JP2005093532A - Thermoelectric element module - Google Patents

Thermoelectric element module Download PDF

Info

Publication number
JP2005093532A
JP2005093532A JP2003321641A JP2003321641A JP2005093532A JP 2005093532 A JP2005093532 A JP 2005093532A JP 2003321641 A JP2003321641 A JP 2003321641A JP 2003321641 A JP2003321641 A JP 2003321641A JP 2005093532 A JP2005093532 A JP 2005093532A
Authority
JP
Japan
Prior art keywords
thermoelectric element
thermoelectric
elements
insulating substrate
thermoelectric elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003321641A
Other languages
Japanese (ja)
Inventor
Tomohiro Iguchi
知洋 井口
Kazuki Tateyama
和樹 舘山
Ikuo Mori
郁夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003321641A priority Critical patent/JP2005093532A/en
Publication of JP2005093532A publication Critical patent/JP2005093532A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric element module which can generate power at high efficiency. <P>SOLUTION: The thermoelectric element module is provided with an endotherm board 1 and a heat slinger 2 by which counter arrangement is carried out, a first thermoelectric element 3a constituted of a plurality of prisms which generate electromotive force from a low temperature side to a high temperature side by applying temperature difference to a part between both end portions, a second thermoelectric element 3b constituted of a plurality of prisms which generate electromotive force from a high temperature side to the low temperature side, and connection members which are installed on the endotherm board 1 and the heat slinger 2 respectively, and connect electrically a plurality of the first thermoelectric elements 3a and the second thermoelectric elements 3b in series by connecting alternately end portions of the endotherm board 1 side and end portions of the heat slinger 2 side along the juxtaposition direction of the first thermoelectric element 3a and the second thermoelectric element 3b. Out of the first thermoelectric element 3a and the second thermoelectric element 3b, cross section with larger Seebeck coefficient is enlarged relatively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、温度差を利用して発電を行う熱電素子モジュールに関する。   The present invention relates to a thermoelectric element module that generates power using a temperature difference.

従来の熱電素子モジュールの構成を図6に示す。   The configuration of a conventional thermoelectric element module is shown in FIG.

図6に示すように、この熱電素子モジュールは、高温側に配置されて吸熱面として作用する吸熱板100aと、低温側に配置されて放熱面として作用する放熱板100bを有する。   As shown in FIG. 6, this thermoelectric element module has a heat absorbing plate 100 a that is arranged on the high temperature side and acts as a heat absorbing surface, and a heat radiating plate 100 b that is arranged on the low temperature side and acts as a heat radiating surface.

これら吸熱板100aと放熱板100bは対向配置されており、その間には両端部間に温度差を与えることにより、低温側から高温側に向かって起電力を発生させる複数の第1熱電素子102aと、高温側から低温側に向かって起電力を発生させる複数の第2熱電素子102bが所定間隔で交互に並設されている。   A plurality of first thermoelectric elements 102a that generate an electromotive force from the low temperature side to the high temperature side by providing a temperature difference between both ends between the heat absorption plate 100a and the heat dissipation plate 100b. A plurality of second thermoelectric elements 102b that generate an electromotive force from the high temperature side toward the low temperature side are alternately arranged in parallel at predetermined intervals.

第1熱電素子102aと第2熱電素子102bは、略同じ長さの柱状体からなり、その軸心線と直交する断面積は略等しくなるよう形成されている。   The first thermoelectric element 102a and the second thermoelectric element 102b are formed of columnar bodies having substantially the same length, and are formed so that the cross-sectional areas orthogonal to the axial center line are substantially equal.

隣り合う第1熱電素子102aと第2熱電素子102bは、吸熱板100a又は放熱板100b上の接続部材103によって組み合わせをずらしながら交互に接続されており、これによって、複数の第1熱電素子102aと第2熱電素子102bは、電気的に直列に接続されている。   Adjacent first thermoelectric elements 102a and second thermoelectric elements 102b are alternately connected while shifting the combination by the connection member 103 on the heat absorbing plate 100a or the heat radiating plate 100b, and thereby the plurality of first thermoelectric elements 102a and The second thermoelectric elements 102b are electrically connected in series.

上記構成の熱電素子モジュールにおいて、吸熱板100aと放熱板100bの間に温度差を与えると、これらの間に配置された第1熱電素子102aの両端部間及び第2熱電素子102bの両端部間には所定の電位差が発生する。そして、第1熱電素子102aと第2熱電素子102bに発生した電位差は、接続部材103を介して足し合わされ、熱電素子モジュールの出力電圧となる。   In the thermoelectric element module configured as described above, when a temperature difference is given between the heat absorbing plate 100a and the heat radiating plate 100b, between both ends of the first thermoelectric element 102a and between both ends of the second thermoelectric element 102b. A predetermined potential difference is generated. The potential difference generated between the first thermoelectric element 102a and the second thermoelectric element 102b is added through the connection member 103, and becomes an output voltage of the thermoelectric element module.

ところで、上述したように、複数の第1熱電素子と第2熱電素子は、電気的に直列に接続されているため、第1熱電素子と第2熱電素子には同じ値の電流が流れることになる。   As described above, since the plurality of first thermoelectric elements and the second thermoelectric elements are electrically connected in series, the same current flows through the first thermoelectric element and the second thermoelectric element. Become.

しかしながら、第1熱電素子と第2熱電素子はゼーベック係数や抵抗率などの特性が異なるため、図7に示すように最大出力[W]が得られる電流値に差がある。そのため、従来は第1熱電素子と第2熱電素子の最大出力[W]を同時に得ることができず、発電の効率を最大にすることができていなかった。   However, since the first thermoelectric element and the second thermoelectric element have different characteristics such as Seebeck coefficient and resistivity, there is a difference in the current value for obtaining the maximum output [W] as shown in FIG. Therefore, conventionally, the maximum output [W] of the first thermoelectric element and the second thermoelectric element cannot be obtained simultaneously, and the power generation efficiency cannot be maximized.

本発明は、上記事情を鑑みてなされたものであって、その目的とするところは、高い効率で発電することができる熱電素子モジュールを提供することにある。   This invention is made | formed in view of the said situation, The place made into the objective is providing the thermoelectric element module which can generate electric power with high efficiency.

上記課題を解決し目的を達成するために、本発明の熱電素子モジュールは次のように構成されている。   In order to solve the above problems and achieve the object, the thermoelectric module of the present invention is configured as follows.

(1)対向配置される第1絶縁基板及び第2絶縁基板と、上記第1絶縁基板と第2絶縁基板を連結するように所定間隔で並設され、両端部間に温度差を与えることで、第1の方向に起電力を発生する複数の第1熱電素子、及び上記第1の方向と反対方向である第2の方向に起電力を発生する複数の第2熱電素子と、上記第1熱電素子と第2熱電素子の上記第1絶縁基板側の端部同士及び上記第2絶縁基板側の端部同士を上記第1熱電素子と第2熱電素子の並設方向に沿って交互に接続することで、上記複数の第1熱電素子と第2熱電素子を電気的に直列に接続する接続部材とを具備し、上記第1熱電素子と第2熱電素子のうち、ゼーベック係数が大きい方の断面積を相対的に大きくしたことを特徴とする。 (1) The first insulating substrate and the second insulating substrate that are arranged to face each other, and the first insulating substrate and the second insulating substrate that are arranged in parallel to each other at a predetermined interval so as to connect the first insulating substrate and the second insulating substrate. A plurality of first thermoelectric elements that generate an electromotive force in a first direction, a plurality of second thermoelectric elements that generate an electromotive force in a second direction opposite to the first direction, and the first The ends on the first insulating substrate side and the ends on the second insulating substrate side of the thermoelectric element and the second thermoelectric element are alternately connected along the parallel arrangement direction of the first thermoelectric element and the second thermoelectric element. Thus, a connecting member that electrically connects the plurality of first thermoelectric elements and the second thermoelectric elements in series is provided. Of the first thermoelectric elements and the second thermoelectric elements, the one with the larger Seebeck coefficient The cross-sectional area is relatively large.

(2)(1)に記載された熱電素子モジュールであって、上記第1熱電素子と第2熱電素子は、その軸心線と直交する断面が矩形状であるとともに、各々の側面が対向するように配置され、しかも対向する上記側面の形状及び寸法が略等しいことを特徴とする。 (2) The thermoelectric element module described in (1), wherein the first thermoelectric element and the second thermoelectric element have a rectangular cross section perpendicular to the axial center line, and each side surface faces each other. Further, the shapes and dimensions of the side surfaces opposed to each other are substantially equal.

本発明によれば、与えられる温度差に対して高い効率で発電することができる。   According to the present invention, it is possible to generate power with high efficiency with respect to a given temperature difference.

以下、図面を参照しながら本発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の一実施の形態に係る熱電素子モジュールの構成を吸熱板を省略して説明する正面図、図2は同実施の形態に係る熱電素子モジュールの構成を矢印A方向から示す側面図、図3は同実施の形態に係る熱電素子モジュールの構成を矢印B側から示す側面図。   FIG. 1 is a front view illustrating a configuration of a thermoelectric element module according to an embodiment of the present invention, omitting a heat absorbing plate, and FIG. 2 is a side view illustrating the configuration of the thermoelectric element module according to the embodiment from the direction of arrow A. FIG. 3 is a side view showing the configuration of the thermoelectric element module according to the embodiment from the arrow B side.

図1〜図3に示すように、この熱電素子モジュールは、高温側に配置されて吸熱面として作用する吸熱板1と、低温側に配置されて放熱面として作用する放熱板2を有する。   As shown in FIGS. 1 to 3, the thermoelectric element module includes a heat absorbing plate 1 that is disposed on the high temperature side and functions as a heat absorbing surface, and a heat radiating plate 2 that is disposed on the low temperature side and functions as a heat radiating surface.

これら吸熱板1と放熱板2は、略矩形状の絶縁材からなり、所定の間隔を存して対向配置されている。吸熱板1の材料としてはセラミック等の耐熱性を備えた絶縁材料、放熱板2の材料としては酸化アルミニウム等の一般的な絶縁材料が用いられる。   The heat absorbing plate 1 and the heat radiating plate 2 are made of a substantially rectangular insulating material, and are opposed to each other with a predetermined interval. As the material of the heat absorbing plate 1, an insulating material having heat resistance such as ceramic, and as the material of the heat radiating plate 2, a general insulating material such as aluminum oxide is used.

吸熱板1と放熱板2の間には、発電層3が設けられている。この発電層3は、両端部間に温度差を与えることで、低温側から高温側に向かう方向(第1の方向)に起電力を発生させる複数の第1熱電素子3aと、高温側から低温側に向かう方向(第2の方向)に起電力を発生させる複数の第2熱電素子3bから構成される。第1熱電素子3aとしては、第2熱電素子3bよりもゼーベック係数[μV/K]が大きく、抵抗率[Ω/m]が小さい金属材料が用いられる。   A power generation layer 3 is provided between the heat absorbing plate 1 and the heat radiating plate 2. The power generation layer 3 includes a plurality of first thermoelectric elements 3a that generate an electromotive force in a direction from the low temperature side to the high temperature side (first direction) by giving a temperature difference between both ends, and low temperature from the high temperature side. It consists of a plurality of second thermoelectric elements 3b that generate an electromotive force in a direction toward the side (second direction). As the first thermoelectric element 3a, a metal material having a larger Seebeck coefficient [μV / K] and a smaller resistivity [Ω / m] than the second thermoelectric element 3b is used.

これら第1熱電素子3aと第2熱電素子3bは、互いに直交するX方向とY方向に対して所定間隔で交互に配置されている。   The first thermoelectric elements 3a and the second thermoelectric elements 3b are alternately arranged at predetermined intervals with respect to the X direction and the Y direction orthogonal to each other.

X方向に対して隣り合う第1熱電素子3aと第2熱電素子3bは、吸熱板1に所定間隔で並設されたアルミニウム製の第1接続電極4a(接続部材)と、放熱板2に所定間隔で並設されたアルミニウム製の第2接続電極4b(接続部材)によって、第1、第2熱電素子3a、3bの組み合わせずらしながら交互に接続されている。これによって、X方向に並設された第1熱電素子3aと第2熱電素子3bは、側面視略蛇行状に連結されている。   The first thermoelectric element 3a and the second thermoelectric element 3b that are adjacent to each other in the X direction have a first connection electrode 4a (connection member) made of aluminum arranged in parallel on the heat absorption plate 1 at a predetermined interval, and a predetermined value on the heat dissipation plate 2. The second connection electrodes 4b (connection members) made of aluminum arranged in parallel at intervals are alternately connected while shifting the combination of the first and second thermoelectric elements 3a and 3b. Thus, the first thermoelectric element 3a and the second thermoelectric element 3b arranged in parallel in the X direction are connected in a meandering manner in a side view.

第1、第2熱電素子3a、3bと第1、第2接続電極4a、4bは、耐熱性を有する接合材料5によって電気的に接続されている。なお、接合材料5の材料としては、例えばAl−12wt%Si等が用いられる。   The first and second thermoelectric elements 3a and 3b and the first and second connection electrodes 4a and 4b are electrically connected by a bonding material 5 having heat resistance. For example, Al-12 wt% Si or the like is used as the material of the bonding material 5.

一方、X方向両端部に配置され、Y方向に対して隣り合う第1熱電素子3aと第2熱電素子3bは、吸熱板1のX方向両側に千鳥状に設けられた銅製の第3接続電極4c(接続部材)と第4接続電極4d(接続部材)によって交互に接続されている。   On the other hand, the first thermoelectric element 3a and the second thermoelectric element 3b, which are arranged at both ends in the X direction and are adjacent to the Y direction, are copper third connection electrodes provided in a staggered manner on both sides in the X direction of the heat absorbing plate 1. 4c (connection member) and the fourth connection electrode 4d (connection member) are alternately connected.

第1、第2熱電素子3a、3bと第3、第4接続電極4c、4dは、一般的に使用される接合材料8によって電気的に接続されている。なお、接合材料8の材料としては、はんだ等が用いられる。   The first and second thermoelectric elements 3a and 3b and the third and fourth connection electrodes 4c and 4d are electrically connected by a bonding material 8 that is generally used. Note that solder or the like is used as the material of the bonding material 8.

これによって、全ての第1熱電素子3aと第2熱電素子3bは、第1〜第4接続電極4a〜4dを介して電気的に直列に接続されている。   Thus, all the first thermoelectric elements 3a and the second thermoelectric elements 3b are electrically connected in series via the first to fourth connection electrodes 4a to 4d.

第1熱電素子3aと第2熱電素子3bは、略同じ長さの柱状体からなり、その軸心線と直交する断面は共に矩形状をなしている。また、第1熱電素子3aと第2熱電素子3bは、互いに平行な2側面がX方向とY方向にそれぞれ沿うように配置されている。   The 1st thermoelectric element 3a and the 2nd thermoelectric element 3b consist of a columnar body of substantially the same length, and the cross section orthogonal to the axial center line | wire has comprised rectangular shape. Moreover, the 1st thermoelectric element 3a and the 2nd thermoelectric element 3b are arrange | positioned so that two mutually parallel side surfaces may each follow an X direction and a Y direction.

第1熱電素子3aと第2熱電素子3bのY方向に対する長さ寸法は、略等しく形成されている。一方、第1熱電素子3aのX方向に対する長さ寸法は、第2熱電素子3bよりも長く形成されている。これによって、第1熱電素子3aの軸心線と直交する断面の面積は、第2熱電素子3bよりも大きく設定されている。   The length dimension with respect to the Y direction of the 1st thermoelectric element 3a and the 2nd thermoelectric element 3b is formed substantially equal. On the other hand, the length dimension with respect to the X direction of the 1st thermoelectric element 3a is formed longer than the 2nd thermoelectric element 3b. Thereby, the area of the cross section orthogonal to the axial center line of the first thermoelectric element 3a is set larger than that of the second thermoelectric element 3b.

上記構成の熱電素子モジュールによれば、吸熱板1と放熱板2に温度差を与えると、これらの間に配置された第1熱電素子3a及び第2熱電素子3bにはゼーベック効果により所定の電位差が発生する。   According to the thermoelectric element module configured as described above, when a temperature difference is given to the heat absorbing plate 1 and the heat radiating plate 2, the first thermoelectric element 3a and the second thermoelectric element 3b disposed between them have a predetermined potential difference due to the Seebeck effect. Occurs.

第1、第2熱電素子3a、3bで発生した電位差は、これら熱電素子3a、3b間を接続する第1〜第4接続電極4a〜4dを介して足し合わされ、熱電素子モジュールの出力電圧[V]となる。   The potential difference generated in the first and second thermoelectric elements 3a and 3b is added through the first to fourth connection electrodes 4a to 4d connecting the thermoelectric elements 3a and 3b, and the output voltage [V ].

ところで、ゼーベック効果では、ゼーベック係数が大きい材料ほど、吸熱板1と放熱板2に与えられた温度差に対して大きな起電力を発生する。そこで、本発明では、ゼーベック係数の大きな第1熱電素子3aの断面積を、ゼーベック係数の小さな第2熱電素子3bの断面積よりも大きくすることで、大きな出力電圧[V]を得ようとしている。   By the way, in the Seebeck effect, a material having a larger Seebeck coefficient generates a larger electromotive force with respect to a temperature difference given to the heat absorbing plate 1 and the heat radiating plate 2. Therefore, in the present invention, a large output voltage [V] is obtained by making the cross-sectional area of the first thermoelectric element 3a having a large Seebeck coefficient larger than the cross-sectional area of the second thermoelectric element 3b having a small Seebeck coefficient. .

ところが、第1熱電素子3aの断面積を大きくすると熱電素子モジュールが大型化する。そのため、第1の熱電素子3aの断面積を大きくする場合には、その分だけ第2の熱電素子3bの断面積を小さくしたい。   However, increasing the cross-sectional area of the first thermoelectric element 3a increases the size of the thermoelectric element module. Therefore, when the cross-sectional area of the first thermoelectric element 3a is increased, it is desired to reduce the cross-sectional area of the second thermoelectric element 3b accordingly.

しかしながら、第2熱電素子は抵抗率が大きいため、断面積を小さくすると内部に電流が流れた時に大きな電圧降下が発生し、結果として出力パワー[W]を低下させる原因となる。   However, since the second thermoelectric element has a high resistivity, if the cross-sectional area is reduced, a large voltage drop occurs when a current flows through the second thermoelectric element, resulting in a decrease in output power [W].

そこで、発明者は、第1熱電素子3aの断面積を第2熱電素子3bより大きくするだけでなく、実際の出力パワー[W]を測定することにより、最大出力が得られる第1熱電素子3aと第2熱電素子3bの断面の面積比を測定した。   Therefore, the inventor not only makes the cross-sectional area of the first thermoelectric element 3a larger than that of the second thermoelectric element 3b, but also measures the actual output power [W], thereby obtaining the maximum output. The area ratio of the cross section of the second thermoelectric element 3b was measured.

その結果、図5に示すように、第1熱電素子3aと第2熱電素子3bの間には、最大の出力パワー[W]を得るための最適な面積比が存在することを確認した。なお、この最適な面積比は、第1熱電素子3aと第2熱電素子3bの材料によって決定されるものであるが、本実施の形態に係る第1の熱電素子3aと第2熱電素子3bの組み合わせでは、第1熱電素子3aの断面積/第2熱電素子3bの断面積が2となるときが最適な面積比となることが分かる。   As a result, as shown in FIG. 5, it was confirmed that there is an optimum area ratio for obtaining the maximum output power [W] between the first thermoelectric element 3a and the second thermoelectric element 3b. The optimum area ratio is determined by the materials of the first thermoelectric element 3a and the second thermoelectric element 3b, but the first thermoelectric element 3a and the second thermoelectric element 3b according to the present embodiment. In the combination, it can be seen that the optimal area ratio is obtained when the cross-sectional area of the first thermoelectric element 3a / the cross-sectional area of the second thermoelectric element 3b is 2.

そこで、本実施の形態では、第1熱電素子3aの断面積を第2熱電素子3bの約2倍、すなわち、第1熱電素子3aのX方向に対する長さ寸法を第2熱電素子3bの約2倍としている。   Therefore, in the present embodiment, the cross-sectional area of the first thermoelectric element 3a is approximately twice that of the second thermoelectric element 3b, that is, the length dimension of the first thermoelectric element 3a in the X direction is approximately 2 times that of the second thermoelectric element 3b. Doubled.

その結果、与えられた温度差に対して、大きな出力パワー[W]を得ることができる。言い換えれば、与えられた温度差に対して高い効率で発電することができる。   As a result, a large output power [W] can be obtained for a given temperature difference. In other words, it is possible to generate power with high efficiency for a given temperature difference.

次に、上記構成の熱電素子モジュールを製造する工程について説明する。   Next, a process for manufacturing the thermoelectric element module having the above configuration will be described.

図4(a)〜(c)は同実施の形態に係る熱電素子モジュールの製造工程を示す工程図である。   4A to 4C are process diagrams showing the manufacturing process of the thermoelectric element module according to the embodiment.

図4(a)に示すように、吸熱板1上の所定位置に第1接続電極4a、第3接続電極4c、及び第4接続電極4dを形成する。   As shown in FIG. 4A, the first connection electrode 4a, the third connection electrode 4c, and the fourth connection electrode 4d are formed at predetermined positions on the heat absorbing plate 1.

次に、図4(b)に示すように、第1、第3、第4接続電極4a、4c、4d上にAl−Si等の接合材料5を供給し、この接合材料5の上に治具(不図示)を用いて第1熱電素子3aと第2熱電素子3bを配置する。そして、吸熱板1と第1、第2熱電素子3a、3bを治具ごと水素炉などの非酸化雰囲気の炉に入れ、約600[度]まで加熱する。これによって、接合材料5が溶融され、吸熱板1上に第1、第2熱電素子3a、3bが固定される。   Next, as shown in FIG. 4B, a bonding material 5 such as Al—Si is supplied onto the first, third, and fourth connection electrodes 4 a, 4 c, and 4 d, and the bonding material 5 is cured on the bonding material 5. The 1st thermoelectric element 3a and the 2nd thermoelectric element 3b are arrange | positioned using a tool (not shown). Then, the endothermic plate 1 and the first and second thermoelectric elements 3a and 3b are put together with a jig in a non-oxidizing atmosphere furnace such as a hydrogen furnace and heated to about 600 degrees. As a result, the bonding material 5 is melted, and the first and second thermoelectric elements 3 a and 3 b are fixed on the heat absorbing plate 1.

一方、上述の工程とは別に、図4(c)に示すように、放熱板2の所定位置に第2接続電極4bを形成する。次に、第2接続電極4b上にハンダペースト等の接合材料8を供給し、この接合材料8の上に吸熱板1上に固定された第1、第2熱電素子3a、3bを配置する。そして、接合材料8を加熱し、第1、第2熱電素子3a、3bに吸熱板1を固定する。   On the other hand, apart from the above-described steps, the second connection electrode 4b is formed at a predetermined position of the heat sink 2 as shown in FIG. Next, the bonding material 8 such as a solder paste is supplied onto the second connection electrode 4b, and the first and second thermoelectric elements 3a and 3b fixed on the heat absorbing plate 1 are disposed on the bonding material 8. Then, the bonding material 8 is heated to fix the heat absorbing plate 1 to the first and second thermoelectric elements 3a and 3b.

以上で熱電素子モジュールの製造工程が終了となる。   This completes the manufacturing process of the thermoelectric element module.

このように、吸熱板1上に第1、第2熱電素子3a、3bを固定する際に治具を用いることで、複数の第1、第2熱電素子3a、3bを正確に配置することができる。しかも、加熱時にも、治具によって第1、第2熱電素子3a、3bの相対位置を維持するため、接合材料5の溶融により生じる表面張力などの影響で、第1、第2熱電素子3a、3bの位置が吸熱板1に対してずれることがない。   As described above, by using the jig when fixing the first and second thermoelectric elements 3a and 3b on the heat absorbing plate 1, the plurality of first and second thermoelectric elements 3a and 3b can be accurately arranged. it can. Moreover, since the relative positions of the first and second thermoelectric elements 3a and 3b are maintained by the jig even during heating, the first and second thermoelectric elements 3a, The position of 3b does not shift with respect to the heat absorbing plate 1.

なお、本発明は、上記実施の形態そのままに限定されるものではなく、実施の段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the spirit of the invention at the stage of implementation. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

本実施の形態に係る熱電素子モジュールは、温度差を利用して発電させる用途に用いられるものであったが、通電により熱移動を促進するペルチェモジュールも含まれる。   The thermoelectric element module according to the present embodiment is used for generating electricity using a temperature difference, but includes a Peltier module that promotes heat transfer by energization.

本発明の一実施の形態に係る熱電素子モジュールの構成を吸熱板を省略して説明する正面図。The front view explaining the structure of the thermoelectric element module which concerns on one embodiment of this invention abbreviate | omitting a heat sink. 同実施の形態に係る熱電素子モジュールの構成を矢印A方向から示す側面図。The side view which shows the structure of the thermoelectric element module which concerns on the same embodiment from the arrow A direction. 同実施の形態に係る熱電素子モジュールの構成を矢印B側から示す側面図。The side view which shows the structure of the thermoelectric element module which concerns on the same embodiment from the arrow B side. 同実施の形態に係る熱電素子モジュールの製造工程を示す工程図。Process drawing which shows the manufacturing process of the thermoelectric element module which concerns on the same embodiment. 同実施の形態に係る第1熱電素子と第2熱電素子の断面の面積比を種々に変化させた場合の出力を示すグラフ図。The graph which shows the output at the time of changing the area ratio of the cross section of the 1st thermoelectric element and 2nd thermoelectric element which concern on the same embodiment variously. 従来の熱電素子モジュールの構成を示す概略図。Schematic which shows the structure of the conventional thermoelectric element module. 第1熱電素子と第2熱電素子の電流−出力特性を示すグラフ図。The graph which shows the current-output characteristic of a 1st thermoelectric element and a 2nd thermoelectric element.

符号の説明Explanation of symbols

1…吸熱板(第1絶縁基板)、2…放熱板(第2絶縁基板)、3a…第1熱電素子、3b…第2熱電素子、4a〜4d…第1〜第4接続電極(接続部材)。   DESCRIPTION OF SYMBOLS 1 ... Heat-absorbing plate (1st insulated substrate), 2 ... Heat sink (2nd insulated substrate), 3a ... 1st thermoelectric element, 3b ... 2nd thermoelectric element, 4a-4d ... 1st-4th connection electrode (connection member) ).

Claims (2)

対向配置される第1絶縁基板及び第2絶縁基板と、
上記第1絶縁基板と第2絶縁基板を連結するように所定間隔で並設され、両端部間に温度差を与えることで、第1の方向に起電力を発生する複数の第1熱電素子、及び上記第1の方向と反対方向である第2の方向に起電力を発生する複数の第2熱電素子と、
上記第1熱電素子と第2熱電素子の上記第1絶縁基板側の端部同士及び上記第2絶縁基板側の端部同士を上記第1熱電素子と第2熱電素子の並設方向に沿って交互に接続することで、上記複数の第1熱電素子と第2熱電素子を電気的に直列に接続する接続部材と、
を具備し、
上記第1熱電素子と第2熱電素子のうち、ゼーベック係数が大きい方の断面積を相対的に大きくしたことを特徴とする熱電素子モジュール。
A first insulating substrate and a second insulating substrate disposed opposite to each other;
A plurality of first thermoelectric elements that are arranged in parallel at a predetermined interval so as to connect the first insulating substrate and the second insulating substrate, and generate an electromotive force in a first direction by giving a temperature difference between both ends; A plurality of second thermoelectric elements that generate an electromotive force in a second direction that is opposite to the first direction;
The ends of the first thermoelectric element and the second thermoelectric element on the first insulating substrate side and the ends of the second insulating substrate side are aligned along the direction in which the first thermoelectric element and the second thermoelectric element are juxtaposed. By connecting alternately, a connection member that electrically connects the plurality of first thermoelectric elements and second thermoelectric elements in series;
Comprising
The thermoelectric element module characterized by relatively increasing the cross-sectional area of the first thermoelectric element and the second thermoelectric element having a larger Seebeck coefficient.
上記第1熱電素子と第2熱電素子は、その軸心線と直交する断面が矩形状であるとともに、各々の側面が対向するように配置され、しかも対向する上記側面の形状及び寸法が略等しいことを特徴とする請求項1記載の熱電素子モジュール。   The first thermoelectric element and the second thermoelectric element have a rectangular cross section orthogonal to the axial center line, are arranged so that the side surfaces thereof are opposed to each other, and the shapes and dimensions of the opposed side surfaces are substantially equal. The thermoelectric element module according to claim 1.
JP2003321641A 2003-09-12 2003-09-12 Thermoelectric element module Pending JP2005093532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321641A JP2005093532A (en) 2003-09-12 2003-09-12 Thermoelectric element module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321641A JP2005093532A (en) 2003-09-12 2003-09-12 Thermoelectric element module

Publications (1)

Publication Number Publication Date
JP2005093532A true JP2005093532A (en) 2005-04-07

Family

ID=34453266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321641A Pending JP2005093532A (en) 2003-09-12 2003-09-12 Thermoelectric element module

Country Status (1)

Country Link
JP (1) JP2005093532A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766921A (en) * 2014-01-08 2015-07-08 Lg伊诺特有限公司 Thermoelectric module and heat conversion device using the same
CN104810466A (en) * 2014-01-23 2015-07-29 Lg伊诺特有限公司 Thermoelectric module and heat conversion device including the same
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
US20150333246A1 (en) * 2014-05-13 2015-11-19 Lg Innotek Co., Ltd. Heat conversion device
WO2022259759A1 (en) * 2021-06-08 2022-12-15 パナソニックIpマネジメント株式会社 Thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766921A (en) * 2014-01-08 2015-07-08 Lg伊诺特有限公司 Thermoelectric module and heat conversion device using the same
EP2894682A3 (en) * 2014-01-08 2015-08-05 LG Innotek Co., Ltd. Thermoelectric module and heat conversion device using the same
US9780282B2 (en) 2014-01-08 2017-10-03 Lg Innotek Co., Ltd. Thermoelectric module and heat conversion device using the same
CN104766921B (en) * 2014-01-08 2018-11-23 Lg伊诺特有限公司 Electrothermal module and the heat conversion device for using it
TWI655794B (en) * 2014-01-08 2019-04-01 韓商Lg伊諾特股份有限公司 Thermoelectric module and heat conversion device using the same
CN104810466A (en) * 2014-01-23 2015-07-29 Lg伊诺特有限公司 Thermoelectric module and heat conversion device including the same
EP2899764A3 (en) * 2014-01-23 2015-08-05 LG Innotek Co., Ltd. Thermoelectric module and heat conversion device including the same
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
US20150333246A1 (en) * 2014-05-13 2015-11-19 Lg Innotek Co., Ltd. Heat conversion device
WO2022259759A1 (en) * 2021-06-08 2022-12-15 パナソニックIpマネジメント株式会社 Thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion element

Similar Documents

Publication Publication Date Title
JP5197954B2 (en) Thermoelectric element
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
KR20100025067A (en) Thermoelectric module using substrate with prominence and depression
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
JP5653455B2 (en) Thermoelectric conversion member
JP2005093532A (en) Thermoelectric element module
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
JPH0818109A (en) Thermoionic element and manufacture thereof
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
US10833237B2 (en) Thermoelectric module
JP2000050661A (en) Power generator
JP6471241B2 (en) Thermoelectric module
JP2012532468A (en) Module having a plurality of thermoelectric elements
JP2000286463A (en) Thermoelectric conversion module
JP2009231655A (en) Thermoelectric conversion module
EP1981095A2 (en) A peltier module
JP2020150139A (en) Thermoelectric conversion module
JPH06310765A (en) Thermionic element and thermionic device
JP2000091650A (en) High temperature thermoelectric transducer
JP2014110245A (en) Thermoelectric conversion device
JPH1022531A (en) Thermoelectric converter element
KR20070030840A (en) Thermoelectric device
JP5200884B2 (en) Thermoelectric power generation device
JP2003234515A (en) Thermoelectric module
JP4242118B2 (en) Thermoelectric conversion module