JP2005094844A - Mold type eccentric rotor and axial air-gap type coreless vibrating motor comprising the same - Google Patents

Mold type eccentric rotor and axial air-gap type coreless vibrating motor comprising the same Download PDF

Info

Publication number
JP2005094844A
JP2005094844A JP2003321577A JP2003321577A JP2005094844A JP 2005094844 A JP2005094844 A JP 2005094844A JP 2003321577 A JP2003321577 A JP 2003321577A JP 2003321577 A JP2003321577 A JP 2003321577A JP 2005094844 A JP2005094844 A JP 2005094844A
Authority
JP
Japan
Prior art keywords
air
armature coil
eccentric rotor
core armature
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003321577A
Other languages
Japanese (ja)
Other versions
JP3796238B2 (en
Inventor
Tadao Yamaguchi
忠男 山口
Masahiro Takagi
正弘 高城
Satoru Shimosegawa
悟 下瀬川
Kentaro Fujii
健太郎 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP2003321577A priority Critical patent/JP3796238B2/en
Publication of JP2005094844A publication Critical patent/JP2005094844A/en
Application granted granted Critical
Publication of JP3796238B2 publication Critical patent/JP3796238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance impact resistance against falling, etc. by devising an arrangement/structure and a shape of a reinforcing member without sacrificing a thickness or characteristics. <P>SOLUTION: Two air-core armatures 2A and 2B are eccentrically placed on a printed wiring board 1, and integrally molded with resin 5 together with eccentric weight 4. A hanging part 5a is so formed of resin as to turn around the outer periphery of the eccentric weight in a top view, so as to hang on the winding type air-core armature coil. The outer periphery of the eccentric weight is bonded to the hanging part so that a reinforcing member C of non-magnetic metal acts as a framework with one part embedded to hang on the winding type air-core armature coil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、移動体通信機器のサイレントコール手段などに用いられるモールド型偏心ロータの耐衝撃性の改良に係り、同ロータを備えた扁平で薄型な軸方向空隙型コアレス振動モータに関する。   The present invention relates to an improvement in impact resistance of a mold type eccentric rotor used for silent call means of a mobile communication device and the like, and relates to a flat and thin axial gap type coreless vibration motor provided with the rotor.

偏心ロータ、特に移動体通信装置の無音報知手段等に用いられる薄型な軸方向空隙型モータに使用するコアレス型偏心ロータは、コアレス型で0.8mm以下の極めて薄いものとなり、落下などの衝撃に耐えられるように電機子コイル自体を樹脂で一体成形したもの、すなわち、空心電機子コイルを印刷配線板と共に樹脂で一体成形することによって強度を得るようにしたものが多用される。
しかも、このような偏心ロータとして小型なものほど、空隙ロスを避けねばならず、可及的に電機子コイルの一面は樹脂で覆うことなく露出されるようになっている。(特許文献1参照)
しかしながら、電機子コイルの一面を露出させるように射出金型で押さえる場合、巻始め端末がコイル辺に押し潰され、ショート、断線などの問題が発生する。
The coreless type eccentric rotor used for the eccentric rotor, especially the thin axial gap type motor used for the silence notification means of mobile communication devices, etc., is a coreless type with an extremely thin thickness of 0.8 mm or less. The one that the armature coil itself is integrally molded with resin so that it can withstand, that is, the one that obtains strength by integrally molding the air-core armature coil with resin together with the printed wiring board is often used.
Moreover, the smaller the eccentric rotor, the more the gap loss must be avoided, and as much as possible, one surface of the armature coil is exposed without being covered with resin. (See Patent Document 1)
However, when pressing with an injection mold so that one surface of the armature coil is exposed, the winding start terminal is crushed by the coil side, causing problems such as short circuit and disconnection.

このようなコイル端末のショート、断線などの問題を防ぐ手段として、ロータでは、空心コイルを載置した金属製のフレームの該コイル辺の下方に設けた凹所に端末を通して該金属フレームに接続されたものがある。(特許文献2参照)
しかしながら、このものは、樹脂で成型するものでなく金属フレームがあるので薄型化は期待できない。
特許第3407803号公報 特開平9−322503号公報
As a means for preventing problems such as short circuit and disconnection of the coil terminal, the rotor is connected to the metal frame through the terminal in a recess provided below the coil side of the metal frame on which the air-core coil is mounted. There is something. (See Patent Document 2)
However, this product is not molded with resin and has a metal frame, so it cannot be expected to be thin.
Japanese Patent No. 3407803 JP-A-9-322503

また、このような振動モータは携帯電話機等の移動体通信装置に搭載される場合、サイズが極限まで薄く直径も10mm程度の小型化が要求され、その結果コイル自体で偏心ロータを構成するものでは振動量が少なく、タングステン合金製の偏心ウエイトを使用せざるを得ない。また、軸も0.6mm以下のものが採用せざるを得ないようになっているので、耐衝撃性に十分配慮しなくてはならない。特にモータが搭載された機器が不用意に落下させてしまう場合、モータ等の電子部材については、搭載されるべき機器の重量が関与して打ち所によっては自らの重量の10000倍程度の衝撃を受けるおそれがあり、小型でタングステン合金製の偏心ウエイトを樹脂に一体成形したものでは、この偏心ウエイトの重量による樹脂の破損の対策が重要となっている。   In addition, when such a vibration motor is mounted on a mobile communication device such as a cellular phone, it is required to be as small as possible in size and about 10 mm in diameter, and as a result, the coil itself does not constitute an eccentric rotor. The amount of vibration is small, and an eccentric weight made of tungsten alloy must be used. Also, since the shaft must be 0.6 mm or less, the impact resistance must be fully considered. In particular, when a device on which a motor is mounted is inadvertently dropped, an electronic member such as a motor receives an impact of about 10,000 times its own weight depending on the weight of the device to be mounted depending on the weight of the device to be mounted. There is a fear, and in the case of a small-sized eccentric weight made of a tungsten alloy and integrally molded with a resin, it is important to take measures against damage to the resin due to the weight of the eccentric weight.

この 発明の目的は、厚みや特性を犠牲にすることなく落下などの耐衝撃性を確実に対策した偏心ロータが得られ、このような偏心ロータを組みあわせて軸方向空隙型モータの構成として極めて薄型なものを実現させるものである。   An object of the present invention is to provide an eccentric rotor that reliably takes measures against impact resistance such as dropping without sacrificing thickness and characteristics, and combining such eccentric rotors is extremely useful as a configuration of an axial gap motor. A thin one is realized.

上記課題を解決する基本的な手段としては、請求項1に示す発明のように印刷配線板(1、11)は第1面側(1a)に半径方向外方に所定の開角で形成した少なくとも二つの空心電機子コイル載置エリア(1h、1n)があり、さらに、この空心電機子コイル載置エリアの間に形成された端末結線ランド(1t)が設けられ、第2面側(1b)で回転中心から半径方向外方に複数個の整流子セグメントからなる整流子(1S)が形成され、前記空心電機子コイル載置エリアに少なくとも二つの巻線型空心電機子コイル(2A、2B)が偏心して配され、その巻始め端末が端末結線ランド(1r)に接続されると共に巻き終わり端末が端末結線ランド(1t)に接続され、タングステン合金製の偏心ウエイト(4)が回転中心を介して前記巻線型空心電機子コイルの反対側に該空心電機子コイルと共に1.8以下の比重がある樹脂(5)前記印刷配線板に前記回転中心の位置に配された含油軸受(3)を含んで一体化されたもので、平面視で前記偏心ウエイトの外周部分を回り込んで前記巻線型空心電機子コイルに掛かるように垂下部(5a)が同樹脂で形成され、非磁性金属からなる補強部材(C)が前記偏心ウエイトの外周部分に固着されると共に前記巻線型空心電機子コイルに掛かるように前記垂下部に骨幹として埋設されたもので達成できる。
より具体的な構成は請求項2に示す発明のように前記印刷配線板は前記偏心ウエイトの主要配置部分が削除されて非円形となっており、前記巻線空心電機子コイルは配置開角が150〜170度の2個からなり、前記補強部材は少なくとも一部が前記偏心ウエイトもしくは前記印刷配線板(11)に樹脂成形前に固着されたものにするのがよい。
さらに、請求項3に示す発明のように前記空心電機子コイル載置エリアとして複数個の巻線型空心電機子コイルの各有効導体部の半分以上を載置する領域があり、外径の一部がこの領域の外側で巻線型空心電機子コイルの内径の半径方向外側近傍で直線状に形成され、該巻線型空心電機子コイルの内径部分の位置に端末結線ランド(1r)が形成されているものにするのがよい。
そして、このような偏心ロータを振動モータにするには、請求項4に示すように請求項1〜3のいずれか1項に記載のモールド型偏心ロータ(R)と、このモールド型偏心ロータを支承する軸(8)と、この軸を支承する0.2mm以下の厚みがあるハウジング(H)と、このハウジングの一部を構成するブラケット(6)と、このブラケットに添設されたもので接着層を含めた全体の厚みが0.18mm以下のブラシベース(F)と、前記偏心ロータに空隙を介して臨ませるようにブラケットの一部に配された軸方向空隙型マグネット(9)と、該マグネットの内側で前記ブラシベースに配されたもので前記偏心ロータの整流子に摺接させると共に前記モールド型偏心ロータを前記ハウジングの一部を構成するケース側に付勢させるブラシ(10)とを備え、前記ブラシベースの一部が前記マグネットが載置された部分を横断するように前記ブラケットに設けた透孔(6b)を通ってハウジング側方に給電電極(Fa)として導出されたもので達成できる。
As a basic means for solving the above problem, as in the invention shown in claim 1, the printed wiring board (1, 11) is formed on the first surface side (1a) radially outward at a predetermined opening angle. There are at least two air-core armature coil placement areas (1h, 1n) , and a terminal connection land (1t) formed between the air-core armature coil placement areas is provided, and the second surface side (1b ) , A commutator (1S) composed of a plurality of commutator segments is formed radially outward from the center of rotation, and at least two wire-wound air-core armature coils (2A, 2B) are formed in the air-core armature coil placement area. Are arranged eccentrically, the winding start terminal is connected to the terminal connection land (1r) and the winding end terminal is connected to the terminal connection land (1t), and the eccentric weight (4) made of tungsten alloy is connected to the center of rotation. The above volume Said include rotation center arranged the oil-impregnated bearings to the position of (3) to the printed wiring board with the resin (5) there is a 1.8 specific gravity with the air-core armature coils on the opposite side of the mold the air-core armature coil A reinforcing member made of a non-magnetic metal, which is integrally formed and has a drooping portion (5a) formed of the same resin so as to wrap around the outer peripheral portion of the eccentric weight in plan view and hang on the wound-type air-core armature coil (C) can be achieved by being fixed to the outer peripheral portion of the eccentric weight and being embedded as a diaphysis in the drooping portion so as to be hooked on the wire wound core armature coil.
More specifically, as in the invention shown in claim 2, the printed wiring board has a non-circular shape by removing the main arrangement portion of the eccentric weight, and the winding air-core armature coil has an arrangement opening angle. It is preferable that the reinforcing member is composed of two pieces of 150 to 170 degrees, and at least a part of the reinforcing member is fixed to the eccentric weight or the printed wiring board (11) before resin molding.
Further, as in the invention shown in claim 3, there is an area for placing more than half of each effective conductor portion of the plurality of wound type air-core armature coils as the air-core armature coil placement area, and a part of the outer diameter Is formed linearly near the outside in the radial direction of the inner diameter of the wound air-core armature coil outside this region, and a terminal connection land (1r) is formed at the position of the inner diameter portion of the wound air-core armature coil. It is good to make it.
And in order to make such an eccentric rotor into a vibration motor, as shown in Claim 4, the mold type eccentric rotor (R) of any one of Claims 1-3 and this mold type eccentric rotor are used. A shaft (8) for supporting, a housing (H) having a thickness of 0.2 mm or less for supporting the shaft, a bracket (6) constituting a part of the housing, and an attachment to the bracket A brush base (F) having a total thickness including the adhesive layer of 0.18 mm or less, and an axial gap type magnet (9) disposed in a part of the bracket so as to face the eccentric rotor via a gap; A brush which is arranged on the brush base inside the magnet and slidably contacts the commutator of the eccentric rotor and urges the mold type eccentric rotor toward a case which forms a part of the housing 10) and provided with, derived as a feeding electrode (Fa) in the brush base portion passes through the hole (6b) provided in said bracket so as to cross the part where the magnet is placed the housing side Can be achieved.

請求項1の発明によれば、垂下部は組み合わせるマグネットの厚み内に食い込むように構成できるので、ロータ自体の実質的な厚みは増加することなく、すなわち磁気回路上の損失がなく補強部材を埋め込むことができ、この補強部材が骨幹となっているので偏心ウエイトの重量による樹脂の破損が防止できる。
請求項2の発明によれば、印刷配線板の厚み分だけ偏心ウエイトの重量が多く得られるので振動量が大にできる。
請求項3の発明によれば、耐衝撃性が改善され他偏心ロータが得られる。
請求項4の発明によれば、耐衝撃性の改善され、ブラシベースの厚みが無視できる薄型な軸固定型の軸方向空隙型コアレス振動モータが得られる。
According to the first aspect of the present invention, the drooping portion can be configured to bite into the thickness of the magnet to be combined, so that the substantial thickness of the rotor itself does not increase, that is, there is no loss on the magnetic circuit and the reinforcing member is embedded. In addition, since the reinforcing member serves as a skeleton, damage to the resin due to the weight of the eccentric weight can be prevented.
According to the invention of claim 2, since the weight of the eccentric weight is obtained by the thickness of the printed wiring board, the amount of vibration can be increased.
According to the invention of claim 3, the impact resistance is improved and another eccentric rotor is obtained.
According to the fourth aspect of the present invention, a thin shaft-fixed axial gap type coreless vibration motor with improved impact resistance and negligible brush base thickness can be obtained.

印刷配線板に空心電機子コイルと偏心ウエイトを一体に樹脂成形する偏心ロータであって、垂下部が平面視で前記印刷配線板の外周で前記偏心ウエイトの外周部分を回り込んで前記巻線型空心電機子コイルにかかるように同樹脂で形成され、該垂下部に非磁性金属からなる補強部材が骨幹となるように前記偏心ウエイトの外周部分の固着され一部が前記巻線型空心電機子コイルに掛かるように埋設された。   An eccentric rotor for integrally resin-molding an air-core armature coil and an eccentric weight on a printed wiring board, wherein the drooping portion wraps around the outer peripheral portion of the eccentric weight at the outer periphery of the printed wiring board in a plan view. The outer peripheral portion of the eccentric weight is fixed to the winding-type air-core armature coil so that a reinforcing member made of a non-magnetic metal is formed on the hanging portion and becomes a skeleton. It was buried to hang.

次に、この発明の実施の形態の図面を説明する。
図1は本発明の偏心ロータの平面図である。(実施例1)
図2は同偏心ロータの底面図である。
図3は図1の偏心ロータを備えた軸方向空隙型コアレス振動モータの縦断面図である。(実施例2)
図4は図1の偏心ロータの一部材の組立説明図である。
図5は図1の偏心ロータの変形例の平面図である。(実施例3)
Next, drawings of embodiments of the present invention will be described.
FIG. 1 is a plan view of an eccentric rotor of the present invention. (Example 1)
FIG. 2 is a bottom view of the eccentric rotor.
FIG. 3 is a longitudinal sectional view of an axial gap type coreless vibration motor provided with the eccentric rotor of FIG. (Example 2)
FIG. 4 is an assembly explanatory diagram of one member of the eccentric rotor of FIG.
FIG. 5 is a plan view of a modification of the eccentric rotor of FIG. (Example 3)

次に本願のモールド型偏心ロータの第1の実施例をを図1、図2によって説明する。
図1は印刷配線板の第1面側から見た平面図であり、図2は図1の裏側に相当する第2面側から見た平面図である。
印刷配線板1は第1面側1aに平面視で複数個の巻線型空心電機子コイルの各有効導体部の半分以上を160度程度の開角で載置できるように形成した領域1h、1nがあり、上方が直線状に切り欠かれ、外径の一部1c、1dがこの領域の外側で巻線型空心電機子コイルの内径の半分以上で、ほぼ前記巻線型空心電機子コイル内径の半径方向外側の円弧のあたりを接線とする直線に形成され、この内径部分に第1の端末結線部ランド1rが形成されると共に、第2の端末結線ランド1tが前記各領域間の直線部分1eに形成される。
この印刷配線板1の第2面側1bでは、回転中心と同心に複数個の整流子セグメントからなる整流子1Sが印刷形成されて表面が金メッキされている。前記第1面の各領域に巻線型空心電機子コイル2A、2Bが載置されて巻始め端末2a、2bが前記第1の端末結線用ランド1rに接続されると共に、巻き終わり端末が前記第2の端末結線ランド1tに接続され、該巻線型空心電機子コイル2A、2Bの外径を覆うように前記印刷配線板1に樹脂5で一体化されるようになっている。
ここで、前記巻線型空心電機子コイル2A、2Bの巻始め端末2a、2bを前記第1の端末結線ランドに接続手段としては、図3に示すようなジグを利用する。すなわち、ジグJは、前記印刷配線板1が載置される平坦部分Jaと、この印刷配線板1の直線で形成された外径の一部1c、1dのところが各空心電機子コイル2A、2Bの外側の無効導体部分の形状に合わせて彫り込まれた凹所Jbが形成されたもので、このジグJを使用するには、この凹所Jbに前記各空心電機子コイル2A、2Bを立てて収め、巻始め端末2a、2bを前記第1の端末結線用ランド1rに半田付し、その後、前記外径の一部1c、1dを支点として該各空心電機子コイル2A、2Bを90度回転して想像線で示すように前記領域1h、1nに寝かせて接着するようにすればよい。もし該コイルの外径がかなりばらつくなら、接着剤が硬化する前に、さらに、必要に応じて抜け止めピンJdで支持された可動部材Jcをスライドさせて該コイルの外形を合わせるようにして載置する位置を一定にすることもできる。
このようにすれば、内径の小さい空心電機子コイルでも無理に半田こてを入れなくて済むので、巻始め端末の結線処理が容易にでき、空心電機子コイルはサイズがばらついても外径の位置が一定になるので、樹脂成形時に該コイルの外径に回り込む樹脂の量が一定にでき、強度的に安定する。
その後、巻き終わり端末が前記第2の端末結線ランド1tに半田接続されるが、この部分は、巻線型空心電機子コイル2A、2Bはオーバーラップしないように離れているので、半田こてによる半田付は容易にできる。
Next, a first embodiment of the mold type eccentric rotor of the present application will be described with reference to FIGS.
1 is a plan view seen from the first surface side of the printed wiring board, and FIG. 2 is a plan view seen from the second surface side corresponding to the back side of FIG.
The printed wiring board 1 has regions 1h and 1n formed on the first surface side 1a so that more than half of each of the effective conductor portions of the plurality of wound air-core armature coils can be placed at an open angle of about 160 degrees in plan view. And the upper part 1c, 1d is more than half of the inner diameter of the wound air-core armature coil outside the region, and the radius of the inner diameter of the wound air-core armature coil is substantially the same. The first terminal connection land 1r is formed in the inner diameter portion of the straight line having a tangent line around the outer arc, and the second terminal connection land 1t is formed on the straight portion 1e between the regions. It is formed.
On the second surface side 1b of the printed wiring board 1, a commutator 1S composed of a plurality of commutator segments is concentrically formed with the center of rotation, and the surface thereof is gold-plated. Winding-type air-core armature coils 2A and 2B are placed in each region of the first surface, and winding start terminals 2a and 2b are connected to the first terminal connection land 1r, and a winding end terminal is 2 is connected to the terminal connection land 1t, and is integrated with the printed wiring board 1 with the resin 5 so as to cover the outer diameters of the winding type air-core armature coils 2A and 2B.
Here, a jig as shown in FIG. 3 is used as means for connecting the winding start terminals 2a and 2b of the wound air-core armature coils 2A and 2B to the first terminal connection land. That is, the jig J has a flat portion Ja on which the printed wiring board 1 is placed, and portions 1c and 1d of the outer diameter formed by straight lines of the printed wiring board 1 at the air core armature coils 2A and 2B. In order to use this jig J, each of the air-core armature coils 2A, 2B is set up in the recess Jb. The winding start terminals 2a and 2b are soldered to the first terminal connection land 1r, and then each of the air core armature coils 2A and 2B is rotated by 90 degrees with the outer diameter portions 1c and 1d as fulcrums. Then, as shown by an imaginary line, the regions 1h and 1n may be laid and bonded. If the outer diameter of the coil varies considerably, the movable member Jc supported by the retaining pin Jd is slid as necessary to fit the outer shape of the coil before the adhesive hardens. It is also possible to make the placement position constant.
In this way, even an air core armature coil with a small inner diameter does not have to be forced to insert a soldering iron, so it is easy to connect the winding start terminal, and the air core armature coil has an outer diameter even if the size varies. Since the position is constant, the amount of resin that wraps around the outer diameter of the coil during resin molding can be made constant, and the strength is stable.
Thereafter, the winding end terminal is solder-connected to the second terminal connection land 1t, but this portion is separated so as not to overlap the winding type air-core armature coils 2A, 2B. Attaching can be done easily.

前記印刷配線板1は、ロータ自体で振動を発生させるために、回転中心を介して前記空心電機子コイル反対側の広い方が欠除されていて非円形となっており、この欠除された部分に比重15以上で軸方向抜け止め手段として第1、第2の段部4a、4bが設けられたタングステン合金製の偏心ウエイト4が配され、前記印刷配線板1、空心電機子コイル2A、2Bと共に比重1.8以下の樹脂5で一体化され、偏心ロータRに構成されている。
この偏心ロータRには、さらに回転中心に1個の焼結含油軸受3が備えられる。この焼結含油軸受3は樹脂Jで一体成形しても、あるいは樹脂成形後、圧入などで嵌着する手段を採用しても良い。
前記樹脂5の外周部分には、樹脂の部分の断面積を少しでも大にして強度を出すために垂下部5aが形成される。この垂下部5aは、前記偏心ウエイト4の弧状部から前記空心電機子コイル2A、2Bまで平面視で重畳するように掛かって形成される。
この偏心ウエイト4には、平面視で馬蹄型の補強部材Cが外周にスポット溶接などの手段で固着される。この補強部材は堅さを得るためにばね性で非磁性のステンレス材からなる。この補強部材の両端は、平面視で前記空心電機子コイル2A、2Bに一部が重畳するように掛かっている。したがって、この空心電機子コイル2A、2Bと偏心ウエイト4とは樹脂で一体成形する際に、垂下部5aに該補強部材Cが骨幹となって埋め込まれることになり、偏心ウエイトと空心電機子コイルを一体化する樹脂5が破損しにくくなる。
なお、この垂下部5aは、後記の図3に示すように組み合わせるマグネットの外周に来るようになっているので、磁気回路が犠牲となるおそれはない。
このようにすると、空心電機子コイル2A、2Bの巻き始め端末2aは、該コイルの内径内に収容されるので、射出金型から保護されるため、断線、ショートの問題が回避できる。
ここで、前記樹脂5は、重心位置をできるだけ相殺してしまわないように密度(比重)が少なく、成形性と再生性のよいポリブチレンテレフタレート樹脂など密度が1.8以下のもので、伸びと曲げ強度のバランス上から15%程度のガラス繊維の入ったものが選定される。
また、この偏心ウエイト4には、モータサイズ、たとえば直径14mm〜10mmなどに応動して消費電流と遠心力を勘案して密度(比重)が17〜18.4のものが選定される。
前記焼結含油軸受3は、図3に示すように円筒形状で印刷配線板1の中心位置に設けられ、後述の軸8により偏心ロータRがブラケット7へ回転自在に支持される。また、この焼結含油軸受3の軸方向中央部には、外周に凸部3aが設けられている。この凸部3aにより焼結含油軸受3はモールド成形後、偏心ロータRに対する軸方向への抜け強度を増強することができる。
また、凸部3aは筒状の焼結含油軸受3の外周全周に亘らず断続して形成しても同様の効果が得られ、このようにすれば、回転方向に対する取り付け強度も強くすることができる。
The printed wiring board 1 has a non-circular shape in which the wider side on the opposite side of the air-core armature coil is removed through the rotation center in order to generate vibrations in the rotor itself. An eccentric weight 4 made of tungsten alloy having a specific gravity of 15 or more and provided with first and second stepped portions 4a, 4b as axial retaining means is disposed on the portion, and the printed wiring board 1, air core armature coil 2A, The eccentric rotor R is integrated with the resin 5 having a specific gravity of 1.8 or less together with 2B.
The eccentric rotor R is further provided with one sintered oil-impregnated bearing 3 at the center of rotation. The sintered oil-impregnated bearing 3 may be integrally molded with the resin J, or a means for fitting by press-fitting after resin molding may be employed.
A drooping portion 5a is formed on the outer peripheral portion of the resin 5 in order to increase the cross-sectional area of the resin portion as much as possible to increase the strength. The hanging portion 5a is formed so as to overlap from the arc-shaped portion of the eccentric weight 4 to the air-core armature coils 2A and 2B in a plan view.
On the eccentric weight 4, a horseshoe-shaped reinforcing member C is fixed to the outer periphery by means such as spot welding in a plan view. This reinforcing member is made of a springy non-magnetic stainless material in order to obtain rigidity. Both ends of the reinforcing member are hooked so as to partially overlap the air-core armature coils 2A and 2B in plan view. Therefore, when the air-core armature coils 2A, 2B and the eccentric weight 4 are integrally formed of resin, the reinforcing member C is embedded in the hanging portion 5a as a skeleton, so that the eccentric weight and the air-core armature coil Is less likely to break.
In addition, since this drooping part 5a comes to the outer periphery of the magnet combined as shown in below-mentioned FIG. 3, there is no possibility that a magnetic circuit may be sacrificed.
In this way, since the winding start terminal 2a of the air-core armature coils 2A and 2B is accommodated within the inner diameter of the coils, it is protected from the injection mold, so that the problems of disconnection and short circuit can be avoided.
Here, the resin 5 has a low density (specific gravity) so as not to cancel the position of the center of gravity as much as possible, and has a density of 1.8 or less, such as a polybutylene terephthalate resin having good moldability and reproducibility, and elongation. A glass fiber containing about 15% glass fiber is selected in view of the balance of bending strength.
The eccentric weight 4 is selected to have a density (specific gravity) of 17 to 18.4 in consideration of current consumption and centrifugal force in response to a motor size, for example, a diameter of 14 mm to 10 mm.
As shown in FIG. 3, the sintered oil-impregnated bearing 3 has a cylindrical shape and is provided at the center position of the printed wiring board 1, and an eccentric rotor R is rotatably supported on the bracket 7 by a shaft 8 described later. Further, a convex portion 3 a is provided on the outer periphery at the center portion in the axial direction of the sintered oil-impregnated bearing 3. By this convex portion 3a, the sintered oil-impregnated bearing 3 can increase the axial pull-out strength with respect to the eccentric rotor R after molding.
Further, the same effect can be obtained even if the convex portion 3a is intermittently formed not over the entire outer periphery of the cylindrical sintered oil-impregnated bearing 3, and in this way, the mounting strength in the rotating direction is also increased. be able to.

このようにした偏心ロータRは、図3に示すような軸方向空隙型コアレスモータとして活用される。すなわち、偏心ロータRは、前記焼結含油軸受3を介してブラケット6の中心に設けたバーリング部6aに基端が圧入固着された軸8に回転自在に装着され、前記ブラケット6とケース7からなるハウジングHに格納される。
このハウジングHは薄型でしかも強度があるように構成するために厚みが0.2mm以下、好ましくは0.15mm〜0.1mmに磁性ステンレスで構成される。前記偏心ロータRは、該ブラケット6に配されたリング状の軸方向空隙型マグネット9の磁界を軸方向空隙を介して受ける。このマグネットの内径部でフレキシブルブラシベースFに配された一対のブラシ10、10によって前記整流子Sを介して電力を受けるようになっている。ここで、該フレキシブルベースFはポリエステルあるいはポリイミドフイルムからなり、厚みがのりを含めて0.18mm程度のものが選定される。
前記ブラケット6には、前記マグネット9が載置された部分を横断するように透孔6bが設けられ、前記ブラシベースFの一部が半径方向に延ばされ、この透孔6aを通って側方に給電電極Faとして導出されるようになっている。
この透孔によってブラシベースの厚みが無視できるので、モータとして薄いものが実現できる。
The eccentric rotor R thus configured is used as an axial gap type coreless motor as shown in FIG. That is, the eccentric rotor R is rotatably mounted on the shaft 8 whose base end is press-fitted and fixed to the burring portion 6 a provided at the center of the bracket 6 via the sintered oil-impregnated bearing 3. In a housing H.
The housing H is made of magnetic stainless steel with a thickness of 0.2 mm or less, preferably 0.15 mm to 0.1 mm, so as to be thin and strong. The eccentric rotor R receives the magnetic field of the ring-shaped axial gap type magnet 9 disposed on the bracket 6 through the axial gap. Electric power is received through the commutator S by a pair of brushes 10 and 10 disposed on the flexible brush base F at the inner diameter portion of the magnet. Here, the flexible base F is made of polyester or polyimide film, and a thickness of about 0.18 mm including the glue is selected.
The bracket 6 is provided with a through hole 6b so as to cross a portion where the magnet 9 is placed, and a part of the brush base F is extended in the radial direction, and passes through the through hole 6a. It is derived as a feeding electrode Fa.
Since the thickness of the brush base can be ignored by this through hole, a thin motor can be realized.

図5は、偏心ロータの変形例で、補強部材CCをリング状に形成し、偏心ウエイト4と印刷配線板11の全周をカバーするようにし、偏心ロータR1として円盤形に樹脂成形によって構成したもので、前図と同一な部材は同符号を付してその説明を省略する。
すなわち、ここで印刷配線板11は図1の印刷配線板1との相違点として平面視で上方が円弧部11eになっているもので、偏心ウエイト4が格納される部分は削除されて非円形になっているには変わりがない。円弧部11eによって前記のような垂下部55aは、マグネットに当たらないように全周に形成することができる。
前記補強部材CCは、ここでは非磁性の厚みが0.3mm程度のばね性洋白材からなるもので平面視でリング状に形成され、前記偏心ウエイト4の外周にスポット溶接などの手段で固着されると共に前記円弧部11eに形成したランド11gに半田付で固着される。
その後、この補強部材CCは、印刷配線板11、空心電機子コイル2A、2B及び偏心ウエイト4を樹脂55で一体に成形する際に垂下部55aに埋め込まれる。
このようにすれば、偏心ウエイト4に固着された補強部材CCは、平面視で前記空心電機子コイル2A、2Bに一部が重畳するように掛かり、前記印刷配線板のランド11gにも固着されているので該補強部材CCが強い骨幹となり、偏心ウエイトの重量が大きくなっても樹脂55が破損しにくくなる。
FIG. 5 shows a modification of the eccentric rotor, in which the reinforcing member CC is formed in a ring shape so as to cover the entire circumference of the eccentric weight 4 and the printed wiring board 11, and the eccentric rotor R1 is formed by resin molding into a disk shape. Therefore, the same members as those in the previous figure are denoted by the same reference numerals and the description thereof is omitted.
That is, here, the printed wiring board 11 is different from the printed wiring board 1 of FIG. 1 in that the upper portion is an arc portion 11e in plan view, and the portion in which the eccentric weight 4 is stored is deleted and is non-circular. It has not changed. The hanging portion 55a as described above can be formed on the entire circumference by the arc portion 11e so as not to hit the magnet.
Here, the reinforcing member CC is made of a springy white material having a nonmagnetic thickness of about 0.3 mm, is formed in a ring shape in plan view, and is fixed to the outer periphery of the eccentric weight 4 by means such as spot welding. At the same time, it is fixed to the land 11g formed on the arc portion 11e by soldering.
Thereafter, the reinforcing member CC is embedded in the hanging portion 55a when the printed wiring board 11, the air-core armature coils 2A and 2B, and the eccentric weight 4 are integrally formed with the resin 55.
In this way, the reinforcing member CC fixed to the eccentric weight 4 is hooked so as to partially overlap the air-core armature coils 2A and 2B in a plan view, and is also fixed to the land 11g of the printed wiring board. Therefore, the reinforcing member CC becomes a strong skeleton, and even if the weight of the eccentric weight increases, the resin 55 is hardly damaged.

この発明によるモールド型偏心ロータは、上述のように空心電機子コイル、偏心ウエイトを印刷配線板に一体にモールドする構成にして強度を十分維持できるので薄型にでき、特に軸方向空隙型コアレス振動モータに採用して極めて薄く構成できるようになり、移動体通信装置のような携帯機器に無音報知手段として産業上有意義な技術手段として奏するものである。
また、整流子として印刷配線板で形成したものを示したが、整流子セグメントは銅箔のままで別の整流子をこのセグメントに配したものでもよい。
なお、磁極の数は6極、4極でも組みあわせる軸方向空心電機子コイルに合わせて対応でき、コイルの数についても2個に限定する必要はなく、組みあわせるマグネットの磁極に合わせて、たとえば3個にも設定できる。
The mold type eccentric rotor according to the present invention can be thinned because the structure is such that the air-core armature coil and the eccentric weight are integrally molded on the printed wiring board as described above, so that the strength can be sufficiently reduced, and particularly the axial gap coreless vibration motor. Therefore, it can be configured to be extremely thin and can be used as an industrially meaningful technical means as a silent notification means for portable devices such as mobile communication devices.
Moreover, although what was formed with the printed wiring board as a commutator was shown, the commutator segment may arrange | position another commutator to this segment with a copper foil.
The number of magnetic poles can be adjusted according to the axial air-core armature coil to be combined even with 6 poles or 4 poles, and the number of coils does not need to be limited to 2; according to the magnetic pole of the magnet to be combined, It can be set to three.

本発明の偏心ロータの平面図である。(実施例1)It is a top view of the eccentric rotor of this invention. (Example 1) 図1の偏心ロータの底面図である。It is a bottom view of the eccentric rotor of FIG. 同偏心ロータを備えた軸方向空隙型コアレス振動モータを示し、偏心ロータの部分が図2のA−A線切断の断面図である。The axial direction void | hole type coreless vibration motor provided with the same eccentric rotor is shown, and the part of an eccentric rotor is sectional drawing of the AA of FIG. 図1の偏心ロータの一部材の組立説明図である。It is assembly explanatory drawing of one member of the eccentric rotor of FIG. 図1の偏心ロータの変形例の平面図である。(実施例3)It is a top view of the modification of the eccentric rotor of FIG. Example 3

符号の説明Explanation of symbols

1、11 印刷配線板
2A、2B 空心電機子コイル
3 焼結含油軸受
4 偏心ウエイト
5、55 樹脂
6 ブラケット
7 ケース
H ハウジング
8 軸
9 マグネット
10 ブラシ
F フレキシブルベース
R、R1 偏心ロータ
1,11 Printed wiring board
2A, 2B Air-core armature coil 3 Sintered oil-impregnated bearing 4 Eccentric weight 5, 55 Resin 6 Bracket 7 Case H Housing 8 Shaft 9 Magnet 10 Brush F Flexible base
R, R1 Eccentric rotor

Claims (4)

印刷配線板は回転中心に軸挿通孔が設けられ、第1面側にこの軸挿通孔を介して半径方向外方に所定の開角で形成した少なくとも二つの空心電機子コイル載置エリアがあり、さらに、この空心電機子コイル載置エリアの間に形成された端末結線部が設けられ、第2面側で前記軸挿通孔の周囲に複数個の整流子セグメントからなる整流子が形成され、前記空心電機子コイル載置エリアに少なくとも二つの巻線型空心電機子コイルが偏心して配され、タングステン合金製の偏心ウエイトが回転中心を介して前記巻線型空心電機子コイルの反対側の空所に該空心電機子コイルと共に比重1.8以下の樹脂で前記印刷配線板に一体化されたもので、平面視で前記偏心ウエイトの外周部分を回り込んで前記巻線型空心電機子コイルに掛かるように垂下部が同樹脂で形成され、非磁性金属からなる補強部材が前記偏心ウエイトの外周部分に固着されると共に前記巻線型空心電機子コイルに掛かるように前記垂下部に骨幹として埋設されたモールド型偏心ロータ。   The printed wiring board is provided with a shaft insertion hole at the center of rotation, and has at least two air-core armature coil mounting areas formed at a predetermined opening angle radially outward through the shaft insertion hole on the first surface side. Furthermore, a terminal connection portion formed between the air-core armature coil placement areas is provided, and a commutator including a plurality of commutator segments is formed around the shaft insertion hole on the second surface side, At least two wound-type air-core armature coils are arranged eccentrically in the air-core armature coil placement area, and an eccentric weight made of tungsten alloy is located in a space on the opposite side of the wound-type air-core armature coil via a rotation center. The air core armature coil is integrated with the printed wiring board with a resin having a specific gravity of 1.8 or less so as to wrap around the outer periphery of the eccentric weight in a plan view so as to be hooked on the wire wound type armature armature coil. Hanging part Formed in the same resin, the wire-wound air-core buried molded eccentric rotor as diaphysis to the suspended portion as applied to the armature coil with a reinforcing member made of a nonmagnetic metal is secured to the outer periphery of the eccentric weight. 前記印刷配線板は前記偏心ウエイトの主要配置部分が削除されて非円形となっており、前記巻線空心電機子コイルは配置開角が150〜170度の2個からなり、前記補強部材は少なくとも一部が前記偏心ウエイトに樹脂成形前に固着され、前記軸挿通孔に焼結含油軸受が配された請求項1記載のモールド型偏心ロータ。   The printed wiring board has a non-circular shape in which a main arrangement portion of the eccentric weight is deleted, the winding air-core armature coil has two arrangement opening angles of 150 to 170 degrees, and the reinforcing member is at least The mold type eccentric rotor according to claim 1, wherein a part thereof is fixed to the eccentric weight before resin molding, and a sintered oil-impregnated bearing is disposed in the shaft insertion hole. 請求項1又は2に記載のモールド型偏心ロータと、このモールド型偏心ロータを支承する軸と、この軸を支承するハウジングと、このハウジングの一部を構成するブラケットと、このブラケットに添設されたブラシベースと、前記偏心ロータに空隙を介して臨ませるようにブラケットの一部に配された軸方向空隙型マグネットと、該マグネットの内側で前記ブラシベースに配されたもので前記偏心ロータの整流子に摺接させると共に前記モールド型偏心ロータを前記ハウジングの一部を構成するケース側に付勢させるブラシとを備え、前記ブラシベースの一部が前記マグネットの下方を通ってハウジング側方に給電電極として導出された軸方向空隙型コアレス振動モータ。   The molded eccentric rotor according to claim 1, a shaft that supports the molded eccentric rotor, a housing that supports the shaft, a bracket that constitutes a part of the housing, and a bracket that is attached to the bracket. A brush base, an axial gap type magnet disposed in a part of the bracket so as to face the eccentric rotor via a gap, and a brush base disposed inside the magnet. A brush that slidably contacts the commutator and urges the mold-type eccentric rotor toward a case forming a part of the housing, and a part of the brush base passes below the magnet to the side of the housing. An axial gap type coreless vibration motor derived as a feed electrode. 前記軸は少なくとも一端が前記ブラケットに固定されると共に、このブラケットにハウジングを構成するケースの開口部が組み付けられ、前記ハウジングは厚みが0.2mm以下で構成されると共に、前記ブラシベースはフレキシブル基板で接着層の厚みが0.18mm以下で構成され、前記ハウジングはマグネットが配される部分の一部に透孔が設けられ、この透孔を通って前記ブラシベースの一部がハウジング側方に給電電極として導出されている請求項3記載の軸方向空隙型コアレス振動モータ。   At least one end of the shaft is fixed to the bracket, an opening of a case constituting a housing is assembled to the bracket, the housing is configured with a thickness of 0.2 mm or less, and the brush base is a flexible substrate. The thickness of the adhesive layer is 0.18 mm or less, and the housing is provided with a through hole in a part of the part where the magnet is arranged, and a part of the brush base is disposed on the side of the housing through the through hole. The axial gap type coreless vibration motor according to claim 3, wherein the motor is led out as a feeding electrode.
JP2003321577A 2003-09-12 2003-09-12 An axial air gap type coreless vibration motor having the same type rotor as the mold type eccentric rotor Expired - Fee Related JP3796238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321577A JP3796238B2 (en) 2003-09-12 2003-09-12 An axial air gap type coreless vibration motor having the same type rotor as the mold type eccentric rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321577A JP3796238B2 (en) 2003-09-12 2003-09-12 An axial air gap type coreless vibration motor having the same type rotor as the mold type eccentric rotor

Publications (2)

Publication Number Publication Date
JP2005094844A true JP2005094844A (en) 2005-04-07
JP3796238B2 JP3796238B2 (en) 2006-07-12

Family

ID=34453221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321577A Expired - Fee Related JP3796238B2 (en) 2003-09-12 2003-09-12 An axial air gap type coreless vibration motor having the same type rotor as the mold type eccentric rotor

Country Status (1)

Country Link
JP (1) JP3796238B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737529B1 (en) * 2005-09-27 2007-07-10 엘지이노텍 주식회사 Slim type vibration motor
KR100765111B1 (en) 2005-07-11 2007-10-08 엘지이노텍 주식회사 Vibration Motor
JP2008086066A (en) * 2006-09-26 2008-04-10 Tokyo Parts Ind Co Ltd Axial air-gap rotor and axial air-gap coreless motor equipped with the same
US8031440B2 (en) 2005-10-14 2011-10-04 Hitachi Global Storage Technologies Netherlands B.V. Coil support structure and magnetic disk drive
JP2012115108A (en) * 2010-11-26 2012-06-14 Yaskawa Electric Corp Stator of rotary electric machine and rotary electric machine
KR101275247B1 (en) 2012-03-28 2013-06-17 자화전자(주) Flexible circuit and vibration motor therewith

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765111B1 (en) 2005-07-11 2007-10-08 엘지이노텍 주식회사 Vibration Motor
KR100737529B1 (en) * 2005-09-27 2007-07-10 엘지이노텍 주식회사 Slim type vibration motor
US8031440B2 (en) 2005-10-14 2011-10-04 Hitachi Global Storage Technologies Netherlands B.V. Coil support structure and magnetic disk drive
JP2008086066A (en) * 2006-09-26 2008-04-10 Tokyo Parts Ind Co Ltd Axial air-gap rotor and axial air-gap coreless motor equipped with the same
JP2012115108A (en) * 2010-11-26 2012-06-14 Yaskawa Electric Corp Stator of rotary electric machine and rotary electric machine
KR101275247B1 (en) 2012-03-28 2013-06-17 자화전자(주) Flexible circuit and vibration motor therewith

Also Published As

Publication number Publication date
JP3796238B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US6600245B1 (en) Vibration motor
US6507136B1 (en) Eccentric commutator for vibrator motor
JP3628989B2 (en) Disc-shaped eccentric rotor and flat vibration motor having the same
US20110025149A1 (en) Flat type vibration motor
US6765331B2 (en) Eccentric rotor having high density member, manufacturing method thereof, and flat coreless vibrator motor using the eccentric rotor
JP3796238B2 (en) An axial air gap type coreless vibration motor having the same type rotor as the mold type eccentric rotor
JP3560601B1 (en) Molded eccentric rotor and axial gap type coreless vibration motor having the same rotor
KR20010078118A (en) Non-circular, flat motor and manufacturing method thereof
JP5254312B2 (en) motor
JP3472761B2 (en) Small brushless vibration motor
JP4714815B2 (en) DC three-phase brushless motor
JP3706016B2 (en) Flat small brushless vibration motor
JP3894368B2 (en) Motor armature, axial gap motor with the same armature
JP2005012935A (en) Molded eccentric rotor, and axial air-gap type coreless vibrating motor equipped with that rotor
JP6049678B2 (en) motor
JP2009005491A (en) Axial air-gap type coreless vibration motor
JP2004174296A (en) Axial gap type brushless vibration motor having sensor-less drive circuit built therein
JP3572484B2 (en) Eccentric rotor with high-density member, manufacturing method of the rotor, and flat coreless vibration motor using the rotor
JP3948626B2 (en) Eccentric rotor and vibration motor using the eccentric rotor
JP3759092B2 (en) Flat coreless vibration motor equipped with an eccentric rotor and the same rotor
JP3357355B2 (en) Disc-shaped eccentric rotor and flat type vibration motor having the same
JP2005065378A (en) Rotor for coreless motor, method for manufacturing the same and axial air-gap type coreless motor having the same
JP3493352B2 (en) Eccentric rotor having high-density member, manufacturing method of the rotor, and flat coreless vibration motor using the rotor
JP3913214B2 (en) Eccentric rotor and vibration motor using the eccentric rotor
JP2006094644A (en) Brushless motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060303

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees