JP2005091838A - Organic compound, electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method - Google Patents

Organic compound, electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method Download PDF

Info

Publication number
JP2005091838A
JP2005091838A JP2003325883A JP2003325883A JP2005091838A JP 2005091838 A JP2005091838 A JP 2005091838A JP 2003325883 A JP2003325883 A JP 2003325883A JP 2003325883 A JP2003325883 A JP 2003325883A JP 2005091838 A JP2005091838 A JP 2005091838A
Authority
JP
Japan
Prior art keywords
image
photosensitive member
image forming
electrophotographic
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003325883A
Other languages
Japanese (ja)
Other versions
JP4307197B2 (en
Inventor
Toyoko Shibata
豊子 芝田
友子 ▲崎▼村
Tomoko Sakimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2003325883A priority Critical patent/JP4307197B2/en
Publication of JP2005091838A publication Critical patent/JP2005091838A/en
Application granted granted Critical
Publication of JP4307197B2 publication Critical patent/JP4307197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor which enables stable obtaining of clear electrophotographic images of high density and high definition, by preventing the degradation in image density caused by the degradation in sensitivity, i.e. degradation in image density due to the potential fluctuation in a solid black image section by an inversion phenomenon and the occurrence of character thinning etc., liable to arise in high-speed copying or under a low-temperature and low-humidity environment at the forming of an electrophotographic image, and a process cartridge which uses the electrophotographic photoreceptor, an image forming method and an image forming apparatus. <P>SOLUTION: The organic compound is expressed by general Formula (1). In the general Formula (1), R1 to R11 represent hydrogen atoms, substituted or non-substituted alkyl groups, alkoxy groups or halogen atoms; Ar1 to Ar4 represent substituted or non-substituted aryl groups, aralkyl group, wherein Ar1 and Ar2, and Ar3 and Ar4 may respectively bond to each other to form rings; (k), (l) and (m) respectively represent an integer from 1 to 4; (n) represents an integer of ≥1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規な有機化合物、及び該有機化合物を用いた電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関するものである。   The present invention relates to a novel organic compound, and an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and an image forming method using the organic compound, and more specifically, an electrophotographic system used in the field of copying machines and printers. The present invention relates to an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and an image forming method used for image formation.

電子写真感光体(以後、単に感光体とも云う)はセレン系感光体、アモルファスシリコン感光体のような無機感光体に比して素材の選択の幅が広いこと、環境適性に優れていること、生産コストが安いこと等の大きなメリットがあり、近年無機感光体に代わって有機感光体が主流となっている。   The electrophotographic photosensitive member (hereinafter, also simply referred to as a photosensitive member) has a wider range of materials selection than the inorganic photosensitive member such as a selenium-based photosensitive member and an amorphous silicon photosensitive member, and is excellent in environmental suitability. There are significant advantages such as low production costs, and in recent years, organic photoreceptors have become the mainstream in place of inorganic photoreceptors.

一方、近年の電子写真方式の画像形成方法は、パソコンのハードコピー用のプリンターとして、また通常の複写機においても画像処理の容易さや複合機への展開の容易さから、LEDやレーザを像露光光源とするデジタル方式の画像形成方式が急激に浸透してきた。更に、デジタル画像の精細化を進めて、高画質の電子写真画像を作製する技術が開発されている。例えば、スポット面積の小さいレーザ光で像露光を行い、ドット潜像の密度を上げて、高精細の潜像を形成し、該潜像を小粒径トナーで現像し、高画質の電子写真画像を作製する技術が公開されている。(特許文献1)
このような高画質のデジタル画像の形成に際しては、高感度で且つ温室度環境の変化に対して安定な特性を有する電子写真感光体が要求される。
On the other hand, in recent electrophotographic image forming methods, as a hard copy printer of a personal computer, and in an ordinary copying machine, image processing of LEDs and lasers is easy due to the ease of image processing and deployment to a multifunction machine. A digital image forming system that uses a light source has rapidly spread. Furthermore, a technique for producing a high-quality electrophotographic image by developing a finer digital image has been developed. For example, image exposure is performed with a laser beam having a small spot area, the density of the dot latent image is increased, a high-definition latent image is formed, the latent image is developed with a small particle size toner, and a high-quality electrophotographic image The technology for producing is disclosed. (Patent Document 1)
In forming such a high-quality digital image, an electrophotographic photosensitive member having high sensitivity and stable characteristics against changes in the greenhouse environment is required.

従来、上記のような電子写真感光体の要求を満たすために、電子写真感光体は、感光層を電荷発生層と電荷輸送層に機能分離した層構成にし、該電荷輸送層に、分子量500前後の低分子量の電荷輸送物質を多量に含有させた構成にしていた。中でもスチリルトリフェニルアミン構造を有する電荷輸送物質は優れた電荷輸送性を有する化合物として、実用化されている(特許文献2)しかしながら、このような構成の電荷輸送層では、膜質が低下し、表面層の電荷輸送層が異物で汚染されやすい。即ち、感光体周辺に配置された現像手段、転写手段、クリーニング手段等により、感光体表面が紙粉やトナー組成物で汚染されやすく、その結果、ブラックスポット(苺状の斑点画像)や、転写ヌケ等の周期性の画像欠陥が発生しやすい。又、露光工程から現像工程間の時間が短い高速の複写機や低温低湿環境等で、十分な感度が得られず、その結果、ドット画像が忠実に再現されず、細線が切断された画像が発生したりしやすい。   Conventionally, in order to satisfy the requirements for the electrophotographic photoreceptor as described above, the electrophotographic photoreceptor has a layer structure in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer, and the charge transport layer has a molecular weight of about 500. The charge transporting substance having a low molecular weight is contained in a large amount. Among them, a charge transport material having a styryltriphenylamine structure has been put into practical use as a compound having excellent charge transportability (Patent Document 2). However, in the charge transport layer having such a structure, the film quality is lowered, and the surface The charge transport layer of the layer is easily contaminated with foreign substances. That is, the surface of the photosensitive member is easily contaminated with paper dust or a toner composition by a developing unit, a transferring unit, a cleaning unit, and the like arranged around the photosensitive member. As a result, a black spot (a wrinkled spot image) or a transfer Periodic image defects such as missing are likely to occur. In addition, in a high-speed copying machine or a low-temperature and low-humidity environment where the time between the exposure process and the development process is short, sufficient sensitivity cannot be obtained, and as a result, the dot image is not reproduced faithfully, and the image in which fine lines are cut is obtained. It is easy to occur.

又、このような課題を解決する方法として、より分子量の電荷輸送物質を用いることが報告されている。例えば、ビススチリルの化学構造を有する電荷輸送物質を含有する電子写真感光体が報告されている(特許文献3、4)。しかしながら、これらの電荷輸送物質を電荷輸送層に用いても、前記した露光工程から現像工程間の時間が短い高速の複写機や低温低湿環境等で、十分な感度が得られず、その結果、ドット画像が忠実に再現されず、細線が切断された画像が発生したりしやすい。又、電荷輸送層のバインダー樹脂との相溶性が不十分となりやすく、電荷輸送物質が均一に分散されず、感度が十分にでないと同時に電荷輸送層にクラック等の破断傷が発生しやすい。   In addition, it has been reported that a charge transport material having a higher molecular weight is used as a method for solving such a problem. For example, an electrophotographic photosensitive member containing a charge transport material having a bisstyryl chemical structure has been reported (Patent Documents 3 and 4). However, even if these charge transport materials are used in the charge transport layer, sufficient sensitivity cannot be obtained in a high-speed copying machine or a low temperature and low humidity environment where the time between the exposure process and the development process is short, and as a result, Dot images are not faithfully reproduced, and an image in which fine lines are cut is likely to be generated. In addition, the charge transport layer is likely to have insufficient compatibility with the binder resin, the charge transport material is not uniformly dispersed, and the sensitivity is not sufficient, and at the same time, the charge transport layer is liable to be broken.

又、感光体表面の汚染を防止するために、表面層にフッ素系樹脂粒子を含有させた電子写真感光体が提案されている(特許文献5)。しかしながら、フッ素系樹脂粒子を含有させた電子写真感光体は、画像ボケが発生しやすい。又表面層の機械的強度も低下させやすく、前記クリーニング手段等との接触摩擦により、感光体表面が減耗しやすく、必ずしも良好な電子写真画像を提供し得ていない。
特開2001−255685号公報 特開昭60−196768号公報 特開平3−149560号公報 特開平10−207093号公報 特開昭63−65449号公報
In order to prevent contamination of the surface of the photoreceptor, an electrophotographic photoreceptor having a surface layer containing fluorine-based resin particles has been proposed (Patent Document 5). However, an electrophotographic photosensitive member containing fluorine resin particles tends to cause image blur. Also, the mechanical strength of the surface layer is likely to be lowered, and the surface of the photoreceptor is easily worn by contact friction with the cleaning means or the like, and a good electrophotographic image cannot always be provided.
Japanese Patent Laid-Open No. 2001-255585 JP-A-60-196768 JP-A-3-149560 JP-A-10-207093 JP-A-63-65449

本発明は前記のような課題を解決するために提案されたものであり、その目的とするところは、電子写真感光体の特性改良に有用な新規有機化合物、電子写真画像を形成する際に、高速複写や低温低湿環境下で発生しやすい、感度の低下に原因したべた黒画像部の電位変動による画像濃度の低下や文字細り等の発生による鮮鋭性の低下を防止した電子写真感光体及び該電子写真感光体を用いたプロセスカートリッジ、画像形成方法、画像形成装置を提供することにある。又、電子写真感光体の表面汚染により発生しやすいブラックスポットや、転写ヌケ等の周期性の画像欠陥を防止した電子写真感光体及び該電子写真感光体を用いたプロセスカートリッジ、画像形成方法、画像形成装置を提供することにある。又、クラック等の破断傷等の発生を起こさず、高濃度、高解像性の鮮明な電子写真画像が安定して得られる電子写真感光体及び該電子写真感光体を用いたプロセスカートリッジ、画像形成方法、画像形成装置を提供することにある。   The present invention has been proposed in order to solve the above-mentioned problems. The object of the present invention is to form a novel organic compound useful for improving the characteristics of an electrophotographic photosensitive member, when forming an electrophotographic image. An electrophotographic photosensitive member that is less likely to occur in high-speed copying and low-temperature, low-humidity environments, and that prevents a decrease in image density due to potential fluctuations in the solid black image portion due to a decrease in sensitivity and a decrease in sharpness due to occurrence of character thinning, and the like An object is to provide a process cartridge, an image forming method, and an image forming apparatus using an electrophotographic photosensitive member. In addition, an electrophotographic photosensitive member that prevents periodic image defects such as black spots and transfer spots that are likely to occur due to surface contamination of the electrophotographic photosensitive member, a process cartridge that uses the electrophotographic photosensitive member, an image forming method, and an image It is to provide a forming apparatus. In addition, an electrophotographic photosensitive member capable of stably obtaining a clear electrophotographic image having a high density and high resolution without causing breakage such as cracks, and a process cartridge and an image using the electrophotographic photosensitive member A forming method and an image forming apparatus are provided.

本発明者等は鋭意検討の結果、本発明の上記課題を解決するためには、電子写真感光体の電荷輸送層を構成するバインダー樹脂と電荷輸送物質について、詳細な検討を加えた結果、バインダー樹脂との相溶性が良好であり、且つ高速プロセスでしかも低温低湿環境下での感度の応答性が改善され、且つ表面層が汚染されにくく、ブラックスポット、転写ヌケ等の周期性の画像欠陥を防止し、クラック等の破断傷等の発生を起こさず、高濃度、高解像力の鮮明な画像が安定して得られる新規な有機化合物を見出し、本発明を完成した。   As a result of intensive studies, the present inventors have conducted detailed studies on the binder resin and the charge transport material constituting the charge transport layer of the electrophotographic photosensitive member in order to solve the above problems of the present invention. Good compatibility with resin, improved response of sensitivity in high-speed process and low-temperature and low-humidity environment, surface layer is less likely to be contaminated, and eliminates periodic image defects such as black spots and transfer defects. The present invention has been completed by finding a novel organic compound that can prevent and prevent the occurrence of breakage such as cracks and the like and can stably obtain a clear image with high density and high resolution.

本発明の目的は、下記構成のいずれかを採ることにより達成される。
(請求項1)
下記一般式(1)で表されることを特徴とする有機化合物。
The object of the present invention is achieved by adopting one of the following configurations.
(Claim 1)
An organic compound represented by the following general formula (1):

Figure 2005091838
Figure 2005091838

一般式(1)中、R1〜R11は水素原子、置換又は無置換のアルキル基、アルコキシ基又はハロゲン原子を示し、Ar1〜Ar4は置換又は無置換のアリール基、アラルキル基を示す。但し、Ar1とAr2、Ar3とAr4は、それぞれ互いに結合して環を形成してもよい。k、l、mは各々1〜4の整数、nは1以上の整数を表す。
(請求項2)
前記一般式(1)の有機化合物を含有することを特徴とする電子写真感光体。
(請求項3)
導電性支持体上に電荷発生層、電荷輸送層を有し、電荷輸送層が、前記一般式(1)の有機化合物を含有することを特徴とする電子写真感光体。
(請求項4)
前記一般式(1)の有機化合物を含有する電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。
(請求項5)
請求項4に記載のプロセスカートリッジを有することを特徴とする画像形成装置。
(請求項6)
請求項5に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。
In general formula (1), R 1 to R 11 represent a hydrogen atom, a substituted or unsubstituted alkyl group, an alkoxy group or a halogen atom, and Ar 1 to Ar 4 represent a substituted or unsubstituted aryl group or an aralkyl group. . However, Ar 1 and Ar 2 , Ar 3 and Ar 4 may be bonded to each other to form a ring. k, l and m each represent an integer of 1 to 4, and n represents an integer of 1 or more.
(Claim 2)
An electrophotographic photoreceptor comprising the organic compound represented by the general formula (1).
(Claim 3)
An electrophotographic photosensitive member comprising a charge generation layer and a charge transport layer on a conductive support, wherein the charge transport layer contains the organic compound represented by the general formula (1).
(Claim 4)
Electrophotographic photosensitive member containing the organic compound of the general formula (1), charging means for uniformly charging the electrophotographic photosensitive member, and latent image formation for forming an electrostatic latent image on the charged electrophotographic photosensitive member Developing means for developing an electrostatic latent image on the electrophotographic photosensitive member; transfer means for transferring a toner image visualized on the electrophotographic photosensitive member onto a transfer material; At least one of a charge eliminating means for removing the charge on the photographic photosensitive member and a cleaning means for removing the toner remaining on the electrophotographic photosensitive member after transfer is integrally supported, and is detachably attached to the image forming apparatus main body. A process cartridge that can be attached to a cartridge.
(Claim 5)
An image forming apparatus comprising the process cartridge according to claim 4.
(Claim 6)
An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 5.

本発明の有機化合物、電子写真感光体、プロセスカートリッジ、画像形成方法及び画像形成装置を用いることにより、低温低湿環境で発生しやすい高速適応性等の感度不良に伴う画像不良と高温高湿で発生しやすい画像欠陥を防止し、画像濃度、鮮鋭性が良好な電子写真画像を提供することができる。   By using the organic compound, electrophotographic photosensitive member, process cartridge, image forming method and image forming apparatus of the present invention, image defects due to poor sensitivity such as high-speed adaptability, which are likely to occur in low-temperature and low-humidity environments, and high-temperature and high-humidity Therefore, it is possible to provide an electrophotographic image with good image density and sharpness.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

電子写真感光体の構成
本発明に用いられる電子写真感光体は、前記一般式(1)の有機化合物を含有することを特徴とする。
Structure of electrophotographic photoreceptor The electrophotographic photoreceptor used in the present invention is characterized by containing the organic compound represented by the general formula (1).

又、本発明に用いられる電子写真感光体は、導電性支持体上に電荷発生層、電荷輸送層を有し、電荷輸送層が、且つ前記一般式(1)の化合物を電荷輸送物質として含有することを特徴とする。   The electrophotographic photosensitive member used in the present invention has a charge generation layer and a charge transport layer on a conductive support, and the charge transport layer contains the compound of the general formula (1) as a charge transport material. It is characterized by doing.

本発明の電子写真感光体は、上記構成を有することにより、高速複写や低温低湿環境下で発生しやすい、感度の低下に原因する文字細り等の鮮鋭性低下を防止でき、前記したブラックスポットや、転写ヌケ等の周期性の画像欠陥の発生もなく、クラック等の破断傷等の発生も起こさず、高濃度、高解像力の鮮明な電子写真画像を作製することができる。   The electrophotographic photosensitive member of the present invention has the above-described configuration, and can prevent sharpness reduction such as thinning due to sensitivity reduction, which is likely to occur in high-speed copying and low-temperature and low-humidity environments. In addition, no periodic image defects such as transfer defects are generated, and no flaws such as cracks are generated, so that a clear electrophotographic image having a high density and a high resolving power can be produced.

以下、前記一般式(1)の化合物を電荷輸送物質として用いた電子写真感光体について説明する。   Hereinafter, an electrophotographic photoreceptor using the compound of the general formula (1) as a charge transport material will be described.

前記一般式(1)において、R1〜R11は水素原子、置換又は無置換のアルキル基、アルコキシ基又はハロゲン原子を示すが、置換又は無置換のアルキル基、アルコキシ基としては、炭素数1〜4のアルキル基及びアルコキシ基が好ましく、ハロゲン原子としては、塩素原子、臭素原子、フッソ原子が好ましい。 In the general formula (1), R 1 to R 11 represent a hydrogen atom, a substituted or unsubstituted alkyl group, an alkoxy group, or a halogen atom, and the substituted or unsubstituted alkyl group or alkoxy group has 1 carbon atom. The alkyl group and alkoxy group of -4 are preferable, and as a halogen atom, a chlorine atom, a bromine atom, and a fluorine atom are preferable.

一方、Ar1〜Ar4は置換又は無置換のアリール基、アラルキル基を示すが、好ましい置換基としては、炭素数1〜4のアルキル基及びアルコキシ基、ハロゲン原子が挙げられる。又、Ar1とAr2、Ar3とAr4は、それぞれ互いに結合して環を形成してもよい。k、l、mは各々1〜4の整数、nは1以上の整数を表す。nは1〜3が好ましい。 On the other hand, Ar 1 to Ar 4 represent a substituted or unsubstituted aryl group or aralkyl group. Preferred examples of the substituent include an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a halogen atom. Ar 1 and Ar 2 , Ar 3 and Ar 4 may be bonded to each other to form a ring. k, l and m each represent an integer of 1 to 4, and n represents an integer of 1 or more. n is preferably 1 to 3.

以下、前記一般式(1)の好ましい化合物例を挙げる。   Examples of preferred compounds of the general formula (1) are listed below.

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

以下に、本発明の化合物の合成例を記載する。   Below, the synthesis example of the compound of this invention is described.

以下の合成例では、原材料等を化合物合成の機構(スキーム)中に付した番号を用いて説明する。   In the following synthesis examples, raw materials and the like will be described using the numbers given in the compound synthesis mechanism (scheme).

合成例(1);化合物T−2の合成   Synthesis Example (1); Synthesis of Compound T-2

Figure 2005091838
Figure 2005091838

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、3の化合物(カリウム−tert−ブトキシド)1.68g(0.015mol)及びテトラヒドロフラン(以下THF)20mlを入れ、窒素を導入しながら撹拌する。   A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 1.68 g (0.015 mol) of 3 compounds (potassium-tert-butoxide) and 20 ml of tetrahydrofuran (hereinafter THF) were added. Stir while introducing nitrogen.

1の化合物:3.01g(0.0105mol)、2の化合物:2.91g(0.005mol)をTHF20mlに溶解して前記3の化合物/THF混合液に内温45℃以下に保ちながらゆっくり滴下する。滴下終了後、内温45〜50℃を保ちながら5時間反応する。   1 compound: 3.01 g (0.0105 mol), 2 compound: 2.91 g (0.005 mol) dissolved in 20 ml of THF, and slowly added dropwise to the above compound 3 / THF mixture while keeping the internal temperature at 45 ° C. or lower. To do. After completion of the dropping, the reaction is carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌する。これに前記5時間反応後の反応液を注いだ後、水20mlを更に注いで、約30分撹拌し、濾過を行う。濾取した結晶をメタノール/水=1/1約40mlにて洗浄し、50〜60℃の乾燥箱にて一晩乾燥する。粗結晶:3.8gを得た。この粗結晶をカラムにて精製を行い、化合物例T−2を3.2g得た。   Attach a stirrer to a 200 ml beaker, add 20 ml of methanol and stir. After pouring the reaction solution after the above-mentioned reaction for 5 hours, 20 ml of water is further poured, and the mixture is stirred for about 30 minutes and filtered. The crystals collected by filtration are washed with about 40 ml of methanol / water = 1/1 and dried overnight in a drying box at 50-60 ° C. Crude crystals: 3.8 g was obtained. This crude crystal was purified with a column to obtain 3.2 g of Compound Example T-2.

合成例(2);化合物T−24の合成   Synthesis Example (2); Synthesis of Compound T-24

Figure 2005091838
Figure 2005091838

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、3の化合物(カリウム−tert−ブトキシド)1.68g(0.015mol)及びテトラヒドロフラン(以下THF)20mlを入れ、窒素を導入しながら撹拌する。   A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 1.68 g (0.015 mol) of 3 compounds (potassium-tert-butoxide) and 20 ml of tetrahydrofuran (hereinafter THF) were added. Stir while introducing nitrogen.

1の化合物:3.31g(0.0105mol)、2の化合物:2.91g(0.005mol)をTHF20mlに溶解して前記3の化合物/THF混合液に内温45℃以下に保ちながらゆっくり滴下する。滴下終了後、内温45〜50℃を保ちながら5時間反応する。   1 compound: 3.31 g (0.0105 mol), 2 compound: 2.91 g (0.005 mol) dissolved in 20 ml of THF, and slowly dropped into the above compound 3 / THF mixture while keeping the internal temperature at 45 ° C. or lower. To do. After completion of the dropping, the reaction is carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌する。これに前記5時間反応後の反応液を注いだ後、水20mlを更に注いで、約30分撹拌し、濾過を行う。濾取した結晶をメタノール/水=1/1約40mlにて洗浄し、50〜60℃の乾燥箱にて一晩乾燥する。粗結晶:4.13gを得た。この粗結晶をカラムにて精製を行い、化合物例T−24を3.04g得た。   Attach a stirrer to a 200 ml beaker, add 20 ml of methanol and stir. After pouring the reaction solution after the above-mentioned reaction for 5 hours, 20 ml of water is further poured, and the mixture is stirred for about 30 minutes and filtered. The crystals collected by filtration are washed with about 40 ml of methanol / water = 1/1 and dried overnight in a drying box at 50-60 ° C. Crude crystals: 4.13 g was obtained. This crude crystal was purified with a column to obtain 3.04 g of Compound Example T-24.

合成例(3);化合物T−50の合成   Synthesis Example (3); Synthesis of Compound T-50

Figure 2005091838
Figure 2005091838

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、3の化合物(カリウム−tert−ブトキシド)1.68g(0.015mol)及びテトラヒドロフラン(以下THF)20mlを入れ、窒素を導入しながら撹拌する。   A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 1.68 g (0.015 mol) of 3 compounds (potassium-tert-butoxide) and 20 ml of tetrahydrofuran (hereinafter THF) were added. Stir while introducing nitrogen.

1の化合物:3.31g(0.0105mol)、2の化合物:3.12g(0.005mol)をTHF20mlに溶解して前記3の化合物/THF混合液に内温45℃以下に保ちながらゆっくり滴下する。滴下終了後、内温45〜50℃を保ちながら5時間反応する。   1 compound: 3.31 g (0.0105 mol), 2 compound: 3.12 g (0.005 mol) was dissolved in 20 ml of THF and slowly dropped into the above compound 3 / THF mixture while keeping the internal temperature at 45 ° C. or lower. To do. After completion of the dropping, the reaction is carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌する。これに前記5時間反応後の反応液を注いだ後、水20mlを更に注いで、約30分撹拌し、濾過を行う。濾取した結晶をメタノール/水=1/1約40mlにて洗浄し、50〜60℃の乾燥箱にて一晩乾燥する。粗結晶:4.30gを得た。この粗結晶をカラムにて精製を行い、化合物例T−50を3.05g得た。   Attach a stirrer to a 200 ml beaker, add 20 ml of methanol and stir. After pouring the reaction solution after the above-mentioned reaction for 5 hours, 20 ml of water is further poured, and the mixture is stirred for about 30 minutes and filtered. The crystals collected by filtration are washed with about 40 ml of methanol / water = 1/1 and dried overnight in a drying box at 50-60 ° C. Crude crystals: 4.30 g was obtained. This crude crystal was purified with a column to obtain 3.05 g of Compound Example T-50.

次に、上記のような本発明の有機化合物を電荷輸送物質として用いた電子写真感光体、特に有機感光体の層構成について記載する。   Next, the layer structure of an electrophotographic photoreceptor using the organic compound of the present invention as a charge transport material, particularly an organic photoreceptor, will be described.

本発明の有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。   The organic photoconductor of the present invention means an electrophotographic photoconductor constituted by giving an organic compound at least one of a charge generation function and a charge transport function indispensable for the constitution of the electrophotographic photoconductor. It contains all known organic electrophotographic photoreceptors such as a photoreceptor composed of an organic charge generating material or an organic charge transport material, a photoreceptor composed of a polymer complex with a charge generating function and a charge transport function.

以下に本発明に用いられる有機感光体の構成について記載する。   The constitution of the organic photoreceptor used in the present invention is described below.

導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
Conductive Support The conductive support used for the photoreceptor may be either a sheet or a cylinder, but a cylindrical conductive support is preferred for designing an image forming apparatus compactly. .

円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。   Cylindrical conductive support means a cylindrical support necessary for forming an endless image by rotating. Conductivity is within a range of 0.1 mm or less in straightness and 0.1 mm or less in deflection. A support is preferred. Exceeding the range of straightness and shake makes it difficult to form a good image.

導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。 As the conductive material, a metal drum such as aluminum or nickel, a plastic drum deposited with aluminum, tin oxide, indium oxide or the like, or a paper / plastic drum coated with a conductive substance can be used. The conductive support preferably has a specific resistance of 10 3 Ωcm or less at room temperature.

本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/L、アルミニウムイオン濃度は1〜10g/L、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。   As the conductive support used in the present invention, one having an alumite film that has been sealed on the surface thereof may be used. The alumite treatment is usually performed in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing treatment in sulfuric acid gives the most preferable result. In the case of anodizing treatment in sulfuric acid, the sulfuric acid concentration is preferably 100 to 200 g / L, the aluminum ion concentration is 1 to 10 g / L, the liquid temperature is about 20 ° C., and the applied voltage is preferably about 20 V. It is not limited. The average film thickness of the anodized film is usually 20 μm or less, particularly preferably 10 μm or less.

中間層
本発明においては導電性支持体と感光層の間に、バリヤー機能を備えた中間層を設けることもできる。
Intermediate layer In the present invention, an intermediate layer having a barrier function may be provided between the conductive support and the photosensitive layer.

本発明においては導電性支持体と前記感光層のとの接着性改良、或いは該支持体からの電荷注入を防止するために、該支持体と前記感光層の間に中間層(下引層も含む)を設けることもできる。該中間層の材料としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂並びに、これらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂が挙げられる。これら下引き樹脂の中で繰り返し使用に伴う残留電位増加を小さくできる樹脂としてはポリアミド樹脂が好ましい。又、これら樹脂を用いた中間層の膜厚は0.01〜0.5μmが好ましい。   In the present invention, in order to improve the adhesion between the conductive support and the photosensitive layer, or to prevent charge injection from the support, an intermediate layer (including an undercoat layer) is provided between the support and the photosensitive layer. Including) can also be provided. Examples of the material for the intermediate layer include polyamide resins, vinyl chloride resins, vinyl acetate resins, and copolymer resins containing two or more of these resin repeating units. Of these subbing resins, a polyamide resin is preferable as a resin capable of reducing the increase in residual potential due to repeated use. The film thickness of the intermediate layer using these resins is preferably 0.01 to 0.5 μm.

又、本発明に好ましく用いられる中間層はシランカップリング剤、チタンカップリング剤等の有機金属化合物を熱硬化させた硬化性金属樹脂を用いた中間層が挙げられる。硬化性金属樹脂を用いた中間層の膜厚は、0.1〜2μmが好ましい。   Examples of the intermediate layer preferably used in the present invention include an intermediate layer using a curable metal resin obtained by thermosetting an organic metal compound such as a silane coupling agent or a titanium coupling agent. As for the film thickness of the intermediate | middle layer using curable metal resin, 0.1-2 micrometers is preferable.

又、本発明に好ましく用いられる中間層は無機粒子をバインダー樹脂中に分散した中間層が挙げられる。無機粒子の平均粒径は0.01〜1μmが好ましい。特に、表面処理をしたN型半導性微粒子をバインダー中に分散した中間層が好ましい。例えばシリカ・アルミナ処理及びシラン化合物で表面処理した平均粒径が0.01〜1μmの酸化チタンをポリアミド樹脂中に分散した中間層が挙げられる。このような中間層の膜厚は、1〜20μmが好ましい。   An intermediate layer preferably used in the present invention includes an intermediate layer in which inorganic particles are dispersed in a binder resin. The average particle diameter of the inorganic particles is preferably 0.01 to 1 μm. In particular, an intermediate layer in which N-type semiconductive fine particles subjected to surface treatment are dispersed in a binder is preferable. For example, an intermediate layer in which titanium oxide having an average particle size of 0.01 to 1 μm, which has been surface-treated with silica / alumina treatment and a silane compound, is dispersed in a polyamide resin. The film thickness of such an intermediate layer is preferably 1 to 20 μm.

N型半導性微粒子とは、導電性キャリアを電子とする性質をもつ微粒子を示す。すなわち、導電性キャリアを電子とする性質とは、該N型半導性微粒子を絶縁性バインダーに含有させることにより、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性を示さない性質を有するものをいう。   The N-type semiconducting fine particles are fine particles having the property of using conductive carriers as electrons. That is, the property that the conductive carrier is an electron is that the N-type semiconducting fine particles are contained in an insulating binder to effectively block hole injection from the substrate, and to convert electrons from the photosensitive layer into electrons. On the other hand, it has the property which does not show blocking property.

ここで、N型半導性粒子の判別方法について説明する。   Here, a method for discriminating N-type semiconductor particles will be described.

導電性支持体上に膜厚5μmの中間層(中間層を構成するバインダー樹脂中に粒子を50質量%分散させた分散液を用いて中間層を形成する)を形成する。該中間層に負極性に帯電させて、光減衰特性を評価する。又、正極性に帯電させて同様に光減衰特性を評価する。   An intermediate layer having a thickness of 5 μm is formed on the conductive support (the intermediate layer is formed using a dispersion in which 50% by mass of particles are dispersed in the binder resin constituting the intermediate layer). The intermediate layer is negatively charged and the light attenuation characteristics are evaluated. In addition, the light attenuation characteristics are similarly evaluated by charging to positive polarity.

N型半導性粒子とは、上記評価で、負極性に帯電させた時の光減衰が正極性に帯電させた時の光減衰よりも大きい場合に、中間層に分散された粒子をN型半導性粒子という。   N-type semiconductive particles are particles that are dispersed in the intermediate layer in the above evaluation when the light attenuation when charged negatively is greater than the light attenuation when charged positively. It is called semiconductive particle.

前記N型半導性微粒子は、具体的には酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)等の微粒子が挙げられるが、本発明では、特に酸化チタンが好ましく用いられる。 Specific examples of the N-type semiconducting fine particles include fine particles of titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), etc. In the present invention, titanium oxide is particularly preferably used. It is done.

本発明に用いられるN型半導性微粒子の平均粒径は、数平均一次粒径において10nm以上500nm以下の範囲のものが好ましく、より好ましくは10nm〜200nm、特に好ましくは、15nm〜50nmである。   The average particle diameter of the N-type semiconducting fine particles used in the present invention is preferably in the range of 10 nm to 500 nm in the number average primary particle diameter, more preferably 10 nm to 200 nm, and particularly preferably 15 nm to 50 nm. .

数平均一次粒径の値が前記範囲内にあるN型半導性微粒子を用いた中間層は層内での分散を緻密なものとすることができ、十分な電位安定性、及び黒ポチ発生防止機能を有する。   The intermediate layer using N-type semiconducting fine particles whose number average primary particle size is within the above range can be finely dispersed in the layer, has sufficient potential stability, and generates black spots. Has a prevention function.

前記N型半導性微粒子の数平均一次粒径は、例えば酸化チタンの場合、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定される。   For example, in the case of titanium oxide, the number-average primary particle size of the N-type semiconducting fine particles is magnified 10,000 times by observation with a transmission electron microscope, and 100 particles are randomly observed as primary particles. It is measured as the number average diameter.

本発明に用いられるN型半導性微粒子の形状は、樹枝状、針状および粒状等の形状があり、このような形状のN型半導性微粒子は、例えば酸化チタン粒子では、結晶型としては、アナターゼ型、ルチル型及びアモルファス型等があるが、いずれの結晶型のものを用いてもよく、また2種以上の結晶型を混合して用いてもよい。その中でもルチル型のものが最も良い。   The shape of the N-type semiconducting fine particles used in the present invention includes dendritic, needle-like, and granular shapes. For example, in the case of titanium oxide particles, the N-type semiconductive fine particles have a crystalline form. There are anatase type, rutile type and amorphous type, but any crystal type may be used, or two or more crystal types may be mixed and used. Of these, the rutile type is the best.

N型半導性微粒子に行われる疎水化表面処理の1つは、複数回の表面処理を行い、かつ該複数回の表面処理の中で、最後の表面処理が反応性有機ケイ素化合物による表面処理を行うものである。また、該複数回の表面処理の中で、少なくとも1回の表面処理がアルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理であり、最後に反応性有機ケイ素化合物の表面処理を行うことが好ましい。   One of the hydrophobizing surface treatments performed on the N-type semiconducting fine particles is a plurality of surface treatments, and the last surface treatment is a surface treatment with a reactive organosilicon compound. Is to do. In addition, at least one of the surface treatments is at least one surface treatment selected from alumina, silica, and zirconia, and finally the surface treatment of the reactive organosilicon compound is performed. It is preferable.

尚、アルミナ処理、シリカ処理、ジルコニア処理とはN型半導性微粒子表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。又、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。   Alumina treatment, silica treatment, and zirconia treatment are treatments for depositing alumina, silica, or zirconia on the surface of the N-type semiconducting fine particles. Alumina, silica, and zirconia deposited on these surfaces include alumina, silica, Zirconia hydrates are also included. The surface treatment of the reactive organosilicon compound means using a reactive organosilicon compound in the treatment liquid.

この様に、酸化チタン粒子の様なN型半導性微粒子の表面処理を少なくとも2回以上行うことにより、N型半導性微粒子表面が均一に表面被覆(処理)され、該表面処理されたN型半導性微粒子を中間層に用いると、中間層内における酸化チタン粒子等のN型半導性微粒子の分散性が良好で、かつ黒ポチ等の画像欠陥を発生させない良好な感光体を得ることができるのである。   In this way, the surface treatment of the N-type semiconductive fine particles such as titanium oxide particles was performed at least twice, so that the surface of the N-type semiconductive fine particles was uniformly coated (treated), and the surface treatment was performed. When N-type semiconducting fine particles are used in the intermediate layer, a good photoconductor having good dispersibility of N-type semiconductive fine particles such as titanium oxide particles in the intermediate layer and causing no image defects such as black spots. You can get it.

感光層
本発明の感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのがよい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CTL)の構成を取ることが好ましい。正帯電用の感光体では前記層構成の順が負帯電用感光体の場合の逆となる。本発明の最も好ましい感光層構成は前記機能分離構造を有する負帯電感光体構成である。
Photosensitive layer The photosensitive layer configuration of the photoreceptor of the present invention may be a single-layer photosensitive layer configuration in which the intermediate layer has a charge generation function and a charge transport function in one layer, but more preferably the function of the photosensitive layer. The charge generation layer (CGL) and the charge transport layer (CTL) may be separated from each other. By adopting a configuration in which the functions are separated, an increase in the residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. In the negatively charged photoconductor, it is preferable that a charge generation layer (CGL) is formed on the intermediate layer and a charge transport layer (CTL) is formed thereon. In the positively charged photoconductor, the order of the layer configuration is the reverse of that in the negatively charged photoconductor. The most preferred photosensitive layer structure of the present invention is a negatively charged photoreceptor structure having the function separation structure.

以下に機能分離負帯電感光体の感光層構成について説明する。   The structure of the photosensitive layer of the function-separated negatively charged photoreceptor will be described below.

電荷発生層
電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
Charge generation layer The charge generation layer contains a charge generation material (CGM). Other substances may contain a binder resin and other additives as necessary.

電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる結晶構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン、同2θが12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。   A known charge generation material (CGM) can be used as the charge generation material (CGM). For example, a phthalocyanine pigment, an azo pigment, a perylene pigment, an azulenium pigment, or the like can be used. Among these, CGM which can minimize the increase in residual potential due to repeated use has a crystal structure capable of taking a stable aggregate structure among a plurality of molecules, specifically, a phthalocyanine pigment having a specific crystal structure, CGM of a perylene pigment is mentioned. For example, CGMs such as titanyl phthalocyanine having a maximum peak at a Bragg angle 2θ of 27.2 ° with respect to Cu—Kα rays and benzimidazole perylene having a maximum peak at 2θ of 12.4 have little deterioration due to repeated use. Potential increase can be reduced.

電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜2μmが好ましい。   When a binder is used as the CGM dispersion medium in the charge generation layer, a known resin can be used as the binder, but the most preferred resins include formal resin, butyral resin, silicone resin, silicone-modified butyral resin, phenoxy resin, and the like. Can be mentioned. The ratio of the binder resin to the charge generating material is preferably 20 to 600 parts by mass with respect to 100 parts by mass of the binder resin. By using these resins, the increase in residual potential associated with repeated use can be minimized. The thickness of the charge generation layer is preferably 0.01 μm to 2 μm.

電荷輸送層
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。
Charge Transport Layer The charge transport layer contains a charge transport material (CTM) and a binder resin that forms a film by dispersing CTM. Other substances may contain additives such as antioxidants as necessary.

電荷輸送物質(CTM)としては、前記一般式(1)の化合物を用いる。又、前記一般式(1)の化合物と共に、例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを併用して用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。   As the charge transport material (CTM), the compound of the general formula (1) is used. In addition to the compound of the general formula (1), for example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound, and the like can be used in combination. These charge transport materials are usually dissolved in a suitable binder resin to form a layer.

電荷輸送層(CTL)に用いられる樹脂としては、例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。   Examples of the resin used for the charge transport layer (CTL) include polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate. Resin, silicone resin, melamine resin, and copolymer resin containing two or more of repeating unit structures of these resins. In addition to these insulating resins, high molecular organic semiconductors such as poly-N-vinylcarbazole can be used.

これらCTLのバインダーとして最も好ましいものはポリカーボネート樹脂である。ポリカーボネート樹脂はCTMの分散性、電子写真特性を良好にすることにおいて、最も好ましい。バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し10〜200質量部が好ましい。   Most preferred as a binder for these CTLs is a polycarbonate resin. The polycarbonate resin is most preferable in improving the dispersibility and electrophotographic characteristics of CTM. The ratio of the binder resin to the charge transport material is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin.

又、電荷輸送層には酸化防止剤を含有させることが好ましい。該酸化防止剤とは、その代表的なものは電子写真感光体中ないしは電子写真感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。代表的には下記の化合物群が挙げられる。   The charge transport layer preferably contains an antioxidant. Typical examples of the antioxidants prevent the action of oxygen on auto-oxidizing substances existing in the electrophotographic photosensitive member or on the surface of the electrophotographic photosensitive member under conditions of light, heat, and discharge. It is also a substance having a suppressing property. Typical examples include the following compound groups.

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

電荷輸送層は2層以上の層構成にしてもよい。この場合は表面の電荷輸送層が本発明の構成を満たせばよい。又、電荷輸送層の膜厚は10〜40μmが好ましい。   The charge transport layer may be composed of two or more layers. In this case, the charge transport layer on the surface may satisfy the configuration of the present invention. The thickness of the charge transport layer is preferably 10 to 40 μm.

上記では本発明の最も好ましい感光体の層構成を例示したが、本発明では上記以外の感光体層構成でも良い。   In the above, the most preferable layer structure of the photoreceptor of the present invention is exemplified, but in the present invention, a photoreceptor layer structure other than the above may be used.

感光層、中間層、表面層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。   As a solvent or dispersion medium used for forming a layer such as a photosensitive layer, an intermediate layer, and a surface layer, n-butylamine, diethylamine, ethylenediamine, isopropanolamine, triethanolamine, triethylenediamine, N, N-dimethylformamide, acetone, methyl ethyl ketone , Methyl isopropyl ketone, cyclohexanone, benzene, toluene, xylene, chloroform, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethane , Tetrahydrofuran, dioxolane, dioxane, methanol, ethanol, butanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cellosolve, etc. And the like. Although this invention is not limited to these, Dichloromethane, 1, 2- dichloroethane, methyl ethyl ketone, etc. are used preferably. These solvents may be used alone or as a mixed solvent of two or more.

又、これらの各層の塗布溶液は塗布工程に入る前に、塗布溶液中の異物や凝集物を除去するために、金属フィルター、メンブランフィルター等で濾過することが好ましい。例えば、日本ポール社製のプリーツタイプ(HDC)、デプスタイプ(プロファイル)、セミデプスタイプ(プロファイルスター)等を塗布液の特性に応じて選択し、濾過をすることが好ましい。   Further, the coating solution for each layer is preferably filtered with a metal filter, a membrane filter or the like in order to remove foreign matters and aggregates in the coating solution before entering the coating step. For example, it is preferable to select a pleat type (HDC), a depth type (profile), a semi-depth type (profile star), etc., manufactured by Nippon Pole Co., Ltd. according to the characteristics of the coating solution and perform filtration.

次に有機電子写真感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお保護層は前記円形量規制型塗布加工方法を用いるのが最も好ましい。前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。   Next, as a coating processing method for producing the organic electrophotographic photosensitive member, a coating processing method such as dip coating, spray coating, circular amount regulation type coating, etc. is used. In order to prevent the film from being dissolved as much as possible, and in order to achieve uniform coating processing, it is preferable to use a coating processing method such as spray coating or circular amount regulation type (circular slide hopper type is a typical example). It is most preferable to use the circular amount regulation type coating method for the protective layer. The circular amount regulation type coating is described in detail in, for example, Japanese Patent Application Laid-Open No. 58-189061.

次に、本発明の電子写真感光体を用いた画像形成方法及び画像形成装置の説明をする。   Next, an image forming method and an image forming apparatus using the electrophotographic photosensitive member of the present invention will be described.

図1は本発明の画像形成方法の1例としての画像形成装置の断面構成図である。   FIG. 1 is a cross-sectional configuration diagram of an image forming apparatus as an example of the image forming method of the present invention.

図1に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布した感光体で、接地されて時計方向に駆動回転される。52はスコロトロンの帯電器(帯電手段)で、感光体ドラム50周面に対し一様な帯電をコロナ放電によって与えられる。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた帯電前露光部51による露光を行って感光体周面の除電をしてもよい。   In FIG. 1, reference numeral 50 denotes a photosensitive drum (photosensitive member) which is an image bearing member, which is a photosensitive member coated with an organic photosensitive layer on the drum, and is grounded and rotated clockwise. Reference numeral 52 denotes a scorotron charger (charging means) for uniformly charging the circumferential surface of the photosensitive drum 50 by corona discharge. Prior to the charging by the charger 52, the peripheral surface of the photosensitive member may be discharged by performing exposure by the pre-charging exposure unit 51 using a light emitting diode or the like in order to eliminate the history of the photosensitive member in the previous image formation.

感光体への一様帯電の後、像露光手段としての像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザダイオードを露光光源とする。回転するポリゴンミラー531、fθレンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。   After uniform charging of the photoreceptor, image exposure based on the image signal is performed by an image exposure unit 53 as image exposure means. The image exposure unit 53 in this figure uses a laser diode (not shown) as an exposure light source. Scanning on the photosensitive drum is performed by the light whose optical path is bent by the reflection mirror 532 through the rotating polygon mirror 531 and the fθ lens, and an electrostatic latent image is formed.

ここで反転現像プロセスとは帯電器52により、感光体表面を一様に帯電し、像露光が行われた領域、即ち感光体の露光部電位(露光部領域)を現像工程(手段)により、顕像化する画像形成方法である。一方未露光部電位は現像スリーブ541に印加される現像バイアス電位により現像されない。   Here, the reversal development process means that the surface of the photoreceptor is uniformly charged by the charger 52, and the exposed area of the photoreceptor, that is, the exposed area potential (exposed area) of the photoreceptor is developed by the developing process (means). This is an image forming method for visualizing. On the other hand, the unexposed portion potential is not developed by the developing bias potential applied to the developing sleeve 541.

その静電潜像は次いで現像手段としての現像器54で現像される。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。現像器54内部は現像剤攪拌搬送部材544、543、搬送量規制部材542等から構成されており、現像剤は攪拌、搬送されて現像スリーブに供給されるが、その供給量は該搬送量規制部材542により制御される。該現像剤の搬送量は適用される電子写真感光体の線速及び現像剤比重によっても異なるが、一般的には20〜200mg/cm2の範囲である。 The electrostatic latent image is then developed by a developing device 54 as developing means. A developing device 54 containing a developer composed of toner and carrier is provided on the periphery of the photosensitive drum 50, and development is performed by a developing sleeve 541 that contains a magnet and rotates while holding the developer. The inside of the developing device 54 is composed of developer agitating / conveying members 544 and 543, a conveying amount regulating member 542, and the like, and the developer is agitated and conveyed and supplied to the developing sleeve. Controlled by member 542. The developer transport amount varies depending on the linear velocity and developer specific gravity of the applied electrophotographic photosensitive member, but is generally in the range of 20 to 200 mg / cm 2 .

現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は搬送量規制部材によって層厚を規制されて現像域へと搬送され、現像が行われる。この時通常は感光体ドラム50と現像スリーブ541の間に直流バイアス、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。感光体の電位測定は電位センサー547を図1のように現像位置上部に設けて行う。   The developer is, for example, a carrier composed of the above-mentioned ferrite as a core and coated with an insulating resin around it, and a coloring material such as carbon black, a charge control agent, and a low molecular weight polyolefin mainly composed of the above-mentioned styrene acrylic resin. The toner is composed of a toner in which silica, titanium oxide, or the like is externally added to the particles. The developer is transported to the development area with the layer thickness regulated by a transport amount regulating member, and development is performed. At this time, usually, development is performed by applying a DC bias between the photosensitive drum 50 and the developing sleeve 541 and, if necessary, an AC bias voltage. Further, the developer is developed in contact with or not in contact with the photoreceptor. The potential of the photosensitive member is measured by providing a potential sensor 547 above the development position as shown in FIG.

記録紙Pは画像形成後、転写のタイミングの整った時点で給紙ローラー57の回転作動により転写域へと給紙される。   The recording paper P is fed to the transfer area by the rotation operation of the paper feed roller 57 when the transfer timing is ready after the image formation.

転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写電極(転写手段:転写器)58が作動し、給紙された記録紙Pにトナーと反対極性の帯電を与えてトナーを転写する。   In the transfer area, a transfer electrode (transfer means: transfer device) 58 is operated on the peripheral surface of the photosensitive drum 50 in synchronization with the transfer timing, and the charged recording paper P is charged with a polarity opposite to that of the toner. Transfer the toner.

次いで記録紙Pは分離電極(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラー601と圧着ローラー602の加熱、加圧によってトナーを溶着したのち排紙ローラー61を介して装置外部に排出される。なお前記の転写電極58及び分離電極59は記録紙Pの通過後、一次作動を中止し、次なるトナー像の形成に備える。図1では転写電極58にコロトロンの転写帯電極を用いている。転写電極の設定条件としては、感光体のプロセススピード(周速)等により異なり一概に規定することはできないが、例えば、転写電流としては+100〜+400μA、転写電圧としては+500〜+2000Vを設定値とすることができる。   Next, the recording paper P is neutralized by a separation electrode (separator) 59, separated by the peripheral surface of the photosensitive drum 50 and conveyed to the fixing device 60, and the toner is removed by heating and pressurization of the heat roller 601 and the pressure roller 602. After the welding, the sheet is discharged to the outside of the apparatus via the sheet discharge roller 61. The transfer electrode 58 and the separation electrode 59 stop the primary operation after passing through the recording paper P, and prepare for the next toner image formation. In FIG. 1, a transfer band electrode of corotron is used as the transfer electrode 58. The transfer electrode setting conditions vary depending on the process speed (peripheral speed) of the photosensitive member and cannot be specified. For example, the transfer current is set to +100 to +400 μA, and the transfer voltage is set to +500 to +2000 V. can do.

一方記録紙Pを分離した後の感光体ドラム50は、クリーニング器(クリーニング手段)62のブレード621の圧接により残留トナーを除去・清掃し、再び帯電前露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。   On the other hand, after the recording paper P has been separated, the photosensitive drum 50 removes and cleans residual toner by the pressure contact of the blade 621 of the cleaning device (cleaning means) 62, and again removes the charge by the pre-charge exposure unit 51 and charges by the charger 52. Then, the next image forming process is started.

尚、70は感光体、帯電器、転写器、分離器及びクリーニング器が一体化されている着脱可能なプロセスカートリッジである。   Reference numeral 70 denotes a detachable process cartridge in which a photoconductor, a charger, a transfer device, a separator, and a cleaning device are integrated.

本発明の電子写真感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。   The electrophotographic photosensitive member of the present invention is generally applicable to electrophotographic apparatuses such as an electrophotographic copying machine, a laser printer, an LED printer, and a liquid crystal shutter printer, and further displays, recordings, light printing, plate making and the like using electrophotographic technology. It can be widely applied to apparatuses such as facsimiles.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this. However, “part” in the following text indicates “part by mass”.

下記のごとくして、感光体を作製した。
感光体1の作製
〈中間層〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60部
無機微粒子:酸化チタンSMT500SAS(テイカ社製;表面処理は、シリカ処理、アルミナ処理、及びメチルハイドロジェンポリシロキサン処理) 180部
メタノール 1600部
1−ブタノール 400部
上記成分を混合溶解して中間層塗布液を調製した。この塗布液をの円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
〈電荷発生層〉
チタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料) 60部
シリコーン樹脂溶液
(KR5240、15%キシレン−ブタノール溶液:信越化学社製) 700部
2−ブタノン 2000部
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質(合成例(1)の化合物:T−2) 150部
バインダー樹脂:ビスフェノールZ型ポリカーボネート
(ユーピロンZ300:三菱ガス化学社製) 300部
酸化防止剤(サノールLS2626:三共社製) 1.7部
テトラヒドロフラン 1100部
トルエン 1100部
上記成分を混合溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、125℃50分間乾燥して、膜厚22μmの電荷輸送層を形成し感光体1を作製した。
A photoreceptor was prepared as follows.
Preparation of photoconductor 1 <intermediate layer>
Polyamide resin (Amilan CM-8000: manufactured by Toray Industries, Inc.) 60 parts Inorganic fine particles: Titanium oxide SMT500SAS (manufactured by Teica; surface treatment is silica treatment, alumina treatment, and methylhydrogenpolysiloxane treatment) 180 parts Methanol 1600 parts 1- Butanol 400 parts The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
<Charge generation layer>
Titanyl phthalocyanine pigment (pigment with Cu-Kα characteristic X-ray diffraction spectrum and maximum peak of Bragg angle 2θ of 27.3 °) 60 parts Silicone resin solution (KR5240, 15% xylene-butanol solution: Shin-Etsu Chemical Co., Ltd.) 700 parts 2-butanone 2000 parts The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating solution. This coating solution was applied onto the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
<Charge transport layer>
Charge transport material (Compound of Synthesis Example (1): T-2) 150 parts Binder resin: Bisphenol Z-type polycarbonate (Iupilon Z300: manufactured by Mitsubishi Gas Chemical Company) 300 parts Antioxidant (Sanol LS2626: Sankyo Company) 7 parts Tetrahydrofuran 1100 parts Toluene 1100 parts The above components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 125 ° C. for 50 minutes to form a charge transport layer having a thickness of 22 μm.

感光体2〜13の作製
感光体1において、電荷発生物質、電荷輸送物質の化合物、化合物の量、電荷輸送層の膜厚を表1のように変更した以外は同様にして感光体2〜13を作製した。
Preparation of photoconductors 2 to 13 Photoconductors 2 to 13 were prepared in the same manner as in photoconductor 1 except that the charge generation material, the compound of the charge transport material, the amount of the compound, and the thickness of the charge transport layer were changed as shown in Table 1. Was made.

感光体14の作製(比較例)
感光体1において、電荷輸送物質を合成例(1)の化合物から下記の化合物Aに変更した以外は同様にして感光体14を作製した。
Production of photoconductor 14 (comparative example)
A photoconductor 14 was produced in the same manner as in the photoconductor 1, except that the charge transport material was changed from the compound of Synthesis Example (1) to the following compound A.

Figure 2005091838
Figure 2005091838

Figure 2005091838
Figure 2005091838

表中、Yはチタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料)
Zはベンズイミダゾールペリレン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが12.4°の顔料)を示す。
In the table, Y is a titanyl phthalocyanine pigment (a pigment having a maximum peak at a Bragg angle 2θ of 27.3 ° in a Cu-Kα characteristic X-ray diffraction spectrum).
Z represents a benzimidazole perylene pigment (a pigment having a maximum peak at a Bragg angle 2θ of 12.4 ° in a Cu-Kα characteristic X-ray diffraction spectrum).

評価
以上のようにして得た感光体1〜14を各々コニカ(株)製の反転現像方式デジタル複写機「Konica7085」(スコロトロン帯電器、半導体レーザ像露光器(波長680nm)、反転現像手段を有するA4紙85枚/分機)に搭載し、下記評価項目について評価した。評価は、評価項目毎に、環境条件(温湿度条件)を変えて行なった。評価は、基本的に画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、評価した。評価結果を表2に示す。
Evaluation Each of the photoconductors 1 to 14 obtained as described above has a reversal development type digital copying machine “Konica 7085” (Scorotron charger, semiconductor laser image exposure device (wavelength 680 nm), and reversal development means manufactured by Konica Corporation. The following evaluation items were evaluated. Evaluation was performed by changing environmental conditions (temperature and humidity conditions) for each evaluation item. The evaluation basically consists of an original image in which the character ratio, halftone image, solid white image, and solid black image with a pixel rate of 7% are divided into ¼ equal parts in A4 and 10,000 sheets in intermittent mode. A copy was made and evaluated. The evaluation results are shown in Table 2.

評価条件
ラインスピード;420mm/秒
像露光から現像位置までの到達時間;0.108秒
帯電条件
帯電器;スコロトロン帯電器(負帯電)
帯電電位;−700V〜−750V
露光条件
べた黒画像部電位を−100Vにする露光量に設定。
Evaluation condition Line speed: 420 mm / second Time to reach from the image exposure to the development position; 0.108 seconds Charging condition Charger; Scorotron charger (negative charge)
Charging potential: -700V to -750V
Exposure condition Set to the exposure amount that makes the solid black image portion potential -100V.

露光ビーム;レーザは680nmの半導体レーザを使用
現像条件
現像剤は、フェライトをコアとして絶縁性樹脂をコーティングしたキャリアとスチレンアクリル系樹脂を主材料としてカーボンブラックの着色剤と荷電制御剤と低分子量ポリオレフィンからなる重合法で作製した体積平均粒径5.3μmの着色粒子に、シリカ、酸化チタンを外添したトナーの現像剤を使用した。
Exposure beam; Laser uses a 680 nm semiconductor laser. Development conditions The developer is a carrier coated with an insulating resin with ferrite as the core, and a styrene acrylic resin as the main materials. Colorant of carbon black, charge control agent, and low molecular weight polyolefin. A toner developer in which silica and titanium oxide were externally added to colored particles having a volume average particle size of 5.3 μm produced by a polymerization method comprising:

転写条件
転写極;コロナ帯電方式(正帯電)
分離条件
分離爪ユニットの分離手段を用いた
クリーニング条件
クリーニング部に硬度70°、反発弾性65%、厚さ2(mm)、自由長9mmのクリーニングブレードをカウンター方向に線圧18(g/cm)となるように重り荷重方式で当接した。
Transfer conditions Transfer pole; corona charging method (positive charging)
Separation conditions Cleaning conditions using the separation means of the separation claw unit A cleaning blade having a hardness of 70 °, a rebound resilience of 65%, a thickness of 2 (mm), and a free length of 9 mm is applied to the cleaning portion at a linear pressure of 18 (g / cm) in the counter direction. It contact | abutted by the weight load system so that it might become.

評価項目及び評価方法
低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化 )
低温低湿(10℃20%RH)環境下で、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、初期と1万枚後の現像位置でのべた黒画像部の電位変化(|ΔV|)を評価した。|ΔV|が小さい方が低温低湿(10℃20%RH)環境下での高速応答性が優れている。
Evaluation item and evaluation method High-speed response under low-temperature and low-humidity (10 ° C, 20% RH) environment (potential change in solid black image area)
In a low-temperature, low-humidity (10 ° C, 20% RH) environment, one A4 original image with a pixel rate of 7%, a halftone image, a solid white image, and a solid black image each divided into 1/4 equal intervals In this mode, 10,000 sheets were copied, and the potential change (| ΔV |) of the solid black image portion at the development position after the initial and 10,000 sheets was evaluated. The smaller | ΔV |, the better the high-speed response in a low-temperature, low-humidity (10 ° C, 20% RH) environment.

◎;べた黒画像部の電位変化|ΔV|が50V未満(良好)
○;べた黒画像部の電位変化|ΔV|が50V〜150V(実用上問題なし)
×;べた黒画像部の電位変化|ΔV|が150Vより大きい(実用上問題有り)
文字細り(低温低湿(10℃20%RH)の環境下)
0.1mm、0.2mm幅の線画像が印刷されたオリジナル画像を複写し、評価した。
A: Potential change in solid black image portion | ΔV | is less than 50 V (good)
○: Potential change of solid black image portion | ΔV | is 50 V to 150 V (no problem in practical use)
×: The potential change | ΔV | of the solid black image portion is larger than 150 V (practically problematic)
Character thinning (under low temperature and low humidity (10 ° C, 20% RH))
An original image on which a line image having a width of 0.1 mm and 0.2 mm was printed was copied and evaluated.

◎;複写画像の線幅がオリジナル画像の線幅の75%以上で再現されている(良好)
○;複写画像の線幅がオリジナル画像の線幅の40%〜74%で再現されている(実用上問題ないレベル)
×;複写画像の線幅がオリジナル画像の線幅の39%以下、又は線幅が切断されている(実用上問題となるレベル)
ブラックスポット(高温高湿(30℃80%RH))
ハーフトーン画像上のブラックスポット(苺状のスポット画像)の発生状況を下記の基準で判定した。
◎; The reproduced image is reproduced with a line width of 75% or more of the line width of the original image (good)
○: The line width of the copied image is reproduced at 40% to 74% of the line width of the original image (a level that causes no problem in practice).
×: The line width of the copied image is 39% or less of the line width of the original image, or the line width is cut (a level causing a problem in practice).
Black spot (high temperature and high humidity (30 ℃ 80% RH))
The occurrence of black spots (spot-like spot images) on the halftone image was determined according to the following criteria.

◎;感光体上にブラックスポットの発生核がみられず、ハーフトーン画像にもブラックスポットの発生なし(良好)
○;感光体上にブラックスポットの発生核がみられるが、ハーフトーン画像にはブラックスポットの発生なし(実用上問題なし)
×;感光体上にブラックスポットの発生核がみられ、ハーフトーン画像にもブラックスポットが発生している(実用上問題有り)
周期性の画像欠陥(高温高湿(30℃80%RH))
周期性が感光体の周期と一致し、目視できる白ヌケ、黒ポチ、筋状の画像欠陥が、A4サイズ当たり何個あるかで判定した。
A: No black spot nuclei were observed on the photoreceptor, and no black spots were generated even in halftone images (good).
○: Black spot nuclei are seen on the photoreceptor, but no black spots are generated in the halftone image (no problem in practical use)
X: Nuclei of black spots are observed on the photosensitive member, and black spots are also generated in the halftone image (there is a practical problem)
Periodic image defects (high temperature and high humidity (30 ° C, 80% RH))
The periodicity coincided with the period of the photoconductor, and the number of visible white defects, black spots, and streak image defects per A4 size was determined.

◎;0.4mm以上の画像欠陥の頻度:全ての複写画像が5個/A4以下(良好)
○;0.4mm以上の画像欠陥の頻度:6個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
×;0.4mm以上の画像欠陥の頻度:11個/A4以上が1枚以上発生(実用上問題有り)
クラック
上記デジタル複写機Konica7085を30℃、80%RHの環境下で、感光体を搭載したまま、電源をoffにし、2日間放置した。感光体周辺の部材はこの間動作を停止しているだけの状態、即ち、クリーニングブレード、現像剤搬送体等の部材は、感光体に当接したままにした。その後、感光体の表面を観察し、クラックの発生の有無を観察した。又、画像評価も行い、クラック発生に伴う筋状の画像欠陥の発生の有無も評価した。
A: Frequency of image defects of 0.4 mm or more: All copy images are 5 / A4 or less (good)
○: Frequency of image defects of 0.4 mm or more: 1 or more of 6 / A4 or more and 10 / A4 or less (no problem in practical use)
X: Frequency of image defects of 0.4 mm or more: 11 or more A4 or more occurred (practical problem)
Crack In the environment of 30 ° C. and 80% RH, the digital copying machine Konica 7085 was turned off with the power supply turned off and left for 2 days. The members around the photoconductor are in a state in which the operation is only stopped during this period, that is, the members such as the cleaning blade and the developer conveying member are kept in contact with the photoconductor. Thereafter, the surface of the photoreceptor was observed to observe the presence or absence of cracks. Moreover, image evaluation was also performed, and the presence or absence of generation of streak-like image defects due to the occurrence of cracks was also evaluated.

◎;100本の感光体を評価し、クラックの発生も、筋状の画像欠陥の発生もなし(良好)
○;100本の感光体を評価し、微細なクラックの発生はあるが、筋状の画像欠陥の発生はない(実用上問題ないレベル)
×;100本の感光体を評価し、クラックの発生と筋状の画像欠陥の発生が見られる(実用上問題となるレベル)
画像濃度(低温低湿(10℃20%RH))
べた黒部の画像濃度はマクベス社製RD−918を使用し反射濃度で測定した。相対濃度(複写していないA4紙の濃度を0.00とする)で評価した。
A: Evaluating 100 photoconductors, no cracks or streak-like image defects (good)
◯: 100 photoconductors were evaluated, fine cracks were generated, but no streak-like image defects were generated (a level of no problem in practical use).
X: 100 photoconductors were evaluated, and cracks and streak-like image defects were observed (practically problematic level)
Image density (low temperature and low humidity (10 ° C, 20% RH))
The image density of the solid black part was measured by reflection density using RD-918 manufactured by Macbeth. Evaluation was made by relative density (the density of A4 paper not copied is 0.00).

◎;1.2以上(良好)
○;1.2未満〜0.8(実用上問題ないレベル)
×;0.8未満(実用上問題となるレベル)
鮮鋭性
画像の鮮鋭性は、低温低湿(10℃20%RH)、高温高湿(30℃80%RH)の両環境において画像を出し、文字潰れで評価した。3ポイント、5ポイントの文字画像を形成し、下記の判断基準で評価した。
◎; 1.2 or more (good)
○: Less than 1.2 to 0.8 (a level with no practical problem)
×: Less than 0.8 (a level that causes practical problems)
Sharpness The sharpness of the image was evaluated by squashing characters by displaying images in both low temperature and low humidity (10 ° C., 20% RH) and high temperature, high humidity (30 ° C., 80% RH) environments. 3-point and 5-point character images were formed and evaluated according to the following criteria.

◎;3ポイント、5ポイントとも明瞭であり、容易に判読可能
○;3ポイントは一部判読不能、5ポイントは明瞭であり、容易に判読可能
×;3ポイントは殆ど判読不能、5ポイントも一部あるいは全部が判読不能
◎; 3 points and 5 points are clear and easy to read ○; 3 points are partially illegible, 5 points are clear and easily readable ×: 3 points are almost unreadable and 5 points are one Part or whole is illegible

Figure 2005091838
Figure 2005091838

表2より、本発明の一般式(1)の化合物を電荷輸送物質として用いた感光体1〜13は、低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化)が優れ、このため低温低湿下の文字細りもなく、しかも、ブラックスポット、周期性画像欠陥、クラック等の発生もなく、画像濃度、鮮鋭性に優れた特性を示している。一方、本発明外の化合物を電荷輸送物質として用いた感光体14は低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化)が劣化し、このため文字細り、鮮鋭性が劣化している。   From Table 2, the photoreceptors 1 to 13 using the compound of the general formula (1) of the present invention as a charge transport material have high-speed response (low solid black image area) in a low temperature and low humidity (10 ° C., 20% RH) environment. (Potential change) is excellent, and therefore, there is no character thinning under low temperature and low humidity, and there are no occurrences of black spots, periodic image defects, cracks, etc., and excellent image density and sharpness are exhibited. On the other hand, the photoconductor 14 using a compound other than the present invention as a charge transport material deteriorates high-speed response (change in potential of a solid black image portion) in a low-temperature and low-humidity (10 ° C., 20% RH) environment. Thinning and sharpness have deteriorated.

本発明の画像形成方法の1例としての画像形成装置の断面構成図である。1 is a cross-sectional configuration diagram of an image forming apparatus as an example of an image forming method of the present invention.

符号の説明Explanation of symbols

50 感光体ドラム(感光体)
51 帯電前露光部
52 帯電器
53 像露光器
54 現像器
541 現像スリーブ
543、544 現像剤攪拌搬送部材
547 電位センサー
57 給紙ローラー
58 転写電極
59 分離電極(分離器)
60 定着装置
61 排紙ローラー
62 クリーニング器
70 プロセスカートリッジ
50 Photosensitive drum (photosensitive member)
DESCRIPTION OF SYMBOLS 51 Pre-charge exposure part 52 Charging device 53 Image exposure device 54 Development device 541 Development sleeve 543, 544 Developer stirring conveyance member 547 Potential sensor 57 Paper feed roller 58 Transfer electrode 59 Separation electrode (separator)
60 Fixing device 61 Paper discharge roller 62 Cleaning device 70 Process cartridge

Claims (6)

下記一般式(1)で表されることを特徴とする有機化合物。
Figure 2005091838
一般式(1)中、R1〜R11は水素原子、置換又は無置換のアルキル基、アルコキシ基又はハロゲン原子を示し、Ar1〜Ar4は置換又は無置換のアリール基、アラルキル基を示す。但し、Ar1とAr2、Ar3とAr4は、それぞれ互いに結合して環を形成してもよい。k、l、mは各々1〜4の整数、nは1以上の整数を表す。
An organic compound represented by the following general formula (1):
Figure 2005091838
In general formula (1), R 1 to R 11 represent a hydrogen atom, a substituted or unsubstituted alkyl group, an alkoxy group or a halogen atom, and Ar 1 to Ar 4 represent a substituted or unsubstituted aryl group or an aralkyl group. . However, Ar 1 and Ar 2 , Ar 3 and Ar 4 may be bonded to each other to form a ring. k, l and m each represent an integer of 1 to 4, and n represents an integer of 1 or more.
前記一般式(1)の有機化合物を含有することを特徴とする電子写真感光体。 An electrophotographic photoreceptor comprising the organic compound represented by the general formula (1). 導電性支持体上に電荷発生層、電荷輸送層を有し、電荷輸送層が、前記一般式(1)の有機化合物を含有することを特徴とする電子写真感光体。 An electrophotographic photosensitive member comprising a charge generation layer and a charge transport layer on a conductive support, wherein the charge transport layer contains the organic compound represented by the general formula (1). 前記一般式(1)の有機化合物を含有する電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。 Electrophotographic photosensitive member containing the organic compound of the general formula (1), charging means for uniformly charging the electrophotographic photosensitive member, and latent image formation for forming an electrostatic latent image on the charged electrophotographic photosensitive member Developing means for developing an electrostatic latent image on the electrophotographic photosensitive member; transfer means for transferring a toner image visualized on the electrophotographic photosensitive member onto a transfer material; At least one of a charge eliminating means for removing the charge on the photographic photosensitive member and a cleaning means for removing the toner remaining on the electrophotographic photosensitive member after transfer is integrally supported, and is detachably attached to the image forming apparatus main body. A process cartridge that can be attached to a cartridge. 請求項4に記載のプロセスカートリッジを有することを特徴とする画像形成装置。 An image forming apparatus comprising the process cartridge according to claim 4. 請求項5に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。 An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 5.
JP2003325883A 2003-09-18 2003-09-18 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method Expired - Fee Related JP4307197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325883A JP4307197B2 (en) 2003-09-18 2003-09-18 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325883A JP4307197B2 (en) 2003-09-18 2003-09-18 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Publications (2)

Publication Number Publication Date
JP2005091838A true JP2005091838A (en) 2005-04-07
JP4307197B2 JP4307197B2 (en) 2009-08-05

Family

ID=34456212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325883A Expired - Fee Related JP4307197B2 (en) 2003-09-18 2003-09-18 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Country Status (1)

Country Link
JP (1) JP4307197B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031075A (en) * 2015-07-30 2017-02-09 京セラドキュメントソリューションズ株式会社 Triphenylamine derivative and electrophotographic photoreceptor
CN110240615A (en) * 2018-03-09 2019-09-17 首都师范大学 Synthetic method, the preparation method and applications of crystallite of novel organic small molecule material
WO2020036069A1 (en) * 2018-08-16 2020-02-20 東京化成工業株式会社 Novel compound, and composition for forming hole transporting layer for perovskite solar cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031075A (en) * 2015-07-30 2017-02-09 京セラドキュメントソリューションズ株式会社 Triphenylamine derivative and electrophotographic photoreceptor
CN110240615A (en) * 2018-03-09 2019-09-17 首都师范大学 Synthetic method, the preparation method and applications of crystallite of novel organic small molecule material
WO2020036069A1 (en) * 2018-08-16 2020-02-20 東京化成工業株式会社 Novel compound, and composition for forming hole transporting layer for perovskite solar cells
JPWO2020036069A1 (en) * 2018-08-16 2021-08-10 東京化成工業株式会社 New compound and hole transport layer forming composition for perovskite solar cells
JP7138972B2 (en) 2018-08-16 2022-09-20 東京化成工業株式会社 Novel compound and composition for forming hole transport layer for perovskite solar cell

Also Published As

Publication number Publication date
JP4307197B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP4069862B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069845B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069781B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134709A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4069843B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069846B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005221539A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4066938B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4075874B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP3952990B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005156799A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4069782B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005156798A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2003307861A (en) Organic photoreceptor, method for forming image, image forming device and process cartridge
JP2005134515A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4574534B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4307197B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4103810B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2008076809A (en) Organic photoreceptor, image forming method, image forming apparatus and process cartridge
JP2003280223A (en) Organophotoreceptor, image forming method, image forming apparatus and process cartridge
JP2004347854A (en) Electrophotographic photoreceptor, processing cartridge and image forming apparatus
JP4089628B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP3952833B2 (en) Organic photoconductor, image forming method, image forming apparatus, and process cartridge
JP2006047457A (en) Cleanerless image forming method, cleanerless image forming apparatus, process cartridge and organic electrophotographic photoreceptor
JP2004333975A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees