JP2005093517A - Multilayer wiring board and its manufacturing method - Google Patents

Multilayer wiring board and its manufacturing method Download PDF

Info

Publication number
JP2005093517A
JP2005093517A JP2003321371A JP2003321371A JP2005093517A JP 2005093517 A JP2005093517 A JP 2005093517A JP 2003321371 A JP2003321371 A JP 2003321371A JP 2003321371 A JP2003321371 A JP 2003321371A JP 2005093517 A JP2005093517 A JP 2005093517A
Authority
JP
Japan
Prior art keywords
insulating resin
layer
protruding electrode
resin layer
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003321371A
Other languages
Japanese (ja)
Other versions
JP4114576B2 (en
Inventor
Daisuke Sakurai
大輔 櫻井
Norito Tsukahara
法人 塚原
Kazuhiro Nishikawa
和宏 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003321371A priority Critical patent/JP4114576B2/en
Publication of JP2005093517A publication Critical patent/JP2005093517A/en
Application granted granted Critical
Publication of JP4114576B2 publication Critical patent/JP4114576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a multilayer wiring board, wherein sharp reduction in the manufacturing cost is realized by planning simplification of manufacturing process and reduction in the environmental load. <P>SOLUTION: A first wiring layer 12 composed of conductive paste is formed on a substrate 11, and a bump electrode 13 composed of the conductive paste is formed on the first wiring layer 12. By using a screen printing version 21, having a mask pattern which shields a region having a predetermined gap 23 from an outer periphery of the bump electrode 13, the bump electrode 13 and the gap 23 are formed, and an insulating resin layer 14, composed of polymer resin, is formed on the first wiring layer 12. The viscosity of polymer resin layer is reduced by heating the insulating resin layer 14, the gap 23 is filled with fluidized polymer resin, and the polymer resin is cured, thereby forming the insulating resin layer 14. A second wiring layer 15 composed of conductive paste is formed on the insulating resin layer 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板上に配線層と絶縁性樹脂層を積層して形成するビルドアップ方式の多層配線基板およびその製造方法に関する。   The present invention relates to a build-up multilayer wiring board formed by laminating a wiring layer and an insulating resin layer on a substrate and a method for manufacturing the same.

近年、携帯電話やパソコンに代表される電子機器の小型化、薄型化、低価格化の進展に伴い、配線基板の小型化、高機能化および低価格化に対する市場ニーズが高まってきている。このために、多層配線基板が注目されている。   In recent years, with the progress of miniaturization, thinning, and price reduction of electronic devices typified by mobile phones and personal computers, market needs for miniaturization, high functionality, and low price of wiring boards are increasing. For this reason, a multilayer wiring board has attracted attention.

従来の多層配線基板の製造方法としては、以下に示すものがあった。まず、セラミックからなる基板上にスパッタ法を用いて導電体膜を形成する。次に、導電体膜を形成した基板上にフォトレジスト膜を塗布し、突起状電極を形成する位置にフォトリソプロセスにより導電体膜が露出する開口部を形成する。次に、メッキプロセスにより開口部にニッケル(Ni)、銅(Cu)または金(Au)などの突起状電極を形成する。そして、フォトレジスト膜を溶解除去した後、フォトリソプロセスおよびエッチングプロセスにより導電体膜に所定のパターン加工を行い、第1の配線層を形成する。次に、この第1の配線層を含む基板上に突起状電極よりも厚く絶縁性樹脂膜、例えば感光性ポリイミド前駆体を塗布し、フォトリソプロセスおよびエッチングプロセスにより突起状電極を露出させた後に熱硬化させて絶縁性樹脂層を形成する。次に、この絶縁性樹脂層上に突起状電極に接続する第2の配線層を形成する。これにより二層配線基板が形成される。さらに多層化する場合には、これらの工程を繰り返して作製されていた(例えば、特許文献1)。
特開平06−6034号公報
As a conventional method for manufacturing a multilayer wiring board, there are the following methods. First, a conductor film is formed on a ceramic substrate using a sputtering method. Next, a photoresist film is applied on the substrate on which the conductor film is formed, and an opening through which the conductor film is exposed is formed by a photolithography process at a position where the protruding electrode is formed. Next, a protruding electrode such as nickel (Ni), copper (Cu), or gold (Au) is formed in the opening by a plating process. Then, after the photoresist film is dissolved and removed, a predetermined pattern processing is performed on the conductor film by a photolithography process and an etching process to form a first wiring layer. Next, an insulating resin film, such as a photosensitive polyimide precursor, is applied on the substrate including the first wiring layer so as to be thicker than the protruding electrode, and the protruding electrode is exposed by a photolithography process and an etching process. The insulating resin layer is formed by curing. Next, a second wiring layer connected to the protruding electrode is formed on the insulating resin layer. Thereby, a two-layer wiring board is formed. In the case of further multilayering, these steps are repeated (for example, Patent Document 1).
Japanese Patent Laid-Open No. 06-6034

上記従来の方法では、フォトリソプロセスやメッキプロセスを用いるので高精細の多層配線基板を作製できる。しかし、このような方法では、製造工程が煩雑で製造コストが高くなるだけでなく、メッキプロセスやエッチングプロセスにより生じる廃液処理などの環境対策も必要となるという課題があった。   In the above conventional method, since a photolithography process or a plating process is used, a high-definition multilayer wiring board can be manufactured. However, such a method has a problem that not only the manufacturing process is complicated and the manufacturing cost is increased, but also environmental measures such as waste liquid treatment caused by a plating process or an etching process are required.

本発明は係る従来の課題を解決して、製造工程の簡略化と環境負荷の低減が可能な多層配線基板およびその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a multilayer wiring board capable of simplifying the manufacturing process and reducing the environmental load, and a method for manufacturing the same, by solving the conventional problems.

上記課題を解決するために本発明の多層配線基板は、基板上に形成された第1の配線層と、第1の配線層上に形成された突起状電極と、第1の配線層を含む基板上に形成され、突起状電極の外周部に隣接する隣接領域部の厚みが第1の配線層上の領域部の厚みより薄く形成された絶縁性樹脂層と、絶縁性樹脂層上に形成され、突起状電極に接続する第2の配線層とを有する構成からなる。   In order to solve the above problems, a multilayer wiring board of the present invention includes a first wiring layer formed on the substrate, a protruding electrode formed on the first wiring layer, and a first wiring layer. An insulating resin layer formed on the substrate and adjacent to the outer peripheral portion of the protruding electrode is formed on the insulating resin layer, and an insulating resin layer formed thinner than the thickness of the region on the first wiring layer And a second wiring layer connected to the protruding electrode.

この構成により、印刷方式などの簡易で、設備の安い方法で多層配線基板を作製可能で、かつ、第2の配線層と突起状電極との接触抵抗のばらつきを小さくでき、高性能の多層配線基板を実現できる。   With this configuration, it is possible to fabricate a multilayer wiring board with a simple and inexpensive method such as a printing method, and it is possible to reduce variations in contact resistance between the second wiring layer and the protruding electrode, and to achieve high performance multilayer wiring. A substrate can be realized.

また、上記課題を解決するために本発明の多層配線基板の製造方法は、基板上に第1の配線層を形成する工程と、第1の配線層上に突起状電極を形成する工程と、突起状電極の外周部から所定の間隙を有して、第1の配線層を含む基板上に絶縁性樹脂層を形成する工程と、絶縁性樹脂層を加熱することにより、間隙に絶縁性樹脂層を流動させて絶縁性樹脂層を突起状電極の外周部まで連続的に形成する工程と、突起状電極に接続する第2の配線層を絶縁性樹脂層上に形成する工程とを有する方法からなる。   In order to solve the above problems, a method for manufacturing a multilayer wiring board of the present invention includes a step of forming a first wiring layer on a substrate, a step of forming a protruding electrode on the first wiring layer, A step of forming an insulating resin layer on the substrate including the first wiring layer with a predetermined gap from the outer peripheral portion of the protruding electrode; and heating the insulating resin layer to insulate the insulating resin in the gap A method comprising the steps of continuously forming an insulating resin layer to the outer periphery of the protruding electrode by flowing the layer and forming a second wiring layer connected to the protruding electrode on the insulating resin layer Consists of.

この方法により、第1の配線層上に形成した突起状電極の上面部には、絶縁性樹脂層は形成されないため、フォトリソプロセスとエッチングプロセスにより絶縁性樹脂層を除去することは不要となる。また、突起状電極を形成するときに、その形状をそろえておけば、第2の配線層と接触する突起状電極の面積はほぼ同じとすることができるので、第2の配線層と突起状電極との接触抵抗のばらつきを非常に小さく抑えることができる。なお、上述の隣接領域部は、この製造方法において、突起状電極の外周部に設けられた所定の間隙に流動して形成された絶縁性樹脂層部である。   By this method, since the insulating resin layer is not formed on the upper surface portion of the protruding electrode formed on the first wiring layer, it is not necessary to remove the insulating resin layer by the photolithography process and the etching process. Further, when the protruding electrodes are formed, if the shapes thereof are aligned, the area of the protruding electrodes in contact with the second wiring layer can be made substantially the same. Variation in contact resistance with the electrode can be suppressed to a very small level. Note that the adjacent region portion described above is an insulating resin layer portion formed by flowing in a predetermined gap provided in the outer peripheral portion of the protruding electrode in this manufacturing method.

また、本発明の多層配線基板の製造方法は、絶縁性樹脂層の厚みを突起状電極の厚さより薄く形成する方法からなる。この方法により、絶縁性樹脂層を加熱して流動化させても、突起状電極の上面側まで絶縁性樹脂層が回り込むことがなくなり、接触抵抗のさらに小さな多層配線基板を簡単な工程で作製することができる。   Moreover, the manufacturing method of the multilayer wiring board of this invention consists of the method of forming the thickness of an insulating resin layer thinner than the thickness of a protruding electrode. By this method, even when the insulating resin layer is heated and fluidized, the insulating resin layer does not wrap around to the upper surface side of the protruding electrode, and a multilayer wiring board having a smaller contact resistance is manufactured by a simple process. be able to.

また、本発明の多層配線基板の製造方法は、絶縁性樹脂層が樹脂ペーストを用いて印刷方式により形成される方法からなる。この方法により、突起状電極の外周部から所定の間隙を有して、第1の配線層を含む基板上に絶縁性樹脂層を形成することが容易にでき、かつ製造工程も大幅に簡略化できる。   Moreover, the manufacturing method of the multilayer wiring board of this invention consists of a method in which an insulating resin layer is formed by a printing system using a resin paste. By this method, it is easy to form an insulating resin layer on a substrate including the first wiring layer with a predetermined gap from the outer periphery of the protruding electrode, and the manufacturing process is greatly simplified. it can.

また、本発明の多層配線基板の製造方法は、絶縁性樹脂層が突起状電極の外周部から所定の間隙を有する形状の開口部が形成されたホットメルトシートを用いて、この開口部と突起状電極とを位置合わせして、第1の配線層を含む基板上にこのホットメルトシートを貼りつけて形成する方法からなる。   In addition, the method for manufacturing a multilayer wiring board according to the present invention uses a hot melt sheet in which an insulating resin layer is formed with an opening having a predetermined gap from the outer periphery of the protruding electrode. The hot melt sheet is attached to the substrate including the first wiring layer and aligned with the electrode-like electrode.

この方法により、予め開口部を、例えばパンチング加工などにより加工した後に基板上に貼りつけるだけでよくなるので、絶縁性樹脂層の形成工程が大幅に簡略化できる。さらに、シート状であるので厚さのばらつきも小さくなり、三層以上の多層配線を形成しても比較的平坦な表面を有する多層配線基板が得られるので、電子部品などの実装を高密度に行うことができる。   By this method, it is only necessary to attach the opening to the substrate after the opening is processed in advance by, for example, punching, so that the process of forming the insulating resin layer can be greatly simplified. Furthermore, since it is in the form of a sheet, variations in thickness are reduced, and even when three or more layers of multilayer wiring are formed, a multilayer wiring board having a relatively flat surface can be obtained. It can be carried out.

また、本発明の多層配線基板の製造方法は、樹脂ペーストまたはホットメルトシートが、熱硬化性樹脂および光硬化性樹脂の少なくとも一つを含むことを特徴とする。この方法により、流動化させて突起状電極の外周部まで絶縁性樹脂層を連続的に形成する工程と、絶縁性樹脂層を硬化する工程とを分けて行うこともできるので、突起状電極の上面部以外の領域に確実に絶縁性樹脂層を形成することができる。例えば、熱硬化性樹脂を用いる場合には、流動化のための加熱は、流動化する温度以上で網状構造となる温度(一般に、硬化開始温度とよばれる温度)より低い温度に、流動化後の硬化は網状構造となる温度に設定すればよい。なお、この工程は連続的に行ってもよい。また、光硬化性樹脂を用いる場合には、加熱により流動化を促進して突起状電極の外周部まで連続的に絶縁性樹脂層を形成後、紫外線などを照射して硬化させればよいし、必要に応じてさらに加熱硬化してもよい。   In the method for producing a multilayer wiring board according to the present invention, the resin paste or the hot melt sheet includes at least one of a thermosetting resin and a photocurable resin. By this method, the step of fluidizing and continuously forming the insulating resin layer up to the outer periphery of the protruding electrode can be performed separately from the step of curing the insulating resin layer. The insulating resin layer can be reliably formed in a region other than the upper surface portion. For example, in the case of using a thermosetting resin, the heat for fluidization is after the fluidization to a temperature lower than the temperature at which the network structure is formed above the fluidization temperature (generally called the curing start temperature). Curing of may be set to a temperature at which a network structure is obtained. Note that this step may be performed continuously. In addition, when using a photo-curing resin, fluidization is promoted by heating and an insulating resin layer is continuously formed up to the outer peripheral portion of the protruding electrode, and then cured by irradiation with ultraviolet rays or the like. If necessary, it may be further heat-cured.

また、本発明の多層配線基板の製造方法は、第1の配線層、第2の配線層および突起状電極が、導電ペーストを塗布し、熱硬化させて形成する方法からなる。この方法により、配線層を含むすべての工程を、例えば印刷方式や描画方式などにより形成することができるので、製造工程が簡略化できるだけでなく、製造の設備コストも小さくできる。   The method for manufacturing a multilayer wiring board according to the present invention includes a method in which the first wiring layer, the second wiring layer, and the protruding electrodes are formed by applying a conductive paste and thermally curing. By this method, all processes including the wiring layer can be formed by, for example, a printing method or a drawing method, so that not only the manufacturing process can be simplified but also the manufacturing equipment cost can be reduced.

本発明による多層配線基板とその製造方法は、突起状電極に間隙部を設けて絶縁性樹脂層を形成するとともに、流動化させて間隙部を埋め絶縁性樹脂層を連続的に形成するものである。   The multilayer wiring board according to the present invention and the method for manufacturing the multilayer wiring substrate are provided by forming a gap portion in the protruding electrode to form an insulating resin layer, and fluidizing the gap portion to continuously form the insulating resin layer. is there.

その結果、フォトリソプロセス、エッチングプロセスがなくなる、あるいはその回数が減少し、またメッキプロセスもなくなるため、製造工程を簡略化できる。そして、フォトリソプロセス、エッチングプロセスやメッキプロセスの廃液処理も減少し、環境負荷の低減を図ることができる。   As a result, the photolithography process and the etching process are eliminated, or the number of times is reduced, and the plating process is eliminated, so that the manufacturing process can be simplified. In addition, waste liquid treatment of a photolithographic process, an etching process, and a plating process is also reduced, and an environmental load can be reduced.

(実施の形態)
以下、本発明の実施の形態について、図1および図2を用いて説明する。図1は、本発明の実施の形態における多層配線基板を模式的に示した要部断面図である。なお、本発明の実施の形態においては、配線層が二層構成からなる多層配線基板を例として説明する。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view schematically showing a main part of a multilayer wiring board according to an embodiment of the present invention. In the embodiment of the present invention, a multilayer wiring board having a two-layer wiring layer will be described as an example.

本発明の実施の形態の多層配線基板は、図1に示すように、基板11上に第1の配線層12が形成され、この第1の配線層12上で、第2の配線層15と電気的に接続する個所に突起状電極13が形成されている。絶縁性樹脂層14は、第1の配線層12上を含む基板11の全面に形成されている。この絶縁性樹脂層14は、突起状電極13の外周部に隣接する隣接領域部14aの厚みが、その隣接領域部14aから外れた第1の配線層12上の領域部の厚みより薄く形成されている。   In the multilayer wiring board according to the embodiment of the present invention, as shown in FIG. 1, a first wiring layer 12 is formed on a substrate 11, and a second wiring layer 15 is formed on the first wiring layer 12. A protruding electrode 13 is formed at a location where electrical connection is made. The insulating resin layer 14 is formed on the entire surface of the substrate 11 including on the first wiring layer 12. The insulating resin layer 14 is formed so that the thickness of the adjacent region portion 14a adjacent to the outer peripheral portion of the protruding electrode 13 is smaller than the thickness of the region portion on the first wiring layer 12 that is out of the adjacent region portion 14a. ing.

また、隣接領域部14aから外れた第1の配線層12上の領域部の厚みは、突起状電極13よりも薄く形成されている。すなわち、突起状電極13の厚み(h1)に比べて、絶縁性樹脂層14の厚み(h2)は薄く形成されている。このような厚み構成は、後述する製造方法により容易に得ることができる。なお、絶縁性樹脂層14の厚みの条件は、突起状電極13の外周部まで絶縁性樹脂層14が流動したときに、突起状電極13の上面部13aまで絶縁性樹脂層14が覆わないことである。   Further, the thickness of the region on the first wiring layer 12 that is out of the adjacent region 14 a is formed to be thinner than the protruding electrode 13. That is, the thickness (h2) of the insulating resin layer 14 is formed thinner than the thickness (h1) of the protruding electrode 13. Such a thickness structure can be easily obtained by a manufacturing method described later. Note that the thickness of the insulating resin layer 14 is such that the insulating resin layer 14 does not cover the upper surface portion 13 a of the protruding electrode 13 when the insulating resin layer 14 flows to the outer peripheral portion of the protruding electrode 13. It is.

さらに、この絶縁性樹脂層14上には、突起状電極13に接続する第2の配線層15が形成されて、本発明の実施の形態の多層配線基板が構成されている。   Further, a second wiring layer 15 connected to the protruding electrode 13 is formed on the insulating resin layer 14 to constitute the multilayer wiring board according to the embodiment of the present invention.

また、基板11としては、ガラス繊維入りエポキシ樹脂やセラミック板などの耐熱性基板、あるいはポリエチレンテレフタレート(PET)やポリエチレンテレフタレート共重合体(PETG)などのポリエステル樹脂、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、ポリカーボネートまたはポリイミドなどからなるフィルムあるいはシートなど、通常の回路基板に用いられているものであればいずれでも適用できる。特に、フィルム状またはシート状の基板は、板厚を50μm〜400μmと薄くできるため、多層配線基板の薄型化に有効な点で好ましい。   Moreover, as the substrate 11, a heat-resistant substrate such as an epoxy resin containing glass fiber or a ceramic plate, a polyester resin such as polyethylene terephthalate (PET) or a polyethylene terephthalate copolymer (PETG), acrylonitrile butadiene styrene resin (ABS resin), Any film or sheet made of polycarbonate or polyimide may be used as long as it is used for a normal circuit board. In particular, a film-like or sheet-like substrate can be made as thin as 50 μm to 400 μm, and thus is preferable in that it is effective for thinning a multilayer wiring substrate.

また、第1の配線層12、第2の配線層15および突起状電極13は、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、パラジウム(Pd)などの単体またはパラジウム(Pd)と銀(Ag)との合金などを0.1μm〜20μmに微細化した導電性粒子を結着材に分散混合させた導電ペーストを用いて、スクリーン印刷、ステンシル印刷または描画印刷などの印刷方式を用いれば、容易にかつ低コストで形成できる。特に、結着材として熱硬化性樹脂もしくは光硬化性樹脂を用いた導電ペーストは、接着強度が強く、かつ配線層および突起状電極自体の強度も大きくできる点で好ましい。なお、配線層の電気抵抗をさらに小さくする必要がある場合には、銀(Ag)粒子の粒径を100nm以下にした銀ナノペーストを用いるとよい。また、突起状電極13の電気抵抗を導電ペーストより低抵抗化する必要がある場合は、突起状電極13を銅(Cu)などの金属を円柱にした金属電極を用いればよい。   The first wiring layer 12, the second wiring layer 15, and the protruding electrode 13 are made of a single substance such as gold (Au), silver (Ag), copper (Cu), nickel (Ni), palladium (Pd), or the like. Screen printing, stencil printing, drawing printing, etc. using conductive paste obtained by dispersing and mixing conductive particles, such as an alloy of palladium (Pd) and silver (Ag), refined to 0.1 μm to 20 μm in a binder If this printing method is used, it can be formed easily and at low cost. In particular, a conductive paste using a thermosetting resin or a photocurable resin as a binder is preferable in that the adhesive strength is high and the strength of the wiring layer and the protruding electrode itself can be increased. In addition, when it is necessary to make the electrical resistance of a wiring layer still smaller, it is good to use the silver nano paste which made the particle size of silver (Ag) particles 100 nm or less. Further, when it is necessary to make the electric resistance of the protruding electrode 13 lower than that of the conductive paste, the protruding electrode 13 may be a metal electrode made of a metal such as copper (Cu).

また、絶縁性樹脂層に用いる樹脂材料としては、不飽和ポリエステル樹脂、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂などの熱硬化性樹脂もしくは光硬化性樹脂、あるいはオレフィン系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリウレタン樹脂などの熱可塑性樹脂でもよい。すなわち、電気絶縁性に優れ、かつ加熱によって低粘度化して流動する樹脂であればいずれでもよい。   The resin material used for the insulating resin layer is a thermosetting resin such as unsaturated polyester resin, epoxy resin, acrylic resin, polyimide resin or photocurable resin, or olefin resin, polycarbonate, polyethylene terephthalate, polyurethane resin. A thermoplastic resin such as That is, any resin may be used as long as it is excellent in electrical insulation and flows with reduced viscosity by heating.

次に、本発明の実施の形態における多層配線基板の製造方法について説明する。   Next, the manufacturing method of the multilayer wiring board in embodiment of this invention is demonstrated.

図2は、本発明の実施の形態における多層配線基板の製造方法を説明するための主要部の工程断面図である。なお、図1と同じ要素については、同じ符号を付している。   FIG. 2 is a process cross-sectional view of the main part for explaining the method for manufacturing a multilayer wiring board in the embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same element as FIG.

最初に、図2(A)に示すように、熱硬化性結着材を含む導電ペーストを用いて、スクリーン印刷、描画印刷またはステンシル印刷など、通常の印刷方式により、基板11上に導電ペーストによる配線パターンを形成する。この配線パターンを形成後、加熱して硬化させて第1の配線層12が形成される。   First, as shown in FIG. 2A, a conductive paste containing a thermosetting binder is used to form a conductive paste on the substrate 11 by a normal printing method such as screen printing, drawing printing, or stencil printing. A wiring pattern is formed. After forming this wiring pattern, the first wiring layer 12 is formed by heating and curing.

次に、図2(B)に示すように、上記と同じ導電ペーストを用いて第1の配線層12上で、後述する第2の配線層15と電気的に接続が必要な個所に突起状の電極パターンを印刷する。この場合、比較的厚みを大きくして厚み対幅の比、すなわちアスペクト比を大きくする必要があるので、導電ペーストの粘度を大きくしたり、描画方式による印刷あるいは複数回の印刷などを行う。この後、加熱硬化させて突起状電極13が形成される。   Next, as shown in FIG. 2 (B), the same conductive paste as above is used to form protrusions on the first wiring layer 12 where electrical connection with the second wiring layer 15 described later is required. The electrode pattern is printed. In this case, since it is necessary to relatively increase the thickness to increase the ratio of thickness to width, that is, the aspect ratio, the viscosity of the conductive paste is increased, printing by a drawing method or printing is performed a plurality of times. Thereafter, the protruding electrode 13 is formed by heat curing.

次に、図2(C)に示すように、突起状電極13の外周部から所定の間隙を含む領域部を遮蔽した遮蔽領域部24を有する印刷用版を用意する。スクリーン印刷方式またはステンシル印刷方式で突起状電極13を形成する場合には、スクリーン印刷版21もしくはステンシル印刷版21の遮蔽領域部24と突起状電極13とを位置合わせする。この後、絶縁性樹脂材料を印刷用にペースト化した樹脂ペーストを用いて第1の配線層12と基板11の表面上とに印刷を行う。この印刷により、突起状電極13の外周部から所定の間隙部23には、図2(C)に示すように絶縁性樹脂層14は形成されず、それ以外は全面にほぼ均一な厚さに形成される。   Next, as shown in FIG. 2C, a printing plate having a shielding area 24 that shields an area including a predetermined gap from the outer periphery of the protruding electrode 13 is prepared. When the protruding electrode 13 is formed by the screen printing method or the stencil printing method, the screen printing plate 21 or the shielding region portion 24 of the stencil printing plate 21 and the protruding electrode 13 are aligned. Thereafter, printing is performed on the first wiring layer 12 and the surface of the substrate 11 by using a resin paste obtained by pasting an insulating resin material for printing. By this printing, the insulating resin layer 14 is not formed from the outer peripheral portion of the protruding electrode 13 to the predetermined gap portion 23 as shown in FIG. It is formed.

なお、絶縁性樹脂層14として、熱硬化性樹脂および光硬化性樹脂の少なくとも一つを含む樹脂を用いると、加熱して低粘度化させて流動性を高め、間隙部23を埋める工程と、硬化する工程とを必要に応じて分けることができるので、製造条件の範囲が広がり好ましい。例えば、熱硬化性樹脂を用いた場合、流動化のための加熱は流動化する温度以上で、網状構造となる温度(一般に、降下開始温度とよばれる温度)未満にすればよい。このときの粘度としては、設定する間隙部23の寸法に応じて最適値を選択する必要があり、6Pa・s以上から10Pa・s以下とすることが望ましい範囲である。流動化後の硬化は網状構造となる温度とすればよい。なお、この工程は連続的に行ってもよい。また、光硬化性樹脂を用いる場合には、加熱により流動化を促進して突起状電極13の外周部まで連続的に絶縁性樹脂層14を形成後、紫外線などを照射して硬化させればよい。   In addition, when a resin containing at least one of a thermosetting resin and a photocurable resin is used as the insulating resin layer 14, a step of heating and reducing the viscosity to increase fluidity and filling the gap portion 23; Since the curing step can be divided as necessary, the range of production conditions is widened, which is preferable. For example, when a thermosetting resin is used, the heating for fluidization may be performed at a temperature equal to or higher than the fluidization temperature and lower than a temperature at which a network structure is formed (generally, a temperature called a drop start temperature). As the viscosity at this time, it is necessary to select an optimum value according to the dimension of the gap portion 23 to be set, and it is desirable that the viscosity be 6 Pa · s or more and 10 Pa · s or less. Curing after fluidization may be performed at a temperature at which a network structure is obtained. Note that this step may be performed continuously. In the case of using a photo-curing resin, if fluidization is promoted by heating and the insulating resin layer 14 is continuously formed up to the outer peripheral portion of the protruding electrode 13, it is cured by irradiation with ultraviolet rays or the like. Good.

次に、図2(D)に示すように、絶縁性樹脂層14を加熱して低粘度化させて、絶縁性樹脂層14が間隙部23に流動し、突起状電極13の外周部まで連続的な層が形成されるようにする。このとき、流動してきた絶縁性樹脂層14により間隙部23は埋めこまれて隣接領域部14aが形成されるが、この隣接領域部14aの厚みは、この隣接領域部14aから外れた位置の第1の配線層12上の絶縁性樹脂層14の厚みよりも薄くなる。これは、間隙部23に流動する絶縁性樹脂層14は、突起状電極13の周辺部に限定され、これより大きく外れた位置の絶縁性樹脂層14はほとんど流動しないためである。   Next, as shown in FIG. 2D, the insulating resin layer 14 is heated to lower the viscosity, and the insulating resin layer 14 flows into the gap 23 and continues to the outer periphery of the protruding electrode 13. A typical layer is formed. At this time, the gap 23 is filled with the flowing insulating resin layer 14 to form the adjacent region portion 14a. The thickness of the adjacent region portion 14a is the first of the positions outside the adjacent region portion 14a. It becomes thinner than the thickness of the insulating resin layer 14 on one wiring layer 12. This is because the insulating resin layer 14 flowing into the gap portion 23 is limited to the peripheral portion of the protruding electrode 13, and the insulating resin layer 14 at a position greatly deviated from this hardly flows.

また、絶縁性樹脂層14は突起状電極13の厚みに比べて薄く形成されているので、絶縁性樹脂層14を流動化させても突起状電極13の上面部13aに絶縁性樹脂層14が回り込むことを確実に防止できる。したがって、突起状電極13と第2の配線層15との接触面積がばらつくことがなくなり、接触抵抗のばらつきを大幅に抑制できる。なお、間隙部23の大きさは、突起状電極13の寸法やスクリーン印刷の印刷精度および加熱時の絶縁性樹脂層14の粘度に応じて予め最適化して決定する。突起状電極13の外周部まで連続的に絶縁性樹脂層14を形成した後、必要に応じて絶縁性樹脂層14をさらに加熱または紫外線照射して硬化させれば、硬化した状態の最終的な絶縁性樹脂層14が得られる。   Further, since the insulating resin layer 14 is formed thinner than the thickness of the protruding electrode 13, the insulating resin layer 14 is formed on the upper surface portion 13a of the protruding electrode 13 even if the insulating resin layer 14 is fluidized. It can be surely prevented from going around. Therefore, the contact area between the protruding electrode 13 and the second wiring layer 15 does not vary, and variation in contact resistance can be greatly suppressed. The size of the gap 23 is determined by optimization in advance according to the size of the protruding electrode 13, the printing accuracy of screen printing, and the viscosity of the insulating resin layer 14 during heating. After the insulating resin layer 14 is continuously formed up to the outer peripheral portion of the protruding electrode 13, if the insulating resin layer 14 is further cured by heating or ultraviolet irradiation as necessary, the final cured state is obtained. The insulating resin layer 14 is obtained.

次に、図2(E)に示すように、絶縁性樹脂層14の上に導電ペーストを、例えばスクリーン印刷方式により印刷して第2の配線層15を形成する。このとき、突起状電極13は、第2の配線層15と上面部13aだけでなく、外周部の一部も接触するので、接触抵抗を確実に低減できる。これにより、第1の配線層12と第2の配線層15とが突起状電極13を介して導通された多層配線基板が得られる。   Next, as shown in FIG. 2E, a conductive paste is printed on the insulating resin layer 14 by, for example, a screen printing method to form the second wiring layer 15. At this time, since the protruding electrode 13 contacts not only the second wiring layer 15 and the upper surface portion 13a but also a part of the outer peripheral portion, the contact resistance can be reliably reduced. As a result, a multilayer wiring board in which the first wiring layer 12 and the second wiring layer 15 are conducted through the protruding electrodes 13 is obtained.

さらに多層化する場合には、上記工程を繰り返せば同じように製造できるので、説明は省略する。   In the case of further multilayering, since the same process can be performed by repeating the above steps, the description is omitted.

本発明の多層配線基板の具体的な実施例を、以下説明する。   Specific examples of the multilayer wiring board of the present invention will be described below.

本実施例においては、100μmの厚みを有するポリエチレンテレフタレート(PET)からなるシートを基板11として用いた。   In this example, a sheet made of polyethylene terephthalate (PET) having a thickness of 100 μm was used as the substrate 11.

この基板11上に形成する第1の配線層12は、スクリーン印刷方式を用いた。そのスクリーン版のメッシュの線径は25μmであり、感光性乳剤層の厚みは10μmである。導電ペーストとしては、導電性粒子が球状の銀(Ag)と鱗片状の銀(Ag)との混合粒子からなり、結着材は熱硬化性エポキシ樹脂を用いた。その配合比率は、導電性粒子が75重量部に対して、結着材を25重量部とした。スクリーン印刷方式により、直径0.6mmの電極パッドを有する配線パターンを導電ペーストで基板11上に印刷した後、基板11を130℃に設定した熱風循環炉に入れて10分間加熱し、導電ペーストを硬化させて基板11上に膜厚20μm〜30μmの第1の配線層12を形成した。   The first wiring layer 12 formed on the substrate 11 used a screen printing method. The screen plate has a mesh wire diameter of 25 μm and a photosensitive emulsion layer thickness of 10 μm. As the conductive paste, the conductive particles consisted of mixed particles of spherical silver (Ag) and scaly silver (Ag), and the binder was a thermosetting epoxy resin. The blending ratio was 25 parts by weight of the binder with respect to 75 parts by weight of the conductive particles. After a wiring pattern having electrode pads having a diameter of 0.6 mm is printed on the substrate 11 by the screen printing method, the substrate 11 is placed in a hot air circulation furnace set at 130 ° C. and heated for 10 minutes, The first wiring layer 12 having a film thickness of 20 μm to 30 μm was formed on the substrate 11 by curing.

この後、突起状電極13を形成するが、その形成条件は以下の通りとした。突起状電極13の形成においては、ステンシル印刷方式を用いた。導電ペーストとしては、第1の配線層12を形成するときに用いたものと同じものを用いた。ステンシル印刷方式におけるステンシル版としては、直径0.3mmの開口部、すなわち突起状電極13の外形に相当する開口部を設け、その版の厚みは80μmとした。第1の配線層12の電極パッド上に導電ペーストを印刷した後、基板11を130℃に設定した熱風循環炉に入れて10分間加熱し、導電ペーストを硬化させて電極パッド上に高さ約80μmの突起状電極13を形成した。   Thereafter, the protruding electrode 13 is formed under the following conditions. In the formation of the protruding electrode 13, a stencil printing method was used. As the conductive paste, the same paste as that used when forming the first wiring layer 12 was used. As a stencil plate in the stencil printing method, an opening having a diameter of 0.3 mm, that is, an opening corresponding to the outer shape of the protruding electrode 13 was provided, and the thickness of the plate was 80 μm. After the conductive paste is printed on the electrode pads of the first wiring layer 12, the substrate 11 is placed in a hot air circulating furnace set at 130 ° C. and heated for 10 minutes to cure the conductive paste and to have a height of approximately about the electrode pads. A protruding electrode 13 of 80 μm was formed.

次に、絶縁性樹脂層14を突起状電極13の外周部から所定の間隙を設けて形成したが、その方法は以下のようにした。第1の配線層12を形成したスクリーン印刷方式と同じ方式を用いた。樹脂ペーストとしては、紫外線硬化と熱硬化併用型エポキシ樹脂を用い、その粘度は30Pa・s〜50Pa・s(25℃)とした。スクリーン版は、突起状電極13の外周部より0.1mmの間隙部23を設けるように、開口部の直径0.5mmとした。なお、この間隙部23の最適な大きさは、使用する樹脂ペーストの粘度により異なるが、概ね0.05mm〜0.2mmの範囲が良好である。このスクリーン版を用いて、第1の配線層12上を含む基板11の全面に樹脂ペーストを25μm〜30μmの厚さに印刷した。   Next, the insulating resin layer 14 was formed with a predetermined gap from the outer peripheral portion of the protruding electrode 13, and the method was as follows. The same method as the screen printing method in which the first wiring layer 12 was formed was used. As the resin paste, an ultraviolet curing and thermosetting epoxy resin was used, and its viscosity was 30 Pa · s to 50 Pa · s (25 ° C.). The screen plate had an opening diameter of 0.5 mm so that a gap 23 of 0.1 mm from the outer periphery of the protruding electrode 13 was provided. In addition, although the optimal magnitude | size of this gap | interval part 23 changes with the viscosity of the resin paste to be used, the range of 0.05 mm-0.2 mm is favorable in general. Using this screen plate, a resin paste was printed on the entire surface of the substrate 11 including the first wiring layer 12 to a thickness of 25 μm to 30 μm.

この後、基板11全体を50℃〜60℃に設定した熱風循環炉に1分間〜5分間保持した。その結果、樹脂ペーストの粘度が約10Pa・sに低下して流動しやすくなり、この樹脂ペーストにより間隙部23に樹脂ペーストが流れ込み、隣接領域部14aが形成された。   Then, the whole board | substrate 11 was hold | maintained for 1 minute-5 minutes in the hot air circulating furnace set to 50 to 60 degreeC. As a result, the viscosity of the resin paste decreased to about 10 Pa · s, and it became easy to flow. With this resin paste, the resin paste flowed into the gap 23, and the adjacent region portion 14 a was formed.

なお、突起状電極13の側面に樹脂との濡れ性をよくするために、シランカップリング剤などの樹脂改質物質の塗布や、側面の表面平滑性を低下させてもよい。   In addition, in order to improve the wettability with the resin on the side surface of the protruding electrode 13, application of a resin modifying substance such as a silane coupling agent or the surface smoothness of the side surface may be reduced.

このようにして突起状電極13の外周部まで連続的に絶縁性樹脂層14を形成後、紫外線(50mJ/cm2)を照射し、さらに基板11を150℃に設定した熱風循環炉に入れて30分間加熱して硬化した絶縁性樹脂層14を形成した。その結果、突起状電極13まで流動した状態の絶縁性樹脂層14が得られた。ただし、このときの厚みは25μm〜30μmであるので、この工程をさらにもう一度行い全体として50μm〜60μmの厚さとした。この工程後においても、突起状電極13の上面部13aに絶縁性樹脂層14が付着することはなかった。 After the insulating resin layer 14 is continuously formed up to the outer peripheral portion of the protruding electrode 13 in this way, ultraviolet rays (50 mJ / cm 2 ) are irradiated, and the substrate 11 is further placed in a hot air circulating furnace set at 150 ° C. The insulating resin layer 14 cured by heating for 30 minutes was formed. As a result, the insulating resin layer 14 in a state of flowing to the protruding electrode 13 was obtained. However, since the thickness at this time is 25 μm to 30 μm, this process was performed once again to obtain a thickness of 50 μm to 60 μm as a whole. Even after this step, the insulating resin layer 14 did not adhere to the upper surface portion 13a of the protruding electrode 13.

次に、第1の配線層12の形成方法と同じ条件で、第2の配線層15を絶縁性樹脂層14の上に形成した。   Next, the second wiring layer 15 was formed on the insulating resin layer 14 under the same conditions as the method for forming the first wiring layer 12.

以上のようにして得られた多層配線基板の電気的測定を行った。測定は、第1の配線層12と第2の配線層15との間の電気抵抗、すなわち突起状電極13を介した電気抵抗の絶対値とそのばらつきにより評価した。その結果、抵抗値は、5mΩ〜10mΩの範囲となり、ばらつきも非常に小さく再現性の良好な多層配線基板が得られることが確認された。   Electrical measurement of the multilayer wiring board obtained as described above was performed. The measurement was evaluated based on the electrical resistance between the first wiring layer 12 and the second wiring layer 15, that is, the absolute value of the electrical resistance via the protruding electrode 13 and its variation. As a result, it was confirmed that the resistance value was in the range of 5 mΩ to 10 mΩ, and the variation was very small and a multilayer wiring board with good reproducibility was obtained.

なお、本発明による多層配線基板は、図1に示した構成だけに限定されものではなく、配線を三層以上に積層させた多層配線基板にも適用できる。   The multilayer wiring board according to the present invention is not limited to the configuration shown in FIG. 1, but can be applied to a multilayer wiring board in which wirings are laminated in three or more layers.

また、絶縁性樹脂層14を形成する他の方法としては、ポリオレフィン系樹脂、合成ゴム、ポリエステル系樹脂、ポリウレタン系樹脂などの樹脂をシート状にしたホットメルトシートを用いる方法でもよい。すなわち、予め突起状電極13に相当する位置に、この突起状電極13の外周部から所定の間隙を有する開口部を形成したホットメルトシートを、第1の配線層12上に貼りつける方法で形成してもよい。この方法は、絶縁性樹脂層14の厚さを均一に形成できるため、絶縁性樹脂層14の寸法精度が要求される三層以上の多層配線の製造方法に好適である。   Another method for forming the insulating resin layer 14 may be a method using a hot melt sheet in which a resin such as polyolefin resin, synthetic rubber, polyester resin, or polyurethane resin is formed into a sheet. That is, a hot melt sheet in which an opening having a predetermined gap from the outer peripheral portion of the protruding electrode 13 is formed in a position corresponding to the protruding electrode 13 in advance is pasted on the first wiring layer 12. May be. Since this method can form the insulating resin layer 14 with a uniform thickness, it is suitable for a method of manufacturing a multilayer wiring having three or more layers that requires the dimensional accuracy of the insulating resin layer 14.

本発明は多層配線基板を使用する機器、例えば携帯電話、ノート型コンピュータ、カメラ一体型VTRなどの携帯機器をはじめ、一般の電子機器においても利用でき、産業上の利用可能性は非常に広くかつ大きい。   The present invention can be used in a general electronic device including a device using a multilayer wiring board, for example, a mobile device such as a mobile phone, a notebook computer, a camera-integrated VTR, and the industrial applicability is very wide. large.

本発明の実施の形態における多層配線基板を模式的に示した要部断面図Sectional drawing which shows the principal part which showed the multilayer wiring board in embodiment of this invention typically 本発明の実施の形態における多層配線基板の製造方法を説明するための主要部の工程断面図で(A)第1の配線層形成工程図(B)突起状電極形成工程図(C)絶縁性樹脂層形成工程図(D)隣接領域部形成工程図(E)第2の配線層形成工程図5A is a process cross-sectional view of a main part for explaining a method for manufacturing a multilayer wiring board in an embodiment of the present invention. FIG. 5A is a first wiring layer forming process diagram, FIG. Resin layer forming process diagram (D) Adjacent region forming process diagram (E) Second wiring layer forming process diagram

符号の説明Explanation of symbols

11 基板
12 第1の配線層
13 突起状電極
13a 上面部
14 絶縁性樹脂層
14a 隣接領域部
15 第2の配線層
21 スクリーン印刷版(ステンシル印刷版)
23 間隙部
24 遮蔽領域部
h1 突起状電極の厚み
h2 絶縁性樹脂層の厚み
DESCRIPTION OF SYMBOLS 11 Board | substrate 12 1st wiring layer 13 Projecting electrode 13a Upper surface part 14 Insulating resin layer 14a Adjacent area | region 15 2nd wiring layer 21 Screen printing plate (stencil printing plate)
23 Gap 24 Shielding area h1 Thickness of protruding electrode h2 Thickness of insulating resin layer

Claims (8)

基板上に形成された第1の配線層と、
前記第1の配線層上に形成された突起状電極と、
前記第1の配線層を含む前記基板上に形成され、前記突起状電極の外周部に隣接する隣接領域部の厚みが前記第1の配線層上の領域部の厚みより薄く形成された絶縁性樹脂層と、
前記絶縁性樹脂層上に形成され、前記突起状電極に接続する第2の配線層とを有することを特徴とする多層配線基板。
A first wiring layer formed on the substrate;
A protruding electrode formed on the first wiring layer;
An insulating property formed on the substrate including the first wiring layer and formed so that the thickness of the adjacent region adjacent to the outer peripheral portion of the protruding electrode is thinner than the thickness of the region on the first wiring layer A resin layer;
A multilayer wiring board comprising: a second wiring layer formed on the insulating resin layer and connected to the protruding electrode.
基板上に第1の配線層を形成する工程と、
前記第1の配線層上に突起状電極を形成する工程と、
前記突起状電極の外周部から所定の間隙を有して、前記第1の配線層を含む前記基板上に絶縁性樹脂層を形成する工程と、
前記絶縁性樹脂層を加熱することにより、前記間隙に前記絶縁性樹脂層を流動させて前記絶縁性樹脂層を前記突起状電極の外周部まで連続的に形成する工程と、
前記突起状電極に接続する第2の配線層を前記絶縁性樹脂層上に形成する工程とを有することを特徴とする多層配線基板の製造方法。
Forming a first wiring layer on the substrate;
Forming a protruding electrode on the first wiring layer;
Forming an insulating resin layer on the substrate including the first wiring layer with a predetermined gap from the outer periphery of the protruding electrode;
Heating the insulating resin layer to flow the insulating resin layer in the gap to continuously form the insulating resin layer up to the outer periphery of the protruding electrode;
Forming a second wiring layer connected to the protruding electrode on the insulating resin layer.
前記絶縁性樹脂層の厚みを前記突起状電極の厚みより薄く形成することを特徴とする請求項2に記載の多層配線基板の製造方法。 3. The method of manufacturing a multilayer wiring board according to claim 2, wherein the insulating resin layer is formed thinner than the protruding electrode. 前記絶縁性樹脂層は、樹脂ペーストを用いて印刷方式により形成することを特徴とする請求項2または請求項3に記載の多層配線基板の製造方法。 4. The method for manufacturing a multilayer wiring board according to claim 2, wherein the insulating resin layer is formed by a printing method using a resin paste. 前記絶縁性樹脂層は、前記突起状電極の外周部から所定の間隙を有する形状の開口部が形成されたホットメルトシートを用いて、前記開口部と前記突起状電極とを位置合わせして、前記第1の配線層を含む前記基板上に前記ホットメルトシートを貼りつけて形成することを特徴とする請求項2または請求項3に記載の多層配線基板の製造方法。 The insulating resin layer is formed by aligning the opening and the protruding electrode using a hot melt sheet in which an opening having a shape having a predetermined gap is formed from the outer periphery of the protruding electrode. 4. The method for manufacturing a multilayer wiring board according to claim 2, wherein the hot melt sheet is attached to the substrate including the first wiring layer. 前記樹脂ペーストが、熱硬化性樹脂および光硬化性樹脂の少なくとも一つを含むことを特徴とする請求項4に記載の多層配線基板の製造方法。 The method for manufacturing a multilayer wiring board according to claim 4, wherein the resin paste contains at least one of a thermosetting resin and a photocurable resin. 前記ホットメルトシートが、熱硬化性樹脂および光硬化性樹脂の少なくとも一つを含むことを特徴とする請求項5に記載の多層配線基板の製造方法。 The method for manufacturing a multilayer wiring board according to claim 5, wherein the hot melt sheet contains at least one of a thermosetting resin and a photocurable resin. 前記第1の配線層、前記第2の配線層および前記突起状電極は、導電ペーストを塗布し、熱硬化させて形成することを特徴とする請求項2または請求項3に記載の多層配線基板の製造方法。 4. The multilayer wiring board according to claim 2, wherein the first wiring layer, the second wiring layer, and the protruding electrode are formed by applying a conductive paste and thermally curing. 5. Manufacturing method.
JP2003321371A 2003-09-12 2003-09-12 Multilayer wiring board and manufacturing method thereof Expired - Fee Related JP4114576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321371A JP4114576B2 (en) 2003-09-12 2003-09-12 Multilayer wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321371A JP4114576B2 (en) 2003-09-12 2003-09-12 Multilayer wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005093517A true JP2005093517A (en) 2005-04-07
JP4114576B2 JP4114576B2 (en) 2008-07-09

Family

ID=34453085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321371A Expired - Fee Related JP4114576B2 (en) 2003-09-12 2003-09-12 Multilayer wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4114576B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098207A1 (en) * 2005-03-14 2006-09-21 Ricoh Company, Ltd. Multilayer wiring structure and method of manufacturing the same
JP2006295116A (en) * 2005-03-14 2006-10-26 Ricoh Co Ltd Multilevel interconnection, its manufacturing method, flat panel display and its manufacturing method
JP2015012071A (en) * 2013-06-27 2015-01-19 トッパン・フォームズ株式会社 Wiring board and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098207A1 (en) * 2005-03-14 2006-09-21 Ricoh Company, Ltd. Multilayer wiring structure and method of manufacturing the same
JP2006295116A (en) * 2005-03-14 2006-10-26 Ricoh Co Ltd Multilevel interconnection, its manufacturing method, flat panel display and its manufacturing method
US7765686B2 (en) 2005-03-14 2010-08-03 Ricoh Company, Ltd. Multilayer wiring structure and method of manufacturing the same
JP2015012071A (en) * 2013-06-27 2015-01-19 トッパン・フォームズ株式会社 Wiring board and manufacturing method therefor

Also Published As

Publication number Publication date
JP4114576B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4935139B2 (en) Multilayer printed wiring board
JP5152177B2 (en) Conductive bump, manufacturing method thereof, and electronic component mounting structure
TW200806137A (en) Printed wiring board and method for manufacturing printed wiring board
US8287992B2 (en) Flexible board
JP4151541B2 (en) Wiring board and manufacturing method thereof
JP6949091B2 (en) Circuit board structure and its manufacturing method
JP5150246B2 (en) Multilayer printed wiring board and manufacturing method thereof
US7728234B2 (en) Coreless thin substrate with embedded circuits in dielectric layers and method for manufacturing the same
CN101523594A (en) Semiconductor package and method for producing semiconductor package
JP3655336B2 (en) Printed wiring board manufacturing method and printed wiring board
KR100772454B1 (en) Anisotropic conductive film and method of manufacturing the same
JP4114576B2 (en) Multilayer wiring board and manufacturing method thereof
JP2005303090A (en) Wiring board and its manufacturing method
JP2010010320A (en) Electronic component mounting structure and manufacturing method thereof
CN211580281U (en) Prefabricated substrate, printed circuit board and electronic device
JP2018152178A (en) Anisotropic conductive film
KR20130033851A (en) Multi layer pcb and manufacturing method thereof
JP2012169486A (en) Base material, wiring board, production method of base material and production method of wiring board
JP5439165B2 (en) Multilayer wiring board and manufacturing method thereof
JP2004276384A (en) Screen printing plate and its manufacturing method
US20130153275A1 (en) Printed circuit board and method for manufacturing the same
CN106332442B (en) Circuit board and manufacturing method thereof
KR101345084B1 (en) ACF and conductive particle and its manufacturing
CN109526139A (en) Printed circuit board structure and forming method thereof
CN108811354A (en) Circuit board and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Effective date: 20071018

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Effective date: 20080407

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees