JP3904227B2 - Power supply mechanism for small motors - Google Patents

Power supply mechanism for small motors Download PDF

Info

Publication number
JP3904227B2
JP3904227B2 JP33120698A JP33120698A JP3904227B2 JP 3904227 B2 JP3904227 B2 JP 3904227B2 JP 33120698 A JP33120698 A JP 33120698A JP 33120698 A JP33120698 A JP 33120698A JP 3904227 B2 JP3904227 B2 JP 3904227B2
Authority
JP
Japan
Prior art keywords
field coil
housing
connection terminal
connection
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33120698A
Other languages
Japanese (ja)
Other versions
JP2000166157A (en
Inventor
一也 中村
茂 小倉
昭平 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP33120698A priority Critical patent/JP3904227B2/en
Publication of JP2000166157A publication Critical patent/JP2000166157A/en
Application granted granted Critical
Publication of JP3904227B2 publication Critical patent/JP3904227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Brushless Motors (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Frames (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばミリマシーン用の超小型駆動用モータや無音振動アラーム機能付き腕時計用の振動モータなど、極小径サイズの小型モータに関するものであり、さらに詳しくはモータの給電機構に関するものである。
【0002】
【従来の技術】
従来、外径φ5mm前後の小型円筒モータの需要は、分銅付きの振動モータとしてペイジャー・PHS・携帯電話等の移動体通信機器に、あるいは装置部品の駆動用モータとしてOA機器・精密機器・ラジコン模型等の各装置内部に数多く搭載され、それぞれ実用化されてきた。そして近年では、例えば胎空内診断治療等の精密医療機器、あるいは自走型管内環境確認装置等のマイクロ・ミリマシーン的なハイテク産業機器への搭載を主目的とした、超小型モータとしての更なる需要があり、極小径・極小尺化の要望が年々高まっている。
【0003】
しかしモータがより小径小型になればなるほど、各部品の製造及びその組立が難しくなるばかりでなく、設計段階における各部品の構成・寸法・配置・取付け、及び電源部側からの給電配線等の取回し機構の省スペース化の問題が発生する。特に外径φ3mm以下の極小径型のモータでは、前記給電配線機構をどのような構造にするか、また小径化・省スペース化を図る最良な設置個所をどこに配置するかが小径化設計の重要なポイントとなる。
【0004】
このため一般的には、構造的にモータの種類として、極小径サイズに有利な構造であるブラシと整流子を必要としないブラシレスモータが極小モータの主流となりつつあり、また同時に、モータのエネルギー効率が高く、製造が比較的容易となるという理由から、永久磁石型回転子を有し、扁平の界磁コイルを円筒円周上に複数個有するタイプのブラシレスモータが用いられている。
【0005】
この永久磁石型回転子を有する従来型のブラシレスモータの一例を、図3及び図4に示す。図3において1は、出力軸2を一端に有する回転子であり、軸受ホルダー6及び略円筒体ホルダー15を介して、ハウジング7の両端軸中心部に装着された二つの軸受4により、回転自在に支承されている。
【0006】
また5は、自己融着線を扁平リング状に重ね巻して構成した少なくとも3個以上の単品のボビンレスコイルを、円筒状ハウジング7内周面に円周方向均等角度に配置した回転磁界を発生させるための界磁コイルユニットで、この各界磁コイル5により形成される回転磁界に追従して、回転子1が回転する。また同扁平状の界磁コイル5は、図3の略円筒体ホルダー15外周面に沿って曲げられ、接着固定された状態で、円筒状ハウジング7内径に挿入して嵌合固定することができ、小型モータの組立を容易にする工夫がなされている。
【0007】
また、図3に示す9は、前記複数個の扁平状巻線の界磁コイル5から引き出されたタップ線であり、略円筒体ホルダー15端部に装着された金属製の中継ピン16の一端側に接続され、他端側には駆動回路に接続されるリード線17が接続されて給電機構の導通経路が形成されている。また、3は回転子1に付属したスラスト板で、同スラスト板3と固定子側軸受4により形成される空隙を規制して、回転子1のスラスト方向のガタを制限するために間挿され設けられている。
【0008】
また別の一例の図4の構成では、前記図3と同様な手法で、固定子コイル部分の組立を容易にするため、回路配線が形成された一枚のフレキシブル基板18上に、3個以上の扁平形状のボビンレスコイルを用いた界磁コイル5が装着され、ハウジング7内径面に、そのフレキシブル基板18の円筒巻き部分が内壁面に沿うように曲げられて挿入固定されている。これら基板上のボビンレスコイルは円筒の円周方向均等角度に配され、回転磁界を形成する構造となっている。また、前記フレキシブル基板18の給電配線部は、ハウジング7の円筒状筐体外周部に設けられた開口部19より、ハウジング7外部へ引き出され、筐体外周に飛び出た状態で駆動回路側へ接続されている。
【0009】
以上のように、図3及び図4に代表される従来型のブラシレスモータを基本とする小径モータの給電機構は、組立作業上の容易さ、組立中あるいは運転中の界磁コイルタップ線9の断線防止、または界磁コイル5に別体で複数の扁平巻線コイルを用いることにより生じ得る界磁コイルユニットの回転子側への脱落を防止するため、同界磁コイル5を略円筒体ホルダー15外周部に、あるいは円筒形状に曲げたフレキシブル基板18の内周部といった円筒状構造体の一面に接着固定した後、ハウジング7内径に挿入固定するのが一般的であった。
【0010】
【発明が解決しようとする課題】
しかしながら従来型の上記構造では、同じ扁平巻線形態の界磁コイル5、同じ性能の回転子磁石の仕様のものであっても、各々の設計構造上、回転子1とハウジング7との間に、図3の構成の場合は略円筒体ホルダー15が、また、図4の場合はフレキシブル基板18が径方向の厚み寸法に介在する分だけ、磁気的ギャップ幅が増加するため、当然、パーミアンス係数が低下し、回転子1の発生トルクが低下するという欠点を有していた。
【0011】
さらに図4に示す構造の場合、フレキシブル基板18を開口部19を通じてハウジング7外部に取り出そうとすると、フレキシブル基板18の厚み分だけ、ハウジング7外径の一部に突起凸部が露出するため、極小径の有益性が損なわれてしまうという外径寸法増大の欠点を有していた。また、図3におけるリード線17を用いたものでも、中継ピン16との結線のための半田付け作業があり、リード線の線径が細く、取付け組み込み時の変形による導通不良及び断線の心配があった。
【0012】
さらに、界磁コイルユニットに複数個の扁平型のボビンレスコイルを用いた場合、その磁気突極性に起因した円周方向のトルクムラが生じるという欠点も有しており、コイル側の改良も望まれていた。
【0013】
また設計上、モータの筐体外径が小径になればなるほど軸受の外径寸法も小さくせざるおえない。しかし小径化にともなう軸受の強度的な問題、さらに焼結含油軸受を用いる場合には、軸受部の理論上の保油量から考えて軸受体積はより大きい方が好ましいなど、軸受部分の設計上の問題も多々ある。このため、軸受径寸法が比較的大きくできる図4に示すような給電機構として、軸受ホルダー6端面軸方向ではなく、ハウジング7外径側から給電を行うことが考えられたが、外径寸法が増大してしまう欠点があった。
【0014】
また、別体で複数の扁平巻線コイルを用いることにより生じ得る界磁コイルユニットの回転子側への脱落を防止するため、同界磁コイル5を略円筒体ホルダー15外周部に、あるいは円筒形状に曲げたフレキシブル基板18の内周部といった円筒状構造体の一面に接着固定する構造的な部品が必要不可欠であった。
【0015】
以上のことから、モータの小型化・極小径化を進めるには、構造的にスペースをとらない給電機構で信頼性があり、長寿命で組立が容易で、かつ量産性がある新規な構造が望まれていた。
【0016】
本発明は、モータの小型化・極小径及び小尺化に対し必要不可欠な給電機構として、円筒径方向に導通配線部が突出せず、また界磁コイルタップ線部分での断線の心配がなく、また回転のトルクムラが少なく、かつ磁気的ギャップ幅を最小限に設定できる構造の小型モータの給電機構を提供するものである。
【0017】
【課題を解決するための手段】
本発明の特徴は、主に固定子側の給電機構部の構造とハウジング内に設置する磁界発生用の界磁コイルにある。つまり本発明は、外径φ3 mm 以下の小型モータにおいて、ハウジング内部の巻線コイル部分に、一体形状でカップ式あるいはベル式の円筒巻線コイルで亀甲巻等により組立てられた界磁コイルを配置し、前記界磁コイルからデルタ結線あるいはスター結線した界磁コイルタップ線を引き出し、導電性材料からなる接続端子を前記界磁コイルのタップ線側に備え、界磁コイルタップ線が前記接続端子に接続され、電気絶縁性材料からなる略円筒型の端子ホルダーにより、前記界磁コイル及び接続端子の導通部全体がハウジングに対し同軸方向一体に嵌合固定された固定子一端側であって、同接続端子の他端側にプリント配線が施された接続部がリング状で配線部が帯状のフレキシブル基板の接続穴部が取り付けられるとともに、対向する軸受ホルダーの接続端子キャップ部で接続端子と共にフレキシブル基板を挟み込んで嵌合固定し、前記界磁コイルタップ線が接続端子を介してフレキシブル基板の接続穴部と接続され、軸受ホルダーの外周部分で、前記フレキシブル基板を円筒状ハウジングの切り欠き部に沿って折り曲げて給電経路部分を形成した小型モータの給電機構である。
【0018】
つまり本発明の給電機構は、従来型の扁平状ボビンレスコイルを連ねた界磁コイルユニットに対してカップ式の円筒状巻線コイル、あるいはベル式の円筒巻線コイルからなるかご型の界磁コイル8を用いて複数相を一体化し、界磁コイルタップ線9をデルタ結線あるいはスター結線して接続端子10を介してフレキシブル基板13の接続穴部とそれぞれ接続し、外径方向に突出する帯状のフレキシブル基板13を、ハウジング7外周一端部に形成した切り欠き部に沿って埋め込む形で導通経路を確保した給電機構である。
【0019】
【実施例】
本発明の実施例を、外径φ2mm仕様モータの設計例である図1、図2及び図5を用いて説明する。なお、図において、前記図3及び図4と同符号の部品は同じ機能を有する部品であるため、説明を省略する。
【0020】
図1において8は、一般的な円筒コアレスモータの回転子ロータ部に使用されるカップ式の円筒状巻線コイル(あるいはベル式の円筒巻線コイル等のかご型巻線)からなる界磁コイル8であり、ハウジング7内径に嵌合するように挿入固定されている。
【0021】
そして円筒巻線の界磁コイル8のタップ線側には、導電性材料からなる接続端子10が備えられ、界磁コイルタップ線9がこの接続端子10に外周部で接続され、さらに電気絶縁性材料からなる略円筒型の端子ホルダー11により、界磁コイル8と共に導通部全体がハウジング7に対し同軸方向一体に保持され、嵌合固定されている。
【0022】
また、同接続端子10の他端側には、プリント配線が施された接続部がリング状で配線部分が帯状のフレキシブル基板13の接続穴部が取り付けられ、それを軸受ホルダー6の接続端子キャップ部12で被せるように挟み込む形で、フレキシブル基板13を間挿しながらハウジング7に固定している。図5に、接続端子10とフレキシブル基板13の組み込み時の詳細な斜視図を示す。なお、フレキシブル基板13の配線パターン及び接続穴部の形状においてはこれに限定することはなく、例えば接続穴部を略Uの字型にし、位置出しを容易にすることも考えられる。
【0023】
この新規構造によれば、界磁コイル8、接続端子10、端子ホルダー11は一体に構成されてハウジング7側に挿入固定されるため、以後、組立時に界磁コイルタップ線9に対し曲がり等のストレスがかからず、組立中、あるいは組立後の運転動作中の接続端子部分との断線を防止できる。
【0024】
また、円筒状ハウジング7本体には、図2及び図5に示すような前記帯状部分のフレキシブル基板13の引き出し位置から円筒端部開口部外方向へ、略コの字形の切り欠き部14が180度方向に二カ所設けられており、円周方向に引き出された帯状部分のフレキシブル基板13は、軸受ホルダー6外周でほぼ直角に折り曲げられた後、前記切り欠き部14内の凹部に納められ、収納される。したがって、フレキシブル基板13の厚みがハウジング7の筐体肉厚より薄ければ、ハウジング7外周径方向に凸部が形成されることはない。
【0025】
本発明の設計仕様では、筐体であるハウジング7の外径はφ2.0mm、同肉厚は0.1mmであり、フレキシブル基板13の厚みが0.08mmのものを用いているので、ハウジング7外周径方向に凸部が形成されることはなく、実際の外径寸法は最小径に収まる。
【0026】
また、接続端子10と軸受4、及びフレキシブル基板13のプリント配線部との短絡を避けるために、軸受ホルダー6は電気絶縁性材料からなるものを装着し、図1に示すような接続端子キャップ部12を一部に設けている。また軸受ホルダー6の側面には、ハウジング7の切り欠き部14にそれぞれ対応する平面部20が二カ所に設けられている。
【0027】
また界磁コイル8は、一般的な従来の円筒コアレスモータの回転子ロータ部に使用されるようなカップ式の巻線(かご型巻線)であり、界磁コイル8全体が円筒形状一体で、強度的にも径方向の変形が少なく強固である。特にハウジング7内径に接着しなくても、端子ホルダー11と一体に固定されているので、外的な衝撃による変形、脱落は皆無であり、回転子1の回転動作を妨げるような心配は一切ない。
【0028】
また、回転磁界を発生させる界磁コイルとしての機能も、従来の扁平巻線コイルを複数個連ねたものに比べ、略円筒体ホルダー15あるいはフレキシブル基板18の円筒状構造体がない分、磁気ギャップ幅を小さくできるため、従来型以上のトルク発生効率が得られ、小型モータとしてより小径化を図ることができた。
【0029】
【発明の効果】
以上詳しく述べたとおり、本発明の構造では、回転子とハウジングとの間に従来見られたような、略円筒体ホルダーあるいはフレキシブル基板等の界磁コイル接着固定のための円筒状構造体が介在しないため、同じ径寸法であっても、構造設計上において磁気的ギャップ幅を最小限にでき、有効に磁気発生トルクを得ることができる。
【0030】
また、界磁コイルにカップ式の円筒巻線コイル、あるいはベル式の円筒巻線コイル等のかご型巻線を用いることにより、構造的にも磁気的な突極性が小なくなり、円筒円周方向の発生トルクムラを低減することができる。また、強度的にもカップ式コイル、あるいはベル式コイルは円筒形状を呈しているためコイル単体で充分に強固であり、固定子側の界磁コイルとして、回転子部への脱落・変形を根本的に解消できる。
【0031】
また、小径化を極限まで詰めて設計した場合、ハウジングの一部に切り欠き部を設けて導通経路部を凹部に収納することにより、ハウジング外径方向に突出する部分が一切なくなり、極小径モータの給電機構として小径化の有益性を最大限発揮することができる。特に外径φ2.0mm以下になった場合の効果はより大きい。
【0032】
また、本発明の構造では、給電機構部を軸受ホルダー端面の軸方向ではなく、ハウジング外径側から給電配線を行うことにより、その分、軸受ホルダー径方向に余空間が生じるため、軸受径をハウジング内径に対し最大寸法に設計できる。
【図面の簡単な説明】
【図1】本発明の給電機構を説明する断面図。
【図2】本発明の給電部フレキシブル基板を接続したモータの外観図。
【図3】従来の給電機構を説明する断面図。
【図4】従来の他の給電機構を説明する断面図。
【図5】本発明の接続端子給電部分の組み込み斜視図。
【符号の説明】
1 回転子
2 出力軸
3 スラスト板
4 軸受
5 界磁コイル
6 軸受ホルダー
7 ハウジング
8 界磁コイル
9 界磁コイルタップ線
10 接続端子
11 端子ホルダー
12 端子キャップ部
13 フレキシブル基板
14 切り欠き部
15 略円筒体ホルダー
16 中継ピン
17 リード線
18 フレキシブル基板
19 開口部
20 平面部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a miniature motor having a very small diameter, such as an ultra-compact driving motor for a millimeter machine or a vibration motor for a wristwatch with a silent vibration alarm function, and more particularly to a power feeding mechanism of the motor.
[0002]
[Prior art]
Conventionally, the demand for small cylindrical motors with an outer diameter of around 5mm has been the demand for mobile communication devices such as pagers, PHS, and mobile phones as vibration motors with weights, or OA equipment, precision equipment, radio control models as drive motors for equipment parts. Have been put into practical use and have been put to practical use. In recent years, for example, it has been renewed as an ultra-compact motor mainly intended for mounting on precision medical equipment such as in utero diagnosis and treatment, or on micro / milli-machine high-tech industrial equipment such as self-propelled in-pipe environment confirmation devices. Demand for ultra-small diameters and miniaturization is increasing year by year.
[0003]
However, the smaller and smaller the motor, the more difficult it is to manufacture and assemble each part, as well as the configuration, dimensions, placement and installation of each part and the installation of power supply wiring from the power supply side at the design stage. The problem of space saving of the turning mechanism occurs. Especially in the case of ultra-small-diameter motors with an outer diameter of 3 mm or less, it is important to design a small-diameter design for the power supply wiring mechanism and where to place the best installation location to reduce the diameter and save space. It becomes a point.
[0004]
For this reason, in general, brushless motors that do not require a brush and commutator, which are structurally advantageous for the smallest diameter, are becoming the mainstream of the smallest motors, and at the same time, the energy efficiency of the motor For this reason, a brushless motor of a type having a permanent magnet type rotor and having a plurality of flat field coils on the circumference of a cylinder is used.
[0005]
An example of a conventional brushless motor having this permanent magnet type rotor is shown in FIGS. In FIG. 3, reference numeral 1 denotes a rotor having an output shaft 2 at one end, and is rotatable by two bearings 4 mounted at the center of both end shafts of the housing 7 via a bearing holder 6 and a substantially cylindrical body holder 15. It is supported by.
[0006]
5 is a rotating magnetic field in which at least three or more individual bobbinless coils formed by overlapping and winding self-bonding wires in a flat ring shape are arranged on the inner peripheral surface of the cylindrical housing 7 at equal angles in the circumferential direction. In the field coil unit for generating, the rotor 1 rotates following the rotating magnetic field formed by each field coil 5. Further, the flat field coil 5 can be inserted and fixed to the inner diameter of the cylindrical housing 7 while being bent and bonded and fixed along the outer peripheral surface of the substantially cylindrical holder 15 of FIG. A device has been devised to facilitate the assembly of a small motor.
[0007]
Further, 9 shown in FIG. 3 is a tap wire drawn out from the field coil 5 of the plurality of flat windings, and one end of a metal relay pin 16 attached to the end of the substantially cylindrical holder 15. The lead wire 17 connected to the drive circuit is connected to the other end side to form a conduction path of the power feeding mechanism. A thrust plate 3 attached to the rotor 1 is inserted to restrict a gap formed by the thrust plate 3 and the stator-side bearing 4 to limit the play in the thrust direction of the rotor 1. Is provided.
[0008]
In another example of the configuration of FIG. 4, three or more pieces are formed on one flexible substrate 18 on which circuit wiring is formed in order to facilitate the assembly of the stator coil portion by the same method as in FIG. 3. A field coil 5 using a flat-shaped bobbinless coil is mounted, and the cylindrical winding portion of the flexible substrate 18 is bent and inserted and fixed to the inner surface of the housing 7 along the inner wall surface. These bobbinless coils on the substrate are arranged at equal angles in the circumferential direction of the cylinder, and have a structure that forms a rotating magnetic field. The power supply wiring portion of the flexible substrate 18 is drawn out of the housing 7 through an opening 19 provided in the outer peripheral portion of the cylindrical housing of the housing 7 and connected to the drive circuit side in a state of protruding to the outer periphery of the housing. Has been.
[0009]
As described above, the power feeding mechanism of the small-diameter motor based on the conventional brushless motor represented by FIGS. 3 and 4 is easy in assembling work, the field coil tap wire 9 being assembled or in operation. In order to prevent disconnection to the rotor side of the field coil unit, which may be generated by using a plurality of flat winding coils as separate members for the field coil 5, the field coil 5 is a substantially cylindrical holder. Generally, it is generally fixed to one outer surface of a cylindrical structure such as the inner periphery of the flexible substrate 18 bent into a cylindrical shape, and then inserted and fixed to the inner diameter of the housing 7.
[0010]
[Problems to be solved by the invention]
However, in the above-described conventional structure, even if the field coil 5 has the same flat winding configuration and the rotor magnet specifications have the same performance, each design structure has a gap between the rotor 1 and the housing 7. In the case of the configuration of FIG. 3, the magnetic gap width increases by the amount of the substantially cylindrical holder 15 in the case of FIG. 3 and the flexible substrate 18 in the radial thickness dimension in the case of FIG. And the generated torque of the rotor 1 is reduced.
[0011]
Further, in the case of the structure shown in FIG. 4, when the flexible substrate 18 is taken out of the housing 7 through the opening 19, the protrusion convex portion is exposed at a part of the outer diameter of the housing 7 by the thickness of the flexible substrate 18. It had the disadvantage of increasing the outer diameter that the benefit of the smaller diameter would be impaired. Further, even in the case of using the lead wire 17 in FIG. 3, there is a soldering operation for the connection with the relay pin 16, the lead wire has a thin wire diameter, and there is a risk of poor conduction and disconnection due to deformation during mounting and assembly. there were.
[0012]
Further, when a plurality of flat type bobbinless coils are used in the field coil unit, there is a disadvantage that uneven torque occurs in the circumferential direction due to the magnetic saliency, and improvement on the coil side is also desired. It was.
[0013]
Further, the outer diameter of the bearing must be reduced as the outer diameter of the motor housing becomes smaller in design. However, due to bearing strength problems associated with smaller diameters, and when using sintered oil-impregnated bearings, the bearing volume should be larger in view of the theoretical oil retention of the bearing. There are many problems. For this reason, as a power feeding mechanism as shown in FIG. 4 capable of relatively increasing the bearing diameter, it is considered that power is fed from the outer diameter side of the housing 7 instead of the axial direction of the bearing holder 6. There was a drawback of increasing.
[0014]
Further, in order to prevent the field coil unit from dropping off to the rotor side, which may be generated by using a plurality of flat winding coils as separate bodies, the field coil 5 is disposed on the outer periphery of the substantially cylindrical body holder 15 or the cylinder. A structural component that is bonded and fixed to one surface of the cylindrical structure such as the inner peripheral portion of the flexible substrate 18 bent into a shape is indispensable.
[0015]
From the above, in order to reduce the size and diameter of motors, a new structure that is reliable with a power supply mechanism that does not take up space, is easy to assemble, and is mass-productive. It was desired.
[0016]
The present invention is an indispensable power feeding mechanism for miniaturization, miniaturization, and miniaturization of motors, so that the conductive wiring portion does not protrude in the cylindrical radial direction, and there is no fear of disconnection at the field coil tap wire portion. The present invention also provides a power supply mechanism for a small motor having a structure in which the rotational torque unevenness is small and the magnetic gap width can be set to a minimum.
[0017]
[Means for Solving the Problems]
The features of the present invention are mainly the structure of the power feeding mechanism on the stator side and the field coil for generating a magnetic field installed in the housing. That is, according to the present invention, in a small motor having an outer diameter of 3 mm or less, a field coil assembled by a tortoiseshell winding or the like with a cup-shaped or bell-shaped cylindrical winding coil is arranged on the winding coil portion inside the housing. Then, a field coil tap wire that is delta-connected or star-connected from the field coil is drawn out, and a connection terminal made of a conductive material is provided on the tap wire side of the field coil, and the field coil tap wire is connected to the connection terminal. A substantially cylindrical terminal holder made of an electrically insulative material is connected to one end side of the stator in which the entire conducting portion of the field coil and the connection terminal are fitted and fixed integrally with the housing in the same direction. The connection hole with the printed wiring on the other end of the connection terminal is attached to the connection hole of the flexible board with a ring shape and the wiring portion is a band. The flexible circuit board is sandwiched and fixed together with the connection terminal at the connection terminal cap part of the driver, and the field coil tap wire is connected to the connection hole part of the flexible circuit board through the connection terminal, and the outer peripheral part of the bearing holder This is a power supply mechanism for a small motor in which a flexible substrate is bent along a cutout portion of a cylindrical housing to form a power supply path portion.
[0018]
In other words, the power feeding mechanism of the present invention is a cage-type field magnet comprising a cup-type cylindrical winding coil or a bell-type cylindrical winding coil with respect to a field coil unit in which conventional flat bobbinless coils are connected. A plurality of phases are integrated using the coil 8, and the field coil tap wire 9 is connected in delta connection or star connection to the connection hole portion of the flexible substrate 13 via the connection terminal 10, respectively, and protrudes in the outer diameter direction. This is a power feeding mechanism that secures a conduction path by embedding the flexible substrate 13 along a notch formed at one end of the outer periphery of the housing 7.
[0019]
【Example】
An embodiment of the present invention will be described with reference to FIGS. 1, 2 and 5 which are design examples of a motor having an outer diameter of φ2 mm. In the figure, the components having the same reference numerals as those in FIGS. 3 and 4 are components having the same functions, and thus description thereof is omitted.
[0020]
In FIG. 1, reference numeral 8 denotes a field coil comprising a cup type cylindrical winding coil (or a bell type cylindrical winding coil or the like) used in a rotor rotor portion of a general cylindrical coreless motor. 8 and is inserted and fixed so as to fit into the inner diameter of the housing 7.
[0021]
A connection terminal 10 made of a conductive material is provided on the tap wire side of the field coil 8 of the cylindrical winding, and the field coil tap wire 9 is connected to the connection terminal 10 at the outer peripheral portion, and further electrically insulated. A substantially cylindrical terminal holder 11 made of a material holds the field coil 8 and the entire conducting portion integrally with the housing 7 in a coaxial direction and is fixedly fitted.
[0022]
Further, on the other end side of the connection terminal 10, a connection hole portion of the flexible substrate 13 in which the connection portion provided with the printed wiring is in a ring shape and the wiring portion is in a band shape is attached. The flexible substrate 13 is fixed to the housing 7 while being inserted so as to be sandwiched by the portion 12. FIG. 5 shows a detailed perspective view when the connection terminal 10 and the flexible substrate 13 are assembled. Note that the wiring pattern of the flexible substrate 13 and the shape of the connection hole are not limited to this. For example, the connection hole may be formed in a substantially U shape to facilitate positioning.
[0023]
According to this new structure, the field coil 8, the connection terminal 10, and the terminal holder 11 are integrally formed and inserted and fixed on the housing 7 side. No stress is applied, and disconnection from the connection terminal portion during assembly or during operation after assembly can be prevented.
[0024]
Further, the body of the cylindrical housing 7 has a substantially U-shaped cutout portion 180 extending from the drawing position of the flexible substrate 13 of the band-shaped portion as shown in FIGS. The flexible substrate 13 of the belt-like portion drawn in the circumferential direction is bent at a substantially right angle on the outer periphery of the bearing holder 6 and then stored in the recess in the notch portion 14. Stored. Therefore, if the thickness of the flexible substrate 13 is thinner than the housing thickness of the housing 7, no convex portion is formed in the outer peripheral diameter direction of the housing 7.
[0025]
In the design specifications of the present invention, the housing 7 which is a housing has an outer diameter of 2.0 mm, a thickness of 0.1 mm, and a flexible substrate 13 having a thickness of 0.08 mm. Convex portions are not formed in the outer peripheral radial direction, and the actual outer diameter dimension is kept within the minimum diameter.
[0026]
Further, in order to avoid a short circuit between the connection terminal 10 and the bearing 4 and the printed wiring portion of the flexible substrate 13, the bearing holder 6 is made of an electrically insulating material, and the connection terminal cap portion as shown in FIG. 12 is provided in part. Further, on the side surface of the bearing holder 6, two flat portions 20 respectively corresponding to the notches 14 of the housing 7 are provided.
[0027]
The field coil 8 is a cup-type winding (cage-type winding) used in a rotor rotor part of a general conventional cylindrical coreless motor, and the entire field coil 8 is integrally formed in a cylindrical shape. In terms of strength, it is strong with little deformation in the radial direction. In particular, even if it is not bonded to the inner diameter of the housing 7, it is fixed integrally with the terminal holder 11, so there is no deformation or dropout due to an external impact, and there is no concern of hindering the rotation operation of the rotor 1. .
[0028]
In addition, the function as a field coil for generating a rotating magnetic field is less than the conventional structure in which a plurality of flat winding coils are connected, and the magnetic gap is substantially less than the cylindrical structure of the cylindrical holder 15 or the flexible substrate 18. Since the width can be reduced, the torque generation efficiency is higher than that of the conventional type, and the diameter can be further reduced as a small motor.
[0029]
【The invention's effect】
As described in detail above, in the structure of the present invention, a cylindrical structure for fixing a field coil such as a substantially cylindrical holder or a flexible substrate is interposed between the rotor and the housing. Therefore, even if the diameters are the same, the magnetic gap width can be minimized in the structural design, and the magnetized torque can be obtained effectively.
[0030]
In addition, by using a squirrel-cage winding such as a cup-type cylindrical winding coil or a bell-type cylindrical winding coil as the field coil, the magnetic saliency is reduced structurally and the cylindrical circumferential direction is reduced. Generation torque unevenness can be reduced. Also, in terms of strength, the cup-type coil or bell-type coil has a cylindrical shape, so the coil alone is sufficiently strong, and as a field coil on the stator side, dropping and deformation to the rotor part is fundamental. Can be eliminated.
[0031]
Also, when designing with the smallest possible diameter reduction, by providing a notch in a part of the housing and storing the conduction path part in the recess, there will be no part protruding in the outer diameter direction of the housing, and the ultra-small diameter motor As a power supply mechanism, it is possible to maximize the benefits of reducing the diameter. The effect is particularly great when the outer diameter is less than 2.0 mm.
[0032]
Further, in the structure of the present invention, by supplying power supply wiring from the outer diameter side of the housing rather than in the axial direction of the bearing holder end surface, extra space is generated in the bearing holder radial direction, so the bearing diameter is reduced. The maximum dimension can be designed for the housing inner diameter.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a power feeding mechanism of the present invention.
FIG. 2 is an external view of a motor to which a power supply unit flexible substrate according to the present invention is connected.
FIG. 3 is a cross-sectional view illustrating a conventional power feeding mechanism.
FIG. 4 is a cross-sectional view illustrating another conventional power feeding mechanism.
FIG. 5 is an assembled perspective view of the connection terminal feeding portion of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor 2 Output shaft 3 Thrust board 4 Bearing 5 Field coil 6 Bearing holder 7 Housing 8 Field coil 9 Field coil tap wire 10 Connection terminal 11 Terminal holder 12 Terminal cap part 13 Flexible board 14 Notch part 15 Cylinder Body holder 16 Relay pin 17 Lead wire 18 Flexible substrate 19 Opening 20 Flat portion

Claims (1)

ハウジングを筐体とする外径φ3Outside diameter φ3 with housing as housing mmmm 以下の小型モータにおいて、ハウジング内部の巻線コイル部分に、一体形状でカップ式あるいはベル式の円筒巻線コイルで亀甲巻等により組立てられた界磁コイルを配置し、前記界磁コイルからデルタ結線あるいはスター結線した界磁コイルタップ線を引き出し、導電性材料からなる接続端子を前記界磁コイルのタップ線側に備え、界磁コイルタップ線が前記接続端子に接続され、電気絶縁性材料からなる略円筒型の端子ホルダーにより、前記界磁コイル及び接続端子の導通部全体がハウジングに対し同軸方向一体に嵌合固定された固定子一端側であって、同接続端子の他端側にプリント配線が施された接続部がリング状で配線部が帯状のフレキシブル基板の接続穴部が取り付けられるとともに、対向する軸受ホルダーの接続端子キャップ部で接続端子と共にフレキシブル基板を挟み込んで嵌合固定し、前記界磁コイルタップ線が接続端子を介してフレキシブル基板の接続穴部と接続され、軸受ホルダーの外周部分で、前記フレキシブル基板を円筒状ハウジングの切り欠き部に沿って折り曲げて給電経路部分を形成したことを特徴とする小型モータの給電機構。In the following small motors, a field coil assembled by a tortoiseshell winding or the like with a cup-shaped or bell-shaped cylindrical winding coil is arranged in the winding coil portion inside the housing, and delta connection from the field coil Alternatively, the field coil tap wire that is star-connected is pulled out, and a connection terminal made of a conductive material is provided on the tap wire side of the field coil, and the field coil tap wire is connected to the connection terminal and made of an electrically insulating material. With the substantially cylindrical terminal holder, the entire conducting portion of the field coil and the connection terminal is fitted and fixed to the housing in the same direction in the coaxial direction, and the printed wiring is connected to the other end of the connection terminal. The connection hole cap part of the bearing holder that is attached to the connection hole part of the flexible printed circuit board with the ring-shaped connection part and the wiring part is attached. The flexible board is sandwiched and fixed together with the connection terminal, the field coil tap wire is connected to the connection hole of the flexible board through the connection terminal, and the flexible board is attached to the cylindrical housing at the outer peripheral portion of the bearing holder. A power supply mechanism for a small motor, wherein a power supply path portion is formed by bending along a notch.
JP33120698A 1998-11-20 1998-11-20 Power supply mechanism for small motors Expired - Fee Related JP3904227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33120698A JP3904227B2 (en) 1998-11-20 1998-11-20 Power supply mechanism for small motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33120698A JP3904227B2 (en) 1998-11-20 1998-11-20 Power supply mechanism for small motors

Publications (2)

Publication Number Publication Date
JP2000166157A JP2000166157A (en) 2000-06-16
JP3904227B2 true JP3904227B2 (en) 2007-04-11

Family

ID=18241091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33120698A Expired - Fee Related JP3904227B2 (en) 1998-11-20 1998-11-20 Power supply mechanism for small motors

Country Status (1)

Country Link
JP (1) JP3904227B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665080B2 (en) * 2000-08-03 2011-04-06 並木精密宝石株式会社 DC brushless motor
JP2002291187A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Wire winding method for motor and motor using the winding
JP4099568B2 (en) * 2002-03-20 2008-06-11 並木精密宝石株式会社 DC brushless motor structure and assembly method
JP4714812B2 (en) * 2004-11-30 2011-06-29 並木精密宝石株式会社 Small brushless motor structure
US8106549B2 (en) 2007-01-31 2012-01-31 Namiki Seimitsu Houseki Kabushiki Kaisha Motor and endoscope probe equipped with motor
JP5422849B2 (en) * 2011-07-26 2014-02-19 並木精密宝石株式会社 Optical imaging probe
JP5668225B1 (en) * 2013-08-31 2015-02-12 並木精密宝石株式会社 Ultrasound endoscope probe
JP2015068757A (en) * 2013-09-30 2015-04-13 並木精密宝石株式会社 Rotation sensor, motor including rotation sensor, and rotation detection method
JP2017216844A (en) * 2016-06-02 2017-12-07 中川電化産業株式会社 Brushless motor
JP2022131772A (en) * 2021-02-26 2022-09-07 日本電産株式会社 motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084712U (en) * 1973-12-06 1975-07-19
JPS59132378U (en) * 1983-02-23 1984-09-05 ソニー株式会社 brushless motor
JPH0330768U (en) * 1989-07-28 1991-03-26
JPH10248222A (en) * 1997-02-28 1998-09-14 Toshiba Corp Extremely small motor and its manufacturing method

Also Published As

Publication number Publication date
JP2000166157A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
WO2006006403A1 (en) Fixing holder of vibration generating device
EP1492215B1 (en) DC brushless vibration motor
EP1455435B1 (en) Single phase induction motor further comprising a permanent magnetic unit
EP2811627B1 (en) Fan motor, inline type fan motor and assembly method of the same
JP3904227B2 (en) Power supply mechanism for small motors
JP3628989B2 (en) Disc-shaped eccentric rotor and flat vibration motor having the same
US11056953B2 (en) Stator unit, motor, and fan motor
JP2002254029A (en) Dc brushless vibration motor
EP1833142B1 (en) Small brushless motor structure
CN112564370A (en) Motor and air supply device
JP3129000B2 (en) Small vibration motor with cylindrical slotless core
JP2003189522A (en) Small-sized flat motor, small-sized flat fan motor, air forced-supply type of air cell equipped with the same motor, small-sized flat oscillatory motor, and portable information apparatus equipped with the same motor
JP3796238B2 (en) An axial air gap type coreless vibration motor having the same type rotor as the mold type eccentric rotor
JP5277605B2 (en) Brushless motor
JP2001016815A (en) Connecting construction for field coil tap wire of small- sized motor
JP3759092B2 (en) Flat coreless vibration motor equipped with an eccentric rotor and the same rotor
JP2004297903A (en) Axial gap type brushless motor
JPH1118356A (en) Small-sized axial flow fan motor
JP3127916B2 (en) Brushless motor
JP3530182B1 (en) Coreless motor rotor, method of manufacturing the rotor, and axial gap type coreless motor provided with the rotor
KR100220648B1 (en) Vibration generator for mobile terminal
JP2006094643A (en) Single-phase brushless motor
JP2006014441A (en) Eccentric rotor and flat core-less vibrating motor having the eccentric rotor
JP2019041518A (en) Rotary electric machine
JP3047177U (en) Cylindrical micro vibration motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees