JP4069782B2 - Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method - Google Patents

Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method Download PDF

Info

Publication number
JP4069782B2
JP4069782B2 JP2003093897A JP2003093897A JP4069782B2 JP 4069782 B2 JP4069782 B2 JP 4069782B2 JP 2003093897 A JP2003093897 A JP 2003093897A JP 2003093897 A JP2003093897 A JP 2003093897A JP 4069782 B2 JP4069782 B2 JP 4069782B2
Authority
JP
Japan
Prior art keywords
general formula
group
photosensitive member
image
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003093897A
Other languages
Japanese (ja)
Other versions
JP2004302033A (en
Inventor
友子 ▲崎▼村
豊子 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003093897A priority Critical patent/JP4069782B2/en
Priority to US10/805,962 priority patent/US7175954B2/en
Publication of JP2004302033A publication Critical patent/JP2004302033A/en
Application granted granted Critical
Publication of JP4069782B2 publication Critical patent/JP4069782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関するものである。
【0002】
【従来の技術】
電子写真感光体はセレン系感光体、アモルファスシリコン感光体のような無機感光体に比して素材の選択の幅が広いこと、環境適性に優れていること、生産コストが安いこと等の大きなメリットがあり、近年無機感光体に代わって有機感光体の主流となっている。
【0003】
一方、近年の電子写真方式の画像形成方法は、パソコンのハードコピー用のプリンターとして、また通常の複写機においても画像処理の容易さや複合機への展開の容易さから、LEDやレーザを像露光光源とするデジタル方式の画像形成方式が急激に浸透してきた。更に、デジタル画像の精細化を進めて、高画質の電子写真画像を作製する技術が開発されている。例えば、スポット面積の小さいレーザ光で像露光を行い、ドット潜像の密度を上げて、高精細の潜像を形成し、該潜像を小粒径トナーで現像し、高画質の電子写真画像を作製する技術が公開されている。(特許文献1)
このような高画質のデジタル画像の形成に際しては、高感度で且つ温室度環境の変化に対して安定な特性を有する有機感光体が要求される。
【0004】
従来、上記のような有機感光体の要求を満たすために、有機感光体は、感光層を電荷発生層と電荷輸送層に機能分離した層構成にし、該電荷輸送層に、分子量500前後の低分子量の電荷輸送物質を多量に含有させた構成にしていた。しかしながら、このような構成の電荷輸送層では、膜質が低下し、表面層の電荷輸送層が異物で汚染されやすい。即ち、感光体周辺に配置された現像手段、転写手段、クリーニング手段等により、感光体表面が紙粉やトナー組成物で汚染されやすく、その結果、ブラックスポット(苺状の斑点画像)や、転写ヌケ等の周期性の画像欠陥が発生しやすい。又、露光工程から現像工程間の時間が短い高速の複写機や低温低湿環境等で、十分な感度が得られず、その結果、ドット画像が忠実に再現されず、細線が切断された画像が発生したりしやすい。
【0005】
このような課題を解決する方法として、大分子量の電荷輸送物質を用いることが報告されている。例えば、ビススチリルの化学構造を有する分子量1000以上の電荷輸送物質を含有する有機感光体が報告されている(特許文献2)。しかしながら、これらの電荷輸送物質を電荷輸送層に含有させると、電荷輸送層のバインダー樹脂との相溶性が不十分となりやすく、電荷輸送物質が均一に分散されず、感度が十分にでないと同時に電荷輸送層にクラック等の破断傷が発生しやすい。又、分子量3000〜5000の化合物の電荷輸送物質を用いた感光体も報告されているが(特許文献3、4)、この化合物は末端基が封鎖されていないため、残電上昇が起こりやすく、又、バインダー樹脂との相溶性も十分に解決されていない。
【0006】
又、感光体表面の汚染を防止するために、表面層にフッ素系樹脂粒子を含有させた有機感光体が提案されている(特許文献5)。しかしながら、フッ素系樹脂粒子を含有させた有機感光体は、画像ボケが発生しやすい。又表面層の機械的強度も低下させやすく、前記クリーニング手段等との接触摩擦により、感光体表面が減耗しやすく、必ずしも良好な電子写真画像を提供し得ていない。
【0007】
【特許文献1】
特開2001−255685号公報
【0008】
【特許文献2】
特開平3−149560号公報
【0009】
【特許文献3】
特開平10−310635号公報
【0010】
【特許文献4】
特開平5−25102号公報
【0011】
【特許文献5】
特開昭63−65449号公報
【0012】
【発明が解決しようとする課題】
本発明は前記のような課題を解決するために提案されたものであり、その目的とするところは、電子写真画像を形成する際に、高速複写や低温低湿環境下で発生しやすい、感度の低下に原因、即ち、反転現像で、べた黒画像部の電位変動による画像濃度の低下や文字細り等の発生による鮮鋭性の低下を防止することであり、又、電子写真感光体の表面汚染により発生しやすいブラックスポットや、転写ヌケ等の周期性の画像欠陥を防止し、又、クラック等の破断傷等の発生を起こさず、高濃度、高解像性の鮮明な電子写真画像が安定して得られる電子写真感光体、及び該電子写真感光体を用いたプロセスカートリッジ、画像形成方法、画像形成装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明者等は鋭意検討の結果、本発明の上記課題を解決するためには、電子写真感光体の電荷輸送層を構成するバインダー樹脂と電荷輸送物質について、詳細な検討を加えた結果、同一の化学構造単位を有し、分子量が異なる化合物の混合物を電荷輸送物質として用いることにより、大分子量の電荷輸送物質を用いても、バインダー樹脂との相溶性が良好であり、且つ高速プロセスでしかも低温低湿環境下での感度の応答性が改善され、且つ表面層が汚染されにくく、ブラックスポット、転写ヌケ等の周期性の画像欠陥を防止し、クラック等の破断傷等の発生を起こさず、高濃度、高解像力の鮮明な画像が安定して得られることを見出し、本発明を完成した。
【0014】
本発明の目的は、下記構成のいずれかを採ることにより達成される。
1.平均分子量が2500以下で且つ前記一般式(1)のnが異なる2種以上の化合物を含有することを特徴とする電子写真感光体。
【0015】
2.導電性支持体上に電荷発生層、電荷輸送層を有し、電荷輸送層が、平均分子量が2500以下で且つ前記一般式(1)のnが異なる2種以上の化合物を含有することを特徴とする電子写真感光体。
【0016】
3.前記Aのトリアリールアミン基を含有する2価の基が、前記一般式(4)の基であることを特徴とする前記1又は2に記載の電子写真感光体。
【0017】
4.前記Ar2が前記一般式(5)で表される基であることを特徴とする前記3に記載の電子写真感光体。
【0018】
5.前記Aのトリアリールアミン基を含有する2価の基が、前記一般式(6)の基であることを特徴とする前記1又は2に記載の電子写真感光体。
【0019】
6.前記Bが前記一般式(7)で表される基であることを特徴とする前記1〜5のいずれか1項に記載の電子写真感光体。
【0020】
7.平均分子量が2500以下で且つ前記一般式(1)のnが異なる2種以上の化合物を含有する電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。
【0021】
8.前記7に記載のプロセスカートリッジを有することを特徴とする画像形成装置。
【0022】
9.前記8に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。
【0023】
以下、本発明について詳細に説明する。
電子写真感光体の構成
本発明に用いられる電子写真感光体は、平均分子量が2500以下で且つ下記一般式(1)のnが異なる2種以上の化合物を含有することを特徴とする。
【0024】
又、本発明に用いられる電子写真感光体は、導電性支持体上に電荷発生層、電荷輸送層を有し、電荷輸送層が、平均分子量が2500以下で且つ前記一般式(1)のnが異なる2種以上の化合物を含有することを特徴とする。
【0025】
本発明の電子写真感光体は、上記構成を有することにより、高速複写や低温低湿環境下で発生しやすい、感度の低下に原因する文字細り等の鮮鋭性低下を防止でき、前記したブラックスポットや、転写ヌケ等の周期性の画像欠陥の発生もなく、クラック等の破断傷等の発生も起こさず、高濃度、高解像力の鮮明な電子写真画像を作製することができる。
【0026】
本発明で、一般式(1)のnが異なる2種以上の化合物を含有するとは、前記一般式(1)の化合物で且つ連鎖構造の数が異なる化合物が2種以上混合した物質(混合物)を用いることであり、該混合物を電荷輸送物質として用いることにより、電荷輸送性が顕著に改善され、高速対応性、低温低湿下等での感度不良を克服でき、且つ該混合物の平均分子量が2500以下のものを用いることにより、溶媒や、バインダー樹脂との相溶性が著しく改善され、前記したブラックスポットや、転写ヌケ等の周期性の画像欠陥の発生もなく、クラック等の破断傷等の発生も起こさず、高濃度、高解像力の鮮明な電子写真画像を作製する電子写真感光体を作製できる。
【0027】
以下、前記一般式(1)のnが異なる2種以上の化合物の混合物を電荷輸送物質として用いた電子写真感光体について説明する。
【0028】
前記一般式(1)において、トリアリールアミン基を含有する2価の基とは、窒素原子の3価の結合基がそれぞれ、芳香族環と結合した構造を有し、且つ基全体として2価の連結基を有する基を意味する。
【0029】
又、トリアリールアミン基を含有する1価の基とは、窒素原子の3価の結合基がそれぞれ、芳香族環と結合した構造を有し、且つ基全体として1価の連結基を有する基を意味する。
【0030】
前記一般式(1)のAr1の2価の置換、無置換の芳香族基としては、フェニレン基、ナフチレン基、ビフェニレン基等が好ましく、置換基としては、アルキル基が好ましい。又、2価のフラン基、2価のチオフェン基も好ましい。
【0031】
1〜R3は水素原子を示す。
【0032】
Aの2価の基としては、前記一般式(3)の基の他に、トリアリールアミン基を含有する2価の基として前記一般式(4)又は一般式(6)の基が好ましい。
【0033】
一般式(3)中のR6 は置換、無置換の芳香族基を示すが、好ましくはフェニル基等が挙げられる。
【0034】
一般式(4)中のAr2は置換又は無置換の1価の芳香族基であるが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。
【0035】
一般式(6)中のAr3、Ar4は置換又は無置換の1価の芳香族基を示すが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。
【0036】
Bの1価の置換又は無置換の芳香族基としては、置換又は無置換のトリフェニルアミン基、置換又は無置換のフェニル基が好ましい。置換基としては、炭素数1〜4のアルキル基、ジアルキルアミノ基、アルキルアリールアミノ基が好ましく、特にメチル基が好ましい。nは0〜30の自然数であるが、好ましくは0〜20である。
【0037】
以下に、前記一般式(1)の代表的な化合物の構造式を下記に挙げるが、本発明は下記のそれぞれの化学構造で、nが異なる化合物の混合物を電荷輸送物質として用いることである。又、下記化学構造が同じでも、一般式(1)のmが異なれば、別の化合物である。例えば、下記化学構造No.1でもmが0と1では別の化合物である。又、本発明に用いる前記nが異なる化合物の混合物は混合比が違っても平均分子量が2500以下であればよい。
【0038】
【化8】

Figure 0004069782
【0039】
【化9】
Figure 0004069782
【0040】
【化10】
Figure 0004069782
【0041】
【化11】
Figure 0004069782
【0042】
【化12】
Figure 0004069782
【0043】
【化13】
Figure 0004069782
【0044】
【化14】
Figure 0004069782
【0045】
【化15】
Figure 0004069782
【0046】
【化16】
Figure 0004069782
【0047】
【化17】
Figure 0004069782
【0048】
【化18】
Figure 0004069782
【0049】
【化19】
Figure 0004069782
【0050】
【化20】
Figure 0004069782
【0051】
【化21】
Figure 0004069782
【0052】
【化22】
Figure 0004069782
【0053】
【化23】
Figure 0004069782
【0054】
【化24】
Figure 0004069782
【0055】
【化25】
Figure 0004069782
【0056】
【化26】
Figure 0004069782
【0057】
【化27】
Figure 0004069782
【0058】
【化28】
Figure 0004069782
【0059】
【化29】
Figure 0004069782
【0060】
【化30】
Figure 0004069782
【0061】
【化31】
Figure 0004069782
【0062】
【化32】
Figure 0004069782
【0063】
【化33】
Figure 0004069782
【0064】
以上の化合物例は、前記一般式(1)中の複数のB、R1、R2、R3が同一の化合物例であるが、本発明では、これら複数のB、R1、R2、R3が同一でないものも含まれる。例えば、下記のような一般式(8)の化合物も本発明の一般式(1)の化合物として挙げられる。
【0065】
【化34】
Figure 0004069782
【0066】
一般式(8)中、Ar1は2価の置換、無置換の芳香族基、フラン基又はチオフェン基を示し、R1〜R3、R1′〜R3′は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は前記一般式(3)の基を示し、B、B′は1価の置換又は無置換の芳香族基を示す。mは各々0又は1、nは0〜30の自然数を表す。
【0067】
前記一般式(8)の代表的な化合物の化学構造を下記に挙げる。本発明は各々の化合構造で、nが異なる化合物の混合物を電荷輸送物質として用いることである。
【0068】
【化35】
Figure 0004069782
【0069】
【化36】
Figure 0004069782
【0070】
【化37】
Figure 0004069782
【0071】
本発明の前記一般式(1)のnが異なる2種以上の化合物(混合物)の平均分子量は2500以下である。該平均分子量はポリスチレン換算の重量平均分子量で表し、平均分子量が2500を超えると溶媒溶解性が低下し、電荷輸送層のバインダー樹脂との相溶性が劣化し、その結果電荷輸送物質の分散性が低下し、感度や均一帯電性等の電子写真特性が著しく低下する。前記平均分子量は700〜2500が好ましく、800〜2300がより好ましい。
【0072】
以下に、本発明の化合物(混合物)の合成例を記載する。
以下の合成例では、原材料等を化合物合成の機構(スキーム)中に付した番号を用いて説明する。
【0073】
合成例(1);化合物(例示化学構造14(m=0))の合成
【0074】
【化38】
Figure 0004069782
【0075】
100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.96g(0.075mol)及びテトラヒドロフラン(以下THF)20mlを入れ、窒素を導入しながら撹拌した。
【0076】
1の化合物:1.0g(0.003mol)、2の化合物:2.46g(0.007mol)及び3の化合物:2.41g(0.008mol)をTHF20mlに溶解して前記4(カリウム−tert−ブトキシ)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。
【0077】
別に、200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。
【0078】
この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過を行った。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造14(m=0)の化合物を3.20g得た。
【0079】
高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0〜5の混合物であり、組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=24.3/44.4/21.5/7.2/2.3/0.3であった。
【0080】
尚、高速液体クロマトグラフィーの測定条件は下記で行なった。
測定器:島津LC6A(島津製作所製)
カラム:CLC−ODS(島津製作所製)
検出波長:290nm
移動相:メタノール/テトラヒドロフラン=3/1の混合溶媒
移動相の流速:約1ml/min
合成例(2);化合物(例示化学構造26(m=0))の合成
【0081】
【化39】
Figure 0004069782
【0082】
100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.96g(0.075mol)及びTHF20mlを入れ、窒素を導入しながら撹拌した。
【0083】
1の化合物:1.0g(0.003mol)、2の化合物:2.46g(0.007mol)及び3の化合物:2.41g(0.008mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。
【0084】
別に、200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥しし、粗結晶を得た。
【0085】
この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造26(m=0)の化合物を3.35g得た。
【0086】
前記と同様の高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0〜4の混合物であり、組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=32.5/45.0/16.5/6.2/1.6であった。
【0087】
次に、上記のような本発明の化合物を電荷輸送物質として用いた電子写真感光体、特に有機感光体の層構成について記載する。
【0088】
本発明の有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。
【0089】
以下に本発明に用いられる有機感光体の構成について記載する。
導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
【0090】
円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。
【0091】
導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。
【0092】
本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/L、アルミニウムイオン濃度は1〜10g/L、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。
【0093】
中間層
本発明においては導電性支持体と感光層の間に、バリヤー機能を備えた中間層を設けることもできる。
【0094】
本発明においては導電性支持体と前記感光層のとの接着性改良、或いは該支持体からの電荷注入を防止するために、該支持体と前記感光層の間に中間層(下引層も含む)を設けることもできる。該中間層の材料としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂並びに、これらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂が挙げられる。これら下引き樹脂の中で繰り返し使用に伴う残留電位増加を小さくできる樹脂としてはポリアミド樹脂が好ましい。又、これら樹脂を用いた中間層の膜厚は0.01〜0.5μmが好ましい。
【0095】
又、本発明に好ましく用いられる中間層はシランカップリング剤、チタンカップリング剤等の有機金属化合物を熱硬化させた硬化性金属樹脂を用いた中間層が挙げられる。硬化性金属樹脂を用いた中間層の膜厚は、0.1〜2μmが好ましい。
【0096】
又、本発明に好ましく用いられる中間層は無機粒子をバインダー樹脂中に分散した中間層が挙げられる。無機粒子の平均粒径は0.01〜1μmが好ましい。特に、表面処理をしたN型半導性微粒子をバインダー中に分散した中間層が好ましい。例えばシリカ・アルミナ処理及びシラン化合物で表面処理した平均粒径が0.01〜1μmの酸化チタンをポリアミド樹脂中に分散した中間層が挙げられる。このような中間層の膜厚は、1〜20μmが好ましい。
【0097】
N型半導性微粒子とは、導電性キャリアを電子とする性質をもつ微粒子を示す。すなわち、導電性キャリアを電子とする性質とは、該N型半導性微粒子を絶縁性バインダーに含有させることにより、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性を示さない性質を有するものをいう。
【0098】
ここで、N型半導性粒子の判別方法について説明する。
導電性支持体上に膜厚5μmの中間層(中間層を構成するバインダー樹脂中に粒子を50質量%分散させた分散液を用いて中間層を形成する)を形成する。該中間層に負極性に帯電させて、光減衰特性を評価する。又、正極性に帯電させて同様に光減衰特性を評価する。
【0099】
N型半導性粒子とは、上記評価で、負極性に帯電させた時の光減衰が正極性に帯電させた時の光減衰よりも大きい場合に、中間層に分散された粒子をN型半導性粒子という。
【0100】
前記N型半導性微粒子は、具体的には酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)等の微粒子が挙げられるが、本発明では、特に酸化チタンが好ましく用いられる。
【0101】
本発明に用いられるN型半導性微粒子の平均粒径は、数平均一次粒径において10nm以上500nm以下の範囲のものが好ましく、より好ましくは10nm〜200nm、特に好ましくは、15nm〜50nmである。
【0102】
数平均一次粒径の値が前記範囲内にあるN型半導性微粒子を用いた中間層は層内での分散を緻密なものとすることができ、十分な電位安定性、及び黒ポチ発生防止機能を有する。
【0103】
前記N型半導性微粒子の数平均一次粒径は、例えば酸化チタンの場合、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定される。
【0104】
本発明に用いられるN型半導性微粒子の形状は、樹枝状、針状および粒状等の形状があり、このような形状のN型半導性微粒子は、例えば酸化チタン粒子では、結晶型としては、アナターゼ型、ルチル型及びアモルファス型等があるが、いずれの結晶型のものを用いてもよく、また2種以上の結晶型を混合して用いてもよい。その中でもルチル型のものが最も良い。
【0105】
N型半導性微粒子に行われる疎水化表面処理の1つは、複数回の表面処理を行い、かつ該複数回の表面処理の中で、最後の表面処理が反応性有機ケイ素化合物による表面処理を行うものである。また、該複数回の表面処理の中で、少なくとも1回の表面処理がアルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理であり、最後に反応性有機ケイ素化合物の表面処理を行うことが好ましい。
【0106】
尚、アルミナ処理、シリカ処理、ジルコニア処理とはN型半導性微粒子表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。又、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。
【0107】
この様に、酸化チタン粒子の様なN型半導性微粒子の表面処理を少なくとも2回以上行うことにより、N型半導性微粒子表面が均一に表面被覆(処理)され、該表面処理されたN型半導性微粒子を中間層に用いると、中間層内における酸化チタン粒子等のN型半導性微粒子の分散性が良好で、かつ黒ポチ等の画像欠陥を発生させない良好な感光体を得ることができるのである。
【0108】
感光層
本発明の感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのがよい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CTL)の構成を取ることが好ましい。正帯電用の感光体では前記層構成の順が負帯電用感光体の場合の逆となる。本発明の最も好ましい感光層構成は前記機能分離構造を有する負帯電感光体構成である。
【0109】
以下に機能分離負帯電感光体の感光層構成について説明する。
電荷発生層
電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
【0110】
電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる結晶構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン、同2θが12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。
【0111】
電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜2μmが好ましい。
【0112】
電荷輸送層
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。
【0113】
電荷輸送物質(CTM)としては、前記した平均分子量が2500以下で且つ前記一般式(1)のnが異なる2種以上の化合物の混合物を用いる。又、前記一般式(1)のnが異なる化合物の2種以上の混合物と共に、例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを併用して用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。
【0114】
電荷輸送層(CTL)に用いられる樹脂としては、例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。
【0115】
これらCTLのバインダーとして最も好ましいものはポリカーボネート樹脂である。ポリカーボネート樹脂はCTMの分散性、電子写真特性を良好にすることにおいて、最も好ましい。バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し10〜200質量部が好ましい。
【0116】
又、電荷輸送層には酸化防止剤を含有させることが好ましい。該酸化防止剤とは、その代表的なものは電子写真感光体中ないしは電子写真感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。代表的には下記の化合物群が挙げられる。
【0117】
【化40】
Figure 0004069782
【0118】
【化41】
Figure 0004069782
【0119】
【化42】
Figure 0004069782
【0120】
【化43】
Figure 0004069782
【0121】
電荷輸送層は2層以上の層構成にしてもよい。この場合は表面の電荷輸送層が本発明の構成を満たせばよい。又、電荷輸送層の膜厚は10〜40μmが好ましい。
【0122】
上記では本発明の最も好ましい感光体の層構成を例示したが、本発明では上記以外の感光体層構成でも良い。
【0123】
感光層、中間層、表面層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
【0124】
又、これらの各層の塗布溶液は塗布工程に入る前に、塗布溶液中の異物や凝集物を除去するために、金属フィルター、メンブランフィルター等で濾過することが好ましい。例えば、日本ポール社製のプリーツタイプ(HDC)、デプスタイプ(プロファイル)、セミデプスタイプ(プロファイルスター)等を塗布液の特性に応じて選択し、濾過をすることが好ましい。
【0125】
次に有機電子写真感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお保護層は前記円形量規制型塗布加工方法を用いるのが最も好ましい。前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。
【0126】
次に、本発明の電子写真感光体を用いた画像形成方法及び画像形成装置の説明をする。
【0127】
図1は本発明の画像形成方法の1例としての画像形成装置の断面構成図である。
【0128】
図1に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布した感光体で、接地されて時計方向に駆動回転される。52はスコロトロンの帯電器(帯電手段)で、感光体ドラム50周面に対し一様な帯電をコロナ放電によって与えられる。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた帯電前露光部51による露光を行って感光体周面の除電をしてもよい。
【0129】
感光体への一様帯電の後、像露光手段としての像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザダイオードを露光光源とする。回転するポリゴンミラー531、fθレンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。
【0130】
ここで反転現像プロセスとは帯電器52により、感光体表面を一様に帯電し、像露光が行われた領域、即ち感光体の露光部電位(露光部領域)を現像工程(手段)により、顕像化する画像形成方法である。一方未露光部電位は現像スリーブ541に印加される現像バイアス電位により現像されない。
【0131】
その静電潜像は次いで現像手段としての現像器54で現像される。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。現像器54内部は現像剤攪拌搬送部材544、543、搬送量規制部材542等から構成されており、現像剤は攪拌、搬送されて現像スリーブに供給されるが、その供給量は該搬送量規制部材542により制御される。該現像剤の搬送量は適用される電子写真感光体の線速及び現像剤比重によっても異なるが、一般的には20〜200mg/cm2の範囲である。
【0132】
現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は搬送量規制部材によって層厚を規制されて現像域へと搬送され、現像が行われる。この時通常は感光体ドラム50と現像スリーブ541の間に直流バイアス、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。感光体の電位測定は電位センサー547を図1のように現像位置上部に設けて行う。
【0133】
記録紙Pは画像形成後、転写のタイミングの整った時点で給紙ローラー57の回転作動により転写域へと給紙される。
【0134】
転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写電極(転写手段:転写器)58が作動し、給紙された記録紙Pにトナーと反対極性の帯電を与えてトナーを転写する。
【0135】
次いで記録紙Pは分離電極(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラー601と圧着ローラー602の加熱、加圧によってトナーを溶着したのち排紙ローラー61を介して装置外部に排出される。なお前記の転写電極58及び分離電極59は記録紙Pの通過後、一次作動を中止し、次なるトナー像の形成に備える。図1では転写電極58にコロトロンの転写帯電極を用いている。転写電極の設定条件としては、感光体のプロセススピード(周速)等により異なり一概に規定することはできないが、例えば、転写電流としては+100〜+400μA、転写電圧としては+500〜+2000Vを設定値とすることができる。
【0136】
一方記録紙Pを分離した後の感光体ドラム50は、クリーニング器(クリーニング手段)62のブレード621の圧接により残留トナーを除去・清掃し、再び帯電前露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。
【0137】
尚、70は感光体、帯電器、転写器、分離器及びクリーニング器が一体化されている着脱可能なプロセスカートリッジである。
【0138】
本発明の電子写真感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。
【0139】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。
【0140】
下記のごとくして、感光体を作製した。
感光体1の作製
〈中間層〉
Figure 0004069782
上記成分を混合溶解して中間層塗布液を調製した。この塗布液をの円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
〈電荷発生層〉
Figure 0004069782
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質(合成例(1)の化合物) 150部
バインダー樹脂:ビスフェノールZ型ポリカーボネート
(ユーピロンZ300:三菱ガス化学社製) 300部
酸化防止剤(サノールLS2626:三共社製) 1.7部
テトラヒドロフラン(沸点:64.5℃) 2200部
上記成分を混合溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、100℃40分間乾燥して、膜厚22μmの電荷輸送層を形成し感光体1を作製した。
【0141】
感光体2〜14の作製
感光体1において、電荷発生物質、電荷輸送物質の化合物、化合物の量、電荷輸送層の膜厚を表1〜表4のように変更した以外は同様にして感光体2〜14を作製した。
【0142】
感光体15の作製
感光体1において、電荷輸送物質を合成例(2)の化合物を液体クロマトグラフィーで各成分を分離し、化合物26(m=0)のn=0のみの成分を電荷輸送物質として用いた他は同様にして感光体15を作製した。
【0143】
感光体16の作製
感光体1において、電荷輸送物質を合成例(1)の化合物を液体クロマトグラフィーで各成分を分離し、化合物26(m=0)のn=3のみの成分を電荷輸送物質として用いた他は同様にして感光体16を作製したが、電荷輸送物質がバインダー樹脂と相溶せず析出して、評価できる感光体が得られなかった。
【0144】
【表1】
Figure 0004069782
【0145】
【表2】
Figure 0004069782
【0146】
【表3】
Figure 0004069782
【0147】
【表4】
Figure 0004069782
【0148】
表中、Yはチタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料)
Zはベンズイミダゾールペリレン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが12.4°の顔料)を示す。
【0149】
又、平均分子量Mwはゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)を示す。
【0150】
評価
以上のようにして得た感光体1〜16を各々コニカ(株)製の反転現像方式デジタル複写機「Konica7085」(スコロトロン帯電器、半導体レーザ像露光器(波長680nm)、反転現像手段を有するA4紙85枚/分機)に搭載し、下記評価項目について評価した。評価は、評価項目毎に、環境条件(温湿度条件)を変えて行なった。評価は、基本的に画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、評価した。評価結果を表5に示す。
【0151】
評価条件
ラインスピード;420mm/秒
像露光から現像位置までの到達時間;0.108秒
帯電条件
帯電器;スコロトロン帯電器(負帯電)
帯電電位;−700V〜−750V
露光条件
べた黒画像電位を−100Vにする露光量に設定。
【0152】
露光ビーム;レーザは680nmの半導体レーザを使用
現像条件
現像剤は、フェライトをコアとして絶縁性樹脂をコーティングしたキャリアとスチレンアクリル系樹脂を主材料としてカーボンブラックの着色剤と荷電制御剤と低分子量ポリオレフィンからなる重合法で作製した体積平均粒径5.3μmの着色粒子に、シリカ、酸化チタンを外添したトナーの現像剤を使用した。
【0153】
転写条件
転写極;コロナ帯電方式(正帯電)
分離条件
分離爪ユニットの分離手段を用いた
クリーニング条件
クリーニング部に硬度70°、反発弾性65%、厚さ2(mm)、自由長9mmのクリーニングブレードをカウンター方向に線圧18(g/cm)となるように重り荷重方式で当接した。
【0154】
評価項目及び評価方法
低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像の電位変化)
低温低湿(10℃20%RH)環境下で、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、初期と1万枚後の現像位置でのべた黒画像の電位変化(|ΔV|)を評価した。|ΔV|が小さい方が低温低湿(10℃20%RH)環境下での高速応答性が優れている。
【0155】
◎;べた黒画像の電位変化|ΔV|が50V未満(良好)
○;べた黒画像の電位変化|ΔV|が50V〜150V(実用上問題なし)
×;べた黒画像の電位変化|ΔV|が150Vより大きい(実用上問題有り)
文字細り(低温低湿(10℃20%RH)の環境下)
0.1mm、0.2mm幅の線画像が印刷されたオリジナル画像を複写し、評価した。
【0156】
◎;複写画像の線幅がオリジナル画像の線幅の75%以上で再現されている(良好)
○;複写画像の線幅がオリジナル画像の線幅の40%〜74%で再現されている(実用上問題ないレベル)
×;複写画像の線幅がオリジナル画像の線幅の39%以下、又は線幅が切断されている(実用上問題となるレベル)
ブラックスポット(高温高湿(30℃80%RH))
ハーフトーン画像上のブラックスポット(苺状のスポット画像)の発生状況を下記の基準で判定した。
【0157】
◎;感光体上にブラックスポットの発生核がみられず、ハーフトーン画像にもブラックスポットの発生なし(良好)
○;感光体上にブラックスポットの発生核がみられるが、ハーフトーン画像にはブラックスポットの発生なし(実用上問題なし)
×;感光体上にブラックスポットの発生核がみられ、ハーフトーン画像にもブラックスポットが発生している(実用上問題有り)
周期性の画像欠陥(高温高湿(30℃80%RH)
周期性が感光体の周期と一致し、目視できる白ヌケ、黒ポチ、筋状の画像欠陥が、A4サイズ当たり何個あるかで判定した。
【0158】
◎;0.4mm以上の画像欠陥の頻度:全ての複写画像が5個/A4以下(良好)
○;0.4mm以上の画像欠陥の頻度:6個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
×;0.4mm以上の画像欠陥の頻度:11個/A4以上が1枚以上発生(実用上問題有り)
クラック
上記デジタル複写機Konica7085を30℃、80%RHの環境下で、感光体を搭載したまま、電源をoffにし、2日間放置した。感光体周辺の部材はこの間動作を停止しているだけの状態、即ち、クリーニングブレード、現像剤搬送体等の部材は、感光体に当接したままにした。その後、感光体の表面を観察し、クラックの発生の有無を観察した。又、画像評価も行い、クラック発生に伴う筋状の画像欠陥の発生の有無も評価した。
【0159】
◎;100本の感光体を評価し、クラックの発生も、筋状の画像欠陥の発生もなし(良好))
◯;100本の感光体を評価し、微細なクラックの発生はあるが、筋状の画像欠陥の発生はない(実用上問題ないレベル)
×;100本の感光体を評価し、クラックの発生と筋状の画像欠陥の発生が見られる(実用上問題となるレベル)
画像濃度(低温低湿(10℃20%RH))
べた黒部の画像濃度はマクベス社製RD−918を使用し反射濃度で測定した。相対濃度(複写していないA4紙の濃度を0.00とする)で評価した。
【0160】
◎;1.2以上(良好)
○;1.2未満〜0.8(実用上問題ないレベル)
×;0.8未満(実用上問題となるレベル)
鮮鋭性
画像の鮮鋭性は、低温低湿(10℃20%RH)、高温高湿(30℃80%RH)の両環境において画像を出し、文字潰れで評価した。3ポイント、5ポイントの文字画像を形成し、下記の判断基準で評価した。
【0161】
◎;3ポイント、5ポイントとも明瞭であり、容易に判読可能
○;3ポイントは一部判読不能、5ポイントは明瞭であり、容易に判読可能
×;3ポイントは殆ど判読不能、5ポイントも一部あるいは全部が判読不能
【0162】
【表5】
Figure 0004069782
【0163】
表5より、本発明の平均分子量が2500以下で且つ前記一般式(1)のnが異なる2種以上の化合物を電荷輸送物質として用いた感光体1〜13は、低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像の電位変化)が優れ、このため低温低湿下の文字細りもなく、しかも、ブッラクスポット、周期性画像欠陥、クラック等の発生もなく、画像濃度、鮮鋭性に優れた特性を示している。一方、平均分子量が2500より大きい化合物を電荷輸送物質として用いた感光体14は電荷輸送層中への分散性が低下し、低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像の電位変化)が劣化し、このため文字細り、鮮鋭性が劣化している。又、n=0の低分子量の化合物のみを用いた感光体15は低温低湿(10℃20%RH)環境下での高速応答性が劣り、文字細りを発生している他に、電荷輸送層の膜質が柔らかく、ブッラクスポット、周期性画像欠陥も発生し、画像濃度、鮮鋭性が低下している。又、n=3の高分子量の化合物のみを用いた感光体16の場合は、バインダー樹脂との溶解不良で、感度等もほとんどなく、評価に値しなかった。
【0164】
【発明の効果】
本発明の電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法を用いることにより、低温低湿環境で発生しやすい高速適応性等の感度不良に伴う画像不良と高温高湿で発生しやすい画像欠陥を防止し、画像濃度、鮮鋭性が良好な電子写真画像を提供することができる。
【図面の簡単な説明】
【図1】本発明の画像形成方法の1例としての画像形成装置の断面構成図である。
【符号の説明】
50 感光体ドラム(感光体)
51 帯電前露光部
52 帯電器
53 像露光器
54 現像器
541 現像スリーブ
543、544 現像剤攪拌搬送部材
547 電位センサー
57 給紙ローラー
58 転写電極
59 分離電極(分離器)
60 定着装置
61 排紙ローラー
62 クリーニング器
70 プロセスカートリッジ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and an image forming method used for electrophotographic image formation, and more specifically, to electrophotographic image formation used in the field of copying machines and printers. The present invention relates to an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and an image forming method.
[0002]
[Prior art]
Electrophotographic photoconductors have great advantages such as wider selection of materials, better environmental suitability, and lower production costs than inorganic photoconductors such as selenium photoconductors and amorphous silicon photoconductors. In recent years, organic photoreceptors have become the mainstream in place of inorganic photoreceptors.
[0003]
On the other hand, in recent electrophotographic image forming methods, as a hard copy printer of a personal computer, and in an ordinary copying machine, image processing of LEDs and lasers is easy due to the ease of image processing and deployment to a multifunction machine. A digital image forming system that uses a light source has rapidly spread. Furthermore, a technique for producing a high-quality electrophotographic image by developing a finer digital image has been developed. For example, image exposure is performed with a laser beam with a small spot area, the density of the dot latent image is increased to form a high-definition latent image, the latent image is developed with a small particle size toner, and a high-quality electrophotographic image The technology for producing is disclosed. (Patent Document 1)
In forming such a high-quality digital image, an organic photoreceptor having high sensitivity and stable characteristics against changes in the greenhouse environment is required.
[0004]
Conventionally, in order to satisfy the requirements of the organic photoreceptor as described above, the organic photoreceptor has a layer structure in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer, and the charge transport layer has a low molecular weight of about 500. The structure contained a large amount of a molecular weight charge transporting substance. However, in the charge transport layer having such a configuration, the film quality is deteriorated, and the charge transport layer on the surface layer is easily contaminated with foreign substances. That is, the surface of the photosensitive member is easily contaminated with paper dust or a toner composition by a developing unit, a transferring unit, a cleaning unit, and the like arranged around the photosensitive member. As a result, a black spot (a wrinkled spot image) or a transfer Periodic image defects such as missing are likely to occur. In addition, in a high-speed copying machine or a low-temperature and low-humidity environment where the time between the exposure process and the development process is short, sufficient sensitivity cannot be obtained. It is easy to occur.
[0005]
As a method for solving such a problem, it has been reported to use a charge transport material having a large molecular weight. For example, an organic photoreceptor containing a charge transport material having a chemical structure of bisstyryl and a molecular weight of 1000 or more has been reported (Patent Document 2). However, when these charge transport materials are contained in the charge transport layer, the charge transport layer tends to have insufficient compatibility with the binder resin, the charge transport material is not uniformly dispersed, and the sensitivity is not sufficient. Breaking scratches such as cracks are likely to occur in the transport layer. In addition, a photoconductor using a charge transport material having a molecular weight of 3000 to 5000 is also reported (Patent Documents 3 and 4), but since the terminal group is not blocked, the residual power is likely to increase. Further, compatibility with the binder resin has not been sufficiently solved.
[0006]
In order to prevent contamination on the surface of the photoreceptor, an organic photoreceptor having a surface layer containing fluorine-based resin particles has been proposed (Patent Document 5). However, an organic photoreceptor containing fluorine resin particles tends to cause image blur. Also, the mechanical strength of the surface layer is likely to be lowered, and the surface of the photoreceptor is easily worn by contact friction with the cleaning means or the like, and a good electrophotographic image cannot always be provided.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-255585
[0008]
[Patent Document 2]
JP-A-3-149560
[0009]
[Patent Document 3]
Japanese Patent Laid-Open No. 10-310635
[0010]
[Patent Document 4]
JP-A-5-25102
[0011]
[Patent Document 5]
JP-A-63-65449
[0012]
[Problems to be solved by the invention]
The present invention has been proposed in order to solve the above-described problems. The object of the present invention is to provide a high-sensitivity, easy-to-occurrence in high-speed copying and low-temperature and low-humidity environments when forming an electrophotographic image. The cause of the decrease is to prevent a decrease in image density due to a potential fluctuation in a solid black image portion or a decrease in sharpness due to occurrence of thinning of the characters in reversal development, and also due to surface contamination of the electrophotographic photoreceptor. Prevents periodic image defects such as black spots that tend to occur and transfer defects, and does not cause breakage such as cracks, and stable, high-density, high-resolution clear electrophotographic images. It is an object of the present invention to provide an electrophotographic photoreceptor obtained in this manner, a process cartridge, an image forming method, and an image forming apparatus using the electrophotographic photoreceptor.
[0013]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have conducted detailed studies on the binder resin and the charge transport material constituting the charge transport layer of the electrophotographic photosensitive member in order to solve the above-described problems of the present invention. By using a mixture of compounds having the following chemical structural units and different molecular weights as a charge transport material, even if a large molecular weight charge transport material is used, the compatibility with the binder resin is good and the process is fast. Responsiveness of sensitivity under low temperature and low humidity environment is improved, and the surface layer is not easily contaminated, periodic image defects such as black spots and transfer spots are prevented, and breakage scratches such as cracks do not occur. The inventors have found that a clear image with high density and high resolution can be stably obtained, and completed the present invention.
[0014]
The object of the present invention is achieved by adopting one of the following configurations.
1. 2. An electrophotographic photoreceptor comprising two or more compounds having an average molecular weight of 2500 or less and different n in the general formula (1).
[0015]
2. It has a charge generation layer and a charge transport layer on a conductive support, and the charge transport layer contains two or more compounds having an average molecular weight of 2500 or less and different n in the general formula (1). An electrophotographic photoreceptor.
[0016]
3. 3. The electrophotographic photosensitive member according to item 1 or 2, wherein the divalent group containing the triarylamine group of A is a group of the general formula (4).
[0017]
4). Ar24. The electrophotographic photoreceptor according to 3 above, wherein is a group represented by the general formula (5).
[0018]
5. 3. The electrophotographic photoreceptor as described in 1 or 2 above, wherein the divalent group containing the triarylamine group of A is a group of the general formula (6).
[0019]
6). 6. The electrophotographic photosensitive member according to any one of 1 to 5, wherein B is a group represented by the general formula (7).
[0020]
7. An electrophotographic photosensitive member containing two or more compounds having an average molecular weight of 2500 or less and different n in the general formula (1), a charging means for uniformly charging the electrophotographic photosensitive member, and a charged electrophotographic A latent image forming means for forming an electrostatic latent image on the photosensitive member, a developing means for visualizing the electrostatic latent image on the electrophotographic photosensitive member, and a toner image visualized on the electrophotographic photosensitive member are transferred. At least one of transfer means for transferring onto the material, charge eliminating means for removing charges on the electrophotographic photosensitive member after transfer, and cleaning means for removing residual toner on the electrophotographic photosensitive member after transfer. A process cartridge which is integrally supported and can be detachably attached to an image forming apparatus main body.
[0021]
8). 8. An image forming apparatus comprising the process cartridge described in 7 above.
[0022]
9. 9. An image forming method comprising forming an electrophotographic image using the image forming apparatus described in 8 above.
[0023]
Hereinafter, the present invention will be described in detail.
Structure of electrophotographic photoreceptor
The electrophotographic photoreceptor used in the present invention is characterized by containing two or more compounds having an average molecular weight of 2500 or less and different n in the following general formula (1).
[0024]
The electrophotographic photosensitive member used in the present invention has a charge generation layer and a charge transport layer on a conductive support, and the charge transport layer has an average molecular weight of 2500 or less and n in the general formula (1). It contains two or more kinds of compounds different from each other.
[0025]
The electrophotographic photosensitive member of the present invention has the above-described configuration, and can prevent sharpness reduction such as thinning due to sensitivity reduction, which is likely to occur in high-speed copying and low-temperature and low-humidity environments. In addition, no periodic image defects such as transfer defects are generated, and no flaws such as cracks are generated, so that a clear electrophotographic image having a high density and a high resolving power can be produced.
[0026]
In the present invention, containing two or more kinds of compounds having different n in the general formula (1) means a substance (mixture) in which two or more kinds of compounds of the general formula (1) having different numbers of chain structures are mixed. By using the mixture as a charge transporting material, the charge transportability is remarkably improved, the high speed compatibility, the low sensitivity under low temperature and low humidity, etc. can be overcome, and the average molecular weight of the mixture is 2500. By using the following, the compatibility with the solvent and the binder resin is remarkably improved, there is no occurrence of periodic image defects such as black spots and transfer defects, and the occurrence of fractures such as cracks. Thus, an electrophotographic photosensitive member for producing a clear electrophotographic image having a high density and a high resolving power can be produced.
[0027]
Hereinafter, an electrophotographic photoreceptor using a mixture of two or more compounds having different n in the general formula (1) as a charge transport material will be described.
[0028]
In the general formula (1), the divalent group containing a triarylamine group has a structure in which a trivalent linking group of a nitrogen atom is bonded to an aromatic ring, and the entire group is divalent. Means a group having the following linking group.
[0029]
Moreover, the monovalent group containing a triarylamine group is a group having a structure in which a trivalent linking group of a nitrogen atom is bonded to an aromatic ring, and a monovalent linking group as a whole. Means.
[0030]
Ar in the general formula (1)1As the divalent substituted or unsubstituted aromatic group, a phenylene group, a naphthylene group, a biphenylene group or the like is preferable, and an alkyl group is preferable as the substituent. A divalent furan group and a divalent thiophene group are also preferred.
[0031]
  R1~ RThreeIs a hydrogen atomIndicates.
[0032]
As the divalent group of A, in addition to the group of the general formula (3), the group of the general formula (4) or the general formula (6) is preferable as the divalent group containing a triarylamine group.
[0033]
  R in general formula (3)6 IsRepresents a substituted or unsubstituted aromatic group, preferablyHaExamples include an enyl group.
[0034]
Ar in the general formula (4)2Is a substituted or unsubstituted monovalent aromatic group, preferably a phenyl group substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group.
[0035]
Ar in the general formula (6)Three, ArFourRepresents a substituted or unsubstituted monovalent aromatic group, preferably a phenyl group substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group.
[0036]
The monovalent substituted or unsubstituted aromatic group for B is preferably a substituted or unsubstituted triphenylamine group or a substituted or unsubstituted phenyl group. As the substituent, an alkyl group having 1 to 4 carbon atoms, a dialkylamino group, and an alkylarylamino group are preferable, and a methyl group is particularly preferable. n is a natural number of 0 to 30, preferably 0 to 20.
[0037]
The structural formulas of the representative compounds of the general formula (1) are listed below, but the present invention is to use a mixture of compounds having the following chemical structures and different n as a charge transport material. Moreover, even if the following chemical structure is the same, if m of general formula (1) differs, it is another compound. For example, the following chemical structure No. Even if 1, m is 0 and 1, it is a different compound. Further, the mixture of compounds having different n used in the present invention may have an average molecular weight of 2500 or less even if the mixing ratio is different.
[0038]
[Chemical 8]
Figure 0004069782
[0039]
[Chemical 9]
Figure 0004069782
[0040]
Embedded image
Figure 0004069782
[0041]
Embedded image
Figure 0004069782
[0042]
Embedded image
Figure 0004069782
[0043]
Embedded image
Figure 0004069782
[0044]
Embedded image
Figure 0004069782
[0045]
Embedded image
Figure 0004069782
[0046]
Embedded image
Figure 0004069782
[0047]
Embedded image
Figure 0004069782
[0048]
Embedded image
Figure 0004069782
[0049]
Embedded image
Figure 0004069782
[0050]
Embedded image
Figure 0004069782
[0051]
Embedded image
Figure 0004069782
[0052]
Embedded image
Figure 0004069782
[0053]
Embedded image
Figure 0004069782
[0054]
Embedded image
Figure 0004069782
[0055]
Embedded image
Figure 0004069782
[0056]
Embedded image
Figure 0004069782
[0057]
Embedded image
Figure 0004069782
[0058]
Embedded image
Figure 0004069782
[0059]
Embedded image
Figure 0004069782
[0060]
Embedded image
Figure 0004069782
[0061]
Embedded image
Figure 0004069782
[0062]
Embedded image
Figure 0004069782
[0063]
Embedded image
Figure 0004069782
[0064]
The above compound examples are a plurality of B, R in the general formula (1).1, R2, RThreeAre examples of the same compound, but in the present invention, a plurality of these B, R1, R2, RThreeAre also included. For example, the following compound of the general formula (8) is also exemplified as the compound of the general formula (1) of the present invention.
[0065]
Embedded image
Figure 0004069782
[0066]
In general formula (8), Ar1Represents a divalent substituted, unsubstituted aromatic group, furan group or thiophene group;1~ RThree, R1′ 〜RThree'Represents a hydrogen atom, a substituted or unsubstituted alkyl group, a monovalent substituted or unsubstituted aromatic group, and A represents a divalent group containing a triarylamine group or a group of the above general formula (3). B and B ′ represent a monovalent substituted or unsubstituted aromatic group. m represents a natural number of 0 or 1, and n represents 0 to 30, respectively.
[0067]
The chemical structures of typical compounds of the general formula (8) are listed below. The present invention is to use a mixture of compounds having different n in each compound structure as a charge transport material.
[0068]
Embedded image
Figure 0004069782
[0069]
Embedded image
Figure 0004069782
[0070]
Embedded image
Figure 0004069782
[0071]
The average molecular weight of two or more compounds (mixtures) having different n in the general formula (1) of the present invention is 2500 or less. The average molecular weight is expressed in terms of polystyrene equivalent weight average molecular weight. When the average molecular weight exceeds 2500, the solvent solubility decreases, and the compatibility of the charge transport layer with the binder resin deteriorates. As a result, the dispersibility of the charge transport material is reduced. The electrophotographic characteristics such as sensitivity and uniform chargeability are significantly reduced. The average molecular weight is preferably 700 to 2500, and more preferably 800 to 2300.
[0072]
Below, the synthesis example of the compound (mixture) of this invention is described.
In the following synthesis examples, raw materials and the like will be described using the numbers given in the compound synthesis mechanism (scheme).
[0073]
Synthesis Example (1); Synthesis of Compound (Exemplary Chemical Structure 14 (m = 0))
[0074]
Embedded image
Figure 0004069782
[0075]
A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer. Was stirred while being introduced.
[0076]
1 compound: 1.0 g (0.003 mol), 2 compound: 2.46 g (0.007 mol) and 3 compound: 2.41 g (0.008 mol) were dissolved in 20 ml of THF, and the above 4 (potassium-tert. -Butoxy) / THF was slowly added dropwise while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.
[0077]
Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. The reaction solution reacted for 5 hours was poured into this, and then 20 ml of water was further poured into it, followed by stirring for about 30 minutes and filtration. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.
[0078]
This crude crystal was dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. 10 ml of ethyl acetate was added to this, dissolved, dropped into 60 ml of methanol, purified by reprecipitation, filtered and dried to obtain 3.20 g of the compound having the exemplified chemical structure 14 (m = 0).
[0079]
As a result of high performance liquid chromatography and mass spectrometry, the obtained compound was a mixture of n = 0 to 5, and the composition ratio (area ratio of high performance liquid chromatography) was n = 0/1/2/3/4 = 24. 3 / 44.4 / 21.5 / 7.2 / 2.3 / 0.3.
[0080]
The measurement conditions for high performance liquid chromatography were as follows.
Measuring instrument: Shimadzu LC6A (manufactured by Shimadzu Corporation)
Column: CLC-ODS (manufactured by Shimadzu Corporation)
Detection wavelength: 290 nm
Mobile phase: Mixed solvent of methanol / tetrahydrofuran = 3/1
Mobile phase flow rate: about 1 ml / min
Synthesis Example (2); Synthesis of Compound (Exemplary Chemical Structure 26 (m = 0))
[0081]
Embedded image
Figure 0004069782
[0082]
A 100 ml four-headed flask is equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.96 g (0.075 mol) and 20 ml of THF are added and stirred while introducing nitrogen. did.
[0083]
1 compound: 1.0 g (0.003 mol), 2 compound: 2.46 g (0.007 mol) and 3 compound: 2.41 g (0.008 mol) were dissolved in 20 ml of THF to dissolve 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.
[0084]
Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. After pouring a reaction liquid into this, 20 ml of water was further poured, and it stirred for about 30 minutes and filtered. Methanol / water = 1/1 Washed with about 40 ml and dried overnight at 50-60 ° C. to obtain crude crystals.
[0085]
The crude crystals were dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved by adding 10 ml of ethyl acetate, dropped into 60 ml of methanol, reprecipitated and purified by filtration, and dried by filtration to obtain 3.35 g of a compound having the exemplified chemical structure 26 (m = 0).
[0086]
As a result of the same high performance liquid chromatography and mass spectrometry as described above, the obtained compound was a mixture of n = 0 to 4, and the composition ratio (area ratio of high performance liquid chromatography) was n = 0/1/2/3. /4=32.5/45.0/16.5/6.2/1.6.
[0087]
Next, the layer structure of an electrophotographic photoreceptor using the above-described compound of the present invention as a charge transport material, particularly an organic photoreceptor will be described.
[0088]
The organic photoconductor of the present invention means an electrophotographic photoconductor constituted by giving an organic compound at least one of a charge generation function and a charge transport function indispensable for the constitution of the electrophotographic photoconductor. It contains all known organic electrophotographic photoreceptors such as a photoreceptor composed of an organic charge generating material or an organic charge transport material, a photoreceptor composed of a polymer complex with a charge generating function and a charge transport function.
[0089]
The constitution of the organic photoreceptor used in the present invention is described below.
Conductive support
The conductive support used for the photoreceptor may be either a sheet or a cylinder, but a cylindrical conductive support is more preferable for designing an image forming apparatus compactly.
[0090]
Cylindrical conductive support means a cylindrical support necessary for forming an endless image by rotating. Conductivity is within a range of 0.1 mm or less in straightness and 0.1 mm or less in deflection. A support is preferred. Exceeding the range of straightness and shake makes it difficult to form a good image.
[0091]
As the conductive material, a metal drum such as aluminum or nickel, a plastic drum deposited with aluminum, tin oxide, indium oxide or the like, or a paper / plastic drum coated with a conductive substance can be used. As a conductive support, the specific resistance is 10 at room temperature.ThreeΩcm or less is preferable.
[0092]
As the conductive support used in the present invention, one having an alumite film that has been sealed on the surface thereof may be used. The alumite treatment is usually performed in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing treatment in sulfuric acid gives the most preferable result. In the case of anodizing treatment in sulfuric acid, the sulfuric acid concentration is preferably 100 to 200 g / L, the aluminum ion concentration is 1 to 10 g / L, the liquid temperature is about 20 ° C., and the applied voltage is preferably about 20 V. It is not limited. The average film thickness of the anodized film is usually 20 μm or less, particularly preferably 10 μm or less.
[0093]
Middle class
In the present invention, an intermediate layer having a barrier function may be provided between the conductive support and the photosensitive layer.
[0094]
In the present invention, in order to improve the adhesion between the conductive support and the photosensitive layer, or to prevent charge injection from the support, an intermediate layer (including an undercoat layer) is provided between the support and the photosensitive layer. Including) can also be provided. Examples of the material for the intermediate layer include polyamide resins, vinyl chloride resins, vinyl acetate resins, and copolymer resins containing two or more of these resin repeating units. Of these subbing resins, a polyamide resin is preferable as a resin capable of reducing the increase in residual potential due to repeated use. The film thickness of the intermediate layer using these resins is preferably 0.01 to 0.5 μm.
[0095]
Examples of the intermediate layer preferably used in the present invention include an intermediate layer using a curable metal resin obtained by thermosetting an organic metal compound such as a silane coupling agent or a titanium coupling agent. As for the film thickness of the intermediate | middle layer using curable metal resin, 0.1-2 micrometers is preferable.
[0096]
An intermediate layer preferably used in the present invention includes an intermediate layer in which inorganic particles are dispersed in a binder resin. The average particle diameter of the inorganic particles is preferably 0.01 to 1 μm. In particular, an intermediate layer in which N-type semiconductive fine particles subjected to surface treatment are dispersed in a binder is preferable. For example, an intermediate layer in which titanium oxide having an average particle size of 0.01 to 1 μm, which has been surface-treated with silica / alumina treatment and a silane compound, is dispersed in a polyamide resin. The film thickness of such an intermediate layer is preferably 1 to 20 μm.
[0097]
The N-type semiconducting fine particles are fine particles having the property of using conductive carriers as electrons. That is, the property that the conductive carrier is an electron is that the N-type semiconducting fine particles are contained in an insulating binder to effectively block hole injection from the substrate, and to convert electrons from the photosensitive layer into electrons. On the other hand, it has the property which does not show blocking property.
[0098]
Here, a method for discriminating N-type semiconductor particles will be described.
An intermediate layer having a thickness of 5 μm is formed on the conductive support (the intermediate layer is formed using a dispersion in which 50% by mass of particles are dispersed in the binder resin constituting the intermediate layer). The intermediate layer is negatively charged and the light attenuation characteristics are evaluated. In addition, the light attenuation characteristics are similarly evaluated by charging to positive polarity.
[0099]
N-type semiconductive particles are particles that are dispersed in the intermediate layer in the above evaluation when the light attenuation when charged negatively is greater than the light attenuation when charged positively. It is called semiconductive particle.
[0100]
Specifically, the N-type semiconductive fine particles are composed of titanium oxide (TiO 2).2), Zinc oxide (ZnO), tin oxide (SnO)2In particular, titanium oxide is preferably used in the present invention.
[0101]
The average particle diameter of the N-type semiconducting fine particles used in the present invention is preferably in the range of 10 nm to 500 nm in the number average primary particle diameter, more preferably 10 nm to 200 nm, and particularly preferably 15 nm to 50 nm. .
[0102]
The intermediate layer using N-type semiconducting fine particles whose number average primary particle size is within the above range can be finely dispersed in the layer, has sufficient potential stability, and generates black spots. Has a prevention function.
[0103]
For example, in the case of titanium oxide, the number-average primary particle size of the N-type semiconducting fine particles is magnified 10,000 times by observation with a transmission electron microscope, and 100 particles are randomly observed as primary particles. It is measured as the number average diameter.
[0104]
The shape of the N-type semiconducting fine particles used in the present invention includes dendritic, needle-like, and granular shapes. For example, in the case of titanium oxide particles, the N-type semiconductive fine particles have a crystalline form. There are anatase type, rutile type and amorphous type, but any crystal type may be used, or two or more crystal types may be mixed and used. Of these, the rutile type is the best.
[0105]
One of the hydrophobizing surface treatments performed on the N-type semiconducting fine particles is a plurality of surface treatments, and the last surface treatment is a surface treatment with a reactive organosilicon compound. Is to do. In addition, at least one of the surface treatments is at least one surface treatment selected from alumina, silica, and zirconia, and finally the surface treatment of the reactive organosilicon compound is performed. It is preferable.
[0106]
Alumina treatment, silica treatment, and zirconia treatment are treatments for depositing alumina, silica, or zirconia on the surface of the N-type semiconducting fine particles. Alumina, silica, and zirconia deposited on these surfaces include alumina, silica, Zirconia hydrates are also included. The surface treatment of the reactive organosilicon compound means using a reactive organosilicon compound in the treatment liquid.
[0107]
In this way, the surface treatment of the N-type semiconductive fine particles such as titanium oxide particles was performed at least twice, so that the surface of the N-type semiconductive fine particles was uniformly coated (treated), and the surface treatment was performed. When N-type semiconducting fine particles are used in the intermediate layer, a good photoconductor having good dispersibility of N-type semiconductive fine particles such as titanium oxide particles in the intermediate layer and causing no image defects such as black spots. You can get it.
[0108]
Photosensitive layer
The photosensitive layer configuration of the photoreceptor of the present invention may be a single layer photosensitive layer configuration in which a charge generation function and a charge transport function are provided on one layer on the intermediate layer. It is preferable that the generation layer (CGL) and the charge transport layer (CTL) be separated. By adopting a configuration in which the functions are separated, an increase in the residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. In the negatively charged photoconductor, it is preferable that a charge generation layer (CGL) is formed on the intermediate layer, and a charge transport layer (CTL) is formed thereon. In the positively charged photoconductor, the order of the layer configuration is the reverse of that in the negatively charged photoconductor. The most preferred photosensitive layer structure of the present invention is a negatively charged photoreceptor structure having the function separation structure.
[0109]
The structure of the photosensitive layer of the function-separated negatively charged photoreceptor will be described below.
Charge generation layer
The charge generation layer contains a charge generation material (CGM). Other substances may contain a binder resin and other additives as necessary.
[0110]
A known charge generation material (CGM) can be used as the charge generation material (CGM). For example, a phthalocyanine pigment, an azo pigment, a perylene pigment, an azulenium pigment, or the like can be used. Among these, CGM which can minimize the increase in residual potential due to repeated use has a crystal structure capable of taking a stable aggregate structure among a plurality of molecules, specifically, a phthalocyanine pigment having a specific crystal structure, CGM of a perylene pigment is mentioned. For example, CGMs such as titanyl phthalocyanine having a maximum peak at a Bragg angle 2θ of 27.2 ° with respect to Cu—Kα rays and benzimidazole perylene having a maximum peak at 2θ of 12.4 have little deterioration due to repeated use. Potential increase can be reduced.
[0111]
When a binder is used as the CGM dispersion medium in the charge generation layer, a known resin can be used as the binder, but the most preferred resins include formal resin, butyral resin, silicone resin, silicone-modified butyral resin, phenoxy resin, and the like. Can be mentioned. The ratio of the binder resin to the charge generating material is preferably 20 to 600 parts by mass with respect to 100 parts by mass of the binder resin. By using these resins, the increase in residual potential associated with repeated use can be minimized. The thickness of the charge generation layer is preferably 0.01 μm to 2 μm.
[0112]
Charge transport layer
The charge transport layer contains a charge transport material (CTM) and a binder resin that disperses and forms a CTM. Other substances may contain additives such as antioxidants as necessary.
[0113]
As the charge transport material (CTM), a mixture of two or more compounds having an average molecular weight of 2500 or less and different n in the general formula (1) is used. Further, for example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound, and the like can be used in combination with a mixture of two or more kinds of compounds having different n in the general formula (1). These charge transport materials are usually dissolved in a suitable binder resin to form a layer.
[0114]
Examples of the resin used for the charge transport layer (CTL) include polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate. Resin, silicone resin, melamine resin, and copolymer resin containing two or more of repeating unit structures of these resins. In addition to these insulating resins, high molecular organic semiconductors such as poly-N-vinylcarbazole can be used.
[0115]
Most preferred as a binder for these CTLs is a polycarbonate resin. The polycarbonate resin is most preferable in improving the dispersibility and electrophotographic characteristics of CTM. The ratio of the binder resin to the charge transport material is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin.
[0116]
The charge transport layer preferably contains an antioxidant. Typical examples of the antioxidants prevent the action of oxygen on auto-oxidizing substances existing in the electrophotographic photosensitive member or on the surface of the electrophotographic photosensitive member under conditions of light, heat, and discharge. It is also a substance having a suppressing property. Typical examples include the following compound groups.
[0117]
Embedded image
Figure 0004069782
[0118]
Embedded image
Figure 0004069782
[0119]
Embedded image
Figure 0004069782
[0120]
Embedded image
Figure 0004069782
[0121]
The charge transport layer may be composed of two or more layers. In this case, the charge transport layer on the surface may satisfy the configuration of the present invention. The thickness of the charge transport layer is preferably 10 to 40 μm.
[0122]
In the above, the most preferable layer structure of the photoreceptor of the present invention is exemplified, but in the present invention, a photoreceptor layer structure other than the above may be used.
[0123]
As a solvent or dispersion medium used for forming a layer such as a photosensitive layer, an intermediate layer, and a surface layer, n-butylamine, diethylamine, ethylenediamine, isopropanolamine, triethanolamine, triethylenediamine, N, N-dimethylformamide, acetone, methyl ethyl ketone , Methyl isopropyl ketone, cyclohexanone, benzene, toluene, xylene, chloroform, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethane , Tetrahydrofuran, dioxolane, dioxane, methanol, ethanol, butanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cellosolve, etc. And the like. Although this invention is not limited to these, Dichloromethane, 1, 2- dichloroethane, methyl ethyl ketone, etc. are used preferably. These solvents may be used alone or as a mixed solvent of two or more.
[0124]
Further, the coating solution for each layer is preferably filtered with a metal filter, a membrane filter or the like in order to remove foreign matters and aggregates in the coating solution before entering the coating step. For example, it is preferable to select a pleat type (HDC), a depth type (profile), a semi-depth type (profile star), etc., manufactured by Nippon Pole Co., Ltd. according to the characteristics of the coating solution and perform filtration.
[0125]
Next, as a coating processing method for producing the organic electrophotographic photosensitive member, a coating processing method such as dip coating, spray coating, circular amount regulation type coating, etc. is used. In order to prevent the film from being dissolved as much as possible, and in order to achieve uniform coating processing, it is preferable to use a coating processing method such as spray coating or circular amount regulation type (circular slide hopper type is a typical example). It is most preferable to use the circular amount regulation type coating method for the protective layer. The circular amount regulation type coating is described in detail in, for example, Japanese Patent Application Laid-Open No. 58-189061.
[0126]
Next, an image forming method and an image forming apparatus using the electrophotographic photosensitive member of the present invention will be described.
[0127]
FIG. 1 is a cross-sectional configuration diagram of an image forming apparatus as an example of the image forming method of the present invention.
[0128]
In FIG. 1, reference numeral 50 denotes a photosensitive drum (photosensitive member) which is an image bearing member, which is a photosensitive member coated with an organic photosensitive layer on the drum, and is grounded and rotated clockwise. Reference numeral 52 denotes a scorotron charger (charging means) for uniformly charging the circumferential surface of the photosensitive drum 50 by corona discharge. Prior to the charging by the charger 52, the peripheral surface of the photosensitive member may be discharged by performing exposure by the pre-charging exposure unit 51 using a light emitting diode or the like in order to eliminate the history of the photosensitive member in the previous image formation.
[0129]
After uniform charging of the photoreceptor, image exposure based on the image signal is performed by an image exposure unit 53 as an image exposure unit. The image exposure unit 53 in this figure uses a laser diode (not shown) as an exposure light source. Scanning on the photosensitive drum is performed by the light whose optical path is bent by the reflection mirror 532 through the rotating polygon mirror 531 and the fθ lens, and an electrostatic latent image is formed.
[0130]
Here, the reversal development process means that the surface of the photoreceptor is uniformly charged by the charger 52, and the exposed area of the photoreceptor, that is, the exposed area potential (exposed area) of the photoreceptor is developed by the developing process (means). This is an image forming method for visualizing. On the other hand, the unexposed portion potential is not developed by the developing bias potential applied to the developing sleeve 541.
[0131]
The electrostatic latent image is then developed by a developing device 54 as developing means. A developing device 54 containing a developer composed of toner and carrier is provided on the periphery of the photosensitive drum 50, and development is performed by a developing sleeve 541 that contains a magnet and rotates while holding the developer. The inside of the developing device 54 is composed of developer agitating / conveying members 544 and 543, a conveying amount regulating member 542, and the like, and the developer is agitated and conveyed and supplied to the developing sleeve. Controlled by member 542. The amount of the developer transported varies depending on the linear speed of the applied electrophotographic photosensitive member and the specific gravity of the developer, but is generally 20 to 200 mg / cm.2Range.
[0132]
The developer is, for example, a carrier composed of the above-mentioned ferrite as a core and coated with an insulating resin around it, and a coloring material such as carbon black, a charge control agent, and a low molecular weight polyolefin mainly composed of the above-mentioned styrene acrylic resin. The toner is composed of a toner in which silica, titanium oxide, or the like is externally added to the particles. The developer is transported to the development area with the layer thickness regulated by a transport amount regulating member, and development is performed. At this time, usually, development is performed by applying a DC bias between the photosensitive drum 50 and the developing sleeve 541 and, if necessary, an AC bias voltage. Further, the developer is developed in contact with or not in contact with the photoreceptor. The potential of the photosensitive member is measured by providing a potential sensor 547 above the development position as shown in FIG.
[0133]
The recording paper P is fed to the transfer area by the rotation operation of the paper feed roller 57 when the transfer timing is ready after the image formation.
[0134]
In the transfer area, a transfer electrode (transfer means: transfer device) 58 is operated on the peripheral surface of the photosensitive drum 50 in synchronization with the transfer timing, and the charged recording paper P is charged with a polarity opposite to that of the toner. Transfer the toner.
[0135]
Next, the recording paper P is neutralized by a separation electrode (separator) 59, separated by the peripheral surface of the photosensitive drum 50 and conveyed to the fixing device 60, and the toner is removed by heating and pressurization of the heat roller 601 and the pressure roller 602. After the welding, the sheet is discharged to the outside of the apparatus via the sheet discharge roller 61. The transfer electrode 58 and the separation electrode 59 stop the primary operation after passing through the recording paper P, and prepare for the next toner image formation. In FIG. 1, a transfer band electrode of corotron is used as the transfer electrode 58. The transfer electrode setting conditions vary depending on the process speed (peripheral speed) of the photosensitive member and cannot be specified. For example, the transfer current is set to +100 to +400 μA, and the transfer voltage is set to +500 to +2000 V. can do.
[0136]
On the other hand, after the recording paper P is separated, the photosensitive drum 50 removes and cleans residual toner by pressure contact of the blade 621 of the cleaning device (cleaning means) 62, and again performs charge removal by the pre-charge exposure unit 51 and charging by the charger 52. Then, the next image forming process is started.
[0137]
Reference numeral 70 denotes a detachable process cartridge in which a photoconductor, a charger, a transfer device, a separator, and a cleaning device are integrated.
[0138]
The electrophotographic photosensitive member of the present invention is generally applicable to electrophotographic apparatuses such as an electrophotographic copying machine, a laser printer, an LED printer, and a liquid crystal shutter printer, and further displays, recordings, light printing, plate making and the like using electrophotographic technology. It can be widely applied to apparatuses such as facsimiles.
[0139]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this. However, “part” in the following text indicates “part by mass”.
[0140]
A photoreceptor was prepared as follows.
Production of photoreceptor 1
<Intermediate layer>
Figure 0004069782
The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
<Charge generation layer>
Figure 0004069782
The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating solution. This coating solution was applied onto the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
<Charge transport layer>
150 parts of charge transport material (compound of synthesis example (1))
Binder resin: Bisphenol Z-type polycarbonate
(Iupilon Z300: manufactured by Mitsubishi Gas Chemical Company) 300 parts
Antioxidant (Sanol LS2626: Sankyosha) 1.7 parts
Tetrahydrofuran (boiling point: 64.5 ° C) 2200 parts
The above components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 40 minutes to form a charge transport layer having a thickness of 22 μm.
[0141]
Preparation of photoreceptors 2-14
Photoconductors 2 to 14 were prepared in the same manner as in Photoconductor 1, except that the charge generation material, the compound of the charge transport material, the amount of the compound, and the film thickness of the charge transport layer were changed as shown in Tables 1 to 4.
[0142]
Production of photoconductor 15
In Photoreceptor 1, the components of Synthesis Example (2) were separated from the components of the charge transport material by liquid chromatography, and only n = 0 component of Compound 26 (m = 0) was used as the charge transport material. Similarly, a photoreceptor 15 was produced.
[0143]
Production of photoconductor 16
In Photoreceptor 1, each component was separated by liquid chromatography using the compound of Synthesis Example (1) as the charge transport material, and only n = 3 component of Compound 26 (m = 0) was used as the charge transport material. The photoconductor 16 was produced in the same manner, but the charge transport material was not compatible with the binder resin and deposited, and no photoconductor that could be evaluated was obtained.
[0144]
[Table 1]
Figure 0004069782
[0145]
[Table 2]
Figure 0004069782
[0146]
[Table 3]
Figure 0004069782
[0147]
[Table 4]
Figure 0004069782
[0148]
In the table, Y is a titanyl phthalocyanine pigment (a pigment having a maximum peak at a Bragg angle 2θ of 27.3 ° in a Cu-Kα characteristic X-ray diffraction spectrum).
Z represents a benzimidazole perylene pigment (a pigment having a maximum peak at a Bragg angle 2θ of 12.4 ° in a Cu-Kα characteristic X-ray diffraction spectrum).
[0149]
Moreover, average molecular weight Mw shows the weight average molecular weight (polystyrene conversion) calculated | required from the gel permeation chromatography (GPC).
[0150]
Evaluation
The photoconductors 1 to 16 obtained as described above are each a reversal development type digital copying machine "Konica 7085" (Scorotron charger, semiconductor laser image exposure device (wavelength 680 nm) manufactured by Konica Corporation, and A4 having reversal development means. The following evaluation items were evaluated. Evaluation was performed by changing environmental conditions (temperature and humidity conditions) for each evaluation item. The evaluation basically consists of an original image in which the character ratio, halftone image, solid white image, and solid black image with a pixel rate of 7% are divided into ¼ equal parts in A4 and 10,000 sheets in intermittent mode. A copy was made and evaluated. The evaluation results are shown in Table 5.
[0151]
Evaluation conditions
Line speed: 420 mm / sec
Arrival time from image exposure to development position; 0.108 seconds
Charging conditions
Charger: Scorotron charger (negative charge)
Charging potential: -700V to -750V
Exposure conditions
Set the exposure amount to make the solid black image potential -100V.
[0152]
Exposure beam; Laser uses 680nm semiconductor laser
Development conditions
The developer is a volume average particle diameter produced by a polymerization method comprising a carrier coated with an insulating resin with ferrite as a core, a styrene acrylic resin as a main material, a carbon black colorant, a charge control agent, and a low molecular weight polyolefin. A toner developer in which silica and titanium oxide were externally added to 3 μm colored particles was used.
[0153]
Transcription conditions
Transfer pole; corona charging method (positive charging)
Separation conditions
Using the separation means of the separation claw unit
Cleaning conditions
A cleaning blade having a hardness of 70 °, a rebound resilience of 65%, a thickness of 2 (mm), and a free length of 9 mm was brought into contact with the cleaning portion by a weight load method so that the linear pressure was 18 (g / cm) in the counter direction.
[0154]
Evaluation items and evaluation methods
High-speed response under low temperature and low humidity (10 ° C, 20% RH) environment (potential change of solid black image)
In a low-temperature, low-humidity (10 ° C, 20% RH) environment, one A4 original image with a pixel rate of 7%, a halftone image, a solid white image, and a solid black image each divided into 1/4 equal intervals In this mode, 10,000 copies were made, and the potential change (| ΔV |) of the solid black image at the development position after the initial and 10,000 sheets was evaluated. The smaller | ΔV |, the better the high-speed response in a low-temperature, low-humidity (10 ° C, 20% RH) environment.
[0155]
A: Potential change of solid black image | ΔV | is less than 50 V (good)
○: Potential change of solid black image | ΔV | is 50 V to 150 V (no problem in practical use)
×: Potential change | ΔV | of a solid black image is larger than 150 V (practically problematic)
Character thinning (under low temperature and low humidity (10 ° C, 20% RH))
An original image on which a line image having a width of 0.1 mm and 0.2 mm was printed was copied and evaluated.
[0156]
◎; The reproduced image is reproduced with a line width of 75% or more of the line width of the original image (good)
○: The line width of the copied image is reproduced at 40% to 74% of the line width of the original image (a level that causes no problem in practice).
×: The line width of the copied image is 39% or less of the line width of the original image, or the line width is cut (a level causing a problem in practice).
Black spot (high temperature and high humidity (30 ℃ 80% RH))
The occurrence of black spots (spot-like spot images) on the halftone image was determined according to the following criteria.
[0157]
A: No black spot nuclei were observed on the photoreceptor, and no black spots were generated even in halftone images (good).
○: Black spot nuclei are seen on the photoreceptor, but no black spots are generated in the halftone image (no problem in practical use)
X: Nuclei of black spots are observed on the photosensitive member, and black spots are also generated in the halftone image (there is a practical problem)
Periodic image defects (high temperature and high humidity (30 ° C, 80% RH)
The periodicity coincided with the period of the photoconductor, and the number of visible white defects, black spots, and streak image defects per A4 size was determined.
[0158]
A: Frequency of image defects of 0.4 mm or more: All copy images are 5 / A4 or less (good)
○: Frequency of image defects of 0.4 mm or more: 1 or more of 6 / A4 or more and 10 / A4 or less (no problem in practical use)
X: Frequency of image defects of 0.4 mm or more: 11 or more A4 or more occurred (practical problem)
crack
The digital copying machine Konica 7085 was turned off and left for 2 days in an environment of 30 ° C. and 80% RH with the photoconductor mounted. The members around the photoconductor are in a state in which the operation is only stopped during this period, that is, the members such as the cleaning blade and the developer conveying member are kept in contact with the photoconductor. Thereafter, the surface of the photoreceptor was observed to observe the presence or absence of cracks. Moreover, image evaluation was also performed, and the presence or absence of generation of streak-like image defects due to the occurrence of cracks was also evaluated.
[0159]
A: Evaluation of 100 photoconductors, no occurrence of cracks and no occurrence of streak image defects (good)
◯: 100 photoconductors were evaluated, fine cracks were generated, but no streak-like image defects were generated (a level that is practically acceptable)
X: 100 photoconductors were evaluated, and cracks and streak-like image defects were observed (practically problematic level)
Image density (low temperature and low humidity (10 ° C, 20% RH))
The image density of the solid black part was measured by reflection density using RD-918 manufactured by Macbeth. Evaluation was made by relative density (the density of A4 paper not copied is 0.00).
[0160]
◎; 1.2 or more (good)
○: Less than 1.2 to 0.8 (a level with no practical problem)
×: Less than 0.8 (a level that causes practical problems)
Sharpness
The sharpness of the image was evaluated by squeezing the characters in both low temperature and low humidity (10 ° C., 20% RH) and high temperature, high humidity (30 ° C., 80% RH) environments. 3-point and 5-point character images were formed and evaluated according to the following criteria.
[0161]
◎; 3 and 5 points are clear and easy to read
○: 3 points are partially unreadable, 5 points are clear and easily readable
×: 3 points are almost unreadable 5 points are partially or completely unreadable
[0162]
[Table 5]
Figure 0004069782
[0163]
From Table 5, the photoreceptors 1 to 13 using two or more kinds of compounds having an average molecular weight of 2500 or less and different n in the general formula (1) as the charge transporting material according to the present invention have a low temperature and low humidity (10 ° C., 20% RH) Excellent high-speed response (potential change in solid black image) in the environment, so there is no thinning of characters under low temperature and low humidity, and there are no black spots, periodic image defects, cracks, etc., and image density It has excellent characteristics in sharpness. On the other hand, the photoconductor 14 using a compound having an average molecular weight of more than 2500 as a charge transport material has low dispersibility in the charge transport layer, and has a high-speed response in a low temperature and low humidity (10 ° C., 20% RH) environment (solid). The potential change in the black image is deteriorated, and therefore the character is thinned and the sharpness is deteriorated. Further, the photoconductor 15 using only a low molecular weight compound of n = 0 is inferior in high-speed response in a low-temperature and low-humidity (10 ° C., 20% RH) environment. The film quality is soft, black spots and periodic image defects are also generated, and the image density and sharpness are lowered. In addition, in the case of the photoreceptor 16 using only the high molecular weight compound of n = 3, the solubility with the binder resin was poor, and there was almost no sensitivity or the like, which was not worthy of evaluation.
[0164]
【The invention's effect】
By using the electrophotographic photosensitive member, the process cartridge, the image forming apparatus, and the image forming method of the present invention, an image defect that is likely to occur at a low temperature and low humidity environment, such as high-speed adaptability, and an image that is likely to occur at high temperature and high humidity. Defects can be prevented and an electrophotographic image with good image density and sharpness can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of an image forming apparatus as an example of an image forming method of the present invention.
[Explanation of symbols]
50 Photosensitive drum (photosensitive member)
51 Pre-charge exposure section
52 Charger
53 Image exposure unit
54 Developer
541 Development Sleeve
543, 544 Developer stirring and conveying member
547 Potential sensor
57 Feed roller
58 Transfer electrode
59 Separation electrode (separator)
60 Fixing device
61 Paper discharge roller
62 Cleaning device
70 Process cartridge

Claims (9)

平均分子量が2500以下で且つ下記一般式(1)のnが異なる2種以上の化合物を含有することを特徴とする電子写真感光体。
Figure 0004069782
一般式(1)中、Ar1は2価の置換、無置換の芳香族基、2価のフラン基、又は下記一般式(2)を示し、1〜R3は水素原子を示し、Aはトリアリールアミン基を含有する2価の基又は下記一般式(3)の基を示し、Bは1価の置換又は無置換の芳香族基を示す。但し、複数のB、R1、R2、R3は互いに異なっていてもよい。mは各々0又は1、nは0〜30の自然数を表す。
Figure 0004069782
一般式(2)中、Yは単結合である
Figure 0004069782
一般式(3)中、X1は単結合を表し、R6 は置換、無置換の芳香族基を示す。
2. An electrophotographic photoreceptor comprising two or more compounds having an average molecular weight of 2500 or less and different n in the following general formula (1).
Figure 0004069782
In the general formula (1), Ar 1 represents a divalent substituted or unsubstituted aromatic group, a divalent furan group, or the following general formula (2), R 1 ~R 3 is a hydrogen atom, A represents a divalent group containing a triarylamine group or a group of the following general formula (3), and B represents a monovalent substituted or unsubstituted aromatic group. However, a plurality of B, R 1 , R 2 and R 3 may be different from each other. m represents 0 or 1, and n represents a natural number of 0 to 30, respectively.
Figure 0004069782
In formula (2), Y is single bond.
Figure 0004069782
In the general formula (3), X 1 represents Tan'yui case, R 6 represents a substitution, unsubstituted aromatic group.
導電性支持体上に電荷発生層、電荷輸送層を有し、電荷輸送層が、平均分子量が2500以下で且つ前記一般式(1)のnが異なる2種以上の化合物を含有することを特徴とする電子写真感光体。  It has a charge generation layer and a charge transport layer on a conductive support, and the charge transport layer contains two or more compounds having an average molecular weight of 2500 or less and different n in the general formula (1). An electrophotographic photoreceptor. 前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(4)の基であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 0004069782
一般式(4)中、Ar2は置換又は無置換の1価の芳香族基を示す。
The electrophotographic photosensitive member according to claim 1 or 2, wherein the divalent group containing the triarylamine group of A is a group of the following general formula (4).
Figure 0004069782
In General Formula (4), Ar 2 represents a substituted or unsubstituted monovalent aromatic group.
前記Ar2が下記一般式(5)で表される基であることを特徴とする請求項3に記載の電子写真感光体。
Figure 0004069782
一般式(5)中、R21、R22、R23、R24、R25は水素原子または炭素数1〜4のアルキル基を示す。ただし、R21、R25のうち少なくともひとつは炭素数1〜4のアルキル基である。
The electrophotographic photosensitive member according to claim 3, wherein Ar 2 is a group represented by the following general formula (5).
Figure 0004069782
In the general formula (5), R 21 , R 22 , R 23 , R 24 and R 25 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. However, at least one of R 21 and R 25 is an alkyl group having 1 to 4 carbon atoms.
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(6)の基であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 0004069782
一般式(6)中、X2は単結合、A3、Ar4は置換又は無置換の1価の芳香族基を示す。
The electrophotographic photosensitive member according to claim 1 or 2, wherein the divalent group containing the triarylamine group of A is a group of the following general formula (6).
Figure 0004069782
In General Formula (6), X 2 represents a single bond , and Ar 3 and Ar 4 represent a substituted or unsubstituted monovalent aromatic group.
前記Bが下記一般式(7)で表される基であることを特徴とする請求項1〜5のいずれか1項に記載の電子写真感光体。
Figure 0004069782
一般式(7)中、R41、R42、R43、R44、R45、R51、R52、R53、R54、R55は水素原子または炭素数1〜4のアルキル基を示す。ただし、R41、R45、R51、R55のうち少なくともひとつは炭素数1〜4のアルキル基である。
The electrophotographic photosensitive member according to any one of claims 1 to 5, wherein B is a group represented by the following general formula (7).
Figure 0004069782
In the general formula (7), R 41 , R 42 , R 43 , R 44 , R 45 , R 51 , R 52 , R 53 , R 54 , and R 55 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. . However, at least one of R 41 , R 45 , R 51 and R 55 is an alkyl group having 1 to 4 carbon atoms.
平均分子量が2500以下で且つ前記一般式(1)のnが異なる2種以上の化合物を含有する電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。  An electrophotographic photosensitive member containing two or more compounds having an average molecular weight of 2500 or less and different n in the general formula (1), a charging means for uniformly charging the electrophotographic photosensitive member, and a charged electrophotographic A latent image forming means for forming an electrostatic latent image on the photosensitive member, a developing means for visualizing the electrostatic latent image on the electrophotographic photosensitive member, and a toner image visualized on the electrophotographic photosensitive member are transferred. At least one of transfer means for transferring onto the material, charge eliminating means for removing charges on the electrophotographic photosensitive member after transfer, and cleaning means for removing residual toner on the electrophotographic photosensitive member after transfer. A process cartridge which is integrally supported and can be detachably attached to an image forming apparatus main body. 請求項7に記載のプロセスカートリッジを有することを特徴とする画像形成装置。  An image forming apparatus comprising the process cartridge according to claim 7. 請求項8に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。  An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 8.
JP2003093897A 2003-03-31 2003-03-31 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method Expired - Fee Related JP4069782B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003093897A JP4069782B2 (en) 2003-03-31 2003-03-31 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
US10/805,962 US7175954B2 (en) 2003-03-31 2004-03-22 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093897A JP4069782B2 (en) 2003-03-31 2003-03-31 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Publications (2)

Publication Number Publication Date
JP2004302033A JP2004302033A (en) 2004-10-28
JP4069782B2 true JP4069782B2 (en) 2008-04-02

Family

ID=33406581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093897A Expired - Fee Related JP4069782B2 (en) 2003-03-31 2003-03-31 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Country Status (1)

Country Link
JP (1) JP4069782B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069781B2 (en) * 2003-03-31 2008-04-02 コニカミノルタホールディングス株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4075874B2 (en) * 2003-08-28 2008-04-16 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069843B2 (en) * 2003-10-29 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069846B2 (en) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069845B2 (en) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4066938B2 (en) * 2003-11-25 2008-03-26 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069862B2 (en) * 2003-12-19 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4103810B2 (en) * 2004-01-27 2008-06-18 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375659A (en) * 1989-08-17 1991-03-29 Fuji Photo Film Co Ltd Electrophotographic sensitive body
JP3147535B2 (en) * 1991-10-23 2001-03-19 ミノルタ株式会社 Photoreceptor and electroluminescent device using distyryl compound
JP3640090B2 (en) * 1995-05-19 2005-04-20 東洋インキ製造株式会社 Hole transport material and use thereof
JP3352326B2 (en) * 1995-06-30 2002-12-03 株式会社リコー Aromatic polycarbonate resin
JPH0973183A (en) * 1995-09-04 1997-03-18 Canon Inc Electrophotographic photoreceptor, process cartridge provided with the same and electrophotographic device
JPH10148951A (en) * 1996-11-21 1998-06-02 Mitsubishi Chem Corp Electrophotographic photoreceptor
JPH10260540A (en) * 1997-03-18 1998-09-29 Mitsubishi Chem Corp Electrophotographic photoreceptor
JPH11228851A (en) * 1998-02-10 1999-08-24 Dainippon Ink & Chem Inc Distyryl compound and electrophotographic photoreceptor using the same
JP3879294B2 (en) * 1999-01-13 2007-02-07 コニカミノルタホールディングス株式会社 Electrophotographic photoreceptor, image forming method, image forming apparatus and apparatus unit
JP2000258930A (en) * 1999-03-10 2000-09-22 Dainippon Ink & Chem Inc Electrophotographic photoreceptor
KR100700035B1 (en) * 1999-06-18 2007-03-26 메르크 파텐트 게엠베하 Process for the isolation of polymer fractions
JP3748348B2 (en) * 1999-11-05 2006-02-22 三菱化学株式会社 Electrophotographic photoreceptor
JP2001194813A (en) * 2000-01-11 2001-07-19 Konica Corp Coating liquid for electrophotographic sensitive body, electrophotographic sensitive body, image forming device and process cartridge
JP2002116568A (en) * 2000-10-05 2002-04-19 Kyocera Mita Corp Electrophotographic photoreceptor
JP2003122067A (en) * 2001-10-17 2003-04-25 Konica Corp Reversal development method, image forming method and image forming device
JP4288949B2 (en) * 2002-01-28 2009-07-01 コニカミノルタホールディングス株式会社 Electrophotographic photoreceptor, image forming apparatus, image forming method, and process cartridge
JP2003270808A (en) * 2002-03-19 2003-09-25 Ricoh Co Ltd Undercoat layer coating liquid for electrophotographic photoreceptor, method for preparing the same, electrophotographic photoreceptor and image forming apparatus with the photoreceptor
JP2003295487A (en) * 2002-03-29 2003-10-15 Kyocera Mita Corp Method for forming image by using positive charge type organic photoreceptor
JP2003307861A (en) * 2002-04-15 2003-10-31 Konica Minolta Holdings Inc Organic photoreceptor, method for forming image, image forming device and process cartridge
JP2004021194A (en) * 2002-06-20 2004-01-22 Konica Minolta Holdings Inc Method and apparatus for image formation
JP4069781B2 (en) * 2003-03-31 2008-04-02 コニカミノルタホールディングス株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP3952990B2 (en) * 2003-05-22 2007-08-01 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4075874B2 (en) * 2003-08-28 2008-04-16 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069843B2 (en) * 2003-10-29 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134515A (en) * 2003-10-29 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2005134514A (en) * 2003-10-29 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4069846B2 (en) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069845B2 (en) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134709A (en) * 2003-10-31 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005156798A (en) * 2003-11-25 2005-06-16 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4066938B2 (en) * 2003-11-25 2008-03-26 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005156799A (en) * 2003-11-25 2005-06-16 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4069862B2 (en) * 2003-12-19 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Also Published As

Publication number Publication date
JP2004302033A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP2005181992A (en) Electrophotographic photoreceptor, and electrophotographic apparatus and process cartridge using same
JP4069862B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069781B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069845B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134709A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4069846B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069843B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4066938B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005221539A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4075874B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP3952990B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069782B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005156799A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2005156798A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2003307861A (en) Organic photoreceptor, method for forming image, image forming device and process cartridge
JP4307197B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4103810B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
US20040191654A1 (en) Electrophotographic photoreceptor
JP2003280223A (en) Organophotoreceptor, image forming method, image forming apparatus and process cartridge
JP2008076809A (en) Organic photoreceptor, image forming method, image forming apparatus and process cartridge
JP4089628B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2004347854A (en) Electrophotographic photoreceptor, processing cartridge and image forming apparatus
JP2006047457A (en) Cleanerless image forming method, cleanerless image forming apparatus, process cartridge and organic electrophotographic photoreceptor
JP3952833B2 (en) Organic photoconductor, image forming method, image forming apparatus, and process cartridge
JP2004347771A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees