JP2004347854A - Electrophotographic photoreceptor, processing cartridge and image forming apparatus - Google Patents

Electrophotographic photoreceptor, processing cartridge and image forming apparatus Download PDF

Info

Publication number
JP2004347854A
JP2004347854A JP2003144706A JP2003144706A JP2004347854A JP 2004347854 A JP2004347854 A JP 2004347854A JP 2003144706 A JP2003144706 A JP 2003144706A JP 2003144706 A JP2003144706 A JP 2003144706A JP 2004347854 A JP2004347854 A JP 2004347854A
Authority
JP
Japan
Prior art keywords
image
group
charge transport
general formula
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003144706A
Other languages
Japanese (ja)
Inventor
Takeo Oshiba
武雄 大柴
Toyoko Shibata
豊子 芝田
友子 ▲崎▼村
Tomoko Sakimura
Masanari Asano
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2003144706A priority Critical patent/JP2004347854A/en
Publication of JP2004347854A publication Critical patent/JP2004347854A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor by which a high density and high resolution clear electrophotographic image is stably obtained, by preventing lowering of sharpness due to thinning of letters and lowering of image density due to potential variation of a solid black image region in reversal development, liable to occur in high-speed copying or in a low temperature and low humidity environment, when an electrophotographic image is formed, and to provide a process cartridge using the electrophotographic photoreceptor and an image forming apparatus. <P>SOLUTION: The electrophotographic photoreceptor is used in an image forming apparatus in which a toner image is formed on the electrophotographic photoreceptor at such a process speed as ≤110 millisecond travel time (Td) from an imagewise exposing step to a developing step. The electrophotographic photoreceptor includes at least a charge generating layer and a charge transport layer stacked on a conductive support, wherein the charge transport layer contains a compound of formula (1). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ及び画像形成装置に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ及び画像形成装置に関するものである。
【0002】
【従来の技術】
電子写真感光体はセレン系感光体、アモルファスシリコン感光体のような無機感光体に比して素材の選択の幅が広いこと、環境適性に優れていること、生産コストが安いこと等の大きなメリットがあり、近年無機感光体に代わって有機感光体の主流となっている。
【0003】
一方、近年の電子写真方式の画像形成装置は、パソコンのハードコピー用のプリンターとして、また通常の複写機においても画像処理の容易さや複合機への展開の容易さから、LEDやレーザを像露光光源とするデジタル方式の画像形成方式が急激に浸透してきた。更に、デジタル画像の精細化を進めて、高画質の電子写真画像を作製する技術が開発されている。例えば、スポット面積の小さいレーザ光で像露光を行い、ドット潜像の密度を上げて、高精細の潜像を形成し、該潜像を小粒径トナーで現像し、高画質の電子写真画像を作製する技術が公開されている。(特許文献1)
更に、最近のデジタル複写機,プリンター等の電子写真装置は小型,高速化が進み、感光体特性として高速化に対応した高感度化と、耐摩耗性向上による長寿命化の両方が要求されている。
【0004】
前記した、高画質化、小型化、高速化の要求を満たすために、感光体の感度の時間応答性を高めることが必要となる。これらの要求を満たすために有機感光体は、感光層を電荷発生層と電荷輸送層に機能分離した層構成にし、該電荷輸送層に、分子量500前後の低分子量の電荷輸送物質を多量に含有させた構成にしていた。しかしながら、このような構成の電荷輸送層では、高速化がある程度達成されるが、膜質が低下し、表面層の電荷輸送層が異物で汚染されやすい。即ち、感光体周辺に配置された現像手段、転写手段、クリーニング手段等により、感光体表面が紙粉やトナー組成物で汚染されやすく、その結果、ブラックスポット(苺状の斑点画像)や、黒ポチ、白ヌケ等の周期性の画像欠陥が発生しやすい。逆に、電荷輸送物質を少なくし、バインダー樹脂の量を多くすると露光工程から現像工程間の移動時間が短い高速の複写機や低温低湿環境等で、十分な感度が得られず、その結果、ドット画像が忠実に再現されず、細線が切断された画像が発生したりしやすい。
【0005】
このような課題を解決する方法として、大分子量の電荷輸送物質を用いることが報告されている。例えば、ビススチリルの化学構造を有する分子量1000以上の電荷輸送物質を含有する有機感光体が報告されている(特許文献2)。しかしながら、これらの電荷輸送物質を電荷輸送層に含有させると、電荷輸送層のバインダー樹脂との相溶性が不十分となりやすく、電荷輸送物質が均一に分散されず、感度が十分にでないと同時に電荷輸送層にクラック等の破断傷が発生しやすい。又、分子量3000〜5000の化合物の電荷輸送物質を用いた感光体も報告されているが(特許文献3、4)、この化合物は末端基が封鎖されていないため、残電上昇が起こりやすく、又、バインダー樹脂との相溶性も十分に解決されていない。
【0006】
又、感光体表面の汚染を防止するために、表面層にフッ素系樹脂粒子を含有させた有機感光体が提案されている(特許文献5)。しかしながら、フッ素系樹脂粒子を含有させた有機感光体は、画像ボケが発生しやすい。又表面層の機械的強度も低下させやすく、前記クリーニング手段等との接触摩擦により、感光体表面が減耗しやすく、必ずしも良好な電子写真画像を提供し得ていない。
【0007】
【特許文献1】
特開2001−255685号公報
【0008】
【特許文献2】
特開平3−149560号公報
【0009】
【特許文献3】
特開平10−310635号公報
【0010】
【特許文献4】
特開平5−25102号公報
【0011】
【特許文献5】
特開昭63−65449号公報
【0012】
【発明が解決しようとする課題】
本発明は前記のような課題を解決するために提案されたものであり、その目的とするところは、電子写真画像を形成する際に、高速複写や低温低湿環境下で発生しやすい、反転現像でのべた黒画像部の電位変動による画像濃度の低下や文字細り等の発生による鮮鋭性の低下を防止することであり、又、電子写真感光体の表面汚染により発生しやすいブラックスポットや、黒ポチ、白ヌケ等の周期性の画像欠陥を防止し、又、クラック等の破断傷等の発生を起こさず、高濃度、高解像性の鮮明な電子写真画像が安定して得られる電子写真感光体、及び該電子写真感光体を用いたプロセスカートリッジ及び画像形成装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明者等は鋭意検討の結果、本発明の上記課題を解決するためには、電子写真感光体の電荷輸送層を構成する電荷輸送物質やバインダー樹脂等について、詳細な検討を加えた結果、電荷輸送層を特定の化学構造を有する大分子量の電荷輸送物質を用いた構成の電子写真感光体を作製することにより、高速プロセスでしかも低温低湿環境下での感度の応答性が改善され、且つ表面層が汚染されにくく、ブラックスポット、黒ポチ、白ヌケ等の周期性の画像欠陥を防止し、クラック等の破断傷等の発生を起こさず、高濃度、高解像力の鮮明な画像が安定して得られることを見出し、本発明を完成した。
【0014】
本発明の目的は、下記構成のいずれかを採ることにより達成される。
1.電子写真感光体上に像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置に用いられる電子写真感光体において、該電子写真感光体が導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し且つ該電荷輸送層が前記一般式(1)の化合物を含有することを特徴とする電子写真感光体。
【0015】
2.電子写真感光体上に像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置に用いられる電子写真感光体において、該電子写真感光体が導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し、該電荷輸送層が前記一般式(1)の化合物を含有し且つ該電子写真感光体表面の水に対する接触角が90°以上であることを特徴とする電子写真感光体。
【0016】
3.前記Aのトリアリールアミン基を含有する2価の基が、前記一般式(4)の基であることを特徴とする前記1又は2に記載の電子写真感光体。
【0017】
4.前記Arが、前記一般式(5)の基であることを特徴とする前記3に記載の電子写真感光体。
【0018】
5.前記Aのトリアリールアミン基を含有する2価の基が、前記一般式(6)の基であることを特徴とする前記1又は2に記載の電子写真感光体。
【0019】
6.電子写真感光体上に像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置本体に着脱自在であるプロセスカートリッジにおいて、帯電手段、現像手段及びクリーニング手段の少なくとも1つと導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し且つ該電荷輸送層が前記一般式(1)の化合物を含有する電子写真感光体とを有することを特徴とするプロセスカートリッジ。
【0020】
7.電子写真感光体上に像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置において、該電子写真感光体が導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し且つ該電荷輸送層が前記一般式(1)の化合物を含有することを特徴とする画像形成装置。
【0021】
以下、本発明について詳細に説明する。
電子写真感光体の構成
本発明の電子写真感光体は、導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し、該電荷輸送層が前記一般式(1)の化合物を含有することを特徴とする。
【0022】
又、本発明に用いられる電子写真感光体は、導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層した電子写真感光体であり、該電荷輸送層が前記一般式(1)の化合物を含有し、且つ該電子写真感光体表面の水に対する接触角が90°以上であることを特徴とする。
【0023】
本発明の電子写真感光体は、上記構成を有することにより、像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置で発生しやすい、感度の低下に原因する文字細り等の鮮鋭性低下を防止でき、前記したブラックスポットや、黒ポチ、白ヌケ等の周期性の画像欠陥の発生もなく、クラック等の破断傷等の発生も起こさず、高濃度、高解像力の鮮明な電子写真画像を作製することができる。
【0024】
以下、前記一般式(1)の化合物を電荷輸送物質として用いた電子写真感光体について説明する。
【0025】
前記一般式(1)において、トリアリールアミン基を含有する2価の基とは、窒素原子の3価の結合基がそれぞれ、芳香族環と結合した構造を有し、且つ基全体として2価の連結基を有する基を意味する。
【0026】
前記一般式(1)のArの1価の置換又は無置換の芳香族基としては、置換又は無置換のフェニル基、ナフチル基等が好ましく、置換基としては、炭素数1〜4のアルキル基、アルコキシ基、フェニル基、ハロゲン原子等が好ましい。
Arの2価の置換、無置換の芳香族基としては、フェニレン基、ナフチレン基、ビフェニレン基等が好ましく、置換基としては、アルキル基が好ましい。又、2価のフラン基、2価のチオフェン基も好ましい。
【0027】
〜Rは水素原子、ハロゲン原子、置換、無置換のアルキル基、アルコキシ基、1価の置換、無置換の芳香族基を示すが、水素原子、炭素数1〜4のアルキル基、アルコキシ基、無置換のフェニル基、ハロゲン又は炭素数1〜4のアルキル基を有するフェニル基等が好ましい。
【0028】
Aの2価の基としては、前記一般式(3)の基の他に、トリアリールアミン基を含有する2価の基として前記一般式(4)又は一般式(6)の基が好ましい。
【0029】
一般式(3)中のRは置換、無置換のアルキル基、置換、無置換の芳香族基を示すが、好ましくは炭素数1〜4のアルキル基、フェニル基等が挙げられる。
【0030】
一般式(4)中のArは置換又は無置換の1価の芳香族基であるが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。
【0031】
一般式(6)中のAr、Arは置換又は無置換の1価の芳香族基を示すが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。
【0032】
以下に、前記一般式(1)の代表的な化合物例を化学構造No.(=化合物No.)として下記に例示する。
【0033】
【化7】

Figure 2004347854
【0034】
【化8】
Figure 2004347854
【0035】
【化9】
Figure 2004347854
【0036】
【化10】
Figure 2004347854
【0037】
【化11】
Figure 2004347854
【0038】
【化12】
Figure 2004347854
【0039】
【化13】
Figure 2004347854
【0040】
【化14】
Figure 2004347854
【0041】
【化15】
Figure 2004347854
【0042】
【化16】
Figure 2004347854
【0043】
【化17】
Figure 2004347854
【0044】
【化18】
Figure 2004347854
【0045】
【化19】
Figure 2004347854
【0046】
【化20】
Figure 2004347854
【0047】
【化21】
Figure 2004347854
【0048】
【化22】
Figure 2004347854
【0049】
【化23】
Figure 2004347854
【0050】
【化24】
Figure 2004347854
【0051】
【化25】
Figure 2004347854
【0052】
【化26】
Figure 2004347854
【0053】
【化27】
Figure 2004347854
【0054】
【化28】
Figure 2004347854
【0055】
【化29】
Figure 2004347854
【0056】
【化30】
Figure 2004347854
【0057】
【化31】
Figure 2004347854
【0058】
【化32】
Figure 2004347854
【0059】
【化33】
Figure 2004347854
【0060】
【化34】
Figure 2004347854
【0061】
【化35】
Figure 2004347854
【0062】
【化36】
Figure 2004347854
【0063】
【化37】
Figure 2004347854
【0064】
【化38】
Figure 2004347854
【0065】
【化39】
Figure 2004347854
【0066】
【化40】
Figure 2004347854
【0067】
【化41】
Figure 2004347854
【0068】
【化42】
Figure 2004347854
【0069】
【化43】
Figure 2004347854
【0070】
【化44】
Figure 2004347854
【0071】
【化45】
Figure 2004347854
【0072】
【化46】
Figure 2004347854
【0073】
【化47】
Figure 2004347854
【0074】
【化48】
Figure 2004347854
【0075】
【化49】
Figure 2004347854
【0076】
以上の化合物例は、前記一般式(1)中の複数のAr、R、R、Rが同一の化合例であるが、本発明では、これら複数のAr、R、R、Rが同一でないものも含まれる。
【0077】
以下に、本発明の化合物の合成例を記載する。
本発明の化合物の合成例を下記化合物合成の機構(スキーム)中に付した番号を用いて説明する。
【0078】
化合物(例示化合物62=例示化学構造62)の合成
【0079】
【化50】
Figure 2004347854
【0080】
1の化合物:2モル比、2の化合物:1モル比をテトラヒドロフラン(以下THF)中に溶解して3(カリウム−tert−ブトキシド)の存在下で、内温45・50℃で十分に時間をかけて反応させることにより得ることができる。
【0081】
次に、上記のような本発明の化合物を電荷輸送物質として用いた電子写真感光体、特に有機感光体の層構成について記載する。
【0082】
有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。
【0083】
以下に本発明に用いられる有機感光体の構成について記載する。
導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
【0084】
円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。
【0085】
導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗10Ωcm以下が好ましい。
【0086】
本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/L、アルミニウムイオン濃度は1〜10g/L、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。
【0087】
中間層
本発明においては導電性支持体と感光層の間に、バリヤー機能を備えた中間層を設けることもできる。
【0088】
本発明においては導電性支持体と前記感光層のとの接着性改良、或いは該支持体からの電荷注入を防止するために、該支持体と前記感光層の間に中間層(下引層も含む)を設けることもできる。該中間層の材料としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂並びに、これらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂が挙げられる。これら下引き樹脂の中で繰り返し使用に伴う残留電位増加を小さくできる樹脂としてはポリアミド樹脂が好ましい。又、これら樹脂を用いた中間層の膜厚は0.01〜0.5μmが好ましい。
【0089】
又、本発明に好ましく用いられる中間層はシランカップリング剤、チタンカップリング剤等の有機金属化合物を熱硬化させた硬化性金属樹脂を用いた中間層が挙げられる。硬化性金属樹脂を用いた中間層の膜厚は、0.1〜2μmが好ましい。
【0090】
又、本発明に好ましく用いられる中間層は無機粒子をバインダー樹脂中に分散した中間層が挙げられる。無機粒子の平均粒径は0.01〜1μmが好ましい。特に、表面処理をしたN型半導性微粒子をバインダー中に分散した中間層が好ましい。例えばシリカ・アルミナ処理及びシラン化合物で表面処理した平均粒径が0.01〜1μmの酸化チタンをポリアミド樹脂中に分散した中間層が挙げられる。このような中間層の膜厚は、1〜20μmが好ましい。
【0091】
N型半導性微粒子とは、導電性キャリアを電子とする性質をもつ微粒子を示す。すなわち、導電性キャリアを電子とする性質とは、該N型半導性微粒子を絶縁性バインダーに含有させることにより、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性を示さない性質を有するものをいう。
【0092】
ここで、N型半導性粒子の判別方法について説明する。
導電性支持体上に膜厚5μmの中間層(中間層を構成するバインダー樹脂中に粒子を50質量%分散させた分散液を用いて中間層を形成する)を形成する。該中間層に負極性に帯電させて、光減衰特性を評価する。又、正極性に帯電させて同様に光減衰特性を評価する。
【0093】
N型半導性粒子とは、上記評価で、負極性に帯電させた時の光減衰が正極性に帯電させた時の光減衰よりも大きい場合に、中間層に分散された粒子をN型半導性粒子という。
【0094】
前記N型半導性微粒子は、具体的には酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)等の微粒子が挙げられるが、本発明では、特に酸化チタンが好ましく用いられる。
【0095】
本発明に用いられるN型半導性微粒子の平均粒径は、数平均一次粒径において10nm以上500nm以下の範囲のものが好ましく、より好ましくは10nm〜200nm、特に好ましくは、15nm〜50nmである。
【0096】
数平均一次粒径の値が前記範囲内にあるN型半導性微粒子を用いた中間層は層内での分散を緻密なものとすることができ、十分な電位安定性、及び黒ポチ発生防止機能を有する。
【0097】
前記N型半導性微粒子の数平均一次粒径は、例えば酸化チタンの場合、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定される。
【0098】
本発明に用いられるN型半導性微粒子の形状は、樹枝状、針状および粒状等の形状があり、このような形状のN型半導性微粒子は、例えば酸化チタン粒子では、結晶型としては、アナターゼ型、ルチル型及びアモルファス型等があるが、いずれの結晶型のものを用いてもよく、また2種以上の結晶型を混合して用いてもよい。その中でもルチル型のものが最も良い。
【0099】
N型半導性微粒子に行われる疎水化表面処理の1つは、複数回の表面処理を行い、かつ該複数回の表面処理の中で、最後の表面処理が反応性有機ケイ素化合物による表面処理を行うものである。また、該複数回の表面処理の中で、少なくとも1回の表面処理がアルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理であり、最後に反応性有機ケイ素化合物の表面処理を行うことが好ましい。
【0100】
尚、アルミナ処理、シリカ処理、ジルコニア処理とはN型半導性微粒子表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。又、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。
【0101】
この様に、酸化チタン粒子の様なN型半導性微粒子の表面処理を少なくとも2回以上行うことにより、N型半導性微粒子表面が均一に表面被覆(処理)され、該表面処理されたN型半導性微粒子を中間層に用いると、中間層内における酸化チタン粒子等のN型半導性微粒子の分散性が良好で、かつ黒ポチ等の画像欠陥を発生させない良好な感光体を得ることができるのである。
【0102】
感光層
本発明の感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのがよい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CTL)の構成を取ることが好ましい。正帯電用の感光体では前記層構成の順が負帯電用感光体の場合の逆となる。本発明の最も好ましい感光層構成は前記機能分離構造を有する負帯電感光体構成である。
【0103】
以下に機能分離負帯電感光体の感光層構成について説明する。
電荷発生層
電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
【0104】
電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる結晶構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン、同2θが12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。
【0105】
電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜2μmが好ましい。
【0106】
電荷輸送層
本発明の電荷輸送層は前記一般式(1)の化合物を電荷輸送物質として含有することを特徴とする。該電荷輸送層は複数の層構成にした層構造が好ましい。最上層の電荷輸送層には、フッ素系樹脂粒子を含有させ、感光体表面の水に対する接触角を90°以上にすることが好ましい。該フッ素系樹脂粒子とはフッ素原子を含有した樹脂粒子を意味し、例えば、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、六フッ化エチレンプロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂及びこれらの共重合体のなかから1種あるいは2種以上を適宜選択するのが好ましいが、特に、四フッ化エチレン樹脂及びフッ化ビニリデン樹脂が好ましい。フッ素系樹脂粒子の分子量や粒子の粒径は、適宜選択することができ、特に制限されるものではない。
【0107】
最上層の電荷輸送層はバインダー樹脂中にフッ素系樹脂粒子を含有する構成が好ましく、フッ素系樹脂粒子の割合は、粒子の粒径にも影響を受けるが、最上層全質量に対し、1〜50質量%であることが好ましく、より好ましくは5〜40質量%である。更に、最上層には電荷輸送物質が含有されていることが好ましい。
【0108】
最上層には、分散性、結着性や耐候性を向上させる目的でカップリング剤や酸化防止剤等の添加剤を加えてもよい。
【0109】
最上層のフッ素系樹脂粒子の分散方法としては、ホモジナイザー、ボールミル、サンドミル、ロールミル及び超音波といった方法が挙げられる。一次粒径の粒径まで分散可能であれば特に限定されるものではない。
【0110】
また、フッ素系樹脂粒子の分散助剤として、各種の界面活性剤、例えばクシ型グラフトポリマー等を適宜混合してもさしつかえない。
【0111】
最上層の膜厚は0.1〜4μmであることが好ましい。0.1μm未満では表面硬度や強度が十分でなく耐久性が低下し易く、4μmを超えると現像時に潜像によって形成されるコントラストポテンシャルが劣化し易い。より好ましくは0.2〜3.0μmである。
【0112】
最上層はクリーニング性及び耐汚染性を満足するために低表面エネルギーであることが好ましく、水との接触角が90°以上が好ましい。90°未満では電子写真プロセスによる繰り返し使用によって表面に帯電生成物やトナー、紙からもたらされる脱落物が付着し易く、クリーニング不良や表面抵抗の低下による潜像の劣化(画像流れ)を生じ易い。より好ましくは95°以上である。
【0113】
なお、上記フッ素系樹脂粒子の体積平均粒径はレーザ回折/散乱式粒度分布測定装置「LA−700」(堀場製作所(株)社製)により測定される。又、感光体の表面接触角は、純水に対する接触角を接触角計(CA−DT−A型:協和界面科学社製)を用いて20℃50%RHの環境下で測定する。
【0114】
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。
【0115】
電荷輸送物質(CTM)としては、前記した前記一般式(1)の化合物を用いる。又、前記一般式(1)の化合物と共に、例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを併用して用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。
【0116】
電荷輸送層(CTL)に用いられる樹脂としては、例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。
【0117】
これらCTLのバインダーとして最も好ましいものはポリカーボネート樹脂である。ポリカーボネート樹脂はCTMの分散性、電子写真特性を良好にすることにおいて、最も好ましい。バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し10〜200質量部が好ましい。
【0118】
又、電荷輸送層には酸化防止剤を含有させることが好ましい。該酸化防止剤とは、その代表的なものは電子写真感光体中ないしは電子写真感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。代表的には下記の化合物群が挙げられる。
【0119】
【化51】
Figure 2004347854
【0120】
【化52】
Figure 2004347854
【0121】
【化53】
Figure 2004347854
【0122】
【化54】
Figure 2004347854
【0123】
電荷輸送層の膜厚は5〜40μmが好ましく、8〜30μmがより好ましい。電荷輸送層の合計膜厚が5μm未満だと帯電電位が不十分になりやすく、40μmを超えると、高速適応性が低下し、画像濃度が低下したり、鮮鋭性が劣化しやすい。高速適応性が十分で且つ良好な画像品質が得られる最も好ましい電荷輸送層の膜厚は16〜25μmである。
【0124】
上記では本発明の最も好ましい感光体の層構成を例示したが、本発明では上記以外の感光体層構成でも良い。
【0125】
中間層、電荷発生層、電荷輸送層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
【0126】
又、これらの各層の塗布溶液は塗布工程に入る前に、塗布溶液中の異物や凝集物を除去するために、金属フィルター、メンブランフィルター等で濾過することが好ましい。例えば、日本ポール社製のプリーツタイプ(HDC)、デプスタイプ(プロファイル)、セミデプスタイプ(プロファイルスター)等を塗布液の特性に応じて選択し、濾過をすることが好ましい。
【0127】
次に有機電子写真感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお保護層は前記円形量規制型塗布加工方法を用いるのが最も好ましい。前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。
【0128】
次に、本発明の電子写真感光体を用いた画像形成装置の説明をする。
図1は本発明の1例としての画像形成装置の断面構成図である。
【0129】
図1に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布した感光体で、接地されて時計方向に駆動回転される。52はスコロトロンの帯電器(帯電手段、帯電工程)で、感光体ドラム50周面に対し一様な帯電をコロナ放電によって与えられる。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた帯電前露光部51による露光を行って感光体周面の除電をしてもよい。
【0130】
感光体への一様帯電の後、像露光手段(像露光工程)としての像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザダイオードを露光光源とする。回転するポリゴンミラー531、fθレンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。
【0131】
その静電潜像は次いで現像手段(現像工程)としての現像器54で現像される。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。
【0132】
像露光工程から現像工程迄の移動時間(Td)は高速のプロセススピードでは短くなり、高速適応性が不十分な電子写真感光体は、現像工程に達した時にも像露光による電位低下が完了しない。本発明の電子写真感光体は像露光工程から現像工程迄の移動時間(Td)が110m秒以下の高速のプロセスに適用しても、現像工程で、十分な電位低下を完了しており、繰り返し、使用による高速性の劣化も小さく、更に低温低湿環境下でも、十分な高速適応性を有している。
【0133】
本発明の像露光工程から現像工程迄の移動時間(Td)は、感光体上に照射される像露光光の完了時の位置(感光体上の位置A)と現像によりトナーが付着し始める位置(感光体上の位置B)の間の感光体上の距離(|A〜B|)を画像形成動作時の感光体の線速(感光体の表面線速)で除すことにより算出できる。
【0134】
一般にデジタルの画像形成装置では反転現像が行なわれるが、ここで反転現像とは帯電器52により、感光体表面を一様に帯電し、像露光が行われた領域、即ち、感光体の露光部電位(露光部領域)を現像工程により、顕像化する画像形成装置である。一方未露光部電位は現像スリーブ541に印加される現像バイアス電位により現像されない。
【0135】
現像器(現像手段、現像工程)54内部は現像剤攪拌搬送部材544、543、搬送量規制部材542等から構成されており、現像剤は攪拌、搬送されて現像スリーブに供給されるが、その供給量は該搬送量規制部材542により制御される。該現像剤の搬送量は適用される電子写真感光体の線速及び現像剤比重によっても異なるが、一般的には20〜200mg/cmの範囲である。
【0136】
現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は搬送量規制部材によって層厚を規制されて現像域へと搬送され、現像が行われる。この時通常は感光体ドラム50と現像スリーブ541の間に直流バイアス、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。感光体の電位測定は電位センサー547を図1のように現像位置上部に設けて行う。
【0137】
記録紙Pは画像形成後、転写のタイミングの整った時点で給紙ローラー57の回転作動により転写域へと給紙される。
【0138】
転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写電極(転写手段:転写器)58が作動し、給紙された記録紙Pにトナーと反対極性の帯電を与えてトナーを転写する。
【0139】
次いで記録紙Pは分離電極(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラー601と圧着ローラー602の加熱、加圧によってトナーを溶着したのち排紙ローラー61を介して装置外部に排出される。なお前記の転写電極58及び分離電極59は記録紙Pの通過後、一次作動を中止し、次なるトナー像の形成に備える。図1では転写電極58にコロトロンの転写帯電極を用いている。転写電極の設定条件としては、感光体のプロセススピード(周速)等により異なり一概に規定することはできないが、例えば、転写電流としては+100〜+400μA、転写電圧としては+500〜+2000Vを設定値とすることができる。
【0140】
一方記録紙Pを分離した後の感光体ドラム50は、クリーニング器(クリーニング手段)62のブレード621の圧接により残留トナーを除去・清掃し、再び帯電前露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。
【0141】
尚、70は感光体、帯電器、転写器、分離器及びクリーニング器が一体化されている着脱可能なプロセスカートリッジである。
【0142】
本発明の電子写真感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。
【0143】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。
【0144】
下記のごとくして、感光体を作製した。
感光体1の作製
Figure 2004347854
上記成分を混合溶解して中間層塗布液を調製した。この塗布液を円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
Figure 2004347854
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
Figure 2004347854
上記成分を混合溶解して電荷輸送層1の塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、100℃40分間乾燥して、膜厚20.0μmの電荷輸送層1を形成した。
Figure 2004347854
を混合し、溶解して電荷輸送層2の塗布液を調製した。この塗布液を前記電荷輸送層1の上に浸漬塗布法で塗布し、100℃、40分の加熱硬化を行い乾燥膜厚2.0μmの電荷輸送層2を形成し、感光体1を作製した。該感光体1の表面の水に対する接触角は86°であった。
感光体2の作製
感光体1の作製において、電荷輸送層2の塗布液を下記の塗布液に変更した以外は同様にして感光体2を作製した。
【0145】
Figure 2004347854
を混合し、溶解して電荷輸送層2の塗布液を調製した。この塗布液を前記感光体1の電荷輸送層1の上に浸漬塗布法で塗布し、100℃、40分の加熱硬化を行い乾燥膜厚2.0μmの電荷輸送層2を形成し、感光体2を作製した。該感光体2の表面の水に対する接触角は116°であった。
【0146】
感光体3〜15の作製
感光体2において、電荷発生物質、電荷輸送層1の電荷輸送物質の化合物、化合物の量、膜厚、電荷輸送層2の電荷輸送物質の化合物、フッ素系樹脂粒子の種類と量、膜厚を表1のように変更した以外は同様にして感光体3〜15を作製した。
【0147】
感光体16の作製
感光体1において、電荷輸送層1及び2の電荷輸送物質を下記化合物Aに変更した以外は同様にして感光体16を作製した。
【0148】
感光体17の作製
感光体2において、電荷輸送層1及び2の電荷輸送物質を下記化合物Aに変更した以外は同様にして感光体17を作製した。
【0149】
表1中に、感光体1〜17の電荷発生層、電荷輸送層1、電荷輸送層2の相違点と前記した感光体表面の水に対する接触角の測定結果を示した。
【0150】
【化55】
Figure 2004347854
【0151】
【表1】
Figure 2004347854
【0152】
表中、Yはチタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料)
Zはベンズイミダゾールペリレン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが12.4°の顔料)を示す。
【0153】
G、Hは下記のフッ素系樹脂微粒子を示す。
G:四フッ化エチレン樹脂粒子(ルブロンL−2、ダイキン工業(株)製)
H:三フッ化エチレン樹脂粒子(ダイフロン、ダイキン工業(株)製)
評価
以上のようにして得た感光体1〜17を各々コニカ(株)製の反転現像方式デジタル複写機「Konica7085」改造機(スコロトロン帯電器、半導体レーザ像露光器(波長680nm)、反転現像手段を有するA4紙85枚/分機)に搭載し、下記評価項目について評価した。評価は、評価項目毎に、環境条件(温湿度条件)を変えて行なった。評価は、基本的に画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、評価した。評価結果を表2に示す。
【0154】
評価条件
感光体線速;420mm/秒
像露光工程から現像工程までの移動時間;0.108秒
帯電条件
帯電器;スコロトロン帯電器(負帯電)
帯電電位;−650V〜−750V
露光条件
べた黒画像電位を−50Vにする露光量に設定。
【0155】
露光ビーム;レーザは680nmの半導体レーザを使用
現像条件
現像剤は、フェライトをコアとして絶縁性樹脂をコーティングしたキャリアとスチレンアクリル系樹脂を主材料としてカーボンブラックの着色剤と荷電制御剤と低分子量ポリオレフィンからなる重合法で作製した体積平均粒径5.3μmの着色粒子に、シリカ、酸化チタンを外添したトナーの現像剤を使用した。
【0156】
転写条件
転写極;コロナ帯電方式(正帯電)
分離条件
分離爪ユニットの分離手段を用いた
クリーニング条件
クリーニング部に硬度70°、反発弾性65%、厚さ2(mm)、自由長9mmのクリーニングブレードをカウンター方向に線圧18(g/cm)となるように重り荷重方式で当接した。
【0157】
評価項目及び評価方法
低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化)
低温低湿(10℃20%RH)環境下で、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、初期と1万枚後の現像位置でのべた黒画像部の電位変化(|ΔV|)を評価した。|ΔV|が小さい方が低温低湿(10℃20%RH)環境下での高速応答性が優れている。
【0158】
◎;べた黒画像部の電位変化|ΔV|が50V未満(良好)
○;べた黒画像部の電位変化|ΔV|が50V〜150V(実用上問題なし)
×;べた黒画像部の電位変化|ΔV|が150Vより大きい(実用上問題有り)
文字細り(低温低湿(10℃20%RH)の環境下)
0.1mm、0.2mm幅の線画像が印刷されたオリジナル画像を複写し、評価した。
【0159】
◎;複写画像の線幅がオリジナル画像の線幅の75%以上で再現されている(良好)
○;複写画像の線幅がオリジナル画像の線幅の40%〜74%で再現されている(実用上問題ないレベル)
×;複写画像の線幅がオリジナル画像の線幅の39%以下、又は線幅が切断されている(実用上問題となるレベル)
ブラックスポット(高温高湿(30℃80%RH))
ハーフトーン画像上のブラックスポット(苺状のスポット画像)の発生状況を下記の基準で判定した。
【0160】
◎;感光体上にブラックスポットの発生核がみられず、ハーフトーン画像にもブラックスポットの発生なし(良好)
○;感光体上にブラックスポットの発生核がみられるが、ハーフトーン画像にはブラックスポットの発生なし(実用上問題なし)
×;感光体上にブラックスポットの発生核がみられ、ハーフトーン画像にもブラックスポットが発生している(実用上問題有り)
周期性の画像欠陥(高温高湿(30℃80%RH))
周期性が感光体の周期と一致し、目視できる白ヌケ、黒ポチ、筋状の画像欠陥が、A4サイズ当たり何個あるかで判定した。
【0161】
◎;0.4mm以上の画像欠陥の頻度:全ての複写画像が5個/A4以下(良好)
○;0.4mm以上の画像欠陥の頻度:6個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
×;0.4mm以上の画像欠陥の頻度:11個/A4以上が1枚以上発生(実用上問題有り)
クラック
上記デジタル複写機Konica7085を30℃、80%RHの環境下で、感光体を搭載したまま、電源をoffにし、2日間放置した。感光体周辺の部材はこの間動作を停止しているだけの状態、即ち、クリーニングブレード、現像剤搬送体等の部材は、感光体に当接したままにした。その後、感光体の表面を観察し、クラックの発生の有無を観察した。又、画像評価も行い、クラック発生に伴う筋状の画像欠陥の発生の有無も評価した。
【0162】
◎;100本の感光体を評価し、クラックの発生も、筋状の画像欠陥の発生もなし(良好)
◯;100本の感光体を評価し、微細なクラックの発生はあるが、筋状の画像欠陥の発生はない(実用上問題ないレベル)
×;100本の感光体を評価し、クラックの発生と筋状の画像欠陥の発生が見られる(実用上問題となるレベル)
画像濃度(低温低湿(10℃20%RH))
画像濃度はべた黒部をマクベス社製RD−918を使用し反射濃度で測定した。該反射濃度は相対濃度(複写していないA4紙の濃度を0.00とする)で評価した。
【0163】
◎;1.2以上(良好)
○;1.2未満、0.8以上(実用上問題ないレベル)
×;0.8未満(実用上問題となるレベル)
カブリ(低温低湿(10℃20%RH))
カブリ濃度はべた白部をマクベス社製RD−918を使用し反射濃度で測定した。該反射濃度は相対濃度(複写していないA4紙の濃度を0.000とする)で評価した。
【0164】
◎;濃度が0.010未満(良好)
○;0.010〜0.020(実用上問題ないレベル)
×;0.020より大(実用上問題となるレベル)
鮮鋭性
画像の鮮鋭性は、低温低湿(10℃20%RH)、高温高湿(30℃80%RH)の両環境において画像を出し評価した。3ポイント、5ポイントの文字画像を形成し、下記の判断基準で評価した。
【0165】
◎;3ポイント、5ポイントとも明瞭であり、容易に判読可能
○;3ポイントは一部判読不能、5ポイントは明瞭であり、容易に判読可能
×;3ポイントは殆ど判読不能、5ポイントも一部あるいは全部が判読不能
【0166】
【表2】
Figure 2004347854
【0167】
像露光工程から現像工程までの移動時間;0.108秒
表2から明らかなように、本発明の画像形成条件、即ち、像露光工程から現像工程までの移動時間;0.108秒(=108m秒≦110m秒以下)の画像形成条件で評価した結果、本発明の条件(一般式(1)の化合物を含有する電荷輸送層を有する感光体)を有する感光体No.1〜15は、低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化)が優れ、このため低温低湿下の文字細りもなく、しかも、ブラックスポット、周期性画像欠陥、クラック等の発生もなく、画像濃度、カブリ、鮮鋭性に優れた特性を示している。特に、感光体表面の接触角が95°以上で且つ電荷輸送層の合計膜厚が16〜25μmの感光体2〜4、7、8、10〜15は全ての評価において改善効果が著しい。一方、本発明外の電荷輸送物質を用いた感光体16では低温低湿(10℃20%RH)環境下での高速応答性が劣り、文字細りを発生している他に、ブラックスポット、周期性の画像欠陥も発生し、鮮鋭性が低下している。又、感光体17は低温低湿(10℃20%RH)環境下での高速応答性が劣り、文字細りが発生し、鮮鋭性が低下している。
【0168】
【発明の効果】
本発明の電子写真感光体、プロセスカートリッジ及び画像形成装置を用いることにより、低温低湿環境で発生しやすい高速適応性等の感度不良に伴う画像不良と高温高湿で発生しやすい画像欠陥を防止し、画像濃度、鮮鋭性が良好な電子写真画像を提供することができる。
【図面の簡単な説明】
【図1】本発明の1例としての画像形成装置の断面構成図である。
【符号の説明】
50 感光体ドラム(感光体)
51 帯電前露光部
52 帯電器
53 像露光器
54 現像器
541 現像スリーブ
543、544 現像剤攪拌搬送部材
547 電位センサー
57 給紙ローラー
58 転写電極
59 分離電極(分離器)
60 定着装置
61 排紙ローラー
62 クリーニング器
70 プロセスカートリッジ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an image forming apparatus used for forming an electrophotographic image, and more particularly, to an electrophotographic photosensitive member used for forming an electrophotographic image used in the field of a copying machine or a printer. , A process cartridge and an image forming apparatus.
[0002]
[Prior art]
Electrophotographic photoreceptors have significant advantages over inorganic photoreceptors such as selenium-based photoreceptors and amorphous silicon photoreceptors in that they have a wider range of material choices, are more environmentally friendly, and have lower production costs. In recent years, organic photoconductors have become the mainstream in place of inorganic photoconductors.
[0003]
On the other hand, in recent years, electrophotographic image forming apparatuses have been used as hard copy printers for personal computers. The digital image forming method used as a light source has rapidly spread. Further, a technique for producing a high-quality electrophotographic image by promoting the resolution of a digital image has been developed. For example, image exposure is performed with a laser beam having a small spot area to increase the density of a dot latent image to form a high-definition latent image, and the latent image is developed with a small particle size toner to obtain a high-quality electrophotographic image. The technology for producing is disclosed. (Patent Document 1)
In addition, electrophotographic devices such as digital copiers and printers have recently been reduced in size and speed, and as photoconductor characteristics, both high sensitivity corresponding to high speed and long life due to improved wear resistance have been required. I have.
[0004]
In order to satisfy the above-mentioned demands for higher image quality, smaller size, and higher speed, it is necessary to improve the time response of the sensitivity of the photoconductor. In order to satisfy these requirements, the organic photoreceptor has a photosensitive layer having a layer structure in which a charge generation layer and a charge transport layer are functionally separated, and the charge transport layer contains a large amount of a low molecular weight charge transport material having a molecular weight of about 500. It had a configuration that was made. However, in the charge transport layer having such a configuration, although a high speed is achieved to some extent, the film quality is deteriorated, and the charge transport layer on the surface layer is easily contaminated with foreign matter. That is, the surface of the photoconductor is easily contaminated with paper dust or toner composition by a developing unit, a transfer unit, a cleaning unit, and the like arranged around the photoconductor. As a result, a black spot (strawberry-like spot image) or black Periodic image defects such as spots and white spots are likely to occur. Conversely, if the amount of the charge transport material is reduced and the amount of the binder resin is increased, sufficient sensitivity cannot be obtained in a high-speed copying machine or a low-temperature low-humidity environment in which the moving time between the exposure step and the development step is short, and as a result, A dot image is not faithfully reproduced, and an image in which a thin line is cut is likely to occur.
[0005]
As a method for solving such a problem, use of a charge transport material having a large molecular weight has been reported. For example, an organic photoreceptor containing a charge transport substance having a chemical structure of bisstyryl and a molecular weight of 1,000 or more has been reported (Patent Document 2). However, when these charge transporting substances are contained in the charge transporting layer, the compatibility of the charge transporting layer with the binder resin tends to be insufficient, the charge transporting substance is not uniformly dispersed, and the sensitivity is not sufficient, and Breakage scratches such as cracks are likely to occur in the transport layer. Also, photoreceptors using a charge transport material of a compound having a molecular weight of 3,000 to 5,000 have been reported (Patent Documents 3 and 4). However, since the end group of this compound is not blocked, the residual charge tends to increase. Further, the compatibility with the binder resin has not been sufficiently solved.
[0006]
Further, in order to prevent contamination of the photoreceptor surface, an organic photoreceptor having a surface layer containing fluorine resin particles has been proposed (Patent Document 5). However, an organic photoreceptor containing fluorine-based resin particles tends to cause image blur. In addition, the mechanical strength of the surface layer is easily reduced, and the surface of the photoreceptor is liable to be worn out due to friction with the cleaning means or the like, so that a satisfactory electrophotographic image cannot always be provided.
[0007]
[Patent Document 1]
JP 2001-255885 A
[Patent Document 2]
JP-A-3-149560
[Patent Document 3]
JP-A-10-310635
[Patent Document 4]
JP-A-5-25102
[Patent Document 5]
JP-A-63-65449
[Problems to be solved by the invention]
The present invention has been proposed to solve the above-described problems, and an object of the present invention is to form an electrophotographic image, which is likely to occur in high-speed copying or in a low-temperature and low-humidity environment, and to perform reversal development. The purpose of the present invention is to prevent a reduction in image density due to potential fluctuations in a solid black image portion and a decrease in sharpness due to the occurrence of thinning of characters. Electrophotography that prevents periodic image defects such as spots and white spots, and does not cause breaks such as cracks, and stably obtains clear electrophotographic images with high density and high resolution. An object of the present invention is to provide a photoconductor, a process cartridge and an image forming apparatus using the electrophotographic photoconductor.
[0013]
[Means for Solving the Problems]
The present inventors have as a result of intensive studies, in order to solve the above problems of the present invention, as a result of adding a detailed study on the charge transport material and binder resin constituting the charge transport layer of the electrophotographic photoreceptor, By preparing an electrophotographic photoreceptor in which the charge transport layer is formed using a high molecular weight charge transport material having a specific chemical structure, the response of sensitivity in a high-speed process and under a low-temperature and low-humidity environment is improved, and The surface layer is hardly contaminated, prevents periodic image defects such as black spots, black spots, white spots, etc., does not cause breaks such as cracks, etc., and stabilizes clear images with high density and high resolution. The present invention has been completed, and the present invention has been completed.
[0014]
The object of the present invention is achieved by adopting one of the following constitutions.
1. An electrophotographic photosensitive member used in an image forming apparatus for forming a toner image on an electrophotographic photosensitive member at a process speed in which a transfer time (Td) from an image exposing step to a developing step is 110 msec or less. An electrophotographic photoreceptor comprising at least a charge generation layer and a charge transport layer laminated on a conductive support, wherein the charge transport layer contains the compound of the formula (1).
[0015]
2. An electrophotographic photosensitive member used in an image forming apparatus for forming a toner image on an electrophotographic photosensitive member at a process speed in which a transfer time (Td) from an image exposing step to a developing step is 110 msec or less. At least a charge generation layer and a charge transport layer are laminated on a conductive support, wherein the charge transport layer contains the compound of the general formula (1), and the contact angle of water on the surface of the electrophotographic photosensitive member is 90 ° or more. An electrophotographic photoreceptor, characterized in that:
[0016]
3. 3. The electrophotographic photoreceptor according to the above item 1 or 2, wherein the divalent group containing a triarylamine group of A is a group represented by the general formula (4).
[0017]
4. The electrophotographic photoreceptor according to the above item 3 , wherein Ar 3 is a group represented by the general formula (5).
[0018]
5. 3. The electrophotographic photoreceptor according to the above item 1 or 2, wherein the divalent group containing a triarylamine group of A is a group represented by the general formula (6).
[0019]
6. A charging unit, a developing unit, and a process cartridge detachably mountable to an image forming apparatus main body for forming a toner image on an electrophotographic photosensitive member at a process speed in which a movement time (Td) from an image exposure process to a development process is 110 ms or less. And that at least one of the cleaning means and at least the charge generation layer and the charge transport layer are laminated on the conductive support, and the charge transport layer has an electrophotographic photosensitive member containing the compound of the formula (1). Characteristic process cartridge.
[0020]
7. In an image forming apparatus for forming a toner image on an electrophotographic photosensitive member at a process speed in which a transfer time (Td) from an image exposing step to a developing step is 110 msec or less, the electrophotographic photosensitive member is formed on a conductive support at least. An image forming apparatus comprising: a charge generation layer and a charge transport layer, which are stacked, and wherein the charge transport layer contains the compound represented by the formula (1).
[0021]
Hereinafter, the present invention will be described in detail.
Configuration of Electrophotographic Photoreceptor The electrophotographic photoreceptor of the present invention has a structure in which at least a charge generation layer and a charge transport layer are laminated on a conductive support, and the charge transport layer contains the compound represented by the general formula (1). It is characterized.
[0022]
The electrophotographic photoreceptor used in the present invention is an electrophotographic photoreceptor in which at least a charge generation layer and a charge transport layer are laminated on a conductive support, and the charge transport layer is a compound represented by the general formula (1). And the contact angle of water on the surface of the electrophotographic photosensitive member is 90 ° or more.
[0023]
Since the electrophotographic photoreceptor of the present invention has the above-described configuration, it easily occurs in an image forming apparatus that forms a toner image at a process speed in which a movement time (Td) from an image exposure step to a development step is 110 msec or less. It is possible to prevent sharpness reduction such as thinning of characters due to lowering of sensitivity, there is no occurrence of periodic image defects such as black spots, black spots, white spots, etc., and breakage such as cracks also occur. And a clear electrophotographic image with high density and high resolution can be produced.
[0024]
Hereinafter, an electrophotographic photoreceptor using the compound of the general formula (1) as a charge transport material will be described.
[0025]
In the general formula (1), the divalent group containing a triarylamine group refers to a structure in which a trivalent bonding group of a nitrogen atom is bonded to an aromatic ring, and the group as a whole is divalent. Means a group having a linking group of
[0026]
The monovalent substituted or unsubstituted aromatic group of Ar 1 in the general formula (1) is preferably a substituted or unsubstituted phenyl group, a naphthyl group, or the like, and the substituent is an alkyl group having 1 to 4 carbon atoms. Groups, alkoxy groups, phenyl groups, halogen atoms and the like are preferred.
As the divalent substituted or unsubstituted aromatic group of Ar 2 , a phenylene group, a naphthylene group, a biphenylene group and the like are preferable, and as the substituent, an alkyl group is preferable. Further, a divalent furan group and a divalent thiophene group are also preferable.
[0027]
R 1 to R 3 each represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkoxy group, a monovalent substituted or unsubstituted aromatic group, but a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, Preferred are an alkoxy group, an unsubstituted phenyl group, a halogen or a phenyl group having an alkyl group having 1 to 4 carbon atoms.
[0028]
As the divalent group of A, in addition to the group of the general formula (3), the group of the general formula (4) or the general formula (6) is preferable as the divalent group containing a triarylamine group.
[0029]
R 6 in the general formula (3) represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, and preferably an alkyl group having 1 to 4 carbon atoms, a phenyl group and the like.
[0030]
Ar 3 in the general formula (4) is a substituted or unsubstituted monovalent aromatic group, and is preferably an unsubstituted phenyl group, a phenyl group substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Is mentioned.
[0031]
Ar 4 and Ar 5 in the general formula (6) represent a substituted or unsubstituted monovalent aromatic group, and are preferably substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Phenyl group.
[0032]
Hereinafter, typical examples of the compound represented by the general formula (1) are shown in Chemical Structure No. (= Compound No.) is exemplified below.
[0033]
Embedded image
Figure 2004347854
[0034]
Embedded image
Figure 2004347854
[0035]
Embedded image
Figure 2004347854
[0036]
Embedded image
Figure 2004347854
[0037]
Embedded image
Figure 2004347854
[0038]
Embedded image
Figure 2004347854
[0039]
Embedded image
Figure 2004347854
[0040]
Embedded image
Figure 2004347854
[0041]
Embedded image
Figure 2004347854
[0042]
Embedded image
Figure 2004347854
[0043]
Embedded image
Figure 2004347854
[0044]
Embedded image
Figure 2004347854
[0045]
Embedded image
Figure 2004347854
[0046]
Embedded image
Figure 2004347854
[0047]
Embedded image
Figure 2004347854
[0048]
Embedded image
Figure 2004347854
[0049]
Embedded image
Figure 2004347854
[0050]
Embedded image
Figure 2004347854
[0051]
Embedded image
Figure 2004347854
[0052]
Embedded image
Figure 2004347854
[0053]
Embedded image
Figure 2004347854
[0054]
Embedded image
Figure 2004347854
[0055]
Embedded image
Figure 2004347854
[0056]
Embedded image
Figure 2004347854
[0057]
Embedded image
Figure 2004347854
[0058]
Embedded image
Figure 2004347854
[0059]
Embedded image
Figure 2004347854
[0060]
Embedded image
Figure 2004347854
[0061]
Embedded image
Figure 2004347854
[0062]
Embedded image
Figure 2004347854
[0063]
Embedded image
Figure 2004347854
[0064]
Embedded image
Figure 2004347854
[0065]
Embedded image
Figure 2004347854
[0066]
Embedded image
Figure 2004347854
[0067]
Embedded image
Figure 2004347854
[0068]
Embedded image
Figure 2004347854
[0069]
Embedded image
Figure 2004347854
[0070]
Embedded image
Figure 2004347854
[0071]
Embedded image
Figure 2004347854
[0072]
Embedded image
Figure 2004347854
[0073]
Embedded image
Figure 2004347854
[0074]
Embedded image
Figure 2004347854
[0075]
Embedded image
Figure 2004347854
[0076]
In the above compound examples, a plurality of Ar 1 , R 1 , R 2 , and R 3 in the general formula (1) are the same compound, but in the present invention, these plurality of Ar 1 , R 1 , R 2, R 3 is also included those not identical.
[0077]
Hereinafter, synthesis examples of the compound of the present invention will be described.
Examples of the synthesis of the compounds of the present invention will be described with reference to the numbers given in the following compound synthesis mechanism (scheme).
[0078]
Synthesis of Compound (Exemplified Compound 62 = Exemplified Chemical Structure 62)
Embedded image
Figure 2004347854
[0080]
Compound (1): 2 molar ratio, Compound (2): 1 molar ratio was dissolved in tetrahydrofuran (hereinafter THF), and the solution was allowed to stand at 45.50 ° C. for an adequate time in the presence of 3 (potassium-tert-butoxide). And reacting it.
[0081]
Next, the layer structure of an electrophotographic photoreceptor, particularly an organic photoreceptor, using the above-described compound of the present invention as a charge transport material will be described.
[0082]
The organic photoreceptor refers to an electrophotographic photoreceptor constituted by providing an organic compound with at least one of a charge generation function and a charge transport function which are indispensable for the configuration of the electrophotographic photoreceptor, and a known organic charge generation. It includes all known organic electrophotographic photoreceptors such as a photoreceptor composed of a substance or an organic charge transporting substance, and a photoreceptor having a charge generation function and a charge transporting function composed of a polymer complex.
[0083]
Hereinafter, the constitution of the organic photoreceptor used in the present invention will be described.
Conductive Support The conductive support used for the photoreceptor may be in the form of a sheet or a cylinder, but a cylindrical conductive support is preferred for designing a compact image forming apparatus. .
[0084]
The cylindrical conductive support means a cylindrical support necessary for forming an image endlessly by rotating, and a conductive material having a straightness of 0.1 mm or less and a runout of 0.1 mm or less. Supports are preferred. Exceeding the ranges of straightness and runout makes it difficult to form a good image.
[0085]
As the conductive material, a metal drum of aluminum, nickel, or the like, a plastic drum on which aluminum, tin oxide, indium oxide, or the like is deposited, or a paper or plastic drum coated with a conductive substance can be used. The conductive support preferably has a specific resistance of 10 3 Ωcm or less at room temperature.
[0086]
The conductive support used in the present invention may have a surface on which a sealed alumite film is formed. The alumite treatment is usually performed in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, phosphoric acid, boric acid, and sulfamic acid. Anodizing treatment in sulfuric acid gives the most preferable result. In the case of anodic oxidation treatment in sulfuric acid, it is preferable that the sulfuric acid concentration is 100 to 200 g / L, the aluminum ion concentration is 1 to 10 g / L, the liquid temperature is about 20 ° C., and the applied voltage is about 20 V. It is not limited. The average thickness of the anodic oxide coating is usually 20 μm or less, particularly preferably 10 μm or less.
[0087]
Intermediate layer In the present invention, an intermediate layer having a barrier function may be provided between the conductive support and the photosensitive layer.
[0088]
In the present invention, in order to improve the adhesion between the conductive support and the photosensitive layer, or to prevent charge injection from the support, an intermediate layer (an undercoat layer is also provided) between the support and the photosensitive layer. ) Can be provided. Examples of the material for the intermediate layer include polyamide resins, vinyl chloride resins, vinyl acetate resins, and copolymer resins containing two or more of the repeating units of these resins. Among these undercoating resins, a polyamide resin is preferable as a resin capable of reducing an increase in residual potential due to repeated use. The thickness of the intermediate layer using these resins is preferably 0.01 to 0.5 μm.
[0089]
The intermediate layer preferably used in the present invention includes an intermediate layer using a curable metal resin obtained by thermally curing an organic metal compound such as a silane coupling agent and a titanium coupling agent. The thickness of the intermediate layer using the curable metal resin is preferably 0.1 to 2 μm.
[0090]
The intermediate layer preferably used in the present invention includes an intermediate layer in which inorganic particles are dispersed in a binder resin. The average particle size of the inorganic particles is preferably from 0.01 to 1 μm. Particularly, an intermediate layer in which surface-treated N-type semiconductor fine particles are dispersed in a binder is preferable. For example, an intermediate layer in which titanium oxide having an average particle diameter of 0.01 to 1 μm, which is surface-treated with a silica / alumina treatment and a silane compound, is dispersed in a polyamide resin may be used. The thickness of such an intermediate layer is preferably from 1 to 20 μm.
[0091]
The N-type semiconductive fine particles are fine particles having a property of using a conductive carrier as an electron. That is, the property of making the conductive carrier an electron means that by including the N-type semiconductor fine particles in an insulating binder, hole injection from the substrate can be efficiently blocked, and electrons from the photosensitive layer can be prevented. On the other hand, it has a property of not exhibiting a blocking property.
[0092]
Here, a method for determining N-type semiconductor particles will be described.
An intermediate layer having a thickness of 5 μm (an intermediate layer is formed using a dispersion liquid in which particles are dispersed in a binder resin constituting the intermediate layer by 50% by mass) is formed on the conductive support. The intermediate layer is negatively charged, and the light attenuation characteristics are evaluated. In addition, the light-attenuating characteristics are similarly evaluated by charging to a positive polarity.
[0093]
N-type semiconductive particles are particles that are dispersed in the intermediate layer when the light attenuation when charged negatively is greater than the light attenuation when charged positively in the above evaluation. It is called semiconductive particles.
[0094]
Specific examples of the N-type semiconductor fine particles include fine particles such as titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ). In the present invention, titanium oxide is particularly preferably used. Can be
[0095]
The average particle diameter of the N-type semiconductor fine particles used in the present invention is preferably in the range of 10 nm or more and 500 nm or less in number average primary particle diameter, more preferably 10 nm to 200 nm, and particularly preferably 15 nm to 50 nm. .
[0096]
The intermediate layer using the N-type semiconductive particles having a number average primary particle diameter within the above range can make the dispersion in the layer dense, provide sufficient potential stability, and generate black spots. Has a prevention function.
[0097]
For example, in the case of titanium oxide, the number-average primary particle diameter of the N-type semiconductive fine particles is magnified 10,000 times by transmission electron microscope observation, 100 particles are randomly observed as primary particles, and the ferrite particles are analyzed by image analysis. It is measured as the number average diameter of the diameter.
[0098]
The shape of the N-type semiconductive fine particles used in the present invention includes dendritic, needle-like and granular shapes, and the N-type semiconductive fine particles having such a shape are, for example, titanium oxide particles having a crystal type. There are anatase type, rutile type, amorphous type and the like, and any crystal type may be used, or two or more crystal types may be mixed and used. Among them, the rutile type is best.
[0099]
One of the hydrophobizing surface treatments performed on the N-type semiconductive particles is to perform a plurality of surface treatments, and the last one of the plurality of surface treatments is a surface treatment with a reactive organosilicon compound. Is what you do. Further, among the plurality of surface treatments, at least one surface treatment is at least one or more surface treatments selected from alumina, silica, and zirconia, and finally, the surface treatment of the reactive organosilicon compound is performed. Is preferred.
[0100]
The alumina treatment, the silica treatment, and the zirconia treatment refer to a treatment for depositing alumina, silica, or zirconia on the surface of the N-type semiconductor fine particles. Also included are hydrates of zirconia. Further, the surface treatment of the reactive organosilicon compound means to use the reactive organosilicon compound in the treatment solution.
[0101]
As described above, the surface treatment of the N-type semiconductor fine particles such as titanium oxide particles is performed at least twice, so that the surface of the N-type semiconductor fine particles is uniformly coated (treated), and the surface treatment is performed. When the N-type semiconductive fine particles are used in the intermediate layer, a good photoreceptor that has good dispersibility of the N-type semiconductive fine particles such as titanium oxide particles in the intermediate layer and does not generate image defects such as black spots can be obtained. You can get it.
[0102]
Photosensitive Layer The photosensitive layer of the photoreceptor of the present invention may have a single-layer structure in which a charge generation function and a charge transport function are provided in one layer on the intermediate layer, but more preferably the function of the photosensitive layer Is preferably separated into a charge generation layer (CGL) and a charge transport layer (CTL). By adopting a configuration in which functions are separated, an increase in residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. In the negatively charged photoreceptor, it is preferable that a charge generation layer (CGL) is formed on the intermediate layer, and a charge transport layer (CTL) is formed thereon. In the case of a positively charged photoreceptor, the order of the layer configuration is opposite to that of the negatively charged photoreceptor. The most preferable constitution of the photosensitive layer of the present invention is a constitution of a negatively charged photoreceptor having the function separation structure.
[0103]
The configuration of the photosensitive layer of the function-separated negatively charged photoconductor will be described below.
Charge Generation Layer The charge generation layer contains a charge generation material (CGM). As other substances, a binder resin and other additives may be contained as necessary.
[0104]
As the charge generation material (CGM), a known charge generation material (CGM) can be used. For example, phthalocyanine pigments, azo pigments, perylene pigments, azurenium pigments and the like can be used. Among these, CGM that can minimize the increase in residual potential due to repeated use has a crystal structure that can take a stable aggregated structure among a plurality of molecules, and specifically, a phthalocyanine pigment having a specific crystal structure, And CGM of perylene pigment. For example, CGMs such as titanyl phthalocyanine having a maximum peak at a Bragg angle 2θ of 27.2 ° with respect to a Cu-Kα ray and benzimidazole perylene having a maximum peak at a 2θ of 12.4 have almost no deterioration due to repeated use, and remain unchanged. The potential increase can be reduced.
[0105]
When a binder is used as a dispersion medium of CGM in the charge generation layer, a known resin can be used as the binder, and the most preferred resin is a formal resin, a butyral resin, a silicone resin, a silicone-modified butyral resin, a phenoxy resin, and the like. No. The ratio between the binder resin and the charge generating substance is preferably from 20 to 600 parts by mass per 100 parts by mass of the binder resin. By using these resins, an increase in residual potential due to repeated use can be minimized. The thickness of the charge generation layer is preferably 0.01 μm to 2 μm.
[0106]
Charge transport layer The charge transport layer of the present invention is characterized by containing the compound of the general formula (1) as a charge transport substance. The charge transport layer preferably has a layer structure having a plurality of layers. The uppermost charge transport layer preferably contains fluorine resin particles, and the contact angle of water on the surface of the photoreceptor is preferably 90 ° or more. The fluorine-based resin particles mean resin particles containing fluorine atoms, for example, ethylene tetrafluoride resin, ethylene trifluoride chloride resin, hexafluoroethylene propylene resin, vinyl fluoride resin, vinylidene fluoride resin, It is preferable to appropriately select one or more of ethylene difluoride dichloride resins and copolymers thereof, and particularly preferable are tetrafluoroethylene resins and vinylidene fluoride resins. The molecular weight and particle size of the fluororesin particles can be appropriately selected and are not particularly limited.
[0107]
The charge transport layer of the uppermost layer preferably has a structure containing fluorine-based resin particles in the binder resin, and the ratio of the fluorine-based resin particles is also affected by the particle diameter of the particles. It is preferably 50% by mass, more preferably 5 to 40% by mass. Further, the uppermost layer preferably contains a charge transporting substance.
[0108]
An additive such as a coupling agent or an antioxidant may be added to the uppermost layer for the purpose of improving dispersibility, binding property, and weather resistance.
[0109]
Examples of the method for dispersing the fluorine-based resin particles in the uppermost layer include a method such as a homogenizer, a ball mill, a sand mill, a roll mill, and ultrasonic waves. There is no particular limitation as long as the particles can be dispersed to the primary particle size.
[0110]
In addition, various surfactants such as comb-type graft polymers may be appropriately mixed as a dispersing aid for the fluororesin particles.
[0111]
The thickness of the uppermost layer is preferably 0.1 to 4 μm. If the thickness is less than 0.1 μm, the surface hardness and strength are not sufficient, and the durability tends to decrease. If the thickness exceeds 4 μm, the contrast potential formed by a latent image during development tends to deteriorate. More preferably, it is 0.2 to 3.0 μm.
[0112]
The uppermost layer preferably has a low surface energy in order to satisfy cleaning properties and stain resistance, and preferably has a contact angle with water of 90 ° or more. If the angle is less than 90 °, a charge product, toner, or falling off from paper is likely to adhere to the surface due to repeated use of the electrophotographic process, and a latent image is likely to be degraded (image deletion) due to poor cleaning or reduced surface resistance. It is more preferably at least 95 °.
[0113]
The volume average particle diameter of the fluororesin particles is measured by a laser diffraction / scattering particle size distribution analyzer “LA-700” (manufactured by Horiba, Ltd.). The surface contact angle of the photoreceptor is measured by using a contact angle meter (CA-DT-A type, manufactured by Kyowa Interface Science Co., Ltd.) under an environment of 20 ° C. and 50% RH.
[0114]
The charge transport layer contains a charge transport material (CTM) and a binder resin that disperses the CTM and forms a film. As other substances, additives such as antioxidants may be contained as necessary.
[0115]
As the charge transport material (CTM), the compound of the above-mentioned general formula (1) is used. In addition, for example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound, or the like can be used in combination with the compound of the general formula (1). These charge transporting substances are usually dissolved in a suitable binder resin to form a layer.
[0116]
Examples of the resin used for the charge transport layer (CTL) include polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate. Resins, silicone resins, melamine resins, and copolymer resins containing two or more of the repeating unit structures of these resins. In addition to these insulating resins, polymer organic semiconductors such as poly-N-vinyl carbazole may be used.
[0117]
The most preferred binder for these CTLs is a polycarbonate resin. Polycarbonate resins are most preferred in improving the dispersibility and electrophotographic properties of CTM. The ratio between the binder resin and the charge transporting material is preferably from 10 to 200 parts by mass per 100 parts by mass of the binder resin.
[0118]
Further, it is preferable that the charge transport layer contains an antioxidant. The antioxidant typically prevents the effect of oxygen on the autoxidizing substance present in or on the electrophotographic photoreceptor under conditions of light, heat, discharge, etc. In addition, it is a substance having the property of suppressing. Typically, the following compound groups are mentioned.
[0119]
Embedded image
Figure 2004347854
[0120]
Embedded image
Figure 2004347854
[0121]
Embedded image
Figure 2004347854
[0122]
Embedded image
Figure 2004347854
[0123]
The thickness of the charge transport layer is preferably from 5 to 40 μm, more preferably from 8 to 30 μm. If the total thickness of the charge transport layer is less than 5 μm, the charging potential tends to be insufficient. The most preferred thickness of the charge transport layer, which is sufficient for high-speed adaptability and good image quality, is 16 to 25 μm.
[0124]
Although the most preferred layer configuration of the photoreceptor of the present invention has been described above, other layer configurations of the photoreceptor may be used in the present invention.
[0125]
Solvents or dispersion media used for forming layers such as an intermediate layer, a charge generation layer, and a charge transport layer include n-butylamine, diethylamine, ethylenediamine, isopropanolamine, triethanolamine, triethylenediamine, N, N-dimethylformamide, and acetone. , Methyl ethyl ketone, methyl isopropyl ketone, cyclohexanone, benzene, toluene, xylene, chloroform, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, trichloroethylene, Tetrachloroethane, tetrahydrofuran, dioxolan, dioxane, methanol, ethanol, butanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cello Lube, and the like. Although the present invention is not limited to these, dichloromethane, 1,2-dichloroethane, methyl ethyl ketone and the like are preferably used. In addition, these solvents can be used alone or as a mixed solvent of two or more kinds.
[0126]
Further, it is preferable that the coating solution for each of these layers is filtered with a metal filter, a membrane filter, or the like in order to remove foreign substances and aggregates in the coating solution before entering the coating process. For example, it is preferable to select a pleated type (HDC), a depth type (profile), a semi-depth type (profile star), etc., manufactured by Nippon Pall Co., Ltd. in accordance with the characteristics of the coating solution, and then perform filtration.
[0127]
Next, as a coating processing method for manufacturing an organic electrophotographic photoreceptor, coating processing methods such as dip coating, spray coating, and circular amount control type coating are used. In order to prevent the film from being dissolved as much as possible and to achieve a uniform coating process, it is preferable to use a coating process method such as spray coating or coating with a circular amount control type (a typical example is a circular slide hopper type). It is most preferable that the protective layer be formed by the above-mentioned circular amount-regulating coating method. The circular amount control type coating is described in detail in, for example, JP-A-58-189061.
[0128]
Next, an image forming apparatus using the electrophotographic photosensitive member of the present invention will be described.
FIG. 1 is a sectional configuration diagram of an image forming apparatus as one example of the present invention.
[0129]
In FIG. 1, reference numeral 50 denotes a photosensitive drum (photosensitive member) serving as an image bearing member, which is a photosensitive member having an organic photosensitive layer applied on the drum, and which is grounded and driven to rotate clockwise. Numeral 52 denotes a scorotron charger (charging means, charging step) for uniformly charging the peripheral surface of the photosensitive drum 50 by corona discharge. Prior to the charging by the charger 52, in order to eliminate the history of the photoreceptor in the previous image formation, exposure by the pre-charging exposure unit 51 using a light emitting diode or the like may be performed to remove the charge on the peripheral surface of the photoreceptor.
[0130]
After uniform charging of the photoreceptor, image exposure based on an image signal is performed by an image exposure device 53 as an image exposure unit (image exposure step). The image exposure device 53 in this figure uses a laser diode (not shown) as an exposure light source. The light on the photosensitive drum is scanned by the light whose optical path is bent by the reflection mirror 532 via the rotating polygon mirror 531 and the fθ lens and the like, and an electrostatic latent image is formed.
[0131]
The electrostatic latent image is then developed by a developing device 54 as a developing means (developing step). A developing device 54 containing a developer including a toner and a carrier is provided on the peripheral edge of the photosensitive drum 50, and development is performed by a developing sleeve 541 that contains a magnet and rotates while holding the developer.
[0132]
The moving time (Td) from the image exposure step to the development step becomes short at a high process speed, and the electrophotographic photoreceptor having insufficient high-speed adaptability does not complete the reduction in potential due to image exposure even when the development step is reached. . The electrophotographic photoreceptor of the present invention has sufficiently reduced the potential in the developing step even if it is applied to a high-speed process in which the transfer time (Td) from the image exposing step to the developing step is 110 ms or less. Also, deterioration of high-speed performance due to use is small, and sufficient high-speed adaptability is obtained even in a low-temperature and low-humidity environment.
[0133]
The movement time (Td) from the image exposure step to the development step of the present invention is defined as the position at the time of completion of the image exposure light irradiated on the photoreceptor (the position A on the photoreceptor) and the position where the toner starts to adhere by development. It can be calculated by dividing the distance (| A to B |) on the photoconductor between (position B on the photoconductor) by the linear speed of the photoconductor (surface linear speed of the photoconductor) during the image forming operation.
[0134]
Generally, in a digital image forming apparatus, reversal development is performed. Here, reversal development is performed by uniformly charging the surface of the photoreceptor by the charger 52 and performing image exposure, that is, an exposure area of the photoreceptor. This is an image forming apparatus that visualizes a potential (exposed area) through a developing process. On the other hand, the unexposed portion potential is not developed by the developing bias potential applied to the developing sleeve 541.
[0135]
The inside of the developing device (developing means, developing step) 54 is composed of developer stirring and conveying members 544 and 543, a conveyance amount regulating member 542, and the like. The developer is stirred and conveyed and supplied to the developing sleeve. The supply amount is controlled by the transport amount regulating member 542. The transport amount of the developer varies depending on the linear velocity of the electrophotographic photosensitive member to be applied and the specific gravity of the developer, but is generally in the range of 20 to 200 mg / cm 2 .
[0136]
The developer is, for example, a carrier in which an insulating resin is coated around the above-described ferrite core and a coloring agent such as carbon black, a charge control agent, and a low-molecular-weight polyolefin using the above-mentioned styrene acrylic resin as a main material. The toner is composed of a toner in which silica, titanium oxide, or the like is externally added to the particles. The developer is transported to the developing area with the layer thickness regulated by the transport amount regulating member, and is developed. At this time, development is usually performed by applying a DC bias voltage between the photosensitive drum 50 and the developing sleeve 541 and, if necessary, an AC bias voltage. Further, the developer is developed in a state of contact or non-contact with the photoconductor. The potential measurement of the photoconductor is performed by providing a potential sensor 547 above the developing position as shown in FIG.
[0137]
After the image is formed, the recording paper P is fed to the transfer area by the rotation of the paper feed roller 57 at the time when the transfer timing is adjusted.
[0138]
In the transfer area, a transfer electrode (transfer means: transfer unit) 58 operates on the peripheral surface of the photosensitive drum 50 in synchronization with the transfer timing, and applies a charge of the opposite polarity to the toner to the fed recording paper P. Transfer the toner.
[0139]
Next, the recording paper P is discharged by a separation electrode (separator) 59, separated by the peripheral surface of the photosensitive drum 50, conveyed to the fixing device 60, and heated and pressed by the heat roller 601 and the pressure roller 602 to remove the toner. After welding, the sheet is discharged to the outside of the apparatus via a sheet discharge roller 61. After the transfer electrode 58 and the separation electrode 59 have passed through the recording paper P, the primary operation is stopped, and preparation is made for the formation of the next toner image. In FIG. 1, the transfer electrode 58 is a corotron transfer band electrode. The setting conditions of the transfer electrode vary depending on the process speed (peripheral speed) of the photoconductor and cannot be specified unconditionally. For example, the transfer current is set to +100 to +400 μA and the transfer voltage is set to +500 to +2000 V. can do.
[0140]
On the other hand, after the recording paper P is separated, the photosensitive drum 50 removes and cleans the residual toner by pressing the blade 621 of the cleaning device (cleaning means) 62, and removes electricity by the pre-charging exposure unit 51 again and charges by the charger 52. Then, the process of the next image formation is started.
[0141]
Reference numeral 70 denotes a detachable process cartridge in which a photosensitive member, a charger, a transfer device, a separator, and a cleaning device are integrated.
[0142]
The electrophotographic photoreceptor of the present invention is generally applicable to electrophotographic apparatuses such as electrophotographic copying machines, laser printers, LED printers, and liquid crystal shutter printers, and furthermore, displays, recording, light printing, plate making, and plate making using electrophotographic technology. It can be widely applied to devices such as facsimile machines.
[0143]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but embodiments of the present invention are not limited thereto. However, “parts” in the following text indicates “parts by mass”.
[0144]
A photoreceptor was prepared as described below.
Production of photoconductor 1
Figure 2004347854
The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied on a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
Figure 2004347854
The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generating layer coating solution. This coating solution was applied on the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
Figure 2004347854
The above components were mixed and dissolved to prepare a coating solution for the charge transport layer 1. This coating solution was applied on the charge generation layer by a dip coating method and dried at 100 ° C. for 40 minutes to form a charge transport layer 1 having a thickness of 20.0 μm.
Figure 2004347854
Was mixed and dissolved to prepare a coating solution for the charge transport layer 2. This coating solution was applied on the charge transport layer 1 by a dip coating method, and was heated and cured at 100 ° C. for 40 minutes to form a charge transport layer 2 having a dry film thickness of 2.0 μm. . The contact angle of the surface of the photoreceptor 1 with water was 86 °.
Preparation of Photoreceptor 2 Photoreceptor 2 was prepared in the same manner as in preparation of photoreceptor 1 except that the coating solution for charge transport layer 2 was changed to the following coating solution.
[0145]
Figure 2004347854
Was mixed and dissolved to prepare a coating solution for the charge transport layer 2. This coating solution is applied onto the charge transport layer 1 of the photoreceptor 1 by a dip coating method, and cured by heating at 100 ° C. for 40 minutes to form a charge transport layer 2 having a dry film thickness of 2.0 μm. 2 was produced. The contact angle of the surface of the photoreceptor 2 with water was 116 °.
[0146]
Preparation of Photoreceptors 3 to 15 In photoreceptor 2, charge generation substance, compound of charge transport substance of charge transport layer 1, amount and thickness of compound, compound of charge transport substance of charge transport layer 2, compound of fluorine resin particles Photoconductors 3 to 15 were prepared in the same manner except that the type, amount, and film thickness were changed as shown in Table 1.
[0147]
Preparation of Photoreceptor 16 Photoreceptor 16 was prepared in the same manner as for Photoreceptor 1, except that the charge transporting materials of charge transport layers 1 and 2 were changed to the following compound A.
[0148]
Preparation of Photoreceptor 17 Photoreceptor 17 was prepared in the same manner as for Photoreceptor 2, except that the charge transporting materials of charge transport layers 1 and 2 were changed to the following compound A.
[0149]
Table 1 shows the differences between the charge generation layers, the charge transport layers 1 and the charge transport layers 2 of the photoconductors 1 to 17, and the measurement results of the contact angles of the photoconductor surface with water described above.
[0150]
Embedded image
Figure 2004347854
[0151]
[Table 1]
Figure 2004347854
[0152]
In the table, Y is a titanyl phthalocyanine pigment (a pigment having a maximum peak of 27.3 ° at a Bragg angle 2θ in a Cu-Kα characteristic X-ray diffraction spectrum)
Z represents a benzimidazole perylene pigment (a pigment having a maximum peak of 12.4 ° at a Bragg angle 2θ in a Cu-Kα characteristic X-ray diffraction spectrum).
[0153]
G and H represent the following fluororesin fine particles.
G: ethylene tetrafluoride resin particles (Lubron L-2, manufactured by Daikin Industries, Ltd.)
H: ethylene trifluoride resin particles (DAIFRON, manufactured by Daikin Industries, Ltd.)
Each of the photoconductors 1 to 17 obtained as described above was converted into a reversal-developing type digital copying machine “Konica 7085” manufactured by Konica Corporation (scorotron charger, semiconductor laser image exposure device (wavelength 680 nm), reversal developing means). (A4 paper having 85 sheets / min.) Having the following evaluation items. The evaluation was performed by changing environmental conditions (temperature and humidity conditions) for each evaluation item. Basically, the original image having a pixel rate of 7% for a character image, a halftone image, a solid white image, and a solid black image, each of which is equal to 1/4, was converted to A4 by 10,000 sheets in an intermittent mode. Duplicates were made and evaluated. Table 2 shows the evaluation results.
[0154]
Evaluation conditions Linear speed of photoreceptor; 420 mm / sec. Moving time from image exposure step to development step; 0.108 sec. Charging condition charger; Scorotron charger (negative charging)
Charging potential: -650V to -750V
Exposure conditions Set the exposure amount to make the solid black image potential -50V.
[0155]
Exposure beam; 680 nm semiconductor laser used. Development conditions: Developer: Carrier coated with insulating resin with ferrite as core, styrene acrylic resin as main material, carbon black colorant, charge control agent, and low molecular weight polyolefin. A toner developer obtained by externally adding silica and titanium oxide to colored particles having a volume average particle diameter of 5.3 μm produced by a polymerization method comprising:
[0156]
Transfer condition Transfer pole; Corona charging method (positive charging)
Separation Condition Cleaning Condition Using Separation Means of Separation Claw Unit A cleaning blade having a hardness of 70 °, a rebound resilience of 65%, a thickness of 2 (mm) and a free length of 9 mm was applied to the cleaning portion in a counter direction at a linear pressure of 18 (g / cm). And contacted by the weight load method.
[0157]
Evaluation items and evaluation method High-speed response under low-temperature, low-humidity (10 ° C, 20% RH) environment (potential change of solid black image area)
In a low-temperature, low-humidity (10 ° C, 20% RH) environment, an original image with a pixel rate of 7%, a halftone image, a solid white image, and a solid black image each divided into 1/4 equal parts is intermittent in A4 Copying was performed on 10,000 sheets in the mode, and the potential change (| ΔV |) of the solid black image portion at the initial and the developing positions after 10,000 sheets was evaluated. The smaller | ΔV |, the better the high-speed response under a low temperature and low humidity (10 ° C., 20% RH) environment.
[0158]
A: Potential change | ΔV | of solid black image portion is less than 50 V (good)
○: Potential change | ΔV | of the solid black image portion is 50 V to 150 V (no problem in practical use)
×: The potential change | ΔV | of the solid black image portion is larger than 150 V (there is a problem in practice)
Character thinning (under low temperature and low humidity (10 ° C 20% RH) environment)
The original image on which the line images of 0.1 mm and 0.2 mm width were printed was copied and evaluated.
[0159]
A: The line width of the copied image is reproduced at 75% or more of the line width of the original image (good)
;: The line width of the copied image is reproduced at 40% to 74% of the line width of the original image (a level at which there is no practical problem)
×: The line width of the copied image is 39% or less of the line width of the original image, or the line width is cut off (a level that poses a practical problem).
Black spot (high temperature and high humidity (30 ° C 80% RH))
The occurrence of black spots (strawberry spot images) on the halftone image was determined based on the following criteria.
[0160]
A: No nuclei of black spots were found on the photoreceptor, and no black spots were found on halftone images (good)
;: Black spot generation nuclei are observed on the photoreceptor, but no black spot is generated in the halftone image (no problem in practical use)
X: Black spot generation nuclei were observed on the photoreceptor, and black spots were also generated on the halftone image (a problem in practical use)
Periodic image defects (high temperature and high humidity (30 ° C, 80% RH))
The periodicity coincided with the period of the photoreceptor, and the number of visible white spots, black spots, and streak-like image defects that were visible per A4 size was determined.
[0161]
頻 度: Frequency of image defects of 0.4 mm or more: All copied images are 5 / A4 or less (good)
;: Frequency of image defects of 0.4 mm or more: 1 or more of 6 / A4 or more and 10 or less of A4 (no problem in practical use)
×: Frequency of image defects of 0.4 mm or more: 11 / A4 or more of one or more defects (practical problem)
Crack The power of the digital copying machine Konica 7085 was turned off in a 30 ° C., 80% RH environment with the photosensitive member mounted, and the digital copying machine was allowed to stand for 2 days. The members around the photoreceptor only stopped operating during this time, that is, the members such as the cleaning blade and the developer conveying member were kept in contact with the photoreceptor. Thereafter, the surface of the photoreceptor was observed, and the occurrence of cracks was observed. In addition, image evaluation was also performed, and the presence or absence of streak-like image defects due to the occurrence of cracks was also evaluated.
[0162]
A: Evaluation of 100 photoconductors, no occurrence of cracks and no streak-like image defects (good)
◯: 100 photosensitive members were evaluated, and fine cracks were generated, but no streak-like image defects were generated (a level that is not problematic in practical use)
×: Evaluation of 100 photoconductors shows occurrence of cracks and generation of streak-like image defects (a level that poses a problem in practical use)
Image density (low temperature and low humidity (10 ° C 20% RH))
The image density was measured by using a RD-918 manufactured by Macbeth Co., Ltd. to measure the solid black portion as a reflection density. The reflection density was evaluated as a relative density (the density of A4 paper not copied was set to 0.00).
[0163]
◎: 1.2 or more (good)
;: Less than 1.2, 0.8 or more (a level that does not cause any practical problems)
×: less than 0.8 (a level that poses a problem in practical use)
Fog (low temperature and low humidity (10 ° C 20% RH))
The fog density was measured by using a Macbeth RD-918 reflection density for the solid white portion. The reflection density was evaluated as a relative density (the density of A4 paper not copied was set to 0.000).
[0164]
A: Concentration less than 0.010 (good)
;: 0.010 to 0.020 (a level that does not cause a problem in practical use)
×: Greater than 0.020 (a level that poses a problem in practical use)
Sharpness The sharpness of an image was evaluated by displaying an image in both low-temperature and low-humidity (10 ° C. 20% RH) and high-temperature and high-humidity (30 ° C. 80% RH) environments. Three-point and five-point character images were formed and evaluated according to the following criteria.
[0165]
◎; 3 points and 5 points are clear and easily readable ○; 3 points are partially unreadable, 5 points are clear and easily readable ×; 3 points are almost unreadable and 5 points are also 1 Part or all are illegible [0166]
[Table 2]
Figure 2004347854
[0167]
0.108 seconds as shown in Table 2, the image forming conditions of the present invention, that is, the moving time from the image exposing step to the developing step; 0.108 seconds (= 108 msec) ≦ 110 msec), the photoreceptor No. having the conditions of the present invention (photoreceptor having charge transport layer containing compound of general formula (1)) of the present invention. Nos. 1 to 15 are excellent in high-speed response (potential change of a solid black image portion) in a low-temperature and low-humidity (10 ° C., 20% RH) environment. No image defects, no cracks, etc., and excellent characteristics in image density, fog, and sharpness. In particular, the photoconductors 2 to 4, 7, 8, and 10 to 15 in which the contact angle of the photoconductor surface is 95 ° or more and the total thickness of the charge transport layer is 16 to 25 μm have a remarkable improvement effect in all the evaluations. On the other hand, the photoreceptor 16 using a charge transporting substance other than the present invention has poor high-speed response under a low temperature and low humidity (10 ° C., 20% RH) environment, and has a thin spot, a black spot, and a periodicity. Image defects occur, and the sharpness is reduced. In addition, the photoreceptor 17 is inferior in high-speed response in a low-temperature and low-humidity (10 ° C., 20% RH) environment, is thinned, and has reduced sharpness.
[0168]
【The invention's effect】
By using the electrophotographic photoreceptor, the process cartridge and the image forming apparatus of the present invention, it is possible to prevent image defects due to poor sensitivity, such as high-speed adaptability, which easily occur in a low-temperature, low-humidity environment, and image defects, which are likely to occur in a high-temperature, high-humidity environment. An electrophotographic image having good image density and sharpness can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of an image forming apparatus as one example of the present invention.
[Explanation of symbols]
50 Photoconductor drum (photoconductor)
Reference Signs List 51 Exposure unit before charging 52 Charger 53 Image exposure unit 54 Developing unit 541 Developing sleeve 543, 544 Developer stirring and conveying member 547 Potential sensor 57 Feed roller 58 Transfer electrode 59 Separation electrode (separator)
Reference Signs List 60 fixing device 61 discharge roller 62 cleaning device 70 process cartridge

Claims (7)

電子写真感光体上に像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置に用いられる電子写真感光体において、該電子写真感光体が導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し且つ該電荷輸送層が下記一般式(1)の化合物を含有することを特徴とする電子写真感光体。
Figure 2004347854
一般式(1)中、Arは1価の置換又は無置換の芳香族基を示し、Arは2価の置換、無置換の芳香族基、2価のフラン基又はチオフェン基又は下記一般式(2)を示し、R〜Rは水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は下記一般式(3)の基を示す。但し、ArとRは互いに結合して環を形成してもよい。又、複数のAr、R、R、Rは互いに異なっていてもよい。
Figure 2004347854
一般式(2)中、Yは単結合、酸素原子、硫黄原子、−CH=CH−、又は−C(R)(R)−であり、R、Rは互いに結合していてもよい。
Figure 2004347854
一般式(3)中、Xは単結合、アルキレン基、酸素原子又は硫黄原子を表し、Rは置換、無置換のアルキル基、置換、無置換の芳香族基を示す。
An electrophotographic photosensitive member used in an image forming apparatus for forming a toner image on an electrophotographic photosensitive member at a process speed in which a transfer time (Td) from an image exposing step to a developing step is 110 msec or less. An electrophotographic photoreceptor comprising at least a charge generation layer and a charge transport layer laminated on a conductive support, wherein the charge transport layer contains a compound represented by the following general formula (1).
Figure 2004347854
In the general formula (1), Ar 1 represents a monovalent substituted or unsubstituted aromatic group, and Ar 2 represents a divalent substituted or unsubstituted aromatic group, a divalent furan group or a thiophene group, or In the formula (2), R 1 to R 3 represent a hydrogen atom, a substituted or unsubstituted alkyl group, a monovalent substituted or unsubstituted aromatic group, and A is a divalent group containing a triarylamine group. And a group represented by the following general formula (3). However, Ar 1 and R 1 may combine with each other to form a ring. Further, a plurality of Ar 1 , R 1 , R 2 , and R 3 may be different from each other.
Figure 2004347854
In the general formula (2), Y is a single bond, an oxygen atom, a sulfur atom, —CH = CH—, or —C (R 4 ) (R 5 ) —, and R 4 and R 5 are bonded to each other. Is also good.
Figure 2004347854
In the general formula (3), X 1 represents a single bond, an alkylene group, an oxygen atom or a sulfur atom, and R 6 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group.
電子写真感光体上に像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置に用いられる電子写真感光体において、該電子写真感光体が導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し、該電荷輸送層が前記一般式(1)の化合物を含有し且つ該電子写真感光体表面の水に対する接触角が90°以上であることを特徴とする電子写真感光体。An electrophotographic photosensitive member used in an image forming apparatus for forming a toner image on an electrophotographic photosensitive member at a process speed in which a transfer time (Td) from an image exposing step to a developing step is 110 msec or less. At least a charge generation layer and a charge transport layer are laminated on a conductive support, wherein the charge transport layer contains the compound of the general formula (1), and the contact angle of water on the surface of the electrophotographic photosensitive member is 90 ° or more. An electrophotographic photoreceptor, characterized in that: 前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(4)の基であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 2004347854
一般式(4)中、Arは置換又は無置換の1価の芳香族基を表す。
3. The electrophotographic photoreceptor according to claim 1, wherein the divalent group containing a triarylamine group of A is a group represented by the following general formula (4).
Figure 2004347854
In the general formula (4), Ar 3 represents a substituted or unsubstituted monovalent aromatic group.
前記Arが、下記一般式(5)の基であることを特徴とする請求項3に記載の電子写真感光体。
Figure 2004347854
一般式(5)中、R31、R32、R33、R34、R35は水素原子又は炭素数1〜4のアルキル基を示す。但し、R31及びR35の内、少なくとも1つは炭素数1〜4のアルキル基である。
Wherein Ar 3 is The electrophotographic photosensitive member according to claim 3, characterized in that a group of the following general formula (5).
Figure 2004347854
In the general formula (5), R 31 , R 32 , R 33 , R 34 , and R 35 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. However, at least one of R 31 and R 35 is an alkyl group having 1 to 4 carbon atoms.
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(6)の基であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 2004347854
一般式(6)中、Xは単結合、置換又は無置換のアルキレン基、置換又は無置換の2価の芳香族基、Ar、Arは置換又は無置換の1価の芳香族基を示す。
3. The electrophotographic photoreceptor according to claim 1, wherein the divalent group containing a triarylamine group of A is a group represented by the following general formula (6).
Figure 2004347854
In the general formula (6), X 2 is a single bond, a substituted or unsubstituted alkylene group, a substituted or unsubstituted divalent aromatic group, and Ar 4 and Ar 5 are a substituted or unsubstituted monovalent aromatic group. Is shown.
電子写真感光体上に像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置本体に着脱自在であるプロセスカートリッジにおいて、帯電手段、現像手段及びクリーニング手段の少なくとも1つと導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し且つ該電荷輸送層が前記一般式(1)の化合物を含有する電子写真感光体とを有することを特徴とするプロセスカートリッジ。A charging unit, a developing unit, and a process cartridge detachably mountable to an image forming apparatus main body for forming a toner image on an electrophotographic photosensitive member at a process speed in which a movement time (Td) from an image exposure process to a development process is 110 ms or less. And that at least one of the cleaning means and at least the charge generation layer and the charge transport layer are laminated on the conductive support, and the charge transport layer has an electrophotographic photosensitive member containing the compound of the formula (1). Characteristic process cartridge. 電子写真感光体上に像露光工程から現像工程迄の移動時間(Td)が110m秒以下のプロセススピードでトナー画像を形成する画像形成装置において、該電子写真感光体が導電性支持体上に少なくとも電荷発生層及び電荷輸送層を積層し且つ該電荷輸送層が前記一般式(1)の化合物を含有することを特徴とする画像形成装置。In an image forming apparatus for forming a toner image on an electrophotographic photosensitive member at a process speed in which a transfer time (Td) from an image exposing step to a developing step is 110 msec or less, the electrophotographic photosensitive member is formed on a conductive support at least. An image forming apparatus comprising: a charge generation layer and a charge transport layer, which are stacked, and wherein the charge transport layer contains the compound represented by the formula (1).
JP2003144706A 2003-05-22 2003-05-22 Electrophotographic photoreceptor, processing cartridge and image forming apparatus Pending JP2004347854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144706A JP2004347854A (en) 2003-05-22 2003-05-22 Electrophotographic photoreceptor, processing cartridge and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144706A JP2004347854A (en) 2003-05-22 2003-05-22 Electrophotographic photoreceptor, processing cartridge and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2004347854A true JP2004347854A (en) 2004-12-09

Family

ID=33532092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144706A Pending JP2004347854A (en) 2003-05-22 2003-05-22 Electrophotographic photoreceptor, processing cartridge and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2004347854A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126411A (en) * 2003-09-30 2005-05-19 Kyocera Mita Corp Stilbene derivative, method for producing the same and electrophotographic photoreceptor
JP2006028122A (en) * 2004-07-20 2006-02-02 Kyocera Mita Corp Stilbene derivative, method for producing the same and electrophotographic receptor
JP2007004161A (en) * 2005-06-21 2007-01-11 Xerox Corp Imaging member
JP2008069294A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd pi CONJUGATED COMPOUND AND USE THEREOF, AND ELEMENT AND DEVICE USING THE SAME
JP2013163809A (en) * 2013-02-01 2013-08-22 Ricoh Co Ltd π-CONJUGATED COMPOUND, ITS USE, AND DEVICE AND APPARATUS USING THE SAME

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126411A (en) * 2003-09-30 2005-05-19 Kyocera Mita Corp Stilbene derivative, method for producing the same and electrophotographic photoreceptor
JP4617109B2 (en) * 2003-09-30 2011-01-19 京セラミタ株式会社 Stilbene derivative, method for producing the same, and electrophotographic photoreceptor
JP2006028122A (en) * 2004-07-20 2006-02-02 Kyocera Mita Corp Stilbene derivative, method for producing the same and electrophotographic receptor
JP4601349B2 (en) * 2004-07-20 2010-12-22 京セラミタ株式会社 Electrophotographic photoreceptor
JP2007004161A (en) * 2005-06-21 2007-01-11 Xerox Corp Imaging member
JP2008069294A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd pi CONJUGATED COMPOUND AND USE THEREOF, AND ELEMENT AND DEVICE USING THE SAME
JP2013163809A (en) * 2013-02-01 2013-08-22 Ricoh Co Ltd π-CONJUGATED COMPOUND, ITS USE, AND DEVICE AND APPARATUS USING THE SAME

Similar Documents

Publication Publication Date Title
JP4069781B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
KR100881381B1 (en) Image holding member and image forming apparatus
JP2005134709A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP3952990B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069846B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134515A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4075874B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005221539A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4066938B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069782B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2003307861A (en) Organic photoreceptor, method for forming image, image forming device and process cartridge
JP2004347854A (en) Electrophotographic photoreceptor, processing cartridge and image forming apparatus
JP2005017580A (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4333511B2 (en) Image forming method and image forming apparatus
JP5356875B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP2003280223A (en) Organophotoreceptor, image forming method, image forming apparatus and process cartridge
JP4307197B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP3952833B2 (en) Organic photoconductor, image forming method, image forming apparatus, and process cartridge
JP2004347771A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method
JP2004347772A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2004294644A (en) Organic photoreceptor, process cartridge, and image-forming apparatus
JP4151628B2 (en) Organic photoreceptor, process cartridge and image forming apparatus using the organic photoreceptor
JP2006064724A (en) Organic photoreceptor,image forming apparatus, image forming method, and process cartridge
JP2005215010A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2004331624A (en) Organic compound, electrophotographic receptor, process cartridge, image-forming apparatus and image-forming method