in the gas was calculated.
NOx concentration:
Measurement was performed by a chemiluminescence method using a NOx meter MODEL42C manufactured by Nippon Thermo Electron.
Nitrous oxide concentration:
It was measured with a Shimadzu gas chromatograph (TCD).
Ammonia conversion (%):
(4000 ppm-ammonia concentration in treated gas (ppm)) / (4000 ppm) (x100)
Example 2
In Example 1, the treatment of the simulated ammonia-containing gas was performed in the same manner as in Example 1 except that the ammonia decomposition catalyst 1 was changed to the ammonia decomposition catalyst 2. The results are shown in Table 1.
Comparative Example 1
In Example 1, the simulated ammonia-containing gas was treated in the same manner as in Example 1 except that the latter nitrous oxide decomposition catalyst layer was not provided. The results are shown in Table 1.

Figure 2005095786
Figure 2005095786

表1において、NOxおよび亜酸化窒素の濃度は、湿りガス基準の体積濃度である。   In Table 1, the concentrations of NOx and nitrous oxide are volume concentrations based on wet gas.

実施例1、2と比較例1とから、亜酸化窒素分解触媒による処理工程(工程(b))を設けることにより処理ガス中の亜酸化窒素濃度を著しく低減できる。

From Examples 1 and 2 and Comparative Example 1, the concentration of nitrous oxide in the treatment gas can be significantly reduced by providing a treatment step (step (b)) using a nitrous oxide decomposition catalyst.

Claims (2)

アンモニアを含有する排ガスを下記工程を含むプロセスにしたがって浄化することを特徴とするアンモニア含有排ガスの浄化方法。
(a)アンモニア含有排ガスをアンモニア分解触媒に接触させてアンモニアを分解する工程。
(b)工程(a)からの処理ガスを亜酸化窒素分解触媒に接触させて処理ガス中の亜酸化窒素を分解する工程。
A method for purifying ammonia-containing exhaust gas, comprising purifying exhaust gas containing ammonia according to a process including the following steps.
(A) A process of decomposing ammonia by bringing ammonia-containing exhaust gas into contact with an ammonia decomposition catalyst.
(B) A step of bringing the processing gas from step (a) into contact with a nitrous oxide decomposition catalyst to decompose nitrous oxide in the processing gas.
アンモニアを含有する排水を下記工程を含むプロセスにしたがって浄化することを特徴とするアンモニア含有排水の浄化方法。
(c)アンモニア含有排水をストリッピング処理に供してアンモニアを気相中に移行させる工程。
(d)工程(c)からのアンモニア含有ガスをアンモニア分解触媒に接触させてアンモニアを分解する工程。
(e)工程(d)からの処理ガスを亜酸化窒素分解触媒に接触させて処理ガス中の亜酸化窒素を分解する工程。

A method for purifying ammonia-containing wastewater, comprising purifying wastewater containing ammonia according to a process including the following steps.
(C) A step of transferring ammonia into the gas phase by subjecting the ammonia-containing waste water to a stripping treatment.
(D) A step of decomposing ammonia by bringing the ammonia-containing gas from step (c) into contact with an ammonia decomposition catalyst.
(E) A step of decomposing nitrous oxide in the processing gas by bringing the processing gas from step (d) into contact with a nitrous oxide decomposition catalyst.

JP2003333292A 2003-09-25 2003-09-25 Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater Expired - Fee Related JP4246584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333292A JP4246584B2 (en) 2003-09-25 2003-09-25 Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333292A JP4246584B2 (en) 2003-09-25 2003-09-25 Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater

Publications (2)

Publication Number Publication Date
JP2005095786A true JP2005095786A (en) 2005-04-14
JP4246584B2 JP4246584B2 (en) 2009-04-02

Family

ID=34461335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333292A Expired - Fee Related JP4246584B2 (en) 2003-09-25 2003-09-25 Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater

Country Status (1)

Country Link
JP (1) JP4246584B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346642A (en) * 2005-06-20 2006-12-28 Sumiko Eco-Engineering Co Ltd Catalyst for decomposing ammonia and method for treating ammonia
JP2010110697A (en) * 2008-11-06 2010-05-20 Hitachi Zosen Corp Ammonia decomposition catalyst
ITMI20101659A1 (en) * 2010-09-13 2012-03-14 Sued Chemie Catalysts Italia S R L CATALYST FOR THE DECOMPOSITION OF DANGEROUS PROSTOSIS.
JP2012161713A (en) * 2011-02-03 2012-08-30 Agc Seimi Chemical Co Ltd Ammonia decomposition catalyst and decomposition method of ammonia
WO2015099024A1 (en) 2013-12-26 2015-07-02 日揮ユニバーサル株式会社 Ammonia decomposition catalyst
CN110918117A (en) * 2019-11-28 2020-03-27 浙江师范大学 Catalyst for eliminating nitrogenous organic matters and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346642A (en) * 2005-06-20 2006-12-28 Sumiko Eco-Engineering Co Ltd Catalyst for decomposing ammonia and method for treating ammonia
JP2010110697A (en) * 2008-11-06 2010-05-20 Hitachi Zosen Corp Ammonia decomposition catalyst
ITMI20101659A1 (en) * 2010-09-13 2012-03-14 Sued Chemie Catalysts Italia S R L CATALYST FOR THE DECOMPOSITION OF DANGEROUS PROSTOSIS.
WO2012034902A1 (en) * 2010-09-13 2012-03-22 Süd-Chemie Catalysts Italia S.R.L. Catalyst for the decomposition of nitrogen protoxide
US8809224B2 (en) 2010-09-13 2014-08-19 Sud-Chemie Catalysts Italia S.R.L. Catalyst for the decomposition of nitrogen protoxide
JP2012161713A (en) * 2011-02-03 2012-08-30 Agc Seimi Chemical Co Ltd Ammonia decomposition catalyst and decomposition method of ammonia
WO2015099024A1 (en) 2013-12-26 2015-07-02 日揮ユニバーサル株式会社 Ammonia decomposition catalyst
KR20160102474A (en) 2013-12-26 2016-08-30 니키 유니바사루 가부시키가이샤 Ammonia decomposition catalyst
CN110918117A (en) * 2019-11-28 2020-03-27 浙江师范大学 Catalyst for eliminating nitrogenous organic matters and preparation method thereof
CN110918117B (en) * 2019-11-28 2023-03-21 浙江师范大学 Catalyst for eliminating nitrogenous organic matters and preparation method thereof

Also Published As

Publication number Publication date
JP4246584B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
WO2015099024A1 (en) Ammonia decomposition catalyst
WO2005044426A1 (en) Method for catalytically reducing nitrogen oxide and catalyst therefor
US11247197B1 (en) Core-shell structured catalyst, preparation method thereof and method for treating industrial tail gas
JP2002153734A (en) Nitrous oxide decomposition catalyst, its manufacturing method and decomposition method of nitrous oxide
JP2008062235A (en) Method for catalytically reducing nitrogen oxide and catalyst therefor
CN110479303A (en) A kind of dry method solid desulphurization denitration catalyst and its desulfurization denitrification agent
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP4246584B2 (en) Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater
WO2017056518A1 (en) Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP6495811B2 (en) Selective reduction exhaust gas purification catalyst
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JPS61133125A (en) Denitration process using ultraviolet ray
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
BR112021013154A2 (en) PROCESS TO REMOVE NITROGEN OXIDES FROM A GAS
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
RU2809651C2 (en) Method for removing nitrogen oxides from gas
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP7479588B2 (en) Method for treating ammonia-containing gas, treating material, and method for producing treating material
KR20100001315A (en) Catalytic composition for removing nitrogen oxide, and method for producing that, and method for removing nitrogen oxide using the same
JP2007185574A (en) Catalyst for decomposing nitrous oxide
JP2007313410A (en) Ammonia decomposition catalyst and ammonia treating method
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus
JP2007216082A (en) Catalyst for decomposing ammonia and method for treating ammonia
JP2006346642A (en) Catalyst for decomposing ammonia and method for treating ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees