JP3628989B2 - Disc-shaped eccentric rotor and flat vibration motor having the same - Google Patents

Disc-shaped eccentric rotor and flat vibration motor having the same Download PDF

Info

Publication number
JP3628989B2
JP3628989B2 JP2001240021A JP2001240021A JP3628989B2 JP 3628989 B2 JP3628989 B2 JP 3628989B2 JP 2001240021 A JP2001240021 A JP 2001240021A JP 2001240021 A JP2001240021 A JP 2001240021A JP 3628989 B2 JP3628989 B2 JP 3628989B2
Authority
JP
Japan
Prior art keywords
printed wiring
air
eccentric rotor
core coil
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001240021A
Other languages
Japanese (ja)
Other versions
JP2003047912A (en
Inventor
博之 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP2001240021A priority Critical patent/JP3628989B2/en
Publication of JP2003047912A publication Critical patent/JP2003047912A/en
Application granted granted Critical
Publication of JP3628989B2 publication Critical patent/JP3628989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Dc Machiner (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Windings For Motors And Generators (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、移動体通信装置のサイレントコール手段として用いられる扁平型振動モータとその主要部材である偏心ロータの改良に関する。
【0002】
【従来の技術】
従来より、ページャや携帯電話機等のサイレントコール手段として図7に示すように円筒直流モータMの出力軸Sにタングステン合金製の偏心ウエイトWを配し、回転時にこの偏心ウエイトWの遠心力を利用して振動を発生させるようにしたものが知られている。
【0003】
ところが、上記従来の出力軸Sに偏心ウエイトWを付加するものでは、ページャなどの機器側において、この偏心ウエイトWの旋回空間を配慮しなくてはならないなど、設計的な制約があり、高価なタングステン合金を使用するためコスト的にも問題があった。
【0004】
最近では、このような円筒型直流モータも細筒が求められ、直径が4mm程度のものが使われ始めている。しかしながら、振動量を得るため、モータ本体は4mmでも出力軸に配した偏心ウエイトの旋回空間は6mm程度あり、また、円筒型はそのままでは載置することができず、通常は取り付け部材が必要となって、かなりの占有空間を設定せざる得ず、携帯機器の薄型化にネックとなっている。 また効率も20〜30%台のため、消費電流が大となってしまう問題がある。 このため、3mm以下の厚みが容易に確保できる扁平型モータが再認識され始めている。
本出願人は先に出力軸をなくして、本来通常回転型等分配置した3個の空心コイルの内1個を反対側に移相して偏らせて配置することにより、内蔵するロータ自体を偏心させた扁平コアレス型振動モータを特許第2137724号(米国特許5036239号)として提案している。
【0005】
同モータは、電機子コイルの有効導体長も多く採れるので、比較的高効率となり、3V入力で10mA程度の消費電力が容易に得られる。また、出力軸、偏心ウエイトがないので、設計的な制約を受けず、使い勝手がよいし、旋回時の他部品と接触の危険性がないなど、市場に好評をもって迎えられているが、反面、片側に3個の空心コアレス巻線を有するので、コイルのサイズが小さなものにせざるを得ず、部品点数や加工工数が増加してしまう。
【0006】
【発明が解決しようとする課題】
上記のような片側に3個の空心電機子コイルを配置した内蔵型偏心ロータを備えたものは、小型化されるほど空心電機子コイルの間隔がなくなり、その端末を空心電機子コイルを損傷しないようにして整流子に結線するのが至難の技となる。また、各空心電機子コイルはマグネットの磁極開角より小にせざるを得ず、さらなる効率の向上が望まれている。また、巻線型空心電機子コイルが3個のため、部品点数も多くなる。
最近においては、携帯電話機の小型化に伴い、無音報知手段として以前のような大振動量が必ずしも必要でなくなっている。 また、コストダウンの目的により、3相方式の1相を欠相した2個の空心コイルからなるものも提案されているが、直径10mm以下小型化が要求されてくると、パワーがもう少し必要である。
【0007】
この発明の第1の目的は、遠心力による振動を適切に発生しながらも、高効率を得て小型化が容易にできるようにするものである。
この発明の第2の目的は、コイル自体で重心を中心からずらして別に偏心部材を配置する必要のない円盤形偏心ロータにするものである。
この発明の第3の目的は、巻線型空心コイルの厚み空間を利用して高比重ウエイトを配し、さらに振動を大にできるようにするものでもある。
この発明の第4の目的は、印刷配線コイルによりロータを軸方の動きを防ぐようにするものである。
この発明の第5の目的はこのような扁平な円盤形偏心ロータを用いることにより、高効率な部品点数の少ないコスト的有利な扁平型振動モータを提供することにある。
【0008】
【課題を解決するための手段】
上記の基本的な課題解決手段は、請求項1に示す発明のように中心に軸挿通孔を設け、この軸挿通孔の周囲に複数個の整流子セグメントランドを形成し、外形を平面から見てほぼ円盤形に形成した印刷配線コミュテータ部材を有し、この印刷配線コミュテータ部材の少なくとも1面に重畳しないように少なくとも3個の印刷配線空心コイルを等分に形成し、前記印刷配線コミュテータ部材の他面の軸挿通孔の位置で軸受ホルダを軸方向に延設し、この軸受ホルダの径方向外方に1個あるいは2個の巻線型空心コイルを偏在させ、前記印刷配線コイルの少なくとも1個と直列結線したもので達成できる。
具体的な手段は請求項2、3に示す発明のように前記巻線型空心コイルは1個からなり、この巻線型空心コイルは同相の印刷配線空心コイルと直列接続されたものか、前記巻線型空心コイルは2個からなり、この巻線型空心コイルは同相の印刷配線空心コイルとそれぞれ直列接続されたもので達成できる。
別の具体的な手段は、請求項4に示す発明のように前記印刷配線コイルは磁性メッキが施されているものがよい。
さらに別の具体的な手段は、請求項5に示す発明のように前記巻線型空心コイルと重畳しない位置に巻線型空心コイルのほぼ厚み内で金属を含む偏心ウエイトが配されているものにするのがよい。
さらに、請求項6に示す発明のように前記整流子セグメントランド間に火花消去用印刷抵抗を配したものでもよい。
これらの円盤形偏心ロータは、請求項7、8に示す発明のように前記請求項1〜6のいずれか1項に記載の円盤形偏心ロータと、この偏心ロータを支承する軸と、このロータに軸方向空隙を介して磁界を与えるマグネットと、このマグネットの内側に配され、前記平板型整流子部材を介して空心コイルに電力を与えるブラシと、これらを格納したハウジングからなるものか、前記軸は一端が前記ハウジングの一方に固定され、前記偏心ロータを装着し、前記ハウジングの他方に配した凹所に前記軸の他端をはめ込むことにより、径方向に動くのを防止させた扁平型振動モータにするものがよい。
【0009】
上記請求項1に示す課題達成手段によれば、円盤形であるので磁極の開角である基準電気開角まで有効導体部が来るように各空心コイルのサイズ設定ができるため高効率となり、巻線型コイルを偏在させることにより、円盤形ながら偏心させることができる。
また、請求項2、3に示す課題達成手段によれば、印刷配線空心コイルと巻線型空心コイルの重量差によって重心が偏ることになり、振動が容易に得られる。 請求項4に示す課題達成手段によれば、ロータの軸方向の不必要な振動が押さえ込めるので、ブラシとの接触が安定する。
請求項5に示す課題達成手段によれば、巻線型コイルとタングステン合金の重量よって重心が半径方向への大きく移動して振動量を大にすることができる。 請求項6に示す課題達成手段によれば、整流子、ブラシ間のスパークが防止できる。
請求項7、8に示す課題達成手段によれば、円盤形偏心ロータのため空心コイルの形状を有効導体部が基準電気開角(磁極の開角)にできるので高効率なものとなり、部品点数の少ないコスト的有利な扁平型振動モータにできる。
【0010】
【発明の実施の形態】
以下、図面に示す各実施の形態に基づき本発明の構成を説明する。
図1は本発明の円盤形偏心ロータを構成する印刷配線コミュテータ部材の第1の実施の形態を示すもので一面側から見た平面図である。
図2は同印刷配線コミュテータ部材を使用した偏心ロータの他面側から見た平面図である。
図3は図2のA−A線切断断面図である。
図4は本発明の円盤形偏心ロータの第2の実施の形態を示す平面図である。 図5(A)は上記第1の実施の形態の結線状態を示す概念的動作説明図である。
(B)は同第2の実施の形態の結線状態を示す概念的動作説明図である。
図6は図2、図3の円盤形偏心ロータを用いた扁平型コアレス振動モータの断面図である。
【0011】
図1において、1は、銅箔を両面に形成した厚みが0.2mm程度の印刷配線板を外形が平面から見てほぼ円盤形になるように形成して印刷配線コミュテータ部材で、中心に軸挿通孔1hを設け、この軸挿通孔1hの周囲の一面に対向するセグメントを他面も利用してスルーホールS1,S2などでショートした6個の整流子セグメントランドa、b、c、d、eおよびfを形成する。これらの対向する整流子セグメントランドaとd、bとe、cとfは他面でスルーホールS1,S2を介してショートさせている。その外方に3個の有効導体部分(放線方向)の中心がほぼ90度(マグネットの磁極開角に等しい)になるようにした3個の印刷配線型空心コイル1a、1bおよび1cをピッチ120度で等分に形成している。
前記スルーホールS1,S2は、3個の印刷配線型空心コイル1a、1bおよび1cの間に配されるようになっており、これらの3個の印刷配線型空心コイル1a、1bおよび1cの巻回数が内側で犠牲にならないように配慮している。
前記印刷配線型空心コイル1a、1bおよび1cは、それぞれ図面上で巻き終わり(実質的には巻き始め)を前記整流子セグメントランドa、c及びeに結線し、内径部に形成した連結用スルーホールS3を介し、図2、図3に示すように他面にも同様に形成した同相の印刷配線空心コイル1aa、1bb及び1ccと直列接続している。
また、スルーホールS2は、印刷配線空心コイル外径(実質的に巻き始め)の一部に直結させている。
前記印刷配線空心コイル1aa、1bb及び1ccは、整流子セグメント部分をマスキング等でカバーして表面に薄い磁性メッキ(図示せず)を施している。この磁性メッキは、モータに組み込んだとき、マグネットからの磁界を受けて吸引し、ロータにした場合、マグネット側に付勢させる機能がある。この付勢力によってロータに構成した場合、不要な軸方向の揺動を防ぐ働きをする。
この他面には、さらに、外周部に前記印刷配線空心コイル1aa及び1ccの巻き終わり端末一括結線ランド1dを形成してある。前記印刷配線型空心コイル1bbの巻き終わり端末結線ランド1eは前記外周部に別に形成される。
前記印刷配線コミュテータ部材1の他面には、さらに対向するセグメント結線導体1f、1g及び1iなどを利用して整流子セグメント間に火花消去用印刷抵抗r1が形成される。
この印刷配線コミュテータ部材1の他面には、さらに前記軸挿通孔1hに高摺動性樹脂からなる軸受ホルダ2が一体成形されており、この軸受ホルダ2は120度離れた位置に径方向に延ばした支壁2a、2bおよび2cを有し、一面側にも露出されている。
この軸受ホルダ2の外方の前記印刷配線型空心コイル1bbの位置には、この印刷配線型空心コイル1bbと同相で直列接続された1個の巻線型空心コイル3(図においては、印刷配線コイル1bbと重畳されるので便宜上太い実線で示している)がレジストを兼ねた接着剤を介して配され、その巻き始め端末3aは前記印刷配線型空心コイル1bbの巻き終わり端末結線ランド1eに半田結線されるとともに巻き終わり端末3bは、前記印刷配線空心コイル1aa及び1ccの巻き終わり端末結線ランド1dと同電位の端末結線ランド1adに半田結線される。上記外周部に設けた各結線ランドには切り欠きg、h及びjが形成され、端末を半田付けあるいは熱溶着時又は、他の手段で結線させるときに仮固定できるように掛け止められるようになっている。
このようにした円盤形偏心ロータRは、巻線型空心コイル3が偏在していることにより、重心が偏心しているので、回転時に遠心力が発生して振動を得ることになる。
上記のようなものでも振動モータに構成できるが、本形態では、さらに前記印刷配線空心コイル1aaの位置に重量のある材料たとえば、非磁性なタングステン合金製の偏心ウエイトWを接着などにより配置して重心の径方向移動量を大にしている。
なお、偏心ウエイトはタングステン合金粉末を樹脂に配合した比重6ないし13程度の樹脂製のものにしてもよい。
【0012】
図4は、第2の実施の形態を示すもので、前記印刷配線コミュテータ部材1の他面の印刷配線空心コイル1aaの位置上に2個目の巻線型空心コイル33を配置して偏心ロータR1としたもので、この巻線型空心コイル33は前記印刷配線空心コイル1aaと同相で直列接続される。すなわち、その巻き始め端末33aは前記印刷配線型空心コイル1aaの巻き終わり端末結線ランド1nに半田結線されるとともに巻き終わり端末33bは、前記第1の巻線型空心コイル3に巻き終わり端末と共に、前記印刷配線空心コイル1ccの巻き終わり端末結線ランド1qに半田結線される。
したがって、この巻き終わり端末結線ランド1qが3相のスター結線の共通接続端子となる。
このようにすると、2個の巻線型空心コイル3、33が偏在しているので、重心の径方向への移動が大となり、高価なタングステン合金からなる偏心ウエイトを不要にすることができる。
なお、上記いずれの実施の形態とも6個のセグメントランドはそのまま整流子片を構成できるように表面を金メッキして印刷配線コミュテータにしているが、銅箔のままにして別にたとえば円筒型コミュテータを端子で結線するものでも良い。
【0013】
次に、図5(A),(B)に上記実施の形態のスター結線方式の偏心ロータの結線関係とこのロータを用いたモータとして概念的動作説明図をを示す。ここで、細い実線は印刷配線空心コイル、太い実線は巻線型空心コイルを示している。回転原理は、フレミングの左手の法則に従い周知であるので、電流の方向と回転方向を矢印で示しその動作原理の説明はここでは省略するが,(A)の場合は2個のコイルにトルクが発生し、(B)の場合はマイナスのブラシがセグメントa、bを跨いでいるので、一瞬ではあるが、全コイルがトルクに寄与している。
【0014】
次に図2、3に示すような円盤形偏心ロータRを備えた扁平型振動モータにするには、図6に示すよう軸固定型なものにするとよい。すなわち、偏心ロータRとこの偏心ロータRを回転自在に支承する軸4とこの偏心ロータRに空隙を介して磁界を与えるマグネット5と、このマグネット5の内側に配され、前記印刷配線コミュテータ部材1を介して前記各空心コイル1a、1b、1c及び3に電力を与えるブラシ6と、これらを格納したケース7と前記軸4の一端を固着したブラケット8からなるハウジング9を備えたものにすればよい。
ここで前記軸4の他端は前記ケース7の中心に設けた凹所7aに絶縁フィルムP1を介してはめ込まれて径方向の動きが規制されている。
図中、P2は、ポリエステルフィルムからなるスラストワッシャで、前記偏心ロータを磁性メッキの働きでブラケット側に付勢させたときに受け止めて良好な摺動性を発揮する機能を有する。図中、Fは、ブラシ6を半田付け植設し、前記マグネットの下方を通して外方に導出したフレキシブル給電リードである。
【0015】
上記の各実施の形態は、いずれも印刷配線型空心コイルを一面と他面の2層にしたものを例示したが、厚みが0.1mm程度の印刷配線板を2又は3枚ラミネートした多層基板にして4〜6層の印刷配線型空心コイルにして巻数を増加させてもよい。
また、印刷配線コミュテータ部材1に巻線型空心コイル3、33、偏心ウエイトW等を接着で配置するものを示したが、全体を前記摺動性樹脂で一体成形してもよい。
さらに、上記は樹脂軸受けタイプを示したが、軸ホルダに金属焼結含油軸受を格納したものでもよく、ハウジングに軸受を配して偏心ロータ側に軸を固定したものでもよい。
なお、上記の以外にも、本発明はその技術的思想、または特徴から逸脱しない範囲で他のいろいろな形態で実施することができる。そのため上記の実施の形態は単なる例示にすぎず、限定的に解釈してはならない。
この発明の技術的範囲は特許請求の範囲に示すもので明細書本文には拘束されない。
【0016】
【発明の効果】
この発明の円盤形偏心ロータは、上述のように遠心力による振動を適切に発生しながらも空心コイルを大きくして3相で3個の印刷配線型空心コイルを等分に配置し、これに巻線型空心コイルは1個あるいは2個組みあわせることにより高効率を得ることができ、結線も容易にできる
上記請求項1に示す課題達成手段によれば、円盤形であるので磁極の開角である基準電気開角まで有効導体部が来るように各空心コイルのサイズ設定ができるので高効率となり、巻線型コイルを偏在させることにより、円盤形ながら偏心させることができる。
また、請求項2、3に示す課題達成手段によれば、印刷配線空心コイルと巻線型空心コイルの重量差によって重心が偏ることになり、振動が容易に得られる。 請求項4に示す課題達成手段によれば、ロータの軸方向の不必要な振動が押さえ込めるので、ブラシとの接触が安定する。
請求項5に示す課題達成手段によれば、巻線型コイルとタングステン合金の重量によって重心が半径方向への大きく移動して振動量を大にすることができる。 請求項6に示す課題達成手段によれば、整流子、ブラシ間のスパークが防止できる。
請求項7、8に示す課題達成手段によれば、円盤形偏心ロータのため高効率なものとなり部品点数の少ないコスト的有利な扁平型振動モータにできる。
【図面の簡単な説明】
【図1】本発明の円盤形偏心ロータを構成する印刷配線コミュテータ部材の第1の実施の形態を示すもので一面側から見た平面図である。
【図2】同印刷配線コミュテータ部材を使用した偏心ロータの他面側から見た平面図である。
【図3】図2のA−A線切断断面図である。
【図4】図4は本発明の円盤形偏心ロータの第2の実施の形態を示す平面図である。
【図5】(A)は上記第1の実施の形態の結線状態示す概念的動作説明図である。
(B)は同第2の実施の形態の結線状態示す概念的動作説明図である。
【図6】図2、図3の円盤形偏心ロータを用いた扁平型コアレス振動モータの断面図である。
【図7】従来の小型振動モータの斜視図である。
【符号の説明】
1 印刷配線コミュテータ部材
1h 軸挿通孔
a、b、c、d、e、f 整流子セグメントランド
1a、1b、1c 印刷配線型空心コイル
1d、1e、1f、1g 各空心コイルの端末結線ランド
R、R1 円盤形偏心ロータ
2 軸受ホルダ
2a 支壁
3、33 巻線型空心コイル
4 軸
5 マグネット
6 ブラシ
7 ケース
8 ブラケット
9 ハウジング
P1 絶縁フイルム
P2 スラストワッシャ
r1 火花消去用印刷抵抗
W 偏心ウエイト
[0001]
[Industrial application fields]
The present invention relates to an improvement of a flat vibration motor used as a silent call means of a mobile communication device and an eccentric rotor which is a main member thereof.
[0002]
[Prior art]
Conventionally, an eccentric weight W made of tungsten alloy is arranged on the output shaft S of the cylindrical DC motor M as a silent call means such as a pager or a mobile phone, and the centrifugal force of the eccentric weight W is used during rotation as shown in FIG. In this way, vibrations are generated.
[0003]
However, in the case where the eccentric weight W is added to the conventional output shaft S, there is a design limitation such as the fact that the turning space of the eccentric weight W has to be taken into consideration on the device side such as a pager, which is expensive. Since a tungsten alloy is used, there is a problem in terms of cost.
[0004]
Recently, such a cylindrical DC motor is also required to have a thin cylinder, and those having a diameter of about 4 mm have begun to be used. However, in order to obtain the amount of vibration, even if the motor body is 4 mm, the eccentric space of the eccentric weight arranged on the output shaft is about 6 mm, and the cylindrical type cannot be placed as it is, and usually requires a mounting member. Thus, a considerable occupation space must be set, which has become a bottleneck in reducing the thickness of portable devices. Moreover, since the efficiency is in the range of 20 to 30%, there is a problem that current consumption becomes large. For this reason, flat motors that can easily ensure a thickness of 3 mm or less are being re-recognized.
The present applicant eliminates the output shaft and arranges one of the three air-core coils, which are originally normally divided into equal parts, by shifting the phase to the opposite side and biasing them, thereby making the built-in rotor itself. An eccentric flat coreless vibration motor is proposed as Japanese Patent No. 2137724 (US Pat. No. 5,036,239).
[0005]
Since the motor can take a large effective conductor length of the armature coil, the motor is relatively high in efficiency and can easily obtain power consumption of about 10 mA at 3V input. In addition, because there is no output shaft and eccentric weight, it is not subject to design restrictions, it is easy to use, and there is no risk of contact with other parts when turning, etc. Since three air-core coreless windings are provided on one side, the size of the coil has to be small, and the number of parts and the number of processing steps increase.
[0006]
[Problems to be solved by the invention]
The above-described one equipped with a built-in eccentric rotor having three air-core armature coils arranged on one side eliminates the space between the air-core armature coils as the size is reduced, and the terminal does not damage the air-core armature coil. In this way, connecting to the commutator is a difficult technique. In addition, each air-core armature coil must be smaller than the magnetic pole opening angle of the magnet, and further improvement in efficiency is desired. Further, since there are three wire-wound air-core armature coils, the number of parts increases.
Recently, with the miniaturization of mobile phones, the large amount of vibration as before is not necessarily required as a silent notification means. In addition, for the purpose of cost reduction, a three-phase system consisting of two air-core coils with one phase missing has been proposed. However, when downsizing of a diameter of 10 mm or less is required, a little more power is required. is there.
[0007]
A first object of the present invention is to obtain high efficiency and facilitate downsizing while appropriately generating vibration due to centrifugal force.
A second object of the present invention is to provide a disc-shaped eccentric rotor in which the center of gravity is shifted from the center by the coil itself and no separate eccentric member is required.
A third object of the present invention is to provide a high specific gravity weight by utilizing the thickness space of the wire wound air-core coil and further increase the vibration.
A fourth object of the present invention is to prevent axial movement of the rotor by means of printed wiring coils.
A fifth object of the present invention is to provide a cost-effective flat vibration motor with a small number of parts by using such a flat disk-shaped eccentric rotor.
[0008]
[Means for Solving the Problems]
The above basic problem solving means is provided with a shaft insertion hole in the center as in the first aspect of the present invention, a plurality of commutator segment lands are formed around the shaft insertion hole, and the outer shape is viewed from a plane. A printed wiring commutator member formed in a substantially disk shape, and at least three printed wiring air-core coils are equally formed so as not to overlap at least one surface of the printed wiring commutator member. At least one of the printed wiring coils is formed by extending the bearing holder in the axial direction at the position of the shaft insertion hole on the other surface, and unevenly distributing one or two wound-type air core coils radially outward of the bearing holder. This can be achieved with a series connection.
Specifically, as in the inventions described in claims 2 and 3, the winding type air-core coil is composed of one piece, and this winding type air-core coil is connected in series with the in-phase printed wiring air-core coil or the winding type There are two air-core coils, and this wire-wound air-core coil can be achieved by connecting them in series with in-phase printed-wire air-core coils.
As another specific means, it is preferable that the printed wiring coil is magnetically plated as in the invention shown in claim 4.
As another specific means, as in the invention shown in claim 5, an eccentric weight containing a metal is disposed at a position that does not overlap with the winding type air-core coil within a thickness of the winding-type air core coil. It is good.
Further, a spark erasing printing resistor may be disposed between the commutator segment lands as in the invention shown in claim 6.
These disc-shaped eccentric rotors include a disc-shaped eccentric rotor according to any one of claims 1 to 6 as in the inventions shown in claims 7 and 8, a shaft for supporting the eccentric rotor, and the rotor. A magnet that provides a magnetic field via an air gap in the axial direction, a brush that is arranged inside the magnet and that supplies power to the air-core coil via the flat plate commutator member, and a housing that stores these, or A flat shaft whose one end is fixed to one side of the housing, is mounted with the eccentric rotor, and the other end of the shaft is fitted in a recess disposed on the other side of the housing, thereby preventing movement in the radial direction. A vibration motor is preferable.
[0009]
According to the problem attaining means shown in claim 1 above, since each disk coil can be sized so that the effective conductor portion comes to the reference electrical opening angle that is the opening angle of the magnetic pole because of the disk shape, the efficiency is improved. By making the linear coil unevenly distributed, it can be eccentric while being in a disk shape.
Further, according to the problem attaining means described in claims 2 and 3, the center of gravity is biased by the weight difference between the printed wiring air-core coil and the wire-wound air-core coil, and vibration can be easily obtained. According to the problem attaining means described in claim 4, since unnecessary vibration in the axial direction of the rotor can be suppressed, the contact with the brush is stabilized.
According to the problem attaining means shown in claim 5, the center of gravity moves greatly in the radial direction by the weight of the wound coil and the tungsten alloy, and the amount of vibration can be increased. According to the problem attaining means shown in claim 6, sparking between the commutator and the brush can be prevented.
According to the means for accomplishing the problems shown in claims 7 and 8, since the effective conductor portion can be set to the reference electrical opening angle (opening angle of the magnetic pole) because the disk-shaped eccentric rotor makes the shape of the air-core coil, the efficiency becomes high. It can be a flat type vibration motor with less cost.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The configuration of the present invention will be described below based on each embodiment shown in the drawings.
FIG. 1 is a plan view of a printed wiring commutator member constituting a disc-shaped eccentric rotor of the present invention, as viewed from one side.
FIG. 2 is a plan view seen from the other side of the eccentric rotor using the printed wiring commutator member.
3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a plan view showing a second embodiment of the disc-shaped eccentric rotor of the present invention. FIG. 5A is a conceptual operation explanatory diagram showing the connection state of the first embodiment.
(B) is a conceptual operation explanatory view showing the connection state of the second embodiment.
FIG. 6 is a cross-sectional view of a flat coreless vibration motor using the disc-shaped eccentric rotor of FIGS.
[0011]
In FIG. 1, reference numeral 1 denotes a printed wiring commutator member formed by forming a printed wiring board having a thickness of about 0.2 mm with copper foil formed on both sides so that the outer shape is substantially disc-shaped when viewed from the plane, and has a central axis. Six commutator segment lands a, b, c, d, which are provided with an insertion hole 1h and are short-circuited with through-holes S1, S2, etc. by using a segment facing one surface around the shaft insertion hole 1h using the other surface. e and f are formed. These opposing commutator segment lands a and d, b and e, c and f are short-circuited on the other surface via through holes S1 and S2. Three printed wiring type air-core coils 1a, 1b, and 1c having a center of approximately 90 degrees (equal to the magnetic pole opening angle of the magnet) are arranged at a pitch of 120 on the outer side. Formed equally in degrees.
The through holes S1, S2 are arranged between the three printed wiring type air-core coils 1a, 1b and 1c, and the windings of these three printed wiring type air-core coils 1a, 1b and 1c are arranged. We are careful not to sacrifice the number of times inside.
The printed wiring type air-core coils 1a, 1b, and 1c are connected through formed on the inner diameter portion by connecting the end of winding (substantially the start of winding) to the commutator segment lands a, c, and e on the drawing, respectively. As shown in FIG. 2 and FIG. 3, through the hole S3, in-phase printed wiring core coils 1aa, 1bb and 1cc, which are similarly formed on the other surface, are connected in series.
Further, the through hole S2 is directly connected to a part of the outer diameter (substantially the start of winding) of the printed wiring air-core coil.
The printed wiring air-core coils 1aa, 1bb, and 1cc cover the commutator segment portion with masking or the like and apply thin magnetic plating (not shown) on the surface. This magnetic plating has a function of attracting and attracting a magnetic field from a magnet when it is incorporated in a motor, and biasing it toward the magnet when it is made into a rotor. When the rotor is configured by this urging force, it functions to prevent unnecessary axial oscillation.
On the other surface, the printed wiring air-core coil 1aa and the winding end terminal batch connection land 1d of the 1cc are further formed on the outer peripheral portion. The winding end terminal connection land 1e of the printed wiring type air-core coil 1bb is separately formed on the outer peripheral portion.
On the other surface of the printed wiring commutator member 1, a spark erasing print resistor r1 is formed between the commutator segments by using the segment connection conductors 1f, 1g, 1i, and the like that are further opposed to each other.
On the other surface of the printed wiring commutator member 1, a bearing holder 2 made of a highly slidable resin is integrally formed in the shaft insertion hole 1h, and the bearing holder 2 is radially spaced 120 degrees apart. It has extended branch walls 2a, 2b and 2c, and is also exposed on one side.
At the position of the printed wiring type air-core coil 1bb outside the bearing holder 2, one winding-type air core coil 3 (in the figure, printed wiring coil is connected in series with the printed wiring-type air core coil 1bb). 1bb is shown as a thick solid line for convenience) and the winding start terminal 3a is soldered to the winding end terminal connection land 1e of the printed wiring type air-core coil 1bb. At the same time, the winding end terminal 3b is soldered to the terminal connection land 1ad having the same potential as the winding end terminal connection land 1d of the printed wiring air-core coil 1aa and 1cc. Notches g, h, and j are formed in each connection land provided on the outer periphery so that the terminal can be hooked so that it can be temporarily fixed at the time of soldering or thermal welding or when connecting by other means. It has become.
In the disc-shaped eccentric rotor R having such a configuration, since the center of gravity is eccentric because the winding type air-core coil 3 is unevenly distributed, a centrifugal force is generated during rotation and vibration is obtained.
Although the above can be configured as a vibration motor, in this embodiment, a heavy material, for example, an eccentric weight W made of a non-magnetic tungsten alloy is disposed at the position of the printed wiring core coil 1aa by bonding or the like. The amount of radial movement of the center of gravity is increased.
The eccentric weight may be made of a resin having a specific gravity of about 6 to 13 in which a tungsten alloy powder is mixed with the resin.
[0012]
FIG. 4 shows a second embodiment, in which a second winding type air-core coil 33 is arranged on the position of the printed-wiring air-core coil 1aa on the other surface of the printed-wiring commutator member 1, and an eccentric rotor R1 is arranged. The winding type air core coil 33 is connected in series with the printed wiring air core coil 1aa in the same phase. That is, the winding start terminal 33a is solder-connected to the winding end terminal connection land 1n of the printed wiring type air-core coil 1aa and the winding end terminal 33b is connected to the first winding type air-core coil 3 together with the winding end terminal. The end of winding of the printed wiring air-core coil 1cc is soldered to the terminal connection land 1q.
Therefore, this winding end terminal connection land 1q serves as a common connection terminal for three-phase star connection.
In this case, since the two wound air-core coils 3 and 33 are unevenly distributed, the radial movement of the center of gravity becomes large, and an eccentric weight made of an expensive tungsten alloy can be made unnecessary.
In any of the above embodiments, the six segment lands are plated with gold so that a commutator piece can be formed as it is, but the printed wiring commutator is used as a printed wiring commutator. It may be connected with
[0013]
Next, FIGS. 5A and 5B show a connection relationship of the star connection type eccentric rotor of the above embodiment and a conceptual operation explanatory diagram as a motor using the rotor. Here, a thin solid line indicates a printed wiring air-core coil, and a thick solid line indicates a wire-wound air-core coil. Since the rotation principle is well known according to Fleming's left-hand rule, the current direction and the rotation direction are indicated by arrows, and the explanation of the operation principle is omitted here. In the case of (A), torque is applied to the two coils. In the case of (B), since the negative brush straddles the segments a and b, all the coils contribute to the torque, although it is instantaneous.
[0014]
Next, in order to obtain a flat vibration motor having a disc-shaped eccentric rotor R as shown in FIGS. 2 and 3, it is preferable to use a fixed shaft type as shown in FIG. That is, an eccentric rotor R, a shaft 4 that rotatably supports the eccentric rotor R, a magnet 5 that applies a magnetic field to the eccentric rotor R through a gap, and an inner side of the magnet 5, the printed wiring commutator member 1 And a housing 9 comprising a brush 6 for supplying electric power to each of the air-core coils 1a, 1b, 1c and 3; a case 7 storing them; and a bracket 8 to which one end of the shaft 4 is fixed. Good.
Here, the other end of the shaft 4 is fitted into a recess 7a provided in the center of the case 7 via an insulating film P1, and the movement in the radial direction is restricted.
In the figure, P2 is a thrust washer made of a polyester film, and has a function of receiving good slidability when the eccentric rotor is urged toward the bracket side by the action of magnetic plating. In the figure, F is a flexible power supply lead that is soldered to the brush 6 and led out through the lower part of the magnet.
[0015]
In each of the above embodiments, the printed wiring type air-core coil is exemplified by two layers of one surface and the other surface, but a multilayer substrate in which two or three printed wiring boards having a thickness of about 0.1 mm are laminated. Alternatively, the number of turns may be increased to a printed wiring type air-core coil having 4 to 6 layers.
In addition, the printed wiring commutator member 1 has the winding-type air-core coils 3, 33, the eccentric weight W, etc. disposed by bonding, but the whole may be integrally formed with the slidable resin.
Further, the above shows a resin bearing type, but a shaft-stained oil-impregnated bearing may be housed in a shaft holder, or a bearing may be arranged in a housing and a shaft may be fixed to the eccentric rotor side.
In addition to the above, the present invention can be implemented in various other forms without departing from the technical idea or features thereof. Therefore, the above embodiment is merely an example and should not be interpreted in a limited manner.
The technical scope of the present invention is shown in the claims, and is not restricted by the text of the specification.
[0016]
【The invention's effect】
The disc-shaped eccentric rotor according to the present invention has three printed wiring type air-core coils equally arranged in three phases by enlarging the air-core coil while appropriately generating vibration due to centrifugal force as described above. According to the problem attaining means shown in the first aspect, it is possible to obtain high efficiency by combining one or two wound type air-core coils and to facilitate connection. The size of each air-core coil can be set so that the effective conductor portion comes up to a certain reference electric opening angle, so that the efficiency is high, and by making the winding coil unevenly distributed, it can be eccentric while being disk-shaped.
Further, according to the problem attaining means described in claims 2 and 3, the center of gravity is biased by the weight difference between the printed wiring air-core coil and the wire-wound air-core coil, and vibration can be easily obtained. According to the problem attaining means described in claim 4, since unnecessary vibration in the axial direction of the rotor can be suppressed, the contact with the brush is stabilized.
According to the problem attaining means shown in claim 5, the center of gravity moves greatly in the radial direction by the weight of the wound coil and the tungsten alloy, and the amount of vibration can be increased. According to the problem attaining means shown in claim 6, sparking between the commutator and the brush can be prevented.
According to the means for accomplishing the problems shown in claims 7 and 8, since the disk-shaped eccentric rotor is used, it becomes highly efficient and can be a cost-effective flat vibration motor with a small number of parts.
[Brief description of the drawings]
FIG. 1 is a plan view showing a first embodiment of a printed wiring commutator member constituting a disc-shaped eccentric rotor of the present invention as viewed from one side.
FIG. 2 is a plan view seen from the other surface side of an eccentric rotor using the printed wiring commutator member.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a plan view showing a second embodiment of the disc-shaped eccentric rotor of the present invention.
FIG. 5A is a conceptual operation explanatory diagram showing a connection state of the first embodiment.
(B) is a conceptual operation explanatory view showing a connection state of the second embodiment.
6 is a cross-sectional view of a flat coreless vibration motor using the disc-shaped eccentric rotor of FIGS. 2 and 3. FIG.
FIG. 7 is a perspective view of a conventional small vibration motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Printed wiring commutator member 1h Shaft insertion hole a, b, c, d, e, f Commutator segment land 1a, 1b, 1c Printed wiring type air-core coil 1d, 1e, 1f, 1g Terminal connection land R of each air-core coil, R1 Disc type eccentric rotor 2 Bearing holder 2a Branch wall 3, 33 Winding type air core coil 4 Shaft 5 Magnet 6 Brush 7 Case 8 Bracket 9 Housing P1 Insulating film P2 Thrust washer r1 Spark erasing printing resistance W Eccentric weight

Claims (8)

中心に軸挿通孔を設け、この軸挿通孔の周囲に複数個の整流子セグメントランドを形成し、外形を平面から見てほぼ円盤形に形成した印刷配線コミュテータ部材を有し、この印刷配線コミュテータ部材の少なくとも1面に重畳しないように3個の印刷配線空心コイルを等分に形成し、前記印刷配線コミュテータ部材の他面の軸挿通孔の位置で軸受ホルダを軸方向に延設し、この軸受ホルダの径方向外方に1個あるいは2個の巻線型空心コイルを偏在させ、前記印刷配線コイルの少なくとも1個と直列結線した円盤形偏心ロータ。A printed wiring commutator member having a shaft insertion hole at the center, a plurality of commutator segment lands formed around the shaft insertion hole, and having an outer shape formed substantially in a disk shape when seen from a plane, is provided. Three printed wiring air-core coils are equally formed so as not to overlap at least one surface of the member, and the bearing holder is extended in the axial direction at the position of the shaft insertion hole on the other surface of the printed wiring commutator member. A disc-shaped eccentric rotor in which one or two wire-wound air-core coils are unevenly distributed radially outward of a bearing holder and are connected in series with at least one of the printed wiring coils. 前記巻線型空心コイルは1個からなり、この巻線型空心コイルは同相の印刷配線空心コイルと直列接続された請求項1に記載の円盤形偏心ロータ。2. The disk-shaped eccentric rotor according to claim 1, wherein the winding type air-core coil is composed of one piece, and the winding-type air core coil is connected in series with a printed wiring air-core coil of the same phase. 前記巻線型空心コイルは2個からなり、この巻線型空心コイルは同相の印刷配線空心コイルとそれぞれ直列接続された請求項1に記載の円盤形偏心ロータ。2. The disk-shaped eccentric rotor according to claim 1, wherein the wire-wound air-core coil is composed of two, and the wire-wound air-core coils are respectively connected in series with in-phase printed wiring air-core coils. 前記印刷配線コイルは磁性メッキが施されている請求項1に記載の円盤形偏心ロータ。The disk-shaped eccentric rotor according to claim 1, wherein the printed wiring coil is magnetically plated. 前記巻線型空心コイルと重畳しない位置に巻線型空心コイルのほぼ厚み内で金属を含む偏心ウエイトが配されている請求項1項に記載の円盤形偏心ロータ。The disc-shaped eccentric rotor according to claim 1, wherein an eccentric weight including a metal is disposed within a substantially thickness of the wound air core coil at a position not overlapping with the wound air core coil. 前記整流子セグメントランド間に火花消去用印刷抵抗を配した請求項1項に記載の円盤形偏心ロータ。The disc-shaped eccentric rotor according to claim 1, wherein a spark erasing printing resistor is disposed between the commutator segment lands. 前記請求項1〜6のいずれか1項に記載の円盤形偏心ロータと、この偏心ロータを支承する軸と、このロータに軸方向空隙を介して磁界を与えるマグネットと、このマグネットの内側に配され、前記印刷配線コミュテータ部材を介して空心コイルに電力を与えるブラシと、これらを格納したハウジングからなる扁平型振動モータ。The disc-shaped eccentric rotor according to any one of claims 1 to 6, a shaft for supporting the eccentric rotor, a magnet for applying a magnetic field to the rotor through an axial gap, and an inner side of the magnet. A flat type vibration motor comprising: a brush for supplying electric power to the air-core coil through the printed wiring commutator member; and a housing storing these. 前記軸は前記ハウジングの一方に一端が固定され、この軸に他端から前記偏心ロータを装着し、前記ハウジングの他方に配した凹所に軸の他端をはめ込むことにより、軸が径方向に動くのを防止させた請求項8に記載の扁平型振動モータ。One end of the shaft is fixed to one side of the housing, the eccentric rotor is attached to the shaft from the other end, and the other end of the shaft is fitted into a recess disposed on the other side of the housing so that the shaft is radially The flat vibration motor according to claim 8, wherein the flat vibration motor is prevented from moving.
JP2001240021A 2001-08-08 2001-08-08 Disc-shaped eccentric rotor and flat vibration motor having the same Expired - Fee Related JP3628989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001240021A JP3628989B2 (en) 2001-08-08 2001-08-08 Disc-shaped eccentric rotor and flat vibration motor having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001240021A JP3628989B2 (en) 2001-08-08 2001-08-08 Disc-shaped eccentric rotor and flat vibration motor having the same

Publications (2)

Publication Number Publication Date
JP2003047912A JP2003047912A (en) 2003-02-18
JP3628989B2 true JP3628989B2 (en) 2005-03-16

Family

ID=19070691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001240021A Expired - Fee Related JP3628989B2 (en) 2001-08-08 2001-08-08 Disc-shaped eccentric rotor and flat vibration motor having the same

Country Status (1)

Country Link
JP (1) JP3628989B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11314854B2 (en) 2011-12-30 2022-04-26 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US9600434B1 (en) 2011-12-30 2017-03-21 Bedrock Automation Platforms, Inc. Switch fabric having a serial communications interface and a parallel communications interface
US10834820B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system cable
US8868813B2 (en) 2011-12-30 2014-10-21 Bedrock Automation Platforms Inc. Communications control system with a serial communications interface and a parallel communications interface
US9191203B2 (en) 2013-08-06 2015-11-17 Bedrock Automation Platforms Inc. Secure industrial control system
US11144630B2 (en) 2011-12-30 2021-10-12 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US9727511B2 (en) 2011-12-30 2017-08-08 Bedrock Automation Platforms Inc. Input/output module with multi-channel switching capability
US8862802B2 (en) 2011-12-30 2014-10-14 Bedrock Automation Platforms Inc. Switch fabric having a serial communications interface and a parallel communications interface
US11967839B2 (en) 2011-12-30 2024-04-23 Analog Devices, Inc. Electromagnetic connector for an industrial control system
US9437967B2 (en) 2011-12-30 2016-09-06 Bedrock Automation Platforms, Inc. Electromagnetic connector for an industrial control system
US10834094B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Operator action authentication in an industrial control system
US9449756B2 (en) 2013-05-02 2016-09-20 Bedrock Automation Platforms Inc. Electromagnetic connectors
US8971072B2 (en) 2011-12-30 2015-03-03 Bedrock Automation Platforms Inc. Electromagnetic connector for an industrial control system
US10613567B2 (en) 2013-08-06 2020-04-07 Bedrock Automation Platforms Inc. Secure power supply for an industrial control system

Also Published As

Publication number Publication date
JP2003047912A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
JP3628989B2 (en) Disc-shaped eccentric rotor and flat vibration motor having the same
US6713911B2 (en) Disc-shaped eccentric rotor and flat type vibrator motor having the rotor
JP2002010579A (en) Rotor including commutator member wired with printed wiring and flat type motor including the rotor
JP3904227B2 (en) Power supply mechanism for small motors
US20070194642A1 (en) Eccentric rotor and flat motor comprising same
JP2004350368A (en) Molded eccentric rotor and axial air-gap type coreless vibration motor comprising same
JP3796238B2 (en) An axial air gap type coreless vibration motor having the same type rotor as the mold type eccentric rotor
JP3472761B2 (en) Small brushless vibration motor
JP3645221B2 (en) Flat type vibration motor having an eccentric rotor and the same rotor
JP3706016B2 (en) Flat small brushless vibration motor
JP2001104882A (en) Flat type vibration motor
KR100935509B1 (en) Slim type coreless motor
JP3894368B2 (en) Motor armature, axial gap motor with the same armature
JP3357355B2 (en) Disc-shaped eccentric rotor and flat type vibration motor having the same
JP3252140B1 (en) Eccentric rotor and flat type vibration motor provided with the rotor
JP3759092B2 (en) Flat coreless vibration motor equipped with an eccentric rotor and the same rotor
JP2005012935A (en) Molded eccentric rotor, and axial air-gap type coreless vibrating motor equipped with that rotor
JP2007300726A (en) Eccentric rotor and flat coreless vibrating motor equipped with same
JP3665786B2 (en) Small brushless vibration motor with the same stator
JP3581706B2 (en) Disc type eccentric rotor and flat coreless vibration motor equipped with the same rotor
JP2005312240A (en) Eccentric rotor equipped with detent torque generator and flat coreless vibration motor equipped with same rotor
JP3985964B2 (en) A stator having detent torque generating means and an axial air gap type brushless motor having the same stator
JP2006014441A (en) Eccentric rotor and flat core-less vibrating motor having the eccentric rotor
JP3530182B1 (en) Coreless motor rotor, method of manufacturing the rotor, and axial gap type coreless motor provided with the rotor
JP3572484B2 (en) Eccentric rotor with high-density member, manufacturing method of the rotor, and flat coreless vibration motor using the rotor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees