JP2005134515A - Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image - Google Patents

Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image Download PDF

Info

Publication number
JP2005134515A
JP2005134515A JP2003368609A JP2003368609A JP2005134515A JP 2005134515 A JP2005134515 A JP 2005134515A JP 2003368609 A JP2003368609 A JP 2003368609A JP 2003368609 A JP2003368609 A JP 2003368609A JP 2005134515 A JP2005134515 A JP 2005134515A
Authority
JP
Japan
Prior art keywords
group
general formula
photosensitive member
electrophotographic photosensitive
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368609A
Other languages
Japanese (ja)
Inventor
Toyoko Shibata
豊子 芝田
友子 ▲崎▼村
Tomoko Sakimura
Hiroshi Yamazaki
弘 山崎
Masanari Asano
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2003368609A priority Critical patent/JP2005134515A/en
Publication of JP2005134515A publication Critical patent/JP2005134515A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor which can prevent dielectric breakdown or an image defect such as a black spot that is apt to occur during repeated use of an electrophotographic photoreceptor used for a contact charging type image forming process, and which can stably form an image with favorable sharpness for a long time, and to provide a process cartridge using the electrophotographic photoreceptor, an image forming apparatus and a method for forming an image. <P>SOLUTION: The electrophotographic photoreceptor contains a mixture compound including a compound having a structure expressed by general formula (1): X-(CTM)<SB>n</SB>-Y with the distribution on the basis of n, satisfying x+y≤99%, wherein x and y are composition ratios of compounds as the most dominant component and second dominant component, respectively, and has a charge injection layer. In general formula (1), n ranges 0 to 10 and CTM represents a charge transport group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関するものである。   The present invention relates to an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and an image forming method used for electrophotographic image formation, and more specifically, to electrophotographic image formation used in the field of copying machines and printers. The present invention relates to an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and an image forming method.

有機感光体はセレン系感光体、アモルファスシリコン感光体のような無機感光体に比して素材の選択の幅が広いこと、環境適性に優れていること、生産コストが安いこと等の大きなメリットがあり、近年無機感光体に代わって電子写真感光体の主流となっている。   Organic photoconductors have great advantages such as wide selection of materials, excellent environmental suitability and low production costs compared to inorganic photoconductors such as selenium photoconductors and amorphous silicon photoconductors. In recent years, electrophotographic photoreceptors have become the mainstream in place of inorganic photoreceptors.

他方カールソン法に基づく画像形成方法においては、電子写真感光体上に帯電、静電潜像を形成し、トナー画像を形成した後、該トナー画像を転写紙に転写し、これを定着して最終画像が形成される。   On the other hand, in the image forming method based on the Carlson method, a charged, electrostatic latent image is formed on an electrophotographic photosensitive member, and a toner image is formed. Then, the toner image is transferred to a transfer paper, fixed, and finally processed. An image is formed.

上記帯電手段の部材として従来代表的に用いられている帯電部材はコロナ放電器が最もよく知られている。コロナ放電器は安定した帯電を行えるという利点を有する。しかし、コロナ放電器は高電圧を印加しなければならないため、イオン化された酸素、オゾン、水分、酸化窒素化合物等の発生量が多いため、有機感光体(以後感光体とも云う)の劣化を招いたり、人体に悪影響を及ぼす等の問題点を有している。   A corona discharger is the best known charging member that has been used as a member of the charging means. The corona discharger has an advantage that stable charging can be performed. However, since a high voltage must be applied to the corona discharger, a large amount of ionized oxygen, ozone, moisture, nitric oxide compound, etc. is generated, which causes deterioration of the organic photoreceptor (hereinafter also referred to as a photoreceptor). Or have problems such as adversely affecting the human body.

そこで、近年、コロナ放電器を利用しない接触帯電方式を利用することが検討されている。具体的には帯電部材である磁気ブラシや導電性ローラに電圧を印加して、被帯電体である感光体に接触させ、感光体表面を所定の電位に帯電させるものである。このような接触帯電方式を用いればコロナ放電器を用いた非接触帯電方式と比較して低電圧化がはかれ、オゾン発生量も減少する。   Therefore, in recent years, use of a contact charging method that does not use a corona discharger has been studied. Specifically, a voltage is applied to a magnetic brush or a conductive roller that is a charging member to bring it into contact with a photosensitive member that is a member to be charged, and the surface of the photosensitive member is charged to a predetermined potential. If such a contact charging method is used, the voltage can be lowered and the amount of ozone generated can be reduced as compared with a non-contact charging method using a corona discharger.

接触帯電方法は、感光体に102〜1010Ω・cm程度の抵抗を持つ帯電部材に、直流もしくは交流を重畳した直流電圧を印加し、感光体に加圧当接させ、電荷を付与する方法である。この帯電方法は、パッシェンの法則に従い、帯電部材から被帯電体への放電によって行われるため、あるしきい値以上の電圧を印加することによって帯電が開始される。この接触帯電方法は、コロナ帯電方法と比較すると、帯電部材への印加電圧は、低くなるが、放電が伴うために、少量のオゾン及び窒素酸化物が発生する。 In the contact charging method, a direct current voltage or a direct current on which alternating current is superimposed is applied to a charging member having a resistance of about 10 2 to 10 10 Ω · cm on the photoconductor, and the photoconductor is pressed and brought into contact with the photoconductor to give an electric charge. Is the method. Since this charging method is performed by discharging from the charging member to the member to be charged in accordance with Paschen's law, charging is started by applying a voltage equal to or higher than a certain threshold value. In this contact charging method, compared with the corona charging method, the voltage applied to the charging member is low, but since discharge is accompanied, a small amount of ozone and nitrogen oxides are generated.

このために、新たなる帯電方式として、感光体への電荷の直接注入による帯電方式が開示されている(特許文献1)。この帯電方式は、電荷注入層を感光体表面に設け、帯電ローラ、帯電ブラシ、帯電磁気ブラシ等の接触導電部材に電圧を印加し、電荷を接触により、注入帯電を行なう方法である。この帯電方式では、ほとんど放電現象を伴わずに、印加電圧に対して、ほぼ1対1の帯電が可能なため、従来の接触帯電方式と比べると、オゾン、NOx発生量が、非常に少なく、低電力の優れた帯電方式である。   For this reason, as a new charging method, a charging method by directly injecting charges into the photosensitive member is disclosed (Patent Document 1). This charging method is a method in which a charge injection layer is provided on the surface of a photoconductor, a voltage is applied to a contact conductive member such as a charging roller, a charging brush, a charging magnetic brush, etc., and injection charging is performed by contacting the charge. In this charging method, almost one-to-one charging is possible with respect to the applied voltage with almost no discharge phenomenon. Therefore, compared with the conventional contact charging method, the amount of ozone and NOx generated is very small. It is an excellent charging method with low power.

該注入帯電方式は、注入帯電を行なうために、電子写真感光体の表面層(多くは電荷輸送層の上に)に電荷注入層を設けた構成の電子写真感光体が公知である。即ち、バインダー樹脂と導電性微粒子或いは電荷輸送物質を含有させた電荷注入層を表面層とした電子写真感光体がが提案されている(特許文献2)。しかしながら、帯電ローラ等との直接接触により、電荷注入層を介して電子写真感光体表面に繰り返し帯電を行なうと、電荷注入層に発生した亀裂や汚染等が発生し、その結果、該亀裂や汚染等の部分に電荷が集中し、絶縁破壊や黒ポチ等の画像欠陥の発生を引き起こしやすく、画像ボケも発生しやすい。特に高温高湿、低温低湿等の厳しい条件下でこれらの問題が発生しやすい。   As the injection charging method, an electrophotographic photosensitive member having a structure in which a charge injection layer is provided on the surface layer (mostly on a charge transport layer) of the electrophotographic photosensitive member for injection charging is known. That is, an electrophotographic photosensitive member has been proposed in which a charge injection layer containing a binder resin and conductive fine particles or a charge transport material is used as a surface layer (Patent Document 2). However, when the surface of the electrophotographic photosensitive member is repeatedly charged through the charge injection layer by direct contact with a charging roller or the like, cracks, contamination, or the like generated in the charge injection layer occurs. Charges are concentrated in such areas as causing breakdowns and image defects such as black spots and image blurring. In particular, these problems are likely to occur under severe conditions such as high temperature and high humidity and low temperature and low humidity.

更に、電荷注入層を設けた電子写真感光体は繰り返し疲労による残留電位の上昇等の電子写真特性(帯電性や感度)の劣化が起こりやすく、該電子写真特性を改良するために電荷注入層に電荷輸送物質を含有させることが提案されている(特許文献3)。   Furthermore, an electrophotographic photosensitive member provided with a charge injection layer is prone to deterioration of electrophotographic characteristics (chargeability and sensitivity) such as a rise in residual potential due to repeated fatigue. In order to improve the electrophotographic characteristics, It has been proposed to contain a charge transport material (Patent Document 3).

しかしながら、電荷注入層の改善のみでは、接触帯電方式の画像ボケや電子写真特性の劣化或いは前記絶縁破壊や黒ポチ等の画像欠陥の発生防止の改善は尚十分でなく、特に高温高湿や低温低湿条件下で、これらの問題が発生しやすい。
特開平6−3921号公報 特開2002−31911号公報 特開2001−194816号公報
However, improvement of the charge injection layer alone is still not sufficient to prevent contact blurring of image blur, electrophotographic characteristics, or prevention of image defects such as dielectric breakdown and black spots, especially at high temperature and high humidity and low temperature. These problems are likely to occur under low humidity conditions.
Japanese Patent Laid-Open No. 6-3921 JP 2002-31911 A JP 2001-194816 A

本発明は、オゾンや窒素酸化物の発生量が少なく、低電力である帯電方法を用いて、更に、温湿度環境依存性が小さく、長期的に安定した画像形成を行うことが出来る電子写真感光体、プロセスカートリッジ及び画像形成装置を提供することである。   The present invention uses an electrification method that generates less ozone and nitrogen oxides and has low power, and further has low dependence on temperature and humidity environment, and can perform long-term stable image formation. And a process cartridge and an image forming apparatus.

又、本発明の目的は、接触帯電方式の画像形成方法に用いられる電子写真感光体において、繰り返し使用中に発生しやすい電子写真特性(感度や残留電位等)の劣化を防止し、絶縁破壊や黒ポチ等の画像欠陥の発生を防止し、鮮鋭性が良好な長期的に安定した画像形成を行うことが出来る電子写真感光体、プロセスカートリッジ及び画像形成装置を提供することである。   Another object of the present invention is to prevent deterioration of electrophotographic characteristics (sensitivity, residual potential, etc.) that are likely to occur during repeated use in an electrophotographic photoreceptor used in contact charging type image forming methods, An object of the present invention is to provide an electrophotographic photosensitive member, a process cartridge, and an image forming apparatus that can prevent image defects such as black spots from occurring and can perform stable long-term image formation with good sharpness.

本発明者等は鋭意検討の結果、本発明の上記課題を解決するためには、電荷注入層を有する電子写真感光体の導電性支持体、中間層、感光層及び電荷注入層の各要素にについて、詳細な検討を加えた結果、電荷注入層に接する感光層に特定の電荷輸送物質を含有させることにより、絶縁破壊や黒ポチ等の画像欠陥の発生及び画像ボケの発生を防止し、繰り返し使用中に発生しやすい電子写真特性(感度や残留電位等)の劣化を防止して、長期的に安定した性能を有する電子写真感光体を提供することができ、該電子写真感光体を用いて、高濃度、高解像力の鮮明な電子写真画像が安定して得られることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have found that the electrophotographic photosensitive member having a charge injection layer includes a conductive support, an intermediate layer, a photosensitive layer, and a charge injection layer. As a result of detailed investigation, the inclusion of a specific charge transport material in the photosensitive layer in contact with the charge injection layer prevents the occurrence of image defects such as dielectric breakdown and black spots and the occurrence of image blur, and repeats Deterioration of electrophotographic characteristics (sensitivity, residual potential, etc.) that are likely to occur during use can be prevented, and an electrophotographic photosensitive member having stable performance over the long term can be provided. The inventors have found that a clear electrophotographic image having a high density and a high resolving power can be stably obtained, thereby completing the present invention.

本発明の目的は、下記構成のいずれかを採ることにより達成される。
(請求項1)
下記一般式(1)の構造を有し、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の組成比をx、2位の成分の組成比をyとすると、x+yが99%以下の混合化合物を含有し且つ電荷注入層を有することを特徴とする電子写真感光体。
The object of the present invention is achieved by adopting one of the following configurations.
(Claim 1)
When a compound having the structure of the following general formula (1) and having a distribution based on n is used, the composition ratio of the maximum component of the compound is x, and the composition ratio of the component at the 2nd position is y, x + y is An electrophotographic photoreceptor comprising 99% or less of a mixed compound and having a charge injection layer.

一般式(1) X−(CTM基)n−Y n=0〜10
一般式(1)中、CTM基は、電荷輸送性基である。
General formula (1) X- (CTM group) n -Y n = 0 to 10
In general formula (1), the CTM group is a charge transporting group.

X、Yは水素原子、ハロゲン原子、又は1価の有機基
nは0〜10(但し、X及びYが共に水素原子、ハロゲン原子の場合はnは1〜10)
(請求項2)
導電性支持体上に電荷発生物質を有する電荷発生層、電荷輸送層を有する電荷輸送層及び電荷注入層を積層した電子写真感光体において、前記電荷輸送層が、上記一般式(1)の構造を有し、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の組成比をx、2位の成分の組成比をyとすると、x+yが99%以下の混合化合物を含有することを特徴とする電子写真感光体。
(請求項3)
一般式(1)のx+yが下記の範囲であることを特徴とする請求項1又は2に記載の電子写真感光体。
X and Y are a hydrogen atom, a halogen atom, or a monovalent organic group n is 0 to 10 (provided that when both X and Y are a hydrogen atom and a halogen atom, n is 1 to 10)
(Claim 2)
In the electrophotographic photosensitive member in which a charge generation layer having a charge generation material, a charge transport layer having a charge transport layer, and a charge injection layer are laminated on a conductive support, the charge transport layer has the structure of the above general formula (1). And a compound having a distribution based on n, wherein x is the maximum component composition ratio and x is the second component composition ratio, and x + y is 99% or less. An electrophotographic photosensitive member characterized by comprising:
(Claim 3)
The electrophotographic photosensitive member according to claim 1, wherein x + y in the general formula (1) is in the following range.

30%≦x+y≦99%
(請求項4)
前記混合化合物の重量平均分子量が650〜2500であることを特徴とする請求項1〜3のいずれか1項に記載の電子写真感光体。
(請求項5)
前記混合化合物の重量平均分子量が800〜2000であることを特徴とする請求項4に記載の電子写真感光体。
(請求項6)
前記x+yが下記の範囲であることを特徴とする請求項3〜5のいずれか1項に記載の電子写真感光体。
30% ≦ x + y ≦ 99%
(Claim 4)
The electrophotographic photosensitive member according to claim 1, wherein the mixed compound has a weight average molecular weight of 650 to 2500.
(Claim 5)
The electrophotographic photosensitive member according to claim 4, wherein the mixed compound has a weight average molecular weight of 800 to 2,000.
(Claim 6)
6. The electrophotographic photosensitive member according to claim 3, wherein x + y is in the following range.

45%≦x+y≦90%
(請求項7)
一般式(1)のCTM基、X、Yが下記一般式Aを有することを特徴とする請求項1〜6のいずれか1項に記載の電子写真感光体。
45% ≦ x + y ≦ 90%
(Claim 7)
The electrophotographic photosensitive member according to claim 1, wherein the CTM group of the general formula (1), X, and Y have the following general formula A.

Figure 2005134515
Figure 2005134515

上記一般式A中、Ar1は1価の置換又は無置換の芳香族基を示し、Ar2は2価の置換、無置換の芳香族基、2価のフラン基又はチオフェン基又は下記一般式(2)を示し、R1〜R3は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は下記一般式(3)の基を示す。但し、Ar1とR1は互いに結合して環を形成してもよい。又、複数のAr1、R1、R2、R3は互いに異なっていてもよい。p、qは各々0又は1を表す。 In the above general formula A, Ar 1 represents a monovalent substituted or unsubstituted aromatic group, Ar 2 represents a divalent substituted, unsubstituted aromatic group, divalent furan group or thiophene group, or the following general formula (2) indicates, R 1 to R 3 is a hydrogen atom, a substituted or unsubstituted alkyl group, a monovalent substituent indicates a non-substituted aromatic group, a is a divalent group containing triarylamine group Or the group of the following general formula (3) is shown. However, Ar 1 and R 1 may be bonded to each other to form a ring. A plurality of Ar 1 , R 1 , R 2 , and R 3 may be different from each other. p and q each represents 0 or 1;

Figure 2005134515
Figure 2005134515

一般式(2)中、Yは単結合、酸素原子、硫黄原子、−CH=CH−、又は−C(R4)(R5)−であり、R4、R5は互いに結合していてもよい。 In General Formula (2), Y is a single bond, an oxygen atom, a sulfur atom, —CH═CH—, or —C (R 4 ) (R 5 ) —, and R 4 and R 5 are bonded to each other. Also good.

Figure 2005134515
Figure 2005134515

一般式(3)中、X1は単結合、アルキレン基、酸素原子又は硫黄原子を表し、R6は置換、無置換のアルキル基、置換、無置換の芳香族基を示す。
(請求項8)
一般式(1)のCTM基、X、Yが下記一般式Bを有することを特徴とする請求項1〜6のいずれか1項に記載の電子写真感光体。
In the general formula (3), X 1 represents a single bond, an alkylene group, an oxygen atom or a sulfur atom, and R 6 represents a substituted, unsubstituted alkyl group, a substituted or unsubstituted aromatic group.
(Claim 8)
The electrophotographic photosensitive member according to claim 1, wherein the CTM group, X, and Y of the general formula (1) has the following general formula B.

Figure 2005134515
Figure 2005134515

上記一般式B中、Ar1は2価の置換、無置換の芳香族基、2価のフラン基又はチオフェン基、又は前記一般式(2)を示し、R1〜R3は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は前記一般式(3)の基を示し、Bは1価の置換又は無置換の芳香族基を示す。但し、複数のB、R1、R2、R3は互いに異なっていてもよい。mは各々0又は1を表す。
(請求項9)
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(4)の基であることを特徴とする請求項7又は8に記載の電子写真感光体。
In the general formula B, Ar 1 represents a divalent substituted, unsubstituted aromatic group, divalent furan group or thiophene group, or the general formula (2), and R 1 to R 3 represent a hydrogen atom or a substituted atom. , An unsubstituted alkyl group, a monovalent substituted, an unsubstituted aromatic group, A represents a divalent group containing a triarylamine group or a group of the general formula (3), and B represents a monovalent group. A substituted or unsubstituted aromatic group. However, a plurality of B, R 1 , R 2 and R 3 may be different from each other. m represents 0 or 1 respectively.
(Claim 9)
The electrophotographic photosensitive member according to claim 7 or 8, wherein the divalent group containing the triarylamine group of A is a group of the following general formula (4).

Figure 2005134515
Figure 2005134515

一般式(4)中、Ar3は置換又は無置換の1価の芳香族基を表す。
(請求項10)
前記Ar3が、下記一般式(5)の基であることを特徴とする請求項9に記載の電子写真感光体。
In the general formula (4), Ar 3 represents a substituted or unsubstituted monovalent aromatic group.
(Claim 10)
The electrophotographic photosensitive member according to claim 9, wherein Ar 3 is a group of the following general formula (5).

Figure 2005134515
Figure 2005134515

一般式(5)中、R31、R32、R33、R34、R35は水素原子又は炭素数1〜4のアルキル基を示す。但し、R31及びR35の内、少なくとも1つは炭素数1〜4のアルキル基である。
(請求項11)
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(6)の基であることを特徴とする請求項7又は8に記載の電子写真感光体。
In General Formula (5), R 31 , R 32 , R 33 , R 34 , and R 35 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. However, at least one of R 31 and R 35 is an alkyl group having 1 to 4 carbon atoms.
(Claim 11)
9. The electrophotographic photosensitive member according to claim 7, wherein the divalent group containing the triarylamine group of A is a group of the following general formula (6).

Figure 2005134515
Figure 2005134515

一般式(6)中、X2は単結合、置換又は無置換のアルキレン基、置換又は無置換の2価の芳香族基、Ar4、Ar5は置換又は無置換の1価の芳香族基を示す。
(請求項12)
前記Bが下記一般式(7)で表される基であることを特徴とする請求項8に記載の電子写真感光体。
In general formula (6), X 2 is a single bond, a substituted or unsubstituted alkylene group, a substituted or unsubstituted divalent aromatic group, and Ar 4 and Ar 5 are substituted or unsubstituted monovalent aromatic groups. Indicates.
(Claim 12)
The electrophotographic photosensitive member according to claim 8, wherein B is a group represented by the following general formula (7).

Figure 2005134515
Figure 2005134515

一般式(7)中、R41、R42、R43、R44、R45、R51、R52、R53、R54、R55は水素原子または炭素数1〜4のアルキル基を示す。ただし、R41、R45、R51、R55のうち少なくともひとつは炭素数1〜4のアルキル基である。
(請求項13)
一般式(1)のCTM基、X、Yが下記一般式Cを有することを特徴とする請求項1〜6のいずれか1項に記載の電子写真感光体。
In General Formula (7), R 41 , R 42 , R 43 , R 44 , R 45 , R 51 , R 52 , R 53 , R 54 , and R 55 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. . However, at least one of R 41 , R 45 , R 51 and R 55 is an alkyl group having 1 to 4 carbon atoms.
(Claim 13)
The electrophotographic photosensitive member according to any one of claims 1 to 6, wherein the CTM group, X and Y in the general formula (1) has the following general formula C.

Figure 2005134515
Figure 2005134515

上記一般式C中、Ar1は1価の置換、無置換の芳香族基、Ar2は2価の置換、無置換の芳香族基、2価の複素環基、又は下記一般式(8)を示し、Rは置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示す。但し、複数のAr1、Ar2、Rは互いに異なっていてもよい。 In the above general formula C, Ar 1 is a monovalent substituted or unsubstituted aromatic group, Ar 2 is a divalent substituted, unsubstituted aromatic group, divalent heterocyclic group, or the following general formula (8) R represents a substituted, unsubstituted alkyl group, a monovalent substituted, or an unsubstituted aromatic group. However, the plurality of Ar 1 , Ar 2 , and R may be different from each other.

Figure 2005134515
Figure 2005134515

一般式(8)中、Yは酸素原子、硫黄原子、−CH=CH−、又は−CH2−CH2−である。但しR1、R2は水素原子又は炭素数1〜4のアルキル基である。
(請求項14)
前記電荷注入層が導電性粒子を含有することを特徴とする請求項1〜13のいずれか1項に記載の電子写真感光体。
(請求項15)
前記一般式(1)の構造を有し、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の組成比をx、2位の成分の組成比をyとすると、x+yが99%以下の混合化合物を含有し且つ電荷注入層を有する電子写真感光体と該電子写真感光体に接触して、電子写真感光体を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。
(請求項16)
電子写真感光体に接触して、電子写真感光体を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段を有する画像形成装置において、該電子写真感光体が前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ電荷注入層を有することを特徴とする画像形成装置。
(請求項17)
請求項16に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。
In General Formula (8), Y is an oxygen atom, a sulfur atom, —CH═CH—, or —CH 2 —CH 2 —. However R 1, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
(Claim 14)
The electrophotographic photosensitive member according to claim 1, wherein the charge injection layer contains conductive particles.
(Claim 15)
When the compound having the structure of the general formula (1) and having a distribution based on n is used, the composition ratio of the maximum component of the compound is x, and the composition ratio of the component at the 2-position is y, x + y is An electrophotographic photosensitive member containing 99% or less of a mixed compound and having a charge injection layer, charging means for uniformly charging the electrophotographic photosensitive member in contact with the electrophotographic photosensitive member, and a charged electrophotographic photosensitive member A latent image forming means for forming an electrostatic latent image on the electrophotographic photosensitive member, a developing means for visualizing the electrostatic latent image on the electrophotographic photosensitive member, and a toner image visualized on the electrophotographic photosensitive member on a transfer material. And at least one of a transfer means for transferring the toner, a charge eliminating means for removing charges on the electrophotographic photosensitive member after the transfer, and a cleaning means for removing residual toner on the electrophotographic photosensitive member after the transfer. And can be detachably attached to the image forming apparatus main body. The process cartridge according to claim.
(Claim 16)
A charging means for uniformly charging the electrophotographic photosensitive member in contact with the electrophotographic photosensitive member, a latent image forming means for forming an electrostatic latent image on the charged electrophotographic photosensitive member, and a static on the electrophotographic photosensitive member. In an image forming apparatus comprising developing means for developing an electrostatic latent image and transfer means for transferring a toner image visualized on the electrophotographic photosensitive member onto a transfer material, the electrophotographic photosensitive member is represented by the general formula When the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of (1) and having a distribution based on n is x, and the composition ratio of the compound of the 2-position component is y, x + y is 99% or less. An image forming apparatus comprising a mixed compound and having a charge injection layer.
(Claim 17)
An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 16.

本発明の電子写真感光体、プロセスカートリッジ及び画像形成装置を用いることにより、注入帯電方式で発生しやすい低温低湿、高温高湿での残留電位の上昇や帯電電位の変動を防止し、又絶縁破壊や画像欠陥を防止し、画像濃度、カブリ、鮮鋭性が良好な電子写真画像を提供することができる。   By using the electrophotographic photosensitive member, the process cartridge and the image forming apparatus of the present invention, it is possible to prevent a rise in residual potential and a change in the charged potential at low temperature and low humidity and high temperature and high humidity, which are likely to occur in the injection charging method, and dielectric breakdown. And image defects can be prevented, and an electrophotographic image with good image density, fog, and sharpness can be provided.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の電子写真感光体は下記一般式(1)の構造を有し、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の組成比をx、2位の成分の組成比をyとすると、x+yが99%以下の混合化合物を含有し且つ電荷注入層を有することを特徴とする。   The electrophotographic photoreceptor of the present invention has a compound having a structure represented by the following general formula (1) and a distribution based on n, and the composition ratio of the maximum component of the compound is x and the composition of the 2-position component. When the ratio is y, x + y contains a mixed compound of 99% or less and has a charge injection layer.

一般式(1)
X−(CTM基)n−Y
上記一般式(1)中、CTM基は、電荷輸送性基であり、X、Yは水素原子、ハロゲン原子、又は1価の有機基を表す。又、nは0〜10の整数(但し、X及びYが共に水素原子又はハロゲン原子の場合はnは1〜10の整数)を示す。
General formula (1)
X- (CTM group) n -Y
In the general formula (1), the CTM group is a charge transporting group, and X and Y represent a hydrogen atom, a halogen atom, or a monovalent organic group. N represents an integer of 0 to 10 (provided that both X and Y are hydrogen atoms or halogen atoms, n is an integer of 1 to 10).

又、本発明に用いられる電子写真感光体は、導電性支持体上に電荷発生物質を有する電荷発生層、電荷輸送層を有する電荷輸送層及び電荷注入層を積層した電子写真感光体において、前記電荷輸送層が、上記一般式(1)の構造を有し、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の組成比をx、2位の成分の組成比をyとすると、x+yが99%以下の混合化合物を含有することを特徴とする。   The electrophotographic photoreceptor used in the present invention is the electrophotographic photoreceptor in which a charge generation layer having a charge generation material, a charge transport layer having a charge transport layer, and a charge injection layer are laminated on a conductive support. The charge transport layer has a compound having the structure of the above general formula (1) and a distribution based on n, the composition ratio of the maximum component of the compound is x, and the composition ratio of the 2-position component is y Then, x + y contains 99% or less of a mixed compound.

本発明の電子写真感光体は、前記構成を有することにより、電子写真感光体上に帯電部材を接触させて注入帯電する際に発生しやすい、絶縁破壊や黒ポチ等の画像欠陥の発生を防止し、電子写真特性(感度や残留電位等)の劣化を防止して、長期的に安定した画像形成を行うことができる。   The electrophotographic photosensitive member of the present invention prevents the occurrence of image defects such as dielectric breakdown and black spots that are likely to occur when charging is performed by bringing a charging member into contact with the electrophotographic photosensitive member by having the above-described configuration. In addition, deterioration of electrophotographic characteristics (sensitivity, residual potential, etc.) can be prevented, and long-term stable image formation can be performed.

本発明で、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有するとは、前記一般式(1)の化合物で且つCTM基、即ち電荷輸送性基の連鎖構造の数が異なる化合物が混在し(=nを基準とした分布を持つ化合物が混在すること)、該混在化合物(混合化合物)の中で、存在比が最大成分の化合物の組成比(存在比)をx、2位の成分の化合物の組成比(存在比)をyとすると、x+yが99%以下であり、該混合化合物はnが異なる前記一般式(1)の化合物を少なくとも3種以上含有していることを意味する。このような混合化合物を電荷輸送物質として用いることにより、電荷注入層を有する電子写真感光体の放電破壊電圧の閾値が顕著に改善され、絶縁破壊や黒ポチ等の画像欠陥の発生を顕著に抑制し、且つ電子写真特性(感度や残留電位等)の劣化を防止して、長期的に安定した画像形成を行うことができる。   In the present invention, when the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, the composition ratio of the compound of the 2-position component is y. , X + y containing 99% or less of a mixed compound is a mixture of compounds of general formula (1) and having different numbers of chain structures of CTM groups, that is, charge transporting groups (= n as a reference) Compound having a distribution), among the mixed compounds (mixed compounds), x is the composition ratio (existence ratio) of the compound having the largest abundance ratio, and x is the composition ratio (abundance ratio) of the compound at the 2-position component. ) Is y, it means that x + y is 99% or less, and the mixed compound contains at least three compounds of the general formula (1) having different n. By using such a mixed compound as a charge transport material, the threshold of the discharge breakdown voltage of the electrophotographic photosensitive member having the charge injection layer is remarkably improved, and the occurrence of image defects such as dielectric breakdown and black spots is remarkably suppressed. In addition, deterioration of electrophotographic characteristics (sensitivity, residual potential, etc.) can be prevented, and stable image formation can be performed in the long term.

前記一般式(1)のCTM基、即ち電荷輸送性基とは、その化学構造基が電子或いは正孔のドリフト移動度を有する性質を示す基であり、又別の定義としてはTime−Of−Flight法などの電荷輸送性能を検知できる公知の方法により電荷輸送に起因する検出電流が得られる基として定義できる。   The CTM group of the general formula (1), that is, the charge transporting group is a group whose chemical structural group has a property of having drift mobility of electrons or holes. Another definition is Time-Of- It can be defined as a group capable of obtaining a detection current resulting from charge transport by a known method capable of detecting charge transport performance such as the Flight method.

前記CTM基がそれ自身単独で存在しえない場合は、該CTM基の両端に水素原子を付加した一般式(H(CTM基)H)の化合物が電荷輸送性化合物であればよい。   When the CTM group cannot exist by itself, the compound of the general formula (H (CTM group) H) in which hydrogen atoms are added to both ends of the CTM group may be a charge transporting compound.

前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物の具体例としては種々の化学構造が考えられるが、本発明では、これら混合化合物が一連の合成法で製造でき、且つ前記本発明の目的を達成できる混合化合物(電荷輸送物質)として、以下に記す一般式A、一般式B、一般式Cの混合化合物を例示する。   Assuming that the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, the composition ratio of the compound of the 2-position component is y, x + y is 99. As specific examples of the mixed compound of not more than%, various chemical structures can be considered. In the present invention, these mixed compounds can be produced by a series of synthesis methods and can achieve the object of the present invention (charge transport materials). ), Mixed compounds of general formula A, general formula B, and general formula C described below are exemplified.

一般式Aの混合化合物は下記の化学構造を有する。   The mixed compound of general formula A has the following chemical structure.

Figure 2005134515
Figure 2005134515

前記一般式A中、Ar1は1価の置換又は無置換の芳香族基を示し、Ar2は2価の置換、無置換の芳香族基、2価のフラン基又はチオフェン基又は下記一般式(2)を示し、R1〜R3は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は下記一般式(3)の基を示す。但し、Ar1とR1は互いに結合して環を形成してもよい。又、複数のAr1、R1、R2、R3は互いに異なっていてもよい。p、qは各々0又は1の整数を表す。 In the general formula A, Ar 1 represents a monovalent substituted or unsubstituted aromatic group, Ar 2 represents a divalent substituted, unsubstituted aromatic group, divalent furan group or thiophene group, or the following general formula (2) indicates, R 1 to R 3 is a hydrogen atom, a substituted or unsubstituted alkyl group, a monovalent substituent indicates a non-substituted aromatic group, a is a divalent group containing triarylamine group Or the group of the following general formula (3) is shown. However, Ar 1 and R 1 may be bonded to each other to form a ring. A plurality of Ar 1 , R 1 , R 2 , and R 3 may be different from each other. p and q each represents an integer of 0 or 1.

Figure 2005134515
Figure 2005134515

一般式(2)中、Yは単結合、酸素原子、硫黄原子、−CH=CH−、又は−C(R4)(R5)−であり、R4、R5は互いに結合していてもよい。 In General Formula (2), Y is a single bond, an oxygen atom, a sulfur atom, —CH═CH—, or —C (R 4 ) (R 5 ) —, and R 4 and R 5 are bonded to each other. Also good.

Figure 2005134515
Figure 2005134515

一般式(3)中、X1は単結合、アルキレン基、酸素原子又は硫黄原子を表し、R6は置換、無置換のアルキル基、置換、無置換の芳香族基を示す。 In the general formula (3), X 1 represents a single bond, an alkylene group, an oxygen atom or a sulfur atom, and R 6 represents a substituted, unsubstituted alkyl group, a substituted or unsubstituted aromatic group.

一般式Bの混合化合物は下記の化学構造を有する。   The mixed compound of the general formula B has the following chemical structure.

Figure 2005134515
Figure 2005134515

前記一般式B中、Ar1は2価の置換、無置換の芳香族基、2価のフラン基又はチオフェン基、又は前記一般式(2)を示し、R1〜R3は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は前記一般式(3)の基を示し、Bは1価の置換又は無置換の芳香族基を示す。但し、複数のB、R1、R2、R3は互いに異なっていてもよい。mは各々0又は1の整数を表す。 In the general formula B, Ar 1 represents a divalent substituted, unsubstituted aromatic group, divalent furan group or thiophene group, or the general formula (2), wherein R 1 to R 3 are hydrogen atoms, substituted , An unsubstituted alkyl group, a monovalent substituted, an unsubstituted aromatic group, A represents a divalent group containing a triarylamine group or a group of the general formula (3), and B represents a monovalent group. A substituted or unsubstituted aromatic group. However, a plurality of B, R 1 , R 2 and R 3 may be different from each other. m represents an integer of 0 or 1, respectively.

前記一般式A及び一般式Bにおいて、トリアリールアミン基を含有する2価の基とは、窒素原子の3価の結合基がそれぞれ、芳香族環と結合した構造を有し、且つ基全体として2価の連結基を有する基を意味する。   In General Formula A and General Formula B, the divalent group containing a triarylamine group has a structure in which a trivalent linking group of a nitrogen atom is bonded to an aromatic ring, and the entire group A group having a divalent linking group is meant.

前記一般式A及び一般式BのAr1の1価の置換又は無置換の芳香族基としては、置換又は無置換のフェニル基、ナフチル基等が好ましく、置換基としては、炭素数1〜4のアルキル基、アルコキシ基、フェニル基、ハロゲン原子等が好ましい。
Ar2の2価の置換、無置換の芳香族基としては、フェニレン基、ナフチレン基、ビフェニレン基等が好ましく、置換基としては、アルキル基が好ましい。又、2価のフラン基、2価のチオフェン基も好ましい。
As the monovalent substituted or unsubstituted aromatic group of Ar 1 in the general formulas A and B, a substituted or unsubstituted phenyl group, a naphthyl group, and the like are preferable, and the substituent has 1 to 4 carbon atoms. Of these, an alkyl group, an alkoxy group, a phenyl group, a halogen atom and the like are preferable.
As the divalent substituted or unsubstituted aromatic group of Ar 2 , a phenylene group, a naphthylene group, a biphenylene group or the like is preferable, and as the substituent, an alkyl group is preferable. A divalent furan group and a divalent thiophene group are also preferred.

1〜R3は水素原子、ハロゲン原子、置換、無置換のアルキル基、アルコキシ基、1価の置換、無置換の芳香族基を示すが、水素原子、炭素数1〜4のアルキル基、アルコキシ基、無置換のフェニル基、ハロゲン又は炭素数1〜4のアルキル基を有するフェニル基等が好ましい。 R 1 to R 3 represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkoxy group, a monovalent substituted or an unsubstituted aromatic group, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, An alkoxy group, an unsubstituted phenyl group, a halogen, or a phenyl group having an alkyl group having 1 to 4 carbon atoms is preferred.

Aの2価の基としては、前記一般式(3)の基の他に、トリアリールアミン基を含有する2価の基として前記一般式(4)又は一般式(6)の基が好ましい。   As the divalent group of A, in addition to the group of the general formula (3), the group of the general formula (4) or the general formula (6) is preferable as the divalent group containing a triarylamine group.

一般式(3)中のR6は置換、無置換のアルキル基、置換、無置換の芳香族基を示すが、好ましくは炭素数1〜4のアルキル基、フェニル基等が挙げられる。 R 6 in the general formula (3) represents a substituted, unsubstituted alkyl group, substituted, or unsubstituted aromatic group, preferably an alkyl group having 1 to 4 carbon atoms, a phenyl group, or the like.

一般式(4)中のAr3は置換又は無置換の1価の芳香族基であるが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。 Ar 3 in the general formula (4) is a substituted or unsubstituted monovalent aromatic group, preferably a phenyl group substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Is mentioned.

一般式(6)中のAr4、Ar5は置換又は無置換の1価の芳香族基を示すが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。 Ar 4 and Ar 5 in the general formula (6) represent a substituted or unsubstituted monovalent aromatic group, preferably substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. And phenyl group.

以下に、前記一般式A及び一般式Bの代表的な化学構造を下記に挙げるが、本発明は下記のそれぞれの化学構造で、nが異なる化合物の混合物(混合化合物)を電荷輸送物質として用いることである。又、下記化学構造が同じでも、一般式Aのp又はq、或いは一般式Bのmが異なれば、別の混合化合物である。例えば、下記化学構造No.1Aでもp又はqが0と1では別の混合化合物である。又、p又はqが同じでも分布が違えば別の混合化合物である。   Hereinafter, typical chemical structures of the general formula A and the general formula B are listed below, but the present invention uses a mixture (mixed compound) of compounds having different n in the following chemical structures as a charge transport material. That is. Moreover, even if the following chemical structure is the same, if p or q of General Formula A or m of General Formula B is different, it is another mixed compound. For example, the following chemical structure No. 1A is another mixed compound in which p or q is 0 and 1. Further, even if p or q is the same, another mixed compound is obtained if the distribution is different.

一般式Aの具体例   Specific examples of general formula A

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

以上の化合物例は、前記一般式A中の複数のAr1、R1、R2、R3が同一の化学構造例であるが、本発明では、これら複数のAr1、R1、R2、R3が同一でないものも含まれる。例えば、下記のような一般式A′の化学構造例も本発明の一般式(1)の化学構造例として挙げられる。 The above compound examples are examples of chemical structures in which a plurality of Ar 1 , R 1 , R 2 and R 3 in the general formula A are the same, but in the present invention, the plurality of Ar 1 , R 1 , R 2 , R 3 are not the same. For example, the following chemical structure examples of the general formula A ′ are also exemplified as the chemical structure examples of the general formula (1) of the present invention.

Figure 2005134515
Figure 2005134515

一般式A′中、Ar1、Ar1′は1価の置換又は無置換の芳香族基を示し、Ar2は2価の置換、無置換の芳香族基、フラン基又はチオフェン基又は前記一般式(2)を示し、R1〜R3、R1′〜R3′は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は前記一般式(3)の基を示す。但し、Ar1とR1、Ar1′とR1′は互いに結合して環を形成してもよい。p、qは各々0又は1の整数を表す。 In general formula A ′, Ar 1 and Ar 1 ′ represent a monovalent substituted or unsubstituted aromatic group, Ar 2 represents a divalent substituted, unsubstituted aromatic group, furan group or thiophene group, Wherein R 1 to R 3 , R 1 ′ to R 3 ′ represent a hydrogen atom, a substituted or unsubstituted alkyl group, a monovalent substituted or unsubstituted aromatic group, and A represents triaryl A divalent group containing an amine group or a group of the general formula (3) is shown. However, Ar 1 and R 1 , Ar 1 ′ and R 1 ′ may be bonded to each other to form a ring. p and q each represents an integer of 0 or 1.

前記一般式A′の代表的な化合物の化学構造を下記に挙げる。本発明は各々の化学構造で、nを基準とした分布を持ち且つ最大成分の化合物の組成比をx、2位の成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用いることである。   The chemical structures of typical compounds of the general formula A ′ are listed below. In the present invention, a mixed compound having a distribution based on n in each chemical structure, x = y is 99% or less, where x is the composition ratio of the compound of the largest component, and y is the composition ratio of the compound of the 2-position component. Is used as a charge transport material.

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

以下に、本発明の前記混合化合物(一般式A)の合成例を記載する。   Below, the synthesis example of the said mixed compound (general formula A) of this invention is described.

以下の合成例では、原材料等を化合物合成の機構(スキーム)中に付した番号を用いて説明する。   In the following synthesis examples, raw materials and the like will be described using the numbers given in the compound synthesis mechanism (scheme).

合成例(1);化合物(例示化学構造21A(p=q=0))の合成   Synthesis Example (1); Synthesis of Compound (Exemplary Chemical Structure 21A (p = q = 0))

Figure 2005134515
Figure 2005134515

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.68g(0.015mol)及びテトラヒドロフラン(以下THF)20mlを入れ、窒素を導入しながら撹拌した。
1の化合物:2.06g(0.006mol)、2の化合物:1.13g(0.003mol)及び3の化合物:1.92g(0.0063mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。
A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.68 g (0.015 mol) and 20 ml of tetrahydrofuran (hereinafter THF) were added. Was stirred while being introduced.
1 compound: 2.06 g (0.006 mol), 2 compound: 1.13 g (0.003 mol) and 3 compound: 1.92 g (0.0063 mol) were dissolved in 20 ml of THF to dissolve 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別の200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。   A separate 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. After pouring the reaction solution reacted for 5 hours, 20 ml of water was further poured, and the mixture was stirred for about 30 minutes and filtered. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造21A(p=q=0)の化合物を2.54g得た。高速液体クロマトグラフィー及び質量分析結果、得られた化合物は、nが0〜4の混合物であり、その組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=25.4/48.8/18.1/6.3/1.4であった。   This crude crystal was dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. 10 ml of ethyl acetate was added and dissolved, dropped into 60 ml of methanol and purified by reprecipitation, filtered and dried to obtain 2.54 g of the compound having the exemplified chemical structure 21A (p = q = 0). As a result of high performance liquid chromatography and mass spectrometry, the obtained compound is a mixture of n of 0 to 4, and the composition ratio (area ratio of high performance liquid chromatography) is n = 0/1/2/3/4 = It was 25.4 / 48.8 / 18.1 / 6.3 / 1.4.

尚、高速液体クロマトグラフィーの測定条件は下記で行なった。   The measurement conditions for high performance liquid chromatography were as follows.

測定器:島津LC6A(島津製作所製)
カラム:CLC−ODS(島津製作所製)
検出波長:290nm
移動相:メタノール/テトラヒドロフラン=3/1の混合溶媒
移動相の流速:約1ml/min
尚、本発明の混合化合物の組成比は上記液体クロマトグラフィーによる組成分離後の各成分の面積比(%表示の面積比、合計組成比100%)で定義する。前記測定条件の内、測定器、カラム、移動相等は混合化合物の分離が明確にでき、且つ本発明と同様の結果が得られるものであれば、他に変更してもよい。
Measuring instrument: Shimadzu LC6A (manufactured by Shimadzu Corporation)
Column: CLC-ODS (manufactured by Shimadzu Corporation)
Detection wavelength: 290 nm
Mobile phase: mixed solvent of methanol / tetrahydrofuran = 3/1 Mobile phase flow rate: about 1 ml / min
The composition ratio of the mixed compound of the present invention is defined by the area ratio of each component after composition separation by liquid chromatography (area ratio in% display, total composition ratio 100%). Among the measurement conditions, the measuring device, column, mobile phase, and the like may be changed to others as long as the separation of the mixed compound can be clearly performed and the same result as in the present invention can be obtained.

合成例(2);化合物(例示化学構造21A(p=1、q=0))の合成   Synthesis Example (2); Synthesis of Compound (Exemplary Chemical Structure 21A (p = 1, q = 0))

Figure 2005134515
Figure 2005134515

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.68g(0.015mol)及びTHF20mlを入れ、窒素を導入しながら撹拌した。
1の化合物:2.06g(0.006mol)、2の化合物:1.13g(0.003mol)及び3の化合物:2.08g(0.0063mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。
A 100 ml four-headed flask is equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.68 g (0.015 mol) and 20 ml of THF are added and stirred while introducing nitrogen. did.
1 compound: 2.06 g (0.006 mol), 2 compound: 1.13 g (0.003 mol) and 3 compound: 2.08 g (0.0063 mol) were dissolved in 20 ml of THF to dissolve 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別に200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。   Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. After pouring the reaction solution reacted for 5 hours, 20 ml of water was further poured, and the mixture was stirred for about 30 minutes and filtered. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造21A(p=1、q=0)の化合物を2.75g得た。前記と同様の高速液体クロマトグラフィー及び質量分析結果、得られた化合物は、nが0〜4の混合物であり、その組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=33.4/46.8/15.0/4.0/0.8であった。   This crude crystal was dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved in 10 ml of ethyl acetate, added dropwise to 60 ml of methanol, purified by reprecipitation, filtered and dried to obtain 2.75 g of the compound having the exemplified chemical structure 21A (p = 1, q = 0). As a result of the same high performance liquid chromatography and mass spectrometry as described above, the obtained compound is a mixture of n = 0-4, and the composition ratio (area ratio of high performance liquid chromatography) is n = 0/1/2 / 3/4 = 33.4 / 46.8 / 15.0 / 4.0 / 0.8.

合成例(3);化合物(例示化学構造14A(p=1、q=0))の合成   Synthesis Example (3); Synthesis of Compound (Exemplary Chemical Structure 14A (p = 1, q = 0))

Figure 2005134515
Figure 2005134515

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.68g(0.015mol)及びTHF20mlを入れ、窒素を導入しながら撹拌した。
1の化合物:1.89g(0.006mol)、2の化合物:1.13g(0.003mol)及び3の化合物:1.60g(0.0063mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。
A 100 ml four-headed flask is equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.68 g (0.015 mol) and 20 ml of THF are added and stirred while introducing nitrogen. did.
1 compound: 1.89 g (0.006 mol), 2 compound: 1.13 g (0.003 mol) and 3 compound: 1.60 g (0.0063 mol) were dissolved in 20 ml of THF to dissolve 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別に200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。   Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. After pouring the reaction solution reacted for 5 hours, 20 ml of water was further poured, and the mixture was stirred for about 30 minutes and filtered. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造14A(p=1、q=0)の化合物を2.32g得た。前記と同様の高速液体クロマトグラフィー及び質量分析結果、得られた化合物は、nが0〜4の混合物であり、その組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=30.1/45.4/16.7/6.0/1.8であった。   This crude crystal was dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. 10 ml of ethyl acetate was added and dissolved, dropped into 60 ml of methanol and purified by reprecipitation, filtered and dried to obtain 2.32 g of a compound having the exemplified chemical structure 14A (p = 1, q = 0). As a result of the same high performance liquid chromatography and mass spectrometry as described above, the obtained compound is a mixture of n = 0-4, and the composition ratio (area ratio of high performance liquid chromatography) is n = 0/1/2 / 3/4 = 30.1 / 45.4 / 16.7 / 6.0 / 1.8.

一般式Bの具体例   Specific examples of general formula B

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

以上の化合物例は、前記一般式B中の複数のB、R1、R2、R3が同一の化合物例であるが、本発明では、これら複数のB、R1、R2、R3が同一でないものも含まれる。例えば、下記のような一般式B′の化合物も本発明の一般式Bの化合物として挙げられる。 More compounds embodiment, a plurality of B in the general formula B, R 1, R 2, but R 3 are the same of compound examples, in the present invention, the plurality of B, R 1, R 2, R 3 Are also included. For example, the following compound of the general formula B ′ is also exemplified as the compound of the general formula B of the present invention.

Figure 2005134515
Figure 2005134515

一般式B′中、Ar1は2価の置換、無置換の芳香族基、フラン基又はチオフェン基を示し、R1〜R3、R1′〜R3′は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は前記一般式(3)の基を示し、B、B′は1価の置換又は無置換の芳香族基を示す。mは各々0又は1の整数を表す。 In general formula B ′, Ar 1 represents a divalent substituted or unsubstituted aromatic group, furan group or thiophene group, and R 1 to R 3 and R 1 ′ to R 3 ′ represent a hydrogen atom, substituted and unsubstituted. An alkyl group, a monovalent substituted or unsubstituted aromatic group, A represents a divalent group containing a triarylamine group or a group of the general formula (3), and B and B ′ represent a monovalent group. A substituted or unsubstituted aromatic group. m represents an integer of 0 or 1, respectively.

前記一般式B′の代表的な化合物の化学構造を下記に挙げる。本発明は各々の化学構造で、nを基準とした分布を持ち且つ最大成分の化合物の組成比をx、2位の成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用いることである。   The chemical structures of representative compounds of the general formula B ′ are listed below. In the present invention, a mixed compound having a distribution based on n in each chemical structure, x = y is 99% or less, where x is the composition ratio of the compound of the largest component, and y is the composition ratio of the compound of the 2-position component. Is used as a charge transport material.

Figure 2005134515
Figure 2005134515

以下に、本発明の前記混合化合物(一般式B)の合成例を記載する。   Below, the synthesis example of the said mixed compound (general formula B) of this invention is described.

合成例(4);化合物(例示化学構造12B(m=0))の合成   Synthesis Example (4); Synthesis of Compound (Exemplary Chemical Structure 12B (m = 0))

Figure 2005134515
Figure 2005134515

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.96g(0.075mol)及びテトラヒドロフラン(以下THF)20mlを入れ、窒素を導入しながら撹拌した。   A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.96 g (0.075 mol) and 20 ml of tetrahydrofuran (hereinafter THF) were added. Was stirred while being introduced.

1の化合物:1.0g(0.003mol)、2の化合物:2.65g(0.007mol)及び3の化合物:2.52g(0.008mol)をTHF20mlに溶解して前記4(カリウム−tert−ブトキシ)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。   1 compound: 1.0 g (0.003 mol), 2 compound: 2.65 g (0.007 mol) and 3 compound: 2.52 g (0.008 mol) were dissolved in 20 ml of THF, and the above 4 (potassium-tert. -Butoxy) / THF was slowly added dropwise while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別に、200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。   Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. After pouring the reaction solution reacted for 5 hours, 20 ml of water was further poured, and the mixture was stirred for about 30 minutes and filtered. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過を行った。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造12B(m=0)の化合物を3.20g得た。   The crude crystals were dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. 10 ml of ethyl acetate was added and dissolved therein, and the resulting solution was added dropwise to 60 ml of methanol for reprecipitation purification, followed by filtration and drying to obtain 3.20 g of a compound having an exemplary chemical structure 12B (m = 0).

合成例1Aと同様の高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0〜5の混合物であり、組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=24.3/44.4/21.5/7.2/2.3/0.3であった。   As a result of the same high performance liquid chromatography and mass spectrometry as in Synthesis Example 1A, the obtained compound was a mixture of n = 0 to 5, and the composition ratio (area ratio of high performance liquid chromatography) was n = 0/1/2. /3/4=24.3/44.4/21.5/7.2/2.3/0.3.

尚、高速液体クロマトグラフィーの測定条件は下記で行なった。   The measurement conditions for high performance liquid chromatography were as follows.

合成例(5);化合物(例示化学構造11B(m=0))の合成   Synthesis Example (5); Synthesis of Compound (Exemplary Chemical Structure 11B (m = 0))

Figure 2005134515
Figure 2005134515

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.96g(0.075mol)及びTHF20mlを入れ、窒素を導入しながら撹拌した。   A 100 ml four-headed flask is equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.96 g (0.075 mol) and 20 ml of THF are added and stirred while introducing nitrogen. did.

1の化合物:1.0g(0.003mol)、2の化合物:2.46g(0.007mol)及び3の化合物:2.41g(0.008mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。   1 compound: 1.0 g (0.003 mol), 2 compound: 2.46 g (0.007 mol) and 3 compound: 2.41 g (0.008 mol) were dissolved in 20 ml of THF to dissolve 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別に、200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥しし、粗結晶を得た。   Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. After pouring a reaction liquid into this, 20 ml of water was further poured, and it stirred for about 30 minutes and filtered. Methanol / water = 1/1 Washed with about 40 ml and dried overnight at 50-60 ° C. to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造11B(m=0)の化合物を3.35g得た。   This crude crystal was dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved in 10 ml of ethyl acetate, dropped into 60 ml of methanol, purified by reprecipitation, filtered and dried to obtain 3.35 g of a compound having the exemplified chemical structure 11B (m = 0).

前記と同様の高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0〜4の混合物であり、組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=32.5/45.0/16.5/6.2/1.6であった。   As a result of the same high performance liquid chromatography and mass spectrometry as described above, the obtained compound was a mixture of n = 0 to 4, and the composition ratio (area ratio of high performance liquid chromatography) was n = 0/1/2/3. /4=32.5/45.0/16.5/6.2/1.6.

一般式Cの混合化合物は下記の化学構造を有する。   The mixed compound of general formula C has the following chemical structure.

Figure 2005134515
Figure 2005134515

一般式C中、Ar1は1価の置換、無置換の芳香族基、Ar2は2価の置換、無置換の芳香族基、2価の複素環基、又は前記一般式(8)を示し、Rは置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示す。但し、複数のAr1、Ar2、Rは互いに異なっていてもよい。 In general formula C, Ar 1 is a monovalent substituted or unsubstituted aromatic group, Ar 2 is a divalent substituted, unsubstituted aromatic group, divalent heterocyclic group, or general formula (8) above. R represents a substituted, unsubstituted alkyl group, monovalent substituted, or unsubstituted aromatic group. However, the plurality of Ar 1 , Ar 2 , and R may be different from each other.

又、前記一般式(8)中、Yは酸素原子、硫黄原子、−CH=CH−、又は−CH2−CH2−である。但しR1、R2は水素原子又は炭素数1〜4のアルキル基である。 In the general formula (8), Y represents an oxygen atom, a sulfur atom, —CH═CH—, or —CH 2 —CH 2 —. However R 1, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.

一般式C中、Ar1は1価の置換、無置換の芳香族基であるが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。 In general formula C, Ar 1 is a monovalent substituted or unsubstituted aromatic group, preferably a phenyl group substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. It is done.

又、Ar2の2価の置換、無置換の芳香族基としては、フェニレン基、ナフチレン基、ビフェニレン基等が好ましく、置換基としては、アルキル基が好ましい。Ar2の2価の複素環基としては、2価のフラン基、2価のチオフェン基等が好ましい。 Further, the divalent substituted or unsubstituted aromatic group of Ar 2 is preferably a phenylene group, a naphthylene group, a biphenylene group or the like, and the substituent is preferably an alkyl group. As the divalent heterocyclic group for Ar 2, a divalent furan group, a divalent thiophene group, and the like are preferable.

一般式Cの具体例   Specific examples of general formula C

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

Figure 2005134515
Figure 2005134515

以下に、本発明の前記混合化合物(一般式C)の合成例を記載する。   Below, the synthesis example of the said mixed compound (general formula C) of this invention is described.

合成例(6);化合物(例示化学構造17C)の合成
100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、2,4−ジメチルアニリン:4.08g(0.04mol)、ヨードベンゼン:4.08g(0.02mol)、m−ジヨードベンゼン:9.9g(0.03mol)、銅粉1.27g(0.02mol)、炭酸カリウム11.04g(0.08mol)を入れ、窒素を導入しながら190℃にて30時間反応させた。
反応液を約60℃まで冷却した後THF200mlを加えて撹拌し、濾過した。濾液を濃縮してトルエン100mlに溶解し、ワコーゲルB−0(和光純薬)10gを加えて、約30分撹拌しろ過を行った。トルエン30mlにてワコーゲルB−0を洗浄し、濾液及び洗液を濃縮乾固した。これにTHF20mlを加え溶解し、メタノール120mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造17Cの化合物を5.15g得た。
Synthesis Example (6): Synthesis of Compound (Exemplary Chemical Structure 17C) A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 2,4-dimethylaniline: 4.08 g (0. 04 mol), iodobenzene: 4.08 g (0.02 mol), m-diiodobenzene: 9.9 g (0.03 mol), copper powder 1.27 g (0.02 mol), potassium carbonate 11.04 g (0.08 mol) ) And allowed to react at 190 ° C. for 30 hours while introducing nitrogen.
The reaction solution was cooled to about 60 ° C., 200 ml of THF was added, and the mixture was stirred and filtered. The filtrate was concentrated and dissolved in 100 ml of toluene, 10 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved by adding 20 ml of THF, dropped into 120 ml of methanol, purified by reprecipitation, filtered and dried to obtain 5.15 g of a compound having an exemplary chemical structure 17C.

高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0/1/2/3/4/5/6/7=2.7/9.0/24.3/34.2/20.1/7.8/1.7/0.2であった。また、ゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)Mwは910であった。   As a result of high performance liquid chromatography and mass spectrometry, the obtained compound was n = 0/1/2/3/4/5/6/7 = 2.7 / 9.0 / 24.3 / 34.2 / 20. 1 / 7.8 / 1.7 / 0.2. Moreover, the weight average molecular weight (polystyrene conversion) Mw calculated | required from the gel permeation chromatography (GPC) was 910.

合成例(7);化合物(例示化学構造48C)の合成
100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、3,4−ジメチルアニリン:6.05g(0.05mol)、ヨードビフェニル:5.60g(0.02mol)、ビス(4−ブロモフェニル)エーテル:13.11g(0.04mol)、銅粉1.59g(0.025mol)、炭酸カリウム13.8g(0.1mol)を入れ、窒素を導入しながら190℃にて30時間反応させた。反応液を約60℃まで冷却した後THF200mlを加えて撹拌し、濾過した。濾液を濃縮してトルエン100mlに溶解し、ワコーゲルB−0(和光純薬)10gを加えて、約30分撹拌しろ過を行った。トルエン30mlにてワコーゲルB−0を洗浄し、濾液及び洗液を濃縮乾固した。これにTHF20mlを加え溶解し、メタノール120mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造48Cの化合物を10.56g得た。
Synthesis Example (7); Synthesis of Compound (Exemplary Chemical Structure 48C) A 100 ml four-headed flask was equipped with a nitrogen introduction tube, a condenser tube, a thermometer, and a stirrer, and 3,4-dimethylaniline: 6.05 g (0.0. 05 mol), iodobiphenyl: 5.60 g (0.02 mol), bis (4-bromophenyl) ether: 13.11 g (0.04 mol), copper powder 1.59 g (0.025 mol), potassium carbonate 13.8 g ( 0.1 mol) was added and reacted at 190 ° C. for 30 hours while introducing nitrogen. The reaction solution was cooled to about 60 ° C., 200 ml of THF was added, and the mixture was stirred and filtered. The filtrate was concentrated and dissolved in 100 ml of toluene, 10 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved in 20 ml of THF, added dropwise to 120 ml of methanol, purified by reprecipitation, filtered and dried to obtain 10.56 g of the compound having the exemplified chemical structure 48C.

高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0/1/2/3/4/5/6/7/8=0.9/3.4/12.0/22.8/31.3/19.9/6.9/2.5/0.3であった。また、ゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)Mwは1684であった。   As a result of high performance liquid chromatography and mass spectrometry, the obtained compound was n = 0/1/2/3/4/5/6/7/8 = 0.9 / 3.4 / 12.0 / 22.8. /31.3/19.9/6.9/2.5/0.3. Moreover, the weight average molecular weight (polystyrene conversion) Mw calculated | required from the gel permeation chromatography (GPC) was 1684.

本発明の前記一般式(1)の構造において、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の化合物の組成比をx、2位の成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有するが、該x+yは、30%〜99%が好ましく、45%〜90%がより好ましい。x+yが30%未満では、nの分布が広がりすぎ、分子量が大きくなりやすく、溶媒やバインダー樹脂との溶解性、相溶性が劣化しやすい。一方、99%より大きい場合も、低分子量の比率が低下した場合は同様に溶媒やバインダー樹脂との溶解性、相溶性が劣化しやすい。   In the structure of the general formula (1) of the present invention, it has a compound having a distribution based on n, the composition ratio of the compound of the maximum component of the compound is x, and the composition ratio of the compound of the 2-position component is y Then, although x + y contains a mixed compound of 99% or less, the x + y is preferably 30% to 99%, and more preferably 45% to 90%. When x + y is less than 30%, the distribution of n is too wide, the molecular weight tends to increase, and the solubility and compatibility with the solvent and binder resin tend to deteriorate. On the other hand, when the ratio is larger than 99%, the solubility and compatibility with the solvent and the binder resin are likely to be similarly deteriorated when the low molecular weight ratio is decreased.

又、前記一般式において、nは0〜10であるが、nが11以上の成分を含有していてもよい。即ち、nが0〜10の間に、最大成分と2位の成分が存在し、x+yが99%以下であればよい。   Moreover, in the said general formula, although n is 0-10, n may contain the component 11 or more. That is, the maximum component and the second-position component exist between n = 0 and 10, and x + y may be 99% or less.

本発明の前記混合化合物の分子量は平均分子量が650〜2500が好ましく、800〜2300がより好ましい。該平均分子量はポリスチレン換算の重量平均分子量で表し、平均分子量が2500を超えると溶媒溶解性が低下し、電荷輸送層のバインダー樹脂との相溶性が劣化し、その結果電荷輸送物質の分散性が低下し、感度や均一帯電性等の電子写真特性が著しく低下し、絶縁破壊や黒ポチも発生しやすい。一方、650未満では、低温低湿での残留電位が上昇しやすく、又高温高湿で絶縁破壊や黒ポチも発生しやすい。   The average molecular weight of the mixed compound of the present invention is preferably 650 to 2500, and more preferably 800 to 2300. The average molecular weight is expressed in terms of polystyrene-equivalent weight average molecular weight. When the average molecular weight exceeds 2500, the solvent solubility decreases, and the compatibility of the charge transport layer with the binder resin deteriorates. As a result, the dispersibility of the charge transport material is reduced. Electrophotographic characteristics such as sensitivity and uniform chargeability are remarkably lowered, and dielectric breakdown and black spots are likely to occur. On the other hand, if it is less than 650, the residual potential at low temperature and low humidity tends to increase, and dielectric breakdown and black spots tend to occur at high temperature and high humidity.

電荷注入層
本発明の電子写真感光体は、電荷輸送層上に電荷注入層を設けた構成を有するが、電荷注入層は基本的に導電性微粒子を分散したバインダー樹脂層から構成される。
Charge Injection Layer The electrophotographic photoreceptor of the present invention has a configuration in which a charge injection layer is provided on a charge transport layer. The charge injection layer is basically composed of a binder resin layer in which conductive fine particles are dispersed.

電荷注入層のバインダー樹脂としては、先に説明した電荷輸送層と同じ樹脂を使用する。   As the binder resin for the charge injection layer, the same resin as the charge transport layer described above is used.

電荷注入層の導電性微粒子としては、脂肪酸塩類、高級アルコール類、硫酸エステル類、脂肪酸アミン類、第四級アンモニウム塩類、アルキルピリジウム塩類、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、イミダゾリン誘導体等のアニオン系、カチオン系、又はノニオン系有機電解質;Au、Ag、Cu、Ni、Al等の金属;ZnO、TiO2、SnO2、In23、Sb23含有SnO2、In23含有SnO2等の金属酸化物;MgF2、CaF2、BiF2、AlF2、SnF2、SnF4、TiF4等の金属フッ化物;テトラインプロピルチタネート、テトラノルマルブチルチタネート、チタンアセチルアセトネート、チタンラクテートエチルエステル等の有機チタン化合物;及びそれらの混合物等が挙げられる。 As the conductive fine particles of the charge injection layer, fatty acid salts, higher alcohols, sulfate esters, fatty acid amines, quaternary ammonium salts, alkyl pyridium salts, polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, Anionic, cationic, or nonionic organic electrolytes such as sorbitan alkyl esters and imidazoline derivatives; metals such as Au, Ag, Cu, Ni, Al; ZnO, TiO 2 , SnO 2 , In 2 O 3 , Sb 2 O Metal oxides such as 3- containing SnO 2 and In 2 O 3 -containing SnO 2 ; metal fluorides such as MgF 2 , CaF 2 , BiF 2 , AlF 2 , SnF 2 , SnF 4 , TiF 4 ; tetrainpropyl titanate, tetra Normal butyl titanate, titanium acetylacetonate, titanium lactate ethyl ester And mixtures thereof, and the like; organic titanium compounds.

又、本発明の電荷注入層には、電荷輸送物質を含有させることが好ましい。電荷注入層に電荷輸送物質を含有させることにより、繰り返し使用に伴う感度の低下や残留電位の上昇も防止される。又、電荷注入層には前記した酸化防止機能を有する化合物を含有させることが好ましい。   The charge injection layer of the present invention preferably contains a charge transport material. By including a charge transport material in the charge injection layer, a decrease in sensitivity and an increase in residual potential due to repeated use can be prevented. The charge injection layer preferably contains a compound having the above-described antioxidant function.

電荷注入層の膜厚は、0.3〜10μmが適当であり、好ましくは、1〜5μmが良好である。   The thickness of the charge injection layer is suitably from 0.3 to 10 μm, preferably from 1 to 5 μm.

又、電荷注入層の体積抵抗は1010〜1015Ω・cmの範囲になるように設定するのが好ましく、特には1010〜1014Ω・cmが好ましい。膜強度的には、導電性粒子の量が増えれば増えるほど弱くなるため、導電性粒子の量は、電荷注入層の抵抗及び残留電位が許容できる範囲において、少なくする方が好ましい。 The volume resistance of the charge injection layer is preferably set in the range of 10 10 to 10 15 Ω · cm, particularly preferably 10 10 to 10 14 Ω · cm. Since the film strength becomes weaker as the amount of conductive particles increases, it is preferable to reduce the amount of conductive particles within a range where the resistance and residual potential of the charge injection layer are acceptable.

又、電荷注入層には、フッ素系樹脂粒子を含有させ、感光体表面の水に対する接触角を90°以上にすることが好ましく、更に、95°以上がより好ましい。即ち、接触角を大きくして、感光体の表面エネルギーを小さくすることにより、絶縁破壊や画像欠陥の原因となる感光体表面へのトナーや紙粉によるフィルミングの発生を防止することができる。該フッ素系樹脂粒子とはフッ素原子を含有した樹脂粒子を意味し、例えば、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、六フッ化エチレンプロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂及びこれらの共重合体のなかから1種あるいは2種以上を適宜選択するのが好ましいが、特に、四フッ化エチレン樹脂及びフッ化ビニリデン樹脂が好ましい。フッ素系樹脂粒子の分子量や粒子の粒径は、適宜選択することができ、特に制限されるものではないが、体積平均粒径が0.05〜5μmのものが好ましい。   Further, the charge injection layer contains fluorine resin particles, and the contact angle of the photoreceptor surface with water is preferably 90 ° or more, and more preferably 95 ° or more. That is, by increasing the contact angle and reducing the surface energy of the photoreceptor, it is possible to prevent filming due to toner or paper dust on the surface of the photoreceptor, which causes dielectric breakdown and image defects. The fluorine-based resin particles mean resin particles containing fluorine atoms. For example, tetrafluoroethylene resin, trifluoroethylene chloride resin, hexafluoroethylenepropylene resin, vinyl fluoride resin, vinylidene fluoride resin, It is preferable to appropriately select one or two or more of ethylene difluoride dichloride resin and copolymers thereof, and particularly, tetrafluoroethylene resin and vinylidene fluoride resin are preferable. The molecular weight of the fluororesin particles and the particle diameter of the particles can be appropriately selected and are not particularly limited, but those having a volume average particle diameter of 0.05 to 5 μm are preferable.

なお、上記フッ素系樹脂粒子の体積平均粒径はレーザ回折/散乱式粒度分布測定装置「LA−700」(堀場製作所(株)社製)により測定される。又、感光体の表面接触角は、純水に対する接触角を接触角計(CA−DT−A型:協和界面科学社製)を用いて20℃50%RHの環境下で測定する。   The volume average particle diameter of the fluororesin particles is measured by a laser diffraction / scattering particle size distribution measuring apparatus “LA-700” (manufactured by Horiba, Ltd.). The surface contact angle of the photosensitive member is measured by using a contact angle meter (CA-DT-A type: manufactured by Kyowa Interface Science Co., Ltd.) in an environment of 20 ° C. and 50% RH.

このような電荷注入層を有し、且つ前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として含有する電子写真感光体は、放電破壊電圧の閾値が顕著に改善され、絶縁破壊や黒ポチ等の画像欠陥の発生を顕著に抑制し、且つ電子写真特性(感度や残留電位等)の劣化を防止して、長期的に安定した画像形成を行うことができる。   The composition ratio of the largest component of the mixed compound having such a charge injection layer, having the chemical structure of the general formula (1), and having a distribution based on n is x, the compound of the 2-position component In the electrophotographic photosensitive member containing a mixed compound with x + y of 99% or less as a charge transport material, the threshold value of the discharge breakdown voltage is remarkably improved, and image defects such as dielectric breakdown and black spots are caused. Generation can be remarkably suppressed and deterioration of electrophotographic characteristics (sensitivity, residual potential, etc.) can be prevented, and stable image formation can be performed in the long term.

以上、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有した電荷輸送層、及び電荷注入層について説明したが、これら以外の電子写真感光体の層構成特に有機感光体の層構成について下記に記載する。   As described above, if the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, the composition ratio of the compound of the 2-position component is y, x + y The charge transport layer containing 99% or less of the mixed compound and the charge injection layer have been described. The layer structure of the electrophotographic photoreceptor other than these, particularly the layer structure of the organic photoreceptor, will be described below.

本発明で、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。   In the present invention, the organic photoconductor means an electrophotographic photoconductor formed by providing an organic compound with at least one of a charge generation function and a charge transport function essential to the configuration of the electrophotographic photoconductor. All known organic electrophotographic photoreceptors such as a photoreceptor composed of the above organic charge generating substance or organic charge transporting substance, a photoreceptor composed of a polymer complex with charge generating function and charge transporting function are contained.

以下に本発明に好ましく用いられる有機感光体の構成について記載する。   The constitution of the organic photoreceptor preferably used in the present invention is described below.

導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
Conductive Support The conductive support used for the photoreceptor may be either a sheet or a cylinder, but a cylindrical conductive support is preferred for designing an image forming apparatus compactly. .

円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。   Cylindrical conductive support means a cylindrical support necessary for forming an endless image by rotating. Conductivity is within a range of 0.1 mm or less in straightness and 0.1 mm or less in deflection. A support is preferred. Exceeding the range of straightness and shake makes it difficult to form a good image.

導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。 As the conductive material, a metal drum such as aluminum or nickel, a plastic drum deposited with aluminum, tin oxide, indium oxide or the like, or a paper / plastic drum coated with a conductive substance can be used. The conductive support preferably has a specific resistance of 10 3 Ωcm or less at room temperature.

本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/L、アルミニウムイオン濃度は1〜10g/L、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。   As the conductive support used in the present invention, one having an alumite film that has been sealed on the surface thereof may be used. The alumite treatment is usually performed in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing treatment in sulfuric acid gives the most preferable result. In the case of anodizing treatment in sulfuric acid, the sulfuric acid concentration is preferably 100 to 200 g / L, the aluminum ion concentration is 1 to 10 g / L, the liquid temperature is about 20 ° C., and the applied voltage is preferably about 20 V. It is not limited. The average film thickness of the anodized film is usually 20 μm or less, particularly preferably 10 μm or less.

中間層
本発明においては導電性支持体と感光層の間に、バリヤー機能を備えた中間層を設けることもできる。
Intermediate layer In the present invention, an intermediate layer having a barrier function may be provided between the conductive support and the photosensitive layer.

本発明においては導電性支持体と前記感光層のとの接着性改良、或いは該支持体からの電荷注入を防止するために、該支持体と前記感光層の間に中間層(下引層も含む)を設けることもできる。該中間層の材料としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂並びに、これらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂が挙げられる。これら下引き樹脂の中で繰り返し使用に伴う残留電位増加を小さくできる樹脂としてはポリアミド樹脂が好ましい。又、これら樹脂を用いた中間層の膜厚は0.01〜0.5μmが好ましい。   In the present invention, in order to improve the adhesion between the conductive support and the photosensitive layer, or to prevent charge injection from the support, an intermediate layer (including an undercoat layer) is provided between the support and the photosensitive layer. Including) can also be provided. Examples of the material for the intermediate layer include polyamide resins, vinyl chloride resins, vinyl acetate resins, and copolymer resins containing two or more of these resin repeating units. Of these subbing resins, a polyamide resin is preferable as a resin capable of reducing the increase in residual potential due to repeated use. The film thickness of the intermediate layer using these resins is preferably 0.01 to 0.5 μm.

又、本発明に好ましく用いられる中間層はシランカップリング剤、チタンカップリング剤等の有機金属化合物を熱硬化させた硬化性金属樹脂を用いた中間層が挙げられる。硬化性金属樹脂を用いた中間層の膜厚は、0.1〜2μmが好ましい。   Examples of the intermediate layer preferably used in the present invention include an intermediate layer using a curable metal resin obtained by thermosetting an organic metal compound such as a silane coupling agent or a titanium coupling agent. As for the film thickness of the intermediate | middle layer using curable metal resin, 0.1-2 micrometers is preferable.

又、本発明に好ましく用いられる中間層は無機粒子をバインダー樹脂中に分散した中間層が挙げられる。無機粒子の平均粒径は0.01〜1μmが好ましい。特に、表面処理をしたN型半導性微粒子をバインダー中に分散した中間層が好ましい。例えばシリカ・アルミナ処理及びシラン化合物で表面処理した平均粒径が0.01〜1μmの酸化チタンをポリアミド樹脂中に分散した中間層が挙げられる。このような中間層の膜厚は、1〜20μmが好ましい。   An intermediate layer preferably used in the present invention includes an intermediate layer in which inorganic particles are dispersed in a binder resin. The average particle diameter of the inorganic particles is preferably 0.01 to 1 μm. In particular, an intermediate layer in which N-type semiconductive fine particles subjected to surface treatment are dispersed in a binder is preferable. For example, an intermediate layer in which titanium oxide having an average particle size of 0.01 to 1 μm, which has been surface-treated with silica / alumina treatment and a silane compound, is dispersed in a polyamide resin. The film thickness of such an intermediate layer is preferably 1 to 20 μm.

N型半導性微粒子とは、導電性キャリアを電子とする性質をもつ微粒子を示す。すなわち、導電性キャリアを電子とする性質とは、該N型半導性微粒子を絶縁性バインダーに含有させることにより、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性を示さない性質を有するものをいう。   The N-type semiconducting fine particles are fine particles having the property of using conductive carriers as electrons. That is, the property that the conductive carrier is an electron is that the N-type semiconducting fine particles are contained in an insulating binder to effectively block hole injection from the substrate, and to convert electrons from the photosensitive layer into electrons. On the other hand, it has the property which does not show blocking property.

ここで、N型半導性粒子の判別方法について説明する。   Here, a method for discriminating N-type semiconductor particles will be described.

導電性支持体上に膜厚5μmの中間層(中間層を構成するバインダー樹脂中に粒子を50質量%分散させた分散液を用いて中間層を形成する)を形成する。該中間層に負極性に帯電させて、光減衰特性を評価する。又、正極性に帯電させて同様に光減衰特性を評価する。   An intermediate layer having a thickness of 5 μm is formed on the conductive support (the intermediate layer is formed using a dispersion in which 50% by mass of particles are dispersed in the binder resin constituting the intermediate layer). The intermediate layer is negatively charged and the light attenuation characteristics are evaluated. In addition, the light attenuation characteristics are similarly evaluated by charging to positive polarity.

N型半導性粒子とは、上記評価で、負極性に帯電させた時の光減衰が正極性に帯電させた時の光減衰よりも大きい場合に、中間層に分散された粒子をN型半導性粒子という。   N-type semiconductive particles are particles that are dispersed in the intermediate layer in the above evaluation when the light attenuation when charged negatively is greater than the light attenuation when charged positively. It is called semiconductive particle.

前記N型半導性微粒子は、具体的には酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)等の微粒子が挙げられるが、本発明では、特に酸化チタンが好ましく用いられる。 Specific examples of the N-type semiconducting fine particles include fine particles of titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), etc. In the present invention, titanium oxide is particularly preferably used. It is done.

本発明に用いられるN型半導性微粒子の平均粒径は、数平均一次粒径において10nm以上500nm以下の範囲のものが好ましく、より好ましくは10nm〜200nm、特に好ましくは、15nm〜50nmである。   The average particle diameter of the N-type semiconducting fine particles used in the present invention is preferably in the range of 10 nm to 500 nm in the number average primary particle diameter, more preferably 10 nm to 200 nm, and particularly preferably 15 nm to 50 nm. .

数平均一次粒径の値が前記範囲内にあるN型半導性微粒子を用いた中間層は層内での分散を緻密なものとすることができ、十分な電位安定性、及び黒ポチ発生防止機能を有する。   The intermediate layer using N-type semiconducting fine particles whose number average primary particle size is within the above range can be finely dispersed in the layer, has sufficient potential stability, and generates black spots. Has a prevention function.

前記N型半導性微粒子の数平均一次粒径は、例えば酸化チタンの場合、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定される。   For example, in the case of titanium oxide, the number-average primary particle size of the N-type semiconducting fine particles is magnified 10,000 times by observation with a transmission electron microscope, and 100 particles are randomly observed as primary particles. It is measured as the number average diameter.

本発明に用いられるN型半導性微粒子の形状は、樹枝状、針状および粒状等の形状があり、このような形状のN型半導性微粒子は、例えば酸化チタン粒子では、結晶型としては、アナターゼ型、ルチル型及びアモルファス型等があるが、いずれの結晶型のものを用いてもよく、また2種以上の結晶型を混合して用いてもよい。その中でもルチル型のものが最も良い。   The shape of the N-type semiconducting fine particles used in the present invention includes dendritic, needle-like, and granular shapes. For example, in the case of titanium oxide particles, the N-type semiconductive fine particles have a crystalline form. There are anatase type, rutile type and amorphous type, but any crystal type may be used, or two or more crystal types may be mixed and used. Of these, the rutile type is the best.

N型半導性微粒子に行われる疎水化表面処理の1つは、複数回の表面処理を行い、かつ該複数回の表面処理の中で、最後の表面処理が反応性有機ケイ素化合物による表面処理を行うものである。また、該複数回の表面処理の中で、少なくとも1回の表面処理がアルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理であり、最後に反応性有機ケイ素化合物の表面処理を行うことが好ましい。   One of the hydrophobizing surface treatments performed on the N-type semiconducting fine particles is a plurality of surface treatments, and the last surface treatment is a surface treatment with a reactive organosilicon compound. Is to do. In addition, at least one of the surface treatments is at least one surface treatment selected from alumina, silica, and zirconia, and finally the surface treatment of the reactive organosilicon compound is performed. It is preferable.

尚、アルミナ処理、シリカ処理、ジルコニア処理とはN型半導性微粒子表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。又、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。   Alumina treatment, silica treatment, and zirconia treatment are treatments for depositing alumina, silica, or zirconia on the surface of the N-type semiconducting fine particles. Alumina, silica, and zirconia deposited on these surfaces include alumina, silica, Zirconia hydrates are also included. The surface treatment of the reactive organosilicon compound means using a reactive organosilicon compound in the treatment liquid.

この様に、酸化チタン粒子の様なN型半導性微粒子の表面処理を少なくとも2回以上行うことにより、N型半導性微粒子表面が均一に表面被覆(処理)され、該表面処理されたN型半導性微粒子を中間層に用いると、中間層内における酸化チタン粒子等のN型半導性微粒子の分散性が良好で、かつ黒ポチ等の画像欠陥を発生させない良好な感光体を得ることができるのである。   In this way, the surface treatment of the N-type semiconductive fine particles such as titanium oxide particles was performed at least twice, so that the surface of the N-type semiconductive fine particles was uniformly coated (treated), and the surface treatment was performed. When N-type semiconducting fine particles are used in the intermediate layer, a good photoconductor having good dispersibility of N-type semiconductive fine particles such as titanium oxide particles in the intermediate layer and causing no image defects such as black spots. You can get it.

感光層
本発明の感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのがよい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CTL)の構成を取ることが好ましい。正帯電用の感光体では前記層構成の順が負帯電用感光体の場合の逆となる。本発明の最も好ましい感光層構成は前記機能分離構造を有する負帯電感光体構成である。
Photosensitive layer The photosensitive layer configuration of the photoreceptor of the present invention may be a single-layer photosensitive layer configuration in which the intermediate layer has a charge generation function and a charge transport function in one layer, but more preferably the function of the photosensitive layer. The charge generation layer (CGL) and the charge transport layer (CTL) may be separated from each other. By adopting a configuration in which the functions are separated, an increase in the residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. In the negatively charged photoconductor, it is preferable that a charge generation layer (CGL) is formed on the intermediate layer and a charge transport layer (CTL) is formed thereon. In the positively charged photoconductor, the order of the layer configuration is the reverse of that in the negatively charged photoconductor. The most preferred photosensitive layer structure of the present invention is a negatively charged photoreceptor structure having the function separation structure.

以下に機能分離負帯電感光体の感光層構成について説明する。   The structure of the photosensitive layer of the function-separated negatively charged photoreceptor will be described below.

電荷発生層
電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
Charge generation layer The charge generation layer contains a charge generation material (CGM). Other substances may contain a binder resin and other additives as necessary.

電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる結晶構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン、同2θが12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。   A known charge generation material (CGM) can be used as the charge generation material (CGM). For example, a phthalocyanine pigment, an azo pigment, a perylene pigment, an azulenium pigment, or the like can be used. Among these, CGM which can minimize the increase in residual potential due to repeated use has a crystal structure capable of taking a stable aggregate structure among a plurality of molecules, specifically, a phthalocyanine pigment having a specific crystal structure, CGM of a perylene pigment is mentioned. For example, CGMs such as titanyl phthalocyanine having a maximum peak at a Bragg angle 2θ of 27.2 ° with respect to Cu—Kα rays and benzimidazole perylene having a maximum peak at 2θ of 12.4 have little deterioration due to repeated use. Potential increase can be reduced.

電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜2μmが好ましい。   When a binder is used as the CGM dispersion medium in the charge generation layer, a known resin can be used as the binder, but the most preferred resins include formal resin, butyral resin, silicone resin, silicone-modified butyral resin, phenoxy resin, and the like. Can be mentioned. The ratio of the binder resin to the charge generating material is preferably 20 to 600 parts by mass with respect to 100 parts by mass of the binder resin. By using these resins, the increase in residual potential associated with repeated use can be minimized. The thickness of the charge generation layer is preferably 0.01 μm to 2 μm.

電荷輸送層
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。
Charge Transport Layer The charge transport layer contains a charge transport material (CTM) and a binder resin that forms a film by dispersing CTM. Other substances may contain additives such as antioxidants as necessary.

電荷輸送物質(CTM)としては、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を用いる。又、該混合化合物と共に、例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを併用して用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。   As the charge transport material (CTM), the composition ratio of the compound of the largest component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, and the composition of the compound of the second component When the ratio is y, a mixed compound having x + y of 99% or less is used. In addition, for example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound, and the like can be used in combination with the mixed compound. These charge transport materials are usually dissolved in a suitable binder resin to form a layer.

電荷輸送層(CTL)に用いられる樹脂としては、例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。   Examples of the resin used for the charge transport layer (CTL) include polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate. Resin, silicone resin, melamine resin, and copolymer resin containing two or more of repeating unit structures of these resins. In addition to these insulating resins, high molecular organic semiconductors such as poly-N-vinylcarbazole can be used.

これらCTLのバインダーとして最も好ましいものはポリカーボネート樹脂である。ポリカーボネート樹脂はCTMの分散性、電子写真特性を良好にすることにおいて、最も好ましい。バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し10〜200質量部が好ましい。   Most preferred as a binder for these CTLs is a polycarbonate resin. The polycarbonate resin is most preferable in improving the dispersibility and electrophotographic characteristics of CTM. The ratio of the binder resin to the charge transport material is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin.

又、電荷輸送層には前記した酸化防止剤を含有させることが好ましい。該酸化防止剤とは、その代表的なものは電子写真感光体中ないしは電子写真感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。   The charge transport layer preferably contains the above-described antioxidant. Typical examples of the antioxidants prevent the action of oxygen on auto-oxidizing substances existing in the electrophotographic photosensitive member or on the surface of the electrophotographic photosensitive member under conditions of light, heat, and discharge. It is also a substance having a suppressing property.

電荷輸送層は2層以上の層構成にしてもよい。又、電荷輸送層の膜厚は10〜40μmが好ましい。   The charge transport layer may be composed of two or more layers. The thickness of the charge transport layer is preferably 10 to 40 μm.

電荷注入層
前記した電荷注入層を表面層とした電子写真感光体が最も好ましい。
Charge Injection Layer An electrophotographic photoreceptor having the above-described charge injection layer as a surface layer is most preferable.

上記では本発明の最も好ましい感光体の層構成を例示したが、本発明では上記以外の感光体層構成でも良い。   In the above, the most preferable layer structure of the photoreceptor of the present invention is exemplified, but in the present invention, a photoreceptor layer structure other than the above may be used.

感光層、中間層、電荷注入層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。   As a solvent or dispersion medium used for forming a layer such as a photosensitive layer, an intermediate layer, and a charge injection layer, n-butylamine, diethylamine, ethylenediamine, isopropanolamine, triethanolamine, triethylenediamine, N, N-dimethylformamide, acetone, Methyl ethyl ketone, methyl isopropyl ketone, cyclohexanone, benzene, toluene, xylene, chloroform, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, trichloroethylene, tetra Chloroethane, tetrahydrofuran, dioxolane, dioxane, methanol, ethanol, butanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cellosol Etc. The. Although this invention is not limited to these, Dichloromethane, 1, 2- dichloroethane, methyl ethyl ketone, etc. are used preferably. These solvents may be used alone or as a mixed solvent of two or more.

又、これらの各層の塗布溶液は塗布工程に入る前に、塗布溶液中の異物や凝集物を除去するために、金属フィルター、メンブランフィルター等で濾過することが好ましい。例えば、日本ポール社製のプリーツタイプ(HDC)、デプスタイプ(プロファイル)、セミデプスタイプ(プロファイルスター)等を塗布液の特性に応じて選択し、濾過をすることが好ましい。   Further, the coating solution for each layer is preferably filtered with a metal filter, a membrane filter or the like in order to remove foreign matters and aggregates in the coating solution before entering the coating step. For example, it is preferable to select a pleat type (HDC), a depth type (profile), a semi-depth type (profile star), etc., manufactured by Nippon Pole Co., Ltd. according to the characteristics of the coating solution and perform filtration.

次に有機電子写真感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお電荷注入層は前記円形量規制型塗布加工方法を用いるのが最も好ましい。前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。   Next, as a coating processing method for producing the organic electrophotographic photosensitive member, a coating processing method such as dip coating, spray coating, circular amount regulation type coating, etc. is used. In order to prevent the film from being dissolved as much as possible, and in order to achieve uniform coating processing, it is preferable to use a coating processing method such as spray coating or circular amount regulation type (circular slide hopper type is a typical example). It is most preferable to use the circular amount regulation type coating method for the charge injection layer. The circular amount regulation type coating is described in detail in, for example, Japanese Patent Application Laid-Open No. 58-189061.

次に、本発明の接触帯電方式を用いた画像形成装置について説明する。   Next, an image forming apparatus using the contact charging method of the present invention will be described.

《帯電手段》
本発明は感光体に帯電部材を接触させて帯電する(以下、接触帯電部材を用いた帯電手段とも云う)。このような帯電部材としては、磁気ブラシ方式、帯電ローラ方式、ブレード方式等各種帯電部材を用いることができるが、これらの中でも帯電部材として帯電ローラ方式、或いは磁気ブラシ方式が最も好ましく本発明に用いられる。即ち、帯電の均一性が得られやすい帯電ローラ、或いは磁気ブラシが良い。以下、帯電ローラ方式、及び磁気ブラシ方式の帯電手段について記載する。
<Charging means>
In the present invention, charging is performed by bringing a charging member into contact with the photoreceptor (hereinafter also referred to as charging means using the contact charging member). As such a charging member, various charging members such as a magnetic brush method, a charging roller method, and a blade method can be used. Among these, a charging roller method or a magnetic brush method is most preferable as the charging member and used in the present invention. It is done. That is, a charging roller or a magnetic brush that is easy to obtain charging uniformity is preferable. The charging roller type and magnetic brush type charging means will be described below.

本発明においては、導電性弾性部材により構成された帯電ローラを感光体(像担持体)に接触させ、該帯電ローラに電圧を印加して感光体(像担持体)を帯電することが出来る。   In the present invention, a charging roller composed of a conductive elastic member can be brought into contact with a photosensitive member (image carrier), and a voltage can be applied to the charging roller to charge the photosensitive member (image carrier).

このような帯電ローラ方式は、直流電圧をローラに印加する直流帯電方式、交流電圧をローラに印加する誘導帯電方式のいずれでもよい。   Such a charging roller system may be either a DC charging system in which a DC voltage is applied to the roller or an induction charging system in which an AC voltage is applied to the roller.

又誘導帯電方式で印加される電圧の周波数fは任意のものが用いられるが、ストロービングすなわち縞模様を防止するために、導電性弾性ローラ及び像担持体部材の相対速度に応じて適当な周波数を選択できる。該相対速度は導電性弾性ローラと像担持体との接触領域の大きさによって決めることができる。   In addition, the frequency f of the voltage applied by the induction charging method is arbitrary, but an appropriate frequency is selected according to the relative speed of the conductive elastic roller and the image carrier member in order to prevent strobing, that is, a stripe pattern. Can be selected. The relative speed can be determined by the size of the contact area between the conductive elastic roller and the image carrier.

導電性弾性ローラは芯金の外周に導電性弾性部材よりなる層(単に導電性弾性層又H、導電性ゴム層ともいう)を被覆したものである。   The conductive elastic roller is formed by coating the outer periphery of a metal core with a layer made of a conductive elastic member (also simply referred to as a conductive elastic layer or H or a conductive rubber layer).

前記導電性ゴム層に用いることのできるゴム組成物としては、ポリノルボルネンゴム、エチレン−プロピレンゴム、クロロプレンゴム、アクリロニトリルゴム、シリコーンゴム等が挙げられる。これらのゴムは、単独でまたは2種以上の混合ゴムとして使用することができる。   Examples of the rubber composition that can be used for the conductive rubber layer include polynorbornene rubber, ethylene-propylene rubber, chloroprene rubber, acrylonitrile rubber, and silicone rubber. These rubber | gum can be used individually or as 2 or more types of mixed rubbers.

導電性を付与するために、これらのゴム組成物に導電性付与剤を配合して使用する。適当な導電性付与剤としては、公知のカーボンブラック(ファーネス系カーボンブラックまたはケツチエンブラック)、酸化錫等の金属粉が挙げられる。導電性付与剤の使用量はゴム組成物全量に対して約5〜約50質量部である。   In order to impart conductivity, a conductivity imparting agent is blended with these rubber compositions. Examples of suitable conductivity imparting agents include known carbon black (furnace carbon black or ketien black), metal powder such as tin oxide. The usage-amount of an electroconductivity imparting agent is about 5 to about 50 mass parts with respect to the rubber composition whole quantity.

ゴム組成物には、ゴム基材、発泡剤、導電性付与剤以外に必要に応じて、ゴム用薬品、ゴム添加剤を配合して導電性発泡ゴム組成物とすることもできる。ゴム用薬品、ゴム添加剤としては、硫黄、パーオキサイド等の加硫剤、亜鉛華、ステアリン酸等の加硫促進助剤、スルフェンアミド系、チラウム系、チアゾール系、グラニジン系等の加硫促進剤、アミン系、フェノール系、硫黄系、リン系等の老化防止剤、または酸化防止剤、紫外線吸収剤、オゾン劣化防止剤、粘着付与剤等を使用することができ、さらに各種の補強剤、摩擦係数調整剤、シリカ、タルク、クレイ等の無機充填剤も任意に選択し使用し得る。これらの導電性ゴム層は103〜107Ωcmの範囲の直流体積抵抗率を有することが好ましい。 In addition to the rubber base material, the foaming agent, and the conductivity imparting agent, the rubber composition may be blended with a rubber chemical and a rubber additive as necessary to obtain a conductive foamed rubber composition. Rubber chemicals and rubber additives include vulcanizing agents such as sulfur and peroxide, vulcanization accelerators such as zinc white and stearic acid, vulcanized sulfenamide, thyrium, thiazole and granidine Accelerators, amine-based, phenol-based, sulfur-based, phosphorus-based anti-aging agents, antioxidants, UV absorbers, ozone degradation inhibitors, tackifiers, etc. can be used, and various reinforcing agents In addition, an inorganic filler such as a friction coefficient modifier, silica, talc, clay and the like can be arbitrarily selected and used. These conductive rubber layers preferably have a DC volume resistivity in the range of 10 3 to 10 7 Ωcm.

更にこれら導電性弾性層の外側には、感光体表面に残留したトナー等の帯電部材への付着を防止する目的で、離型性被覆層を設けてもよい。該被覆層は又弾性層からのオイルの浸みだしの防止をはかると共に弾性層の抵抗ムラをキャンセルし、抵抗の均一化をはかる、帯電ローラの表面を保護する、帯電ローラの硬度を調整する、等の機能を果たしている。被覆層は上記物性を満足するものであれば、いずれのものでも良く、ひとつの層でも、複数の層でも良い。材料としてはヒドリンゴム、ウレタンゴム、ナイロン、ポリ弗化ビニリデン、ポリ塩化ビニリデン等の樹脂が挙げられる。また、被覆層の厚みは100〜1000μmであることが好ましく、抵抗値は105〜109Ω・cmであることが好ましい。また、表層に近づくにつれ抵抗値は大きくなっていることが好ましい。抵抗を調整する方法としては、被覆層にカーボンブラック、金属及び金属酸化物等の導電性物質を含有させること等が挙げられる。 Further, on the outside of these conductive elastic layers, a releasable coating layer may be provided for the purpose of preventing the toner remaining on the surface of the photoreceptor from adhering to the charging member. The coating layer also prevents oil seepage from the elastic layer and cancels the resistance unevenness of the elastic layer, uniforms the resistance, protects the surface of the charging roller, and adjusts the hardness of the charging roller. Etc. The covering layer may be any layer as long as it satisfies the above physical properties, and may be a single layer or a plurality of layers. Examples of the material include resins such as hydrin rubber, urethane rubber, nylon, polyvinylidene fluoride, and polyvinylidene chloride. The thickness of the coating layer is preferably 100 to 1000 μm, and the resistance value is preferably 10 5 to 10 9 Ω · cm. Moreover, it is preferable that resistance value becomes large as it approaches the surface layer. Examples of the method for adjusting the resistance include adding a conductive material such as carbon black, metal, and metal oxide to the coating layer.

帯電ローラの表面粗さRzを調整するには帯電ローラの表面層(導電性弾性層又は被覆層)に粉体を含有させることが好ましい。本発明に用いられる粒体は、無機物あるいは有機物のいずれでもよいが、無機物の場合、シリカ粉末が特に好ましい。有機物の場合、たとえばウレタン樹脂粒子、ナイロン粒子、シリコーンゴム粒子、エポキシ樹脂粒子等が挙げられる。これらの粒子は単独でまたは2種以上混合して用いられる。適当な粒体は表面層の表面粗度Rzを0.05〜10.0μmの範囲に調整できる物質を選べばよいが、粒体の粒子径が1〜20μmの範囲にあると所望の表面粗度範囲が達成されやすい。粒子径が20μmを超すと、表面粗度Rzも10.0μmを超し、所期の目的を果さない。逆に、粒子径が1μm未満であると、表面粗度Rzが0.05μm未満となりやすくこれも所期の目的を果さない。   In order to adjust the surface roughness Rz of the charging roller, it is preferable to include powder in the surface layer (conductive elastic layer or coating layer) of the charging roller. The granular material used in the present invention may be either an inorganic substance or an organic substance, but in the case of an inorganic substance, silica powder is particularly preferable. In the case of organic substances, for example, urethane resin particles, nylon particles, silicone rubber particles, epoxy resin particles and the like can be mentioned. These particles are used alone or in combination of two or more. A suitable particle may be selected from a material that can adjust the surface roughness Rz of the surface layer to a range of 0.05 to 10.0 μm, but if the particle diameter of the particle is in the range of 1 to 20 μm, the desired surface roughness is selected. The degree range is easy to achieve. If the particle diameter exceeds 20 μm, the surface roughness Rz also exceeds 10.0 μm, which does not fulfill the intended purpose. Conversely, if the particle size is less than 1 μm, the surface roughness Rz tends to be less than 0.05 μm, which also does not fulfill the intended purpose.

表面粗度Rzを0.05〜10.0μmの範囲に設定する理由は、10.0μmを超すとローラ表面に対するトナーのフィルミングが顕著になるからであり、0.05μm未満であると帯電ローラと感光体ドラムの密着性が高まり、すなわち接触面積が大きくなるので帯電音の抑制ができなくなるからである。   The reason why the surface roughness Rz is set in the range of 0.05 to 10.0 μm is that if it exceeds 10.0 μm, filming of the toner on the roller surface becomes remarkable, and if it is less than 0.05 μm, the charging roller This is because the adhesion between the photosensitive drum and the photosensitive drum is increased, that is, the contact area is increased, so that charging noise cannot be suppressed.

粉体の表面層中の配合割合は、樹脂100質量部に対して約5〜約20質量部の割合で配合し、分散することが好ましい。   It is preferable to mix and disperse | distribute the mixture ratio in the surface layer of a powder in the ratio of about 5 to about 20 mass parts with respect to 100 mass parts of resin.

帯電ローラは、たとえば次のようにして製造することができる。すなわち、まず円筒状成形空間を有する成形型内に、金属製の回転軸(芯金)を入れ成形型内に導電性弾性体層形成材料を充填し、加硫を行うことにより回転軸の外周面に導電性弾性体層を形成する。次いで、導電性弾性体層の形成された回転軸を成形型から取出す。一方、ウレタン樹脂等の材と、粒体、導電付与剤その他の添加剤を配合し、この配合物をボールミル等を用いて混合、撹拌し表面層形成材料混合物を調製する。そしてこの混合物をディップ法、ロールコート法、スプレーコーティング法等によって前記導電性弾性体層の形成された回転軸表面に均一な厚みに塗工して乾燥し、加熱硬化することにより2層構造の帯電ローラを製造することができる。このようにして得られる帯電ローラは、その最外層である表面層の表面の粗度Rzが0.05〜10.0μmに形成される。   The charging roller can be manufactured as follows, for example. That is, first, a metal rotating shaft (core metal) is placed in a forming die having a cylindrical forming space, a conductive elastic layer forming material is filled in the forming die, and vulcanization is performed, whereby the outer periphery of the rotating shaft is filled. A conductive elastic layer is formed on the surface. Next, the rotating shaft on which the conductive elastic layer is formed is taken out from the mold. On the other hand, a material such as a urethane resin and granules, a conductivity-imparting agent and other additives are blended, and this blend is mixed and stirred using a ball mill or the like to prepare a surface layer forming material mixture. Then, the mixture is applied to the surface of the rotating shaft on which the conductive elastic layer is formed by a dip method, a roll coating method, a spray coating method, etc., dried to a uniform thickness, and heat-cured to form a two-layer structure. A charging roller can be manufactured. The charging roller thus obtained is formed so that the surface roughness Rz of the outermost surface layer is 0.05 to 10.0 μm.

次に本発明の画像形成装置について述べる。   Next, the image forming apparatus of the present invention will be described.

図1は帯電ローラ帯電を用いた画像形成装置の1例を示す図である。この画像形成装置は本発明を実施するためのものであり、静電潜像形成のための帯電手段として、帯電ローラを感光体ドラムに接触させて帯電せしめ(帯電工程)、又トナーを転写紙へ転写するための転写極(転写手段)に転写ローラを用いている(転写工程)。この転写ローラを直接或いは転写紙を挟んで感光体ドラムに接触させることによりオゾンの発生を回避させた態様のものでいわゆる接触帯電方式を採用しており、そして非接触現像により静電潜像を現像するものである。   FIG. 1 is a diagram showing an example of an image forming apparatus using charging roller charging. This image forming apparatus is for carrying out the present invention. As a charging means for forming an electrostatic latent image, a charging roller is brought into contact with a photosensitive drum for charging (charging process), and toner is transferred to a transfer paper. A transfer roller is used as a transfer pole (transfer means) for transferring to (transfer process). The transfer roller is in contact with the photosensitive drum directly or with the transfer paper interposed therebetween to avoid the generation of ozone. The so-called contact charging method is adopted, and the electrostatic latent image is formed by non-contact development. Develop.

図1(a)において帯電ローラ1によって帯電された感光体ドラム2上にレーザを用いた像露光により静電潜像が形成される(像露光工程)。そして、この静電潜像は、感光体ドラム2に近接して配置された現像装置(現像手段)3の現像剤担持体である現像スリーブ4によってトナー像に現像される(現像工程)。そして、転写前の除電ランプ5によって感光体ドラム2の電荷が除電された後、トナー像は、給紙カセットから搬送ローラ8によって搬送されてきた転写紙Pに、転写ローラ6によりトナーと逆極性の電荷が付与され、この逆極性の電荷の静電気力により転写紙Pにトナーが転写される。トナー転写後の転写紙Pは、感光体ドラム2から分離された後、搬送ベルト7によって定着装置へ送られ、加熱ローラと押圧ローラによってトナー像が転写紙Pに定着される(定着工程)。   In FIG. 1A, an electrostatic latent image is formed on a photosensitive drum 2 charged by a charging roller 1 by image exposure using a laser (image exposure process). The electrostatic latent image is developed into a toner image by a developing sleeve 4 which is a developer carrying member of a developing device (developing means) 3 disposed in the vicinity of the photosensitive drum 2 (developing step). Then, after the charge of the photosensitive drum 2 is discharged by the discharging lamp 5 before transfer, the toner image is transferred to the transfer paper P transported by the transporting roller 8 from the paper feed cassette and transferred to the transfer paper 6 by the reverse polarity of the toner. The toner is transferred onto the transfer paper P by the electrostatic force of the reverse polarity charge. After the toner transfer, the transfer paper P is separated from the photosensitive drum 2 and then sent to the fixing device by the conveying belt 7, and the toner image is fixed to the transfer paper P by the heating roller and the pressing roller (fixing step).

前記帯電ローラ1(及び転写ローラ6)には電源9(10)からDC及びAC成分から成るバイアス電圧が印加され、オゾン発生量が極めて少い状態で感光体ドラム2への帯電及びトナー像の転写紙Pへの帯電が行なわれる。前記電圧は通常±300〜1000VのDCバイアスとこれに重畳して100Hz〜10KHz、200〜3500V(p−p)のACバイアスを付加することが好ましい。   A bias voltage composed of DC and AC components is applied to the charging roller 1 (and transfer roller 6) from a power source 9 (10), and the charging of the photosensitive drum 2 and the toner image are generated in a state where the amount of ozone generation is extremely small. The transfer paper P is charged. The voltage is preferably a DC bias of ± 300 to 1000 V and an AC bias of 100 to 10 KHz and 200 to 3500 V (pp) superimposed on the DC bias.

前記帯電ローラ1及び転写ローラ6は感光体ドラム2への圧接下に従動又は強制回転される。   The charging roller 1 and the transfer roller 6 are driven or forcibly rotated under pressure contact with the photosensitive drum 2.

前記感光体ドラム2への圧接は10〜100g/cmとされローラの回転は感光体ドラム2の周速の1〜8倍とされる。   The pressure contact with the photosensitive drum 2 is 10 to 100 g / cm, and the rotation of the roller is 1 to 8 times the peripheral speed of the photosensitive drum 2.

図1(b)に示すように前記帯電ローラ1(及び転写ローラ6)は芯金20と、その外周に設けられた導電性弾性部材であるクロルプレンゴム、ウレタンゴム、シリコーンゴム等のゴム層又はそれらのスポンジ層21から成り、好ましくは最外層に0.01〜1μm厚の離型性弗素系樹脂又はシリコーン樹脂層から成る保護層22を設けて構成される。   As shown in FIG. 1B, the charging roller 1 (and the transfer roller 6) includes a cored bar 20 and a rubber layer such as chlorprene rubber, urethane rubber, and silicone rubber that are conductive elastic members provided on the outer periphery thereof. Or it consists of those sponge layers 21, Preferably it is comprised by providing the protective layer 22 which consists of a mold release fluorine-type resin or silicone resin layer of 0.01-1 micrometer thickness in the outermost layer.

転写後の感光体ドラム2はクリーニング器(クリーニング手段)11のクリーニングブレード12の圧接によりクリーニングされ次の画像形成に供えられる。   After the transfer, the photosensitive drum 2 is cleaned by the pressure contact of the cleaning blade 12 of the cleaning device (cleaning means) 11 and used for the next image formation.

電子写真方式の画像形成装置としては、感光体と、帯電手段、現像手段、クリーニング手段等の構成要素をプロセスカートリッジとして一体に結合して構成し、このユニットを装置本体に対して着脱自在に構成しても良い。又像露光手段、現像手段、転写又は分離器、クリーニング手段の少なくとも1つを感光体とともに一体に支持してプロセスカートリッジを形成し、画像形成装置本体に着脱自在の単一ユニットとし、装置本体のレールなどの案内手段を用いて着脱自在の構成としても良い。   As an electrophotographic image forming apparatus, a photosensitive member and components such as a charging unit, a developing unit, and a cleaning unit are integrally combined as a process cartridge, and this unit is configured to be detachable from the apparatus main body. You may do it. Further, at least one of the image exposure means, the developing means, the transfer or separator, and the cleaning means is integrally supported together with the photosensitive member to form a process cartridge, and is a single unit that is detachable from the main body of the image forming apparatus. It is good also as a structure which can be attached or detached using guide means, such as a rail.

尚、前記図1においては、帯電器、及び転写極ともローラ帯電器を用いているが、本発明においては、本発明は帯電器に接触帯電部材(帯電ローラ等)を用いることであり、転写極には転写ローラ以外の転写手段を用いても良い。   In FIG. 1, a roller charger is used for both the charger and the transfer electrode. However, in the present invention, the present invention is to use a contact charging member (charging roller or the like) for the charger. Transfer means other than the transfer roller may be used for the poles.

次に、帯電部材に磁気ブラシを用いる磁気ブラシ帯電装置について説明する。   Next, a magnetic brush charging device using a magnetic brush as the charging member will be described.

図2は接触式の磁気ブラシ帯電装置の図、図3は図2の帯電装置による交流バイアス電圧と帯電電位との関係を示す図である。   FIG. 2 is a diagram of a contact-type magnetic brush charging device, and FIG. 3 is a diagram showing a relationship between an AC bias voltage and a charging potential by the charging device of FIG.

一般に帯電用磁気ブラシを形成する磁気粒子の体積平均粒径が大きいと、帯電用磁気粒子搬送体(搬送担体)上に形成される磁気ブラシの穂の状態が粗いために、電界による振動を与えながら帯電しても、磁気ブラシにムラが現れ易く、帯電ムラの問題が起こる。この問題を解消するには、磁気粒子の体積平均粒径を小さくすればよく、実験の結果、体積平均粒径が200μm以下でその効果が現れ始め、特に150μm以下になると、実質的に磁気ブラシの穂の粗に伴う問題が生じなくなる。しかし、粒子が細か過ぎると帯電時に感光体ドラム50面に付着するようになったり、飛散し易くなったりする。これらの現象は、粒子に作用する磁界の強さ、それによる粒子の磁化の強さにも関係するが、一般的には、粒子の体積平均粒径が20μm以下に顕著に現れるようになる。   In general, if the volume average particle size of the magnetic particles forming the charging magnetic brush is large, the ears of the magnetic brush formed on the charging magnetic particle carrier (conveyance carrier) are rough. However, even when charged, unevenness is likely to appear on the magnetic brush, resulting in a problem of uneven charging. In order to solve this problem, the volume average particle diameter of the magnetic particles may be reduced. As a result of the experiment, the effect starts to appear when the volume average particle diameter is 200 μm or less. The problems associated with the coarseness of the ears are eliminated. However, if the particles are too fine, they will adhere to the surface of the photosensitive drum 50 during charging, or may be easily scattered. These phenomena relate to the strength of the magnetic field acting on the particles and the magnetization strength of the particles, but generally, the volume average particle diameter of the particles becomes noticeable at 20 μm or less.

以上から、磁気粒子の粒径は体積平均粒径が200μm以下、20μm以上であり、且つ該磁気粒子の個数平均粒径の1/2倍以下の粒径を有する磁気粒子を30個数%以下とすることが必要である。なお、磁化の強さは30〜100emu/gのものが好ましく用いられる。   From the above, the magnetic particles have a volume average particle size of 200 μm or less, 20 μm or more, and 30% by number or less of magnetic particles having a particle size of 1/2 or less of the number average particle size of the magnetic particles. It is necessary to. The magnetization strength is preferably 30 to 100 emu / g.

このような磁気粒子は、磁性体として前述した従来の二成分現像剤の磁性キャリヤ粒子におけると同様の、鉄、クロム、ニッケル、コバルト等の金属、あるいはそれらの化合物や合金、例えば四三酸化鉄、γ−酸化第二鉄、二酸化クロム、酸化マンガン、フェライト、マンガン−銅系合金、と云った強磁性体の粒子、又はそれら磁性体粒子の表面をスチレン系樹脂、ビニル系樹脂、エチレン系樹脂、ロジン変性樹脂、アクリル系樹脂、ポリアミド樹脂、エポキシ樹脂、ポリエステル樹脂等の樹脂で被覆するか、あるいは、磁性体微粒子を分散して含有した樹脂で作るかして得られた粒子を従来公知の平均粒径選別手段で粒径選別することによって得られる。   Such magnetic particles are the same as the magnetic carrier particles of the conventional two-component developer described above as the magnetic material, such as metals such as iron, chromium, nickel and cobalt, or their compounds and alloys, such as iron tetroxide. , Γ-ferric oxide, chromium dioxide, manganese oxide, ferrite, manganese-copper alloys, ferromagnetic particles, or the surfaces of these magnetic particles are made of styrene resin, vinyl resin, ethylene resin Particles obtained by coating with a resin such as rosin-modified resin, acrylic resin, polyamide resin, epoxy resin, polyester resin, or made of resin containing dispersed magnetic fine particles are conventionally known. It can be obtained by selecting the particle size with an average particle size selecting means.

なお、磁気粒子を球状に形成することは、搬送担体に形成される粒子層が均一となり、また搬送担体に高いバイアス電圧を均一に印加することが可能となると云う効果も与える。即ち、磁気粒子が球形化されていることは、(1)一般に、磁気粒子は長軸方向に磁化吸着され易いが、球形化によってその方向性がなくなり、従って、磁気粒子層が均一に形成され、局所的に抵抗の低い領域や層厚のムラの発生を防止する、(2)磁気粒子の高抵抗化と共に、従来の粒子に見られるようなエッジ部が無くなって、エッジ部への電界の集中が起こらなくなり、その結果、帯電用磁気粒子の搬送担体に高いバイアス電圧を印加しても、感光体ドラム50面に均一に放電して帯電ムラが起こらない、という効果を与える。   In addition, forming the magnetic particles in a spherical shape has an effect that the particle layer formed on the carrier is uniform, and a high bias voltage can be uniformly applied to the carrier. That is, the magnetic particles are spherical. (1) Generally, magnetic particles are easily magnetized and adsorbed in the long axis direction, but the directionality is lost by the spherical shape, and therefore the magnetic particle layer is formed uniformly. (2) With the increase in resistance of magnetic particles, the edge portion as found in conventional particles is eliminated, and the electric field to the edge portion is prevented. Concentration does not occur, and as a result, even when a high bias voltage is applied to the carrier for charging magnetic particles, the surface of the photosensitive drum 50 is uniformly discharged and charging unevenness does not occur.

以上のような効果を奏する球形粒子には磁気粒子の抵抗率が105〜1010Ωcmであるように導電性の磁気粒子を形成したものが好ましい。この抵抗率は、粒子を0.50cm2の断面積を有する容器に入れてタッピングした後、詰められた粒子上に1kg/cm2の荷重を掛け、荷重と底面電極との間に1000V/cmの電界が生ずる電圧を印加したときの電流値を読み取ることで得られる値であり、この抵抗率が低いと、搬送担体にバイアス電圧を印加した場合に、磁気粒子に電荷が注入されて、感光体ドラム50面に磁気粒子が付着し易くなったり、あるいはバイアス電圧による感光体ドラム50の絶縁破壊が起こり易くなったりする。また、抵抗率が高いと電荷注入が行われず帯電が行われない。 Spherical particles having the above effects are preferably those in which conductive magnetic particles are formed so that the resistivity of the magnetic particles is 10 5 to 10 10 Ωcm. The resistivity after tapping putting particles in a container having a sectional area of 0.50 cm 2, a load of 1 kg / cm 2 on packed particles, 1000V / cm between the load and a bottom electrode This value is obtained by reading the current value when a voltage generating an electric field is applied. If this resistivity is low, when a bias voltage is applied to the carrier, charges are injected into the magnetic particles, and the Magnetic particles are likely to adhere to the surface of the body drum 50, or dielectric breakdown of the photosensitive drum 50 due to a bias voltage is likely to occur. If the resistivity is high, charge injection is not performed and charging is not performed.

さらに、接触式の磁気ブラシ帯電装置120に用いられる磁気粒子は、それにより構成される磁気ブラシが振動電界により軽快に動き、しかも外部飛散が起きないように、比重が小さく、且つ適度の最大磁化を有するものが望ましい。具体的には真比重が6以下で最大磁化が30〜100emu/gのもの、特に40〜80emu/gを用いると好結果が得られることが判明した。   Furthermore, the magnetic particles used in the contact-type magnetic brush charging device 120 have a small specific gravity and an appropriate maximum magnetization so that the magnetic brush formed by the magnetic brush is moved easily by an oscillating electric field and no external scattering occurs. It is desirable to have Specifically, it has been found that good results can be obtained when the true specific gravity is 6 or less and the maximum magnetization is 30 to 100 emu / g, particularly 40 to 80 emu / g.

以上を総合して、磁気粒子は、少なくとも長軸と短軸の比が3倍以下であるように球形化されており、針状部やエッジ部等の突起が無く、抵抗率は好ましくは105〜1010Ωcmの範囲にあることが望まれる。そして、このような球状の磁気粒子は、磁性体粒子にできるだけ球形のものを選ぶこと、磁性体微粒子分散系の粒子では、できるだけ磁性体の微粒子を用いて、分散樹脂粒子形成後に球形化処理を施すこと、あるいはスプレードライの方法によって分散樹脂粒子を形成すること等によって製造される。 In summary, the magnetic particles are spheroidized so that the ratio of the major axis to the minor axis is 3 times or less, there are no protrusions such as needles and edges, and the resistivity is preferably 10 It is desired to be in the range of 5 to 10 10 Ωcm. For such spherical magnetic particles, select spherical particles as much as possible for magnetic particles, and for magnetic particles dispersed particles, use magnetic particles as much as possible, and perform spheronization after forming dispersed resin particles. Or by forming dispersed resin particles by a spray drying method.

図2又は図3によれば、帯電装置としての磁気ブラシ帯電装置120は回転する感光体ドラム50と対向し、感光体ドラム50との近接部(帯電部T)において同方向(反時計方向)に回転される帯電用磁気粒子搬送体としての、例えばアルミ材やステンレス材を用いた円筒状の帯電スリーブ120aと、該帯電スリーブ120aの内部に設けられるN、S極よりなる磁石体121と、該磁石体121により帯電スリーブ120aの外周面上に形成され感光体ドラム50を帯電する磁気粒子からなる磁気ブラシと、磁石体121のN−N磁極部において該帯電スリーブ120a上の磁気ブラシを掻取るスクレーパ123と、磁気ブラシ帯電装置120内の磁気粒子を撹拌或いは磁気粒子供給時に使用済み磁気粒子を磁気ブラシ帯電装置120の排出口125より溢れさせて排出する撹拌スクリュウ124と、磁気ブラシの穂立ち規制板126とにより構成される。帯電スリーブ120aは磁石体121に対し回動可能になっていて、感光体ドラム50との対向位置で感光体ドラム50の移動方向と同方向(反時計方向)に0.1〜1.0倍の周速度で回転させられるのが好ましい。また帯電スリーブ120aは、帯電バイアス電圧を印加し得る導電性の搬送担体が用いられるが、特に、表面に粒子層が形成される導電性の帯電スリーブ120aの内部に複数の磁極を有する磁石体121が設けられている構造のものが好ましく用いられる。このような搬送担体においては、磁石体121との相対的な回転によって、導電性の帯電スリーブ120aの表面に形成される磁気粒子層が波状に起伏して移動するようになるから、新しい磁気粒子が次々と供給され、帯電スリーブ120a表面の磁気粒子層に多少の層厚の不均一があっても、その影響は上記波状の起伏によって実際上問題とならないように十分カバーされる。帯電スリーブ120aの表面は磁気粒子の安定な均一搬送のために表面の平均粗さを5.0〜30μmとすることが好ましい、平滑であると搬送は十分に行えなく、粗すぎると表面の凸部から過電流が流れ、どちらにしても帯電ムラが生じ易い。上記の表面粗さとするにはサンドブラスト処理が好ましく用いられる。また、帯電スリーブ120aの外径は5.0〜20mmが好ましい。これにより、帯電に必要な接触領域を確保する。接触領域が必要以上に大きいと帯電電流が過大となるし、小さいと帯電ムラが生じ易い。また上記のように小径とした場合、遠心力により磁気粒子が飛散あるいは感光体ドラム50に付着し易いために、帯電スリーブ120aの線速度は感光体ドラム50の移動速度と殆ど同じか、それよりも遅いことが好ましい。   According to FIG. 2 or FIG. 3, the magnetic brush charging device 120 as a charging device faces the rotating photoconductor drum 50 and is in the same direction (counterclockwise) at a proximity portion (charging unit T) with the photoconductor drum 50. A cylindrical charging sleeve 120a using, for example, an aluminum material or a stainless material, and a magnet body 121 made of N and S poles provided inside the charging sleeve 120a, A magnetic brush made of magnetic particles formed on the outer peripheral surface of the charging sleeve 120 a by the magnet body 121 and charging the photosensitive drum 50, and a magnetic brush on the charging sleeve 120 a at the NN magnetic pole portion of the magnet body 121 are scraped. The scraper 123 to be taken and the magnetic particles in the magnetic brush charging device 120 are stirred or supplied to the magnetic brush charging device 120 when the magnetic particles are supplied. And stirring screw 124 to discharge overflowing from the discharge port 125, constituted by the bristles regulating plate 126 of the magnetic brush. The charging sleeve 120a is rotatable with respect to the magnet body 121, and is 0.1 to 1.0 times in the same direction (counterclockwise) as the movement direction of the photosensitive drum 50 at a position facing the photosensitive drum 50. It is preferably rotated at a peripheral speed. As the charging sleeve 120a, a conductive carrier capable of applying a charging bias voltage is used. In particular, the magnet body 121 having a plurality of magnetic poles inside the conductive charging sleeve 120a having a particle layer formed on the surface thereof. Those having a structure provided with are preferably used. In such a carrier, the magnetic particle layer formed on the surface of the conductive charging sleeve 120a moves up and down in a wave shape due to the relative rotation with the magnet body 121. Even if the magnetic particle layer on the surface of the charging sleeve 120a is somewhat uneven in thickness, the influence is sufficiently covered so as not to cause a problem due to the wavy undulations. The surface of the charging sleeve 120a preferably has an average surface roughness of 5.0 to 30 [mu] m for stable and uniform transfer of magnetic particles. If the surface is smooth, the surface cannot be sufficiently transported. Overcurrent flows from the part, and in any case, uneven charging tends to occur. Sand blasting is preferably used to achieve the above surface roughness. Further, the outer diameter of the charging sleeve 120a is preferably 5.0 to 20 mm. This ensures a contact area necessary for charging. If the contact area is larger than necessary, the charging current becomes excessive, and if it is small, charging unevenness is likely to occur. When the diameter is small as described above, magnetic particles are likely to be scattered or adhere to the photosensitive drum 50 due to centrifugal force. Therefore, the linear velocity of the charging sleeve 120a is almost the same as the moving velocity of the photosensitive drum 50, or more It is also preferable that it is slow.

また、帯電スリーブ120a上に形成する磁気粒子層の厚さは、規制手段によって十分に掻き落されて均一な層となる厚さであることが好ましい。帯電領域において帯電スリーブ120aの表面上の磁気粒子の存在量が多すぎると磁気粒子の振動が十分に行われず感光体の摩耗や帯電ムラを起こすとともに過電流が流れ易く、帯電スリーブ120aの駆動トルクが大きくなるという欠点がある。反対に磁気粒子の帯電領域における帯電スリーブ120a上の存在量が少な過ぎると感光体ドラム50への接触に不完全な部分を生じ磁気粒子の感光体ドラム50上への付着や帯電ムラを起こすことになる。実験を重ねた結果、帯電領域における磁気粒子の好ましい付着量は100〜400mg/cm2であり、特に好ましくは200〜300mg/cm2であることが判明している。なお、この付着量は、磁気ブラシの帯電領域における平均値である。 Further, the thickness of the magnetic particle layer formed on the charging sleeve 120a is preferably a thickness that is sufficiently scraped off by the regulating means to form a uniform layer. If there is too much magnetic particles on the surface of the charging sleeve 120a in the charging region, the magnetic particles will not vibrate sufficiently, causing photoconductor wear and charging unevenness and overcurrent easily flowing, and driving torque of the charging sleeve 120a. Has the disadvantage of becoming larger. On the other hand, if the amount of the magnetic particles on the charging sleeve 120a in the charged region of the magnetic particles is too small, an incomplete portion is formed in contact with the photosensitive drum 50, and adhesion of the magnetic particles on the photosensitive drum 50 or uneven charging occurs. become. Result of repeated experimentation, the preferred deposition amount of the magnetic particles in the charging area is 100 to 400 mg / cm 2, particularly preferably has proven 200-300 mg / cm 2. This adhesion amount is an average value in the charging region of the magnetic brush.

帯電装置としての磁気ブラシ帯電装置120には、直流(DC)バイアスE3に必要により交流(AC)バイアスAC3が重畳される帯電バイアス、例えば直流バイアスE3としてトナーと同極性(本実施形態においてはマイナス極性)の−100〜−500Vが、また交流バイアスAC3として周波数1〜5kHz、電圧300〜500VPPの帯電バイアスが印加される帯電スリーブ120aにより、感光体ドラム50の周面が接触、摺擦されて感光体ドラム50が帯電される。帯電スリーブ120aと感光体ドラム50との間には前記交流バイアスAC3の電圧印加による振動電界が形成されているので、磁気ブラシを経て感光体層10a上への電荷の注入が円滑に行われて一様に高速な帯電が行われる。 The magnetic brush charging device 120 serving as a charging device includes a charging bias in which an alternating current (AC) bias AC3 is superimposed on a direct current (DC) bias E3 as necessary, for example, a direct current bias E3 having the same polarity as the toner (in this embodiment, minus). Polarity) of −100 to −500 V, and the charging sleeve 120a to which a charging bias of a frequency of 1 to 5 kHz and a voltage of 300 to 500 V P - P is applied as the AC bias AC3, the peripheral surface of the photosensitive drum 50 is brought into contact and sliding. The photosensitive drum 50 is charged by rubbing. Since an oscillating electric field is formed between the charging sleeve 120a and the photosensitive drum 50 by applying the voltage of the AC bias AC3, the electric charge is smoothly injected onto the photosensitive layer 10a through the magnetic brush. High-speed charging is performed uniformly.

感光体ドラム50を帯電した帯電スリーブ120a上の磁気ブラシは、磁石体121に設けられるN−N磁極部において、スクレーパ123により帯電スリーブ120a上より落下され帯電スリーブ120aとの近接部において帯電スリーブ120aと逆方向(反時計方向)に回転する撹拌スクリュウ124により撹拌された後、再度磁気ブラシ形成され帯電部Tに搬送される。   The magnetic brush on the charging sleeve 120a charged with the photosensitive drum 50 is dropped from the charging sleeve 120a by the scraper 123 at the NN magnetic pole portion provided in the magnet body 121, and the charging sleeve 120a in the vicinity of the charging sleeve 120a. Then, the magnetic brush is formed again and conveyed to the charging unit T after being stirred by the stirring screw 124 rotating in the opposite direction (counterclockwise).

図3に示すように、帯電バイアスの交流バイアスAC3のピーク・ピーク電圧(VPP)と帯電電位との関係は、ピーク・ピーク電圧VPPが大きくなるに従い帯電電位が大きくなり、帯電電位はピーク・ピーク電圧が一定のV1で帯電バイアスの直流バイアスE3の値VSとほぼ等しい値で飽和し、それ以上ピーク・ピーク電圧VPPを大きくしても帯電電位は殆ど変化しないという特性がある。磁気粒子の電気抵抗は環境条件によっても変化するが、また使用するに従い磁気粒子の表面にトナーが融着するなどして電気抵抗は高くなる。このため、特性曲線は使用初期の新しい磁気粒子の場合は実線で示す(a)のように左側に、長期間使用した磁気粒子の場合は前記特性曲線は点線で示す(b)のように右側に位置することになる。 As shown in FIG. 3, the relationship between the peak-to-peak voltage (V P -P ) of the AC bias AC3 of the charging bias and the charging potential is such that the charging potential increases as the peak-to-peak voltage V P -P increases. The charging potential is saturated at a constant peak-to-peak voltage V1 and substantially equal to the value VS of the DC bias E3 of the charging bias, and the charging potential hardly changes even if the peak-to-peak voltage V P -P is further increased. There is a characteristic. Although the electric resistance of the magnetic particles varies depending on the environmental conditions, the electric resistance increases as the toner is fused to the surface of the magnetic particles as it is used. For this reason, the characteristic curve is shown on the left side as shown by a solid line in the case of new magnetic particles in the initial stage of use, and the characteristic curve is shown on the right side as shown in FIG. Will be located.

本発明の画像形成装置の接触方式による帯電装置では、装着電源のon時或いはプリント開始前に帯電電位に相当する直流バイアスE3の電圧値を所定値とし、交流バイアスAC3のピーク・ピーク電圧(VPP)を低い値から次第に大きくした帯電バイアスを印加してその時変化する感光体ドラム50の帯電電位を電位計ESによって検出する。検出される帯電電位はA/D変換器によってディジタル値に変換されたのち制御部(CPU)に入力される。制御部ではこの帯電電位が所定値VSの飽和点に達した時のVPPの値を適正バイアス値V1と規定してプリント動作とする。 In the charging device using the contact method of the image forming apparatus of the present invention, the voltage value of the DC bias E3 corresponding to the charging potential is set to a predetermined value when the mounted power source is turned on or before printing is started, and the peak-to-peak voltage (V A charging bias with P - P ) gradually increased from a low value is applied, and the charging potential of the photosensitive drum 50 that changes at that time is detected by an electrometer ES. The detected charging potential is converted into a digital value by an A / D converter and then input to a control unit (CPU). In the control unit, the value of V P -P when the charged potential reaches the saturation point of the predetermined value VS is defined as an appropriate bias value V1, and the printing operation is performed.

即ち、プリントが行われる時交流バイアスAC3を低い値から次第に大きくして(スイープして)交流バイアスAC3のVPPの値V1を求め、制御部からバイアス信号が出力される。この制御信号はD/A変換器によってアナログ値に変換された後交流バイアスAC3に送出され、交流バイアスAC3は決定されたピーク・ピーク電圧V1を出力する。その際のピーク・ピーク電圧V1の値とメモリに格納された磁気粒子の劣化により交換すべき規定値V2を読み出しこれと比較する。磁気粒子はトナーの混入により抵抗が増加するので、プリントの使用に従い適正バイアス値V1が増加する。これに伴い印加するVPPが増加し帯電不能な状態が生じることになる。測定した電圧値が帯電不能を示す規定値V2より小さい間は画像形成を続けるが、規定値V2より大きくなると、制御部より画像形成動作停止信号が送出され画像形成動作を停止し、不図示の操作部の表示部に帯電装置異常の表示を行う。この表示に基づき、帯電用の磁気粒子の供給ボトル220を磁気ブラシ帯電装置120にセットし、供給ボトル220底面の不図示の開閉蓋を開口して磁気粒子を磁気ブラシ帯電装置120に落下、供給する。上記において感光体ドラム50の電位の測定に電位計ESを用いたが、バイアス電源に直流電流計を繋いで用いて交流バイアスVPPを変化させ、この電流値が飽和点に達した時のVPPを適正バイアス値V1と設定し、規定値V2との比較を行いV1を越えた時磁気粒子の供給を行うようにしてもよい。 That is, when printing is performed, the AC bias AC3 is gradually increased (swept) from a low value to obtain the value V1 of V P -P of the AC bias AC3, and a bias signal is output from the control unit. This control signal is converted to an analog value by the D / A converter and then sent to the AC bias AC3. The AC bias AC3 outputs the determined peak-to-peak voltage V1. At this time, the value of the peak-to-peak voltage V1 and the specified value V2 to be exchanged due to the deterioration of the magnetic particles stored in the memory are read and compared. Since the resistance of the magnetic particles increases due to toner mixing, the proper bias value V1 increases as the print is used. Along with this, V P -P to be applied increases and an unchargeable state occurs. The image formation is continued while the measured voltage value is smaller than the prescribed value V2 indicating that charging is not possible. However, when the measured voltage value is larger than the prescribed value V2, an image forming operation stop signal is sent from the control unit to stop the image forming operation. The charging unit abnormality is displayed on the display unit of the operation unit. Based on this display, the charging magnetic particle supply bottle 220 is set in the magnetic brush charging device 120, and an opening / closing lid (not shown) on the bottom of the supply bottle 220 is opened to drop and supply the magnetic particles to the magnetic brush charging device 120. To do. In the above description, the electrometer ES is used to measure the potential of the photosensitive drum 50. When the DC bias ammeter is connected to the bias power source and the AC bias V P -P is changed, the current value reaches the saturation point. of V P - set a proper bias value V1 P, may be to supply the magnetic particles when exceeded V1 compares the specified value V2.

またメンテナンス時或いは例えば5万プリント等の定期時に、帯電用の磁気粒子の交換が行われる。メモリに記憶されたメンテナンスプリント毎や例えば5万プリント毎の定期時に、制御部を通して交換信号が出され、不図示の駆動モータの駆動により予めセットされた帯電用の磁気粒子の供給ボトル220の供給ローラ221が回転され、供給ボトル220内の磁気粒子が磁気ブラシ帯電装置120内に全量が1回で落下される。供給後空の供給ボトル220を外し、新たな供給ボトル220をセットすることにより画像形成装置が作動状態となるように制御することも可能である。また、定期時に制御部より不図示の操作部に例えばランプの点滅等による供給信号を表示し、供給ボトル220を磁気ブラシ帯電装置120にセットし、供給ボトル220底面の不図示の開閉蓋を開口して磁気粒子を供給するようにしてもよい。   In addition, the magnetic particles for charging are exchanged during maintenance or at regular intervals such as 50,000 prints. At each maintenance print stored in the memory or at regular intervals of, for example, 50,000 prints, an exchange signal is output through the control unit, and supply of the charging magnetic particle supply bottle 220 set in advance by driving a drive motor (not shown) The roller 221 is rotated, and the magnetic particles in the supply bottle 220 are dropped into the magnetic brush charging device 120 in one time. It is also possible to control the image forming apparatus to be in an operating state by removing the empty supply bottle 220 after supply and setting a new supply bottle 220. In addition, a supply signal such as blinking of a lamp is displayed on the operation unit (not shown) from the control unit at regular intervals, the supply bottle 220 is set on the magnetic brush charging device 120, and an open / close lid (not shown) on the bottom of the supply bottle 220 is opened. Then, magnetic particles may be supplied.

落下された磁気粒子は回転される帯電スリーブ120aにより搬送され、スクレーパ123により帯電スリーブ120a表面より掻落とされて磁気ブラシ帯電装置120の底部に補給される。これに伴い、反時計方向に回転される撹拌スクリュウ124により磁気ブラシ帯電装置120内部に収納されている使用済みの磁気粒子が排出口125より溢れ出され、ダクトDBを通して共通の磁気粒子回収容器300に回収される。この際、供給ボトル220より磁気ブラシ帯電装置120内に供給される1回の磁気粒子供給量は磁気ブラシ帯電装置120内に収納される全磁気粒子に対して、20〜50質量%が好ましい。20質量%未満では新規に供給される磁気粒子量が少な過ぎ交換効果がなく良好な帯電が行われず、50質量%を越えると新規の磁気粒子が溢れ出てしまう。   The dropped magnetic particles are conveyed by the rotating charging sleeve 120a, scraped off from the surface of the charging sleeve 120a by the scraper 123, and replenished to the bottom of the magnetic brush charging device 120. Accordingly, the used magnetic particles stored in the magnetic brush charging device 120 are overflowed from the discharge port 125 by the stirring screw 124 rotated counterclockwise, and the common magnetic particle recovery container 300 is passed through the duct DB. To be recovered. At this time, the supply amount of the magnetic particles supplied from the supply bottle 220 into the magnetic brush charging device 120 is preferably 20 to 50% by mass with respect to all the magnetic particles stored in the magnetic brush charging device 120. If the amount is less than 20% by mass, the amount of newly supplied magnetic particles is so small that there is no exchange effect and good charging is not performed. If the amount exceeds 50% by mass, new magnetic particles overflow.

上記により、帯電装置内の磁気粒子が劣化されることなく良好な帯電性能が長期に維持される。   As described above, good charging performance is maintained for a long time without deterioration of the magnetic particles in the charging device.

図4は磁気ブラシ帯電器を有する画像形成装置の1例を示す断面図である。図4において50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布し、その上に本発明の構成を有する感光体で、接地されて時計方向に駆動回転される。52は磁気ブラシ帯電器で、感光体ドラム50周面に対し一様な帯電を与えられる(帯電工程)。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた露光部51による露光を行って感光体周面の除電をしてもよい。   FIG. 4 is a cross-sectional view showing an example of an image forming apparatus having a magnetic brush charger. In FIG. 4, reference numeral 50 denotes a photosensitive drum (photosensitive member) which is an image carrier. An organic photosensitive layer is coated on the drum, and a photosensitive member having the structure of the present invention is applied to the photosensitive drum. Is done. Reference numeral 52 denotes a magnetic brush charger, which can uniformly charge the circumferential surface of the photosensitive drum 50 (charging process). Prior to charging by the charger 52, in order to eliminate the history of the photoconductor in the previous image formation, exposure by the exposure unit 51 using a light emitting diode or the like may be performed to neutralize the peripheral surface of the photoconductor.

感光体への一様帯電ののち像露光器53により画像信号に基づいた像露光が行われる(像露光工程)。この図の像露光器53は図示しないレーザダイオードを露光光源とする。回転するポリゴンミラー531、fθレンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。   After uniform charging of the photoreceptor, image exposure based on the image signal is performed by the image exposure unit 53 (image exposure process). The image exposure unit 53 in this figure uses a laser diode (not shown) as an exposure light source. Scanning on the photosensitive drum is performed by the light whose optical path is bent by the reflection mirror 532 through the rotating polygon mirror 531 and the fθ lens, and an electrostatic latent image is formed.

その静電潜像は次いで現像器54で現像される(現像工程)。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は図示していない層形成手段によって現像スリーブ541上に100〜600μmの層厚に規制されて現像域へと搬送され、現像が行われる。この時通常は感光体ドラム50と現像スリーブ541の間に直流バイアス、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。   The electrostatic latent image is then developed by the developing device 54 (development process). A developing device 54 containing a developer composed of toner and carrier is provided on the periphery of the photosensitive drum 50, and development is performed by a developing sleeve 541 that contains a magnet and rotates while holding the developer. The developer is, for example, a carrier composed of the above-mentioned ferrite as a core and coated with an insulating resin around it, and a coloring material such as carbon black, a charge control agent, and a low molecular weight polyolefin mainly composed of the above-mentioned styrene acrylic resin. It consists of toner with silica, titanium oxide, etc. added externally to the particles. The developer is regulated to a layer thickness of 100 to 600 μm on the developing sleeve 541 by a layer forming means (not shown) and conveyed to the developing area. Then, development is performed. At this time, usually, development is performed by applying a DC bias between the photosensitive drum 50 and the developing sleeve 541 and, if necessary, an AC bias voltage. Further, the developer is developed in contact with or not in contact with the photoreceptor.

転写材(記録紙とも云う)Pは画像形成後、転写のタイミングの整った時点で給紙ローラ57の回転作動により転写域へと給紙される。   The transfer material (also referred to as recording paper) P is fed to the transfer area by the rotation operation of the paper feed roller 57 at the time when the transfer timing is ready after image formation.

転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写ローラ(転写器)58が圧接され、給紙された転写材Pを挟着して転写される(転写工程)。   In the transfer area, a transfer roller (transfer device) 58 is pressed against the peripheral surface of the photosensitive drum 50 in synchronization with the transfer timing, and the transferred transfer material P is sandwiched and transferred (transfer process).

次いで転写材Pは転写ローラとほぼ同時に圧接状態とされた分離ブラシ(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラ601と圧着ローラ602の加熱、加圧によってトナーを溶着したのち(定着工程)排紙ローラ61を介して装置外部に排出される。なお前記の転写ローラ58及び分離ブラシ59は転写材Pの通過後感光体ドラム50の周面より退避離間して次なるトナー像の形成に備える。   Next, the transfer material P is neutralized by a separation brush (separator) 59 brought into a pressure contact state almost simultaneously with the transfer roller, separated by the peripheral surface of the photosensitive drum 50, conveyed to the fixing device 60, and pressed against the heat roller 601. After the toner is welded by heating and pressurizing the roller 602 (fixing step), the toner is discharged to the outside of the apparatus via the discharge roller 61. The transfer roller 58 and the separation brush 59 are separated from the peripheral surface of the photosensitive drum 50 after the transfer material P has passed, and prepare for the formation of the next toner image.

一方転写材Pを分離した後の感光体ドラム50は、クリーニング器62のクリーニングブレード621の圧接により残留トナーを除去・清掃し、再び露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。   On the other hand, after the transfer material P is separated, the photosensitive drum 50 is subjected to removal and cleaning of residual toner by pressure contact of the cleaning blade 621 of the cleaning device 62, and again after being subjected to charge removal by the exposure unit 51 and charging by the charger 52. Enter the image forming process.

尚、70は感光体、帯電器、転写器・分離器及びクリーニング器を一体化されている着脱可能なプロセスカートリッジである。   Reference numeral 70 denotes a detachable process cartridge in which a photoconductor, a charger, a transfer device / separator, and a cleaning device are integrated.

画像形成装置としては、上述の感光体と、現像器、クリーニング器等の構成要素をプロセスカートリッジとして一体に結合して構成し、このユニットを装置本体に対して着脱自在に構成しても良い。又、帯電器、像露光器、現像器、転写又は分離器、及びクリーニング器の少なくとも1つを感光体とともに一体に支持してプロセスカートリッジを形成し、装置本体に着脱自在の単一ユニットとし、装置本体のレールなどの案内手段を用いて着脱自在の構成としても良い。   As the image forming apparatus, the above-described photosensitive member and components such as a developing device and a cleaning device may be integrally coupled as a process cartridge, and this unit may be configured to be detachable from the apparatus main body. In addition, a process cartridge is formed by integrally supporting at least one of a charger, an image exposure device, a developing device, a transfer or separation device, and a cleaning device together with a photosensitive member, and a single unit that is detachable from the apparatus main body. It is good also as a structure which can be attached or detached using guide means, such as a rail of an apparatus main body.

像露光は、画像形成装置を複写機やプリンターとして使用する場合には、原稿からの反射光や透過光を感光体に照射すること、或いはセンサーで原稿を読み取り信号化し、この信号に従ってレーザビームの走査、LEDアレイの駆動、又は液晶シャッターアレイの駆動を行い感光体に光を照射することなどにより行われる。   When the image forming apparatus is used as a copying machine or a printer, image exposure is performed by irradiating a photosensitive member with reflected light or transmitted light from a document, or by reading a document with a sensor and generating a laser beam according to this signal. Scanning, driving the LED array, or driving the liquid crystal shutter array and irradiating the photosensitive member with light are performed.

尚、ファクシミリのプリンターとして使用する場合には、像露光器13は受信データをプリントするための露光を行うことになる。   When used as a facsimile printer, the image exposure unit 13 performs exposure for printing received data.

本発明の電子写真感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。   The electrophotographic photosensitive member of the present invention is generally applicable to electrophotographic apparatuses such as an electrophotographic copying machine, a laser printer, an LED printer, and a liquid crystal shutter printer, and further displays, recordings, light printing, plate making and the like using electrophotographic technology. It can be widely applied to apparatuses such as facsimiles.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this. However, “part” in the following text indicates “part by mass”.

実施例1
電荷注入層塗布液Aの作製
電荷注入層塗布液として、下記構造式の
Example 1
Preparation of charge injection layer coating liquid A As a charge injection layer coating liquid, the following structural formula

Figure 2005134515
Figure 2005134515

フッ素原子含有化合物で表面処理した(処理量7%)アンチモンドープ酸化スズ微粒子(T1:三菱マテリアル(株)製)50部及びエタノール150部をサンドミルで66時間かけて分散を行い、更に、ポリテトラフルオロエチレン微粒子(体積平均粒径0.18μm)20部を加えて2時間分散を行った。その後、レゾール型フェノール樹脂(商品名:PL−4804、アミン化合物触媒使用、群栄化学(株)製)を樹脂成分として25部を溶解し、電荷注入層塗布液Aを作製した。 Disperse 50 parts of antimony-doped tin oxide fine particles (T1: manufactured by Mitsubishi Materials Corp.) and 150 parts of ethanol surface-treated with a fluorine atom-containing compound in a sand mill for 66 hours. 20 parts of fluoroethylene fine particles (volume average particle size 0.18 μm) were added and dispersed for 2 hours. Thereafter, 25 parts of a resol type phenol resin (trade name: PL-4804, amine compound catalyst used, manufactured by Gunei Chemical Co., Ltd.) was dissolved as a resin component to prepare a charge injection layer coating solution A.

電荷注入層塗布液Bの作製
電荷注入層塗布液Aの作製において、前記[化5]記載のフッ素原子含有化合物で表面処理した(処理量7%)アンチモンドープ酸化スズ微粒子を50部から20部に変え、メチルハイドロジェンシリコンオイル(商品名KF99、信越シリコーン(株)製)で表面処理した(20%)アンチモンドープ酸化スズ微粒子30部を更に添加し分散した以外は、電荷注入層塗布液Aと全く同様にして電荷注入層塗布液Bを作製した。
Preparation of charge injection layer coating liquid B In preparation of charge injection layer coating liquid A, 50 to 20 parts of antimony-doped tin oxide fine particles surface-treated with the fluorine atom-containing compound described in the above [Chemical Formula 5] (7% treatment amount). Except that 30 parts of antimony-doped tin oxide fine particles (20%) surface-treated with methyl hydrogen silicone oil (trade name KF99, manufactured by Shin-Etsu Silicone Co., Ltd.) were further added and dispersed. A charge injection layer coating solution B was prepared in exactly the same manner as described above.

電荷注入層塗布液Cの作製
電荷注入層塗布液Aの作製において、前記[化5]記載のフッ素原子含有化合物で表面処理したアンチモンドープ酸化スズ微粒子に代えて、表面処理を施す以前のアンチモンドープ酸化スズ微粒子(商品名T−1、三菱マテリアル(株)製)を50部とし、更に、前記[化5]記載のフッ素原子含有化合物(商品名LS−1090、信越シリコーン(株)製)を5部、メチルハイドロジェンシリコンオイル(商品名KF−99、信越シリコーン(株)製)を5部添加し、分散した以外は、電荷注入層塗布液Aと全く同様にして電荷注入層塗布液Cを作製した。
Preparation of charge injection layer coating liquid C In preparation of charge injection layer coating liquid A, instead of antimony-doped tin oxide fine particles surface-treated with the fluorine atom-containing compound described in [Chemical Formula 5], antimony dope before surface treatment was applied. 50 parts of tin oxide fine particles (trade name T-1, manufactured by Mitsubishi Materials Corporation), and further the fluorine atom-containing compound (trade name LS-1090, manufactured by Shin-Etsu Silicone Co., Ltd.) described in [Chemical Formula 5] above. 5 parts, 5 parts of methyl hydrogen silicone oil (trade name KF-99, manufactured by Shin-Etsu Silicone Co., Ltd.) was added and dispersed in the same manner as in the charge injection layer coating liquid A, except that it was dispersed. Was made.

電荷注入層塗布液Dの作製
電荷注入層塗布液Bの作製において、フェノール樹脂のPL−4804に代えて、PR−53123(住友デュレズ(株)製)を用いた以外は、電荷注入層塗布液Bと全く同様にして電荷注入層塗布液Dを作製した。
Preparation of Charge Injection Layer Coating Solution D Charge Injection Layer Coating Solution D except that PR-53123 (manufactured by Sumitomo Durez Co., Ltd.) was used instead of phenol resin PL-4804 in the preparation of charge injection layer coating solution B. A charge injection layer coating solution D was prepared in exactly the same manner as B.

電荷注入層塗布液Eの作製
電荷注入層塗布液Bの作製において、フェノール樹脂のPL−4804に代えて、PR−50626(住友デュレズ(株)製)を用いた以外は、電荷注入層塗布液Bと全く同様にして電荷注入層塗布液Eを作製した。
Preparation of charge injection layer coating solution E Charge preparation layer coating solution B except that PR-50626 (manufactured by Sumitomo Durez Co., Ltd.) was used instead of phenol resin PL-4804 in the preparation of charge injection layer coating solution B. A charge injection layer coating solution E was prepared in exactly the same manner as B.

電荷注入層塗布液Fの作製
下記組成物を分散し、電荷注入層塗布液Fを作製した。
Preparation of charge injection layer coating solution F The following composition was dispersed to prepare a charge injection layer coating solution F.

ビスフェノールC型ポリカーボネート 10部
4−メトキシ−4′−(4−メチル−α−フェニルスチリル)トリフェニルアミン 3部
酸化スズ 5部
テトラヒドロフラン 500部
次に、下記のごとくして、一般式Aの混合化合物を含有した感光体を作製した。
感光体1Aの作製
〈中間層〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60部
無機微粒子:酸化チタンSMT500SAS(テイカ社製;表面処理は、シリカ処理、アルミナ処理、及びメチルハイドロジェンポリシロキサン処理) 180部
メタノール 1600部
1−ブタノール 400部
上記成分を混合溶解して中間層塗布液を調製した。この塗布液をの円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
〈電荷発生層〉
チタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料) 60部
シリコーン樹脂溶液
(KR5240、15%キシレン−ブタノール溶液:信越化学社製) 700部
2−ブタノン 2000部
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質(合成例(1)の化合物) 150部
バインダー樹脂:ビスフェノールZ型ポリカーボネート
(ユーピロンZ300:三菱ガス化学社製) 300部
酸化防止剤(サノールLS2626:三共社製) 1.7部
テトラヒドロフラン(沸点:64.5℃) 2200部
上記成分を混合溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、100℃40分間乾燥して、膜厚18μmの電荷輸送層を形成した。
Bisphenol C-type polycarbonate 10 parts 4-Methoxy-4 '-(4-methyl-α-phenylstyryl) triphenylamine 3 parts Tin oxide 5 parts Tetrahydrofuran 500 parts Next, a mixed compound of the general formula A as follows A photoconductor containing was prepared.
Preparation of photoreceptor 1A <intermediate layer>
Polyamide resin (Amilan CM-8000: manufactured by Toray Industries, Inc.) 60 parts Inorganic fine particles: Titanium oxide SMT500SAS (manufactured by Teica; surface treatment is silica treatment, alumina treatment, and methylhydrogenpolysiloxane treatment) 180 parts Methanol 1600 parts 1- Butanol 400 parts The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
<Charge generation layer>
Titanyl phthalocyanine pigment (pigment with Cu-Kα characteristic X-ray diffraction spectrum, maximum peak of Bragg angle 2θ of 27.3 °) 60 parts Silicone resin solution (KR5240, 15% xylene-butanol solution: Shin-Etsu Chemical Co., Ltd.) 700 parts 2-butanone 2000 parts The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating solution. This coating solution was applied onto the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
<Charge transport layer>
Charge transport material (compound of synthesis example (1)) 150 parts Binder resin: Bisphenol Z type polycarbonate (Iupilon Z300: manufactured by Mitsubishi Gas Chemical Company) 300 parts Antioxidant (Sanol LS2626: manufactured by Sankyo Co., Ltd.) 1.7 parts Tetrahydrofuran ( Boiling point: 64.5 ° C.) 2200 parts The above components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 40 minutes to form a charge transport layer having a thickness of 18 μm.

〈電荷注入層A〉
前記した電荷注入層塗布液Aを前記電荷輸送層の上に円形量規制型塗布装置により電荷注入層を形成し、110℃;60分加熱硬化し、乾燥膜厚5.0μmの電荷注入層を形成し感光体1Aを作製した。
<Charge injection layer A>
The charge injection layer coating solution A is formed on the charge transport layer by a circular amount-regulating coating apparatus, and is cured by heating at 110 ° C. for 60 minutes to form a charge injection layer having a dry film thickness of 5.0 μm. Thus, a photoreceptor 1A was produced.

感光体2A〜14Aの作製
感光体1Aにおいて、電荷発生物質、電荷輸送物質の化合物、化合物の量、電荷輸送層の膜厚、及び電荷注入層を表1のように変更した以外は同様にして感光体2A〜14Aを作製した。
Preparation of photoconductors 2A to 14A In the photoconductor 1A, the same procedure was performed except that the charge generation material, the compound of the charge transport material, the amount of the compound, the thickness of the charge transport layer, and the charge injection layer were changed as shown in Table 1. Photoconductors 2A to 14A were prepared.

感光体15Aの作製
感光体1Aの作製において、電荷輸送物質(合成例(1)の化合物)を、公知の方法で別途合成した化合物21A(p=0、q=0)のn=0のみの成分(成分純度は99%より大)の電荷輸送物質に代えた以外は同様にして感光体15Aを作製した。
Production of Photoreceptor 15A In the production of Photoreceptor 1A, only n = 0 of Compound 21A (p = 0, q = 0) synthesized separately by a known method was used as a charge transport material (the compound of Synthesis Example (1)). Photoreceptor 15A was produced in the same manner except that the charge transporting material (component purity greater than 99%) was used.

感光体16Aの作製
感光体1の作製において、電荷輸送物質(合成例(1)の化合物)を、合成例(1)の化合物を液体クロマトグラフィーで各成分を分離し、化合物21A(p=0、q=0)のn=3のみの成分(成分純度は99%より大)の電荷輸送物質に代えた以外は同様にして感光体16Aを作製したが、電荷輸送物質がバインダー樹脂と相溶せず析出して、評価できる感光体が得られなかった。
Production of Photoreceptor 16A In production of Photoreceptor 1, the charge transport material (the compound of Synthesis Example (1)) was separated from the component of Synthesis Example (1) by liquid chromatography to obtain Compound 21A (p = 0). The photoconductor 16A was prepared in the same manner except that the charge transporting material was replaced by a charge transporting material having only n = 3 (component purity greater than 99%) in q = 0). The charge transporting material was compatible with the binder resin. No photoconductor was obtained that could be evaluated.

感光体17Aの作製
感光体1において、電荷輸送物質(1)の化合物を、合成例(1)の化合物を液体クロマトグラフィーで各成分を分離し、化合物21A(p=0、q=0)のn=1とn=2の組成比がそれぞれ50%の混合化合物の電荷輸送物質に代えた以外は同様にして感光体17Aを作製した。
Preparation of Photoconductor 17A In Photoconductor 1, the components of the charge transport material (1), the compound of Synthesis Example (1) were separated by liquid chromatography, and the components of Compound 21A (p = 0, q = 0) were separated. A photoconductor 17A was produced in the same manner except that the mixed compound charge transporting material having a composition ratio of n = 1 and n = 2 was 50%.

感光体18Aの作製
感光体1Aにおいて、電荷注入層を塗布せず、電荷輸送層の膜厚を24μmにした以外は同様にして感光体18Aを作製した。
Production of Photoreceptor 18A Photoreceptor 18A was produced in the same manner as in Photoreceptor 1A, except that the charge injection layer was not applied and the thickness of the charge transport layer was 24 μm.

Figure 2005134515
Figure 2005134515

表中、Yはチタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料)
Zはベンズイミダゾールペリレン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが12.4°の顔料)を示す。
In the table, Y is a titanyl phthalocyanine pigment (a pigment having a maximum peak at a Bragg angle 2θ of 27.3 ° in a Cu-Kα characteristic X-ray diffraction spectrum).
Z represents a benzimidazole perylene pigment (a pigment having a maximum peak at a Bragg angle 2θ of 12.4 ° in a Cu-Kα characteristic X-ray diffraction spectrum).

(x+y)は、本発明の混合化合物の最大成分の化合物の組成比xと2位成分の化合物の組成比yの和(%表示)を示す。   (X + y) represents the sum (in%) of the composition ratio x of the compound of the maximum component of the mixed compound of the present invention and the composition ratio y of the compound of the 2-position component.

又、電荷輸送物質の連鎖構造nの分布(組成比)は高速液体クロマトグラフィーの面積比より求めた。平均分子量Mwはゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)を示す。   The distribution (composition ratio) of the chain structure n of the charge transport material was determined from the area ratio of high performance liquid chromatography. Average molecular weight Mw shows the weight average molecular weight (polystyrene conversion) calculated | required from the gel permeation chromatography (GPC).

評価1
以上のようにして得た感光体1A〜18Aを下記構成の帯電ローラを組み込んだコニカ(株)製の反転現像方式デジタル複写機「Konica7050」の改造機に各々装着し、高温高湿(30℃80%RH)と低温低湿(10℃20%RH)の環境下で、それぞれ評価項目を変えて評価した。評価結果を表2に示す。
Evaluation 1
The photoreceptors 1A to 18A obtained as described above are respectively mounted on a remodeling machine of a reverse development type digital copying machine “Konica 7050” manufactured by Konica Corporation, in which a charging roller having the following configuration is incorporated. 80% RH) and low-temperature and low-humidity (10 ° C., 20% RH) environments were evaluated with different evaluation items. The evaluation results are shown in Table 2.

帯電ローラ
導電性弾性体層の材料として、ポリノルボルネンゴム/カーボンブラック/ナフテン系オイル及び必要に応じて加硫剤、加硫促進剤、添加剤等を混合、調製し、金型充填し、導電性弾性体層を形成した。この層の上に、被覆層形成材料としてポリエステルウレタン、粒径約0.5μmの樹脂粉体、カーボンブラック、溶剤(MEK/ジメチルホルムアミド)から成る組成物液中に浸漬し、コーティング、乾燥、加熱処理し、ウレタン層からなる被覆層を形成し、帯電ローラNo.1を得た。導電性弾性層の抵抗は3.2×104Ωcm、被覆層の抵抗は5.2×105Ωcmであり、帯電ローラの表面粗さは十点平均粗さRzが0.1であった。
Charging roller As the material for the conductive elastic layer, polynorbornene rubber / carbon black / naphthenic oil and, if necessary, vulcanizing agent, vulcanization accelerator, additive, etc. are mixed and prepared, filled with mold, and conductive An elastic elastic layer was formed. On this layer, it is immersed in a composition liquid consisting of polyester urethane as a coating layer forming material, resin powder having a particle diameter of about 0.5 μm, carbon black, and a solvent (MEK / dimethylformamide), coating, drying and heating. Treatment to form a coating layer composed of a urethane layer. 1 was obtained. The resistance of the conductive elastic layer was 3.2 × 10 4 Ωcm, the resistance of the coating layer was 5.2 × 10 5 Ωcm, and the surface roughness of the charging roller was 10-point average roughness Rz of 0.1. .

感光体の線速:280mm/sec
露光条件
露光部電位目標:−50V未満にする露光量に設定。
Photoconductor linear velocity: 280 mm / sec
Exposure condition Exposure part potential target: Set to an exposure amount to be less than -50V.

露光ビーム:ドット密度800dpi(dpiとは2.54cm当たりのドット数)の像露光を行った。レーザビームスポット面積:0.8×10−92、レーザは780nmの半導体レーザを使用
転写条件:コロトロン電極を用いた静電転写
分離条件:交流バイアスを印加した分離電極の分離手段を用いた
クリーニング:ゴム弾性ブレードを用い、感光体への当接角度:20°、当接荷重:20(g/cm)になるように調整した。
Exposure beam: Image exposure was performed with a dot density of 800 dpi (dpi is the number of dots per 2.54 cm). The laser beam spot area: 0.8 × 10- 9 m 2, laser 780nm semiconductor laser using transfer conditions: corotron electrodes using electrostatic transfer and separation conditions: using the separation means separating the electrodes of applying an AC bias Cleaning: A rubber elastic blade was used to adjust the contact angle to the photosensitive member: 20 ° and the contact load: 20 (g / cm).

評価項目及び評価方法
評価項目及び評価基準
残留電位の評価(べた黒画像の電位変化)
低温低湿(10℃20%RH)、高温高湿(HH:30℃80%RH)環境下で、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、初期と1万枚後の現像位置でのべた黒画像部の電位変化(|ΔV|)を評価した。|ΔV|が小さい方が繰り返し残留電位の上昇が小さい。
Evaluation item and evaluation method Evaluation item and evaluation criteria Evaluation of residual potential (change in potential of solid black image)
Under low-temperature and low-humidity (10 ° C, 20% RH) and high-temperature, high-humidity (HH: 30 ° C, 80% RH) environments, a character image with a pixel rate of 7%, a halftone image, a solid white image, and a solid black image are each 1 / The original image in four equal parts was copied in 10,000 sheets in the single sheet intermittent mode at A4, and the potential change (| ΔV |) of the solid black image part at the development position after the initial and 10,000 sheets was evaluated. . The smaller the | ΔV |, the smaller the increase in the residual potential.

◎;べた黒画像部の電位変化|ΔV|が50V未満(良好)
○;べた黒画像部の電位変化|ΔV|が50V以上、150V以下(実用上問題なし)
×;べた黒画像部の電位変化|ΔV|が150Vより大きい(実用上問題有り)
帯電電位の評価(べた白画像の電位変化)
低温低湿(10℃20%RH)、高温高湿(HH:30℃80%RH)環境下で、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、初期と1万枚後の現像位置でのべた白画像部の電位変化(|ΔV|)を評価した。|ΔV|が小さい方が繰り返し帯電電位の変化が小さい。
A: Potential change in solid black image portion | ΔV | is less than 50 V (good)
○: Potential change | ΔV | of solid black image portion is 50 V or more and 150 V or less (no problem in practical use)
×: The potential change | ΔV | of the solid black image portion is larger than 150 V (practically problematic)
Evaluation of charging potential (change in potential of solid white image)
Under low-temperature and low-humidity (10 ° C, 20% RH) and high-temperature, high-humidity (HH: 30 ° C, 80% RH) environments, a character image with a pixel rate of 7%, a halftone image, a solid white image, and a solid black image are each 1 / The original image in four equal parts was copied in 10,000 sheets in the single sheet intermittent mode at A4, and the potential change (| ΔV |) of the solid white image portion at the development position after the initial and 10,000 sheets was evaluated. . The smaller | ΔV | is, the smaller the change in charging potential is.

◎;べた白画像部の電位変化|ΔV|が50V未満(良好)
○;べた白画像部の電位変化|ΔV|が50V以上、150V以下(実用上問題なし)
×;べた白画像部の電位変化|ΔV|が150Vより大きい(実用上問題有り)
画像濃度;低温低湿(LL:10℃20%RH)、高温高湿(HH:30℃80%RH)で評価
マクベス社製RD−918を使用して測定。紙の反射濃度を「0」とした相対反射濃度で測定した。多数枚のコピーで残留電位が増加すると、画像濃度が低下する。各1万枚コピー後のべた黒画像部で測定した。
A: Potential change | ΔV | of solid white image portion is less than 50 V (good)
○: Potential change | ΔV | in a solid white image portion is 50 V or more and 150 V or less (no problem in practical use)
×: The potential change | ΔV | of the solid white image portion is larger than 150 V (practically problematic)
Image density: Evaluation at low temperature and low humidity (LL: 10 ° C., 20% RH), high temperature and high humidity (HH: 30 ° C., 80% RH) Measured using Macbeth RD-918. The relative reflection density was measured with the paper reflection density set to “0”. As the residual potential increases on multiple copies, the image density decreases. Measurements were taken at the solid black image portion after 10,000 copies each.

◎:低温低湿、高温高湿とも黒ベタ画像が1.2より高い(良好)
○:低温低湿、高温高湿とも黒ベタ画像が1.0以上、1.2以下(実用上問題なし)
×:低温低湿、高温高湿の何れかで黒ベタ画像が1.0未満(実用上問題あり)
カブリ;低温低湿(LL:10℃20%RH)、高温高湿(HH:30℃80%RH)で評価
カブリ濃度はべた白画像をマクベス社製RD−918を使用し反射濃度で測定した。該反射濃度は相対濃度(複写していないA4紙の濃度を0.000とする)で評価した。各1万枚コピー後のべた黒画像部で測定した。
A: Black solid image is higher than 1.2 for both low temperature and low humidity and high temperature and high humidity (good)
○: Black solid image of 1.0 or more and 1.2 or less for both low temperature and low humidity and high temperature and high humidity (no problem in practical use)
×: Black solid image is less than 1.0 in either low temperature and low humidity or high temperature and high humidity (practical problem)
Fog; evaluated at low temperature and low humidity (LL: 10 ° C., 20% RH), and high temperature and high humidity (HH: 30 ° C., 80% RH). The reflection density was evaluated by a relative density (the density of A4 paper not copied is 0.000). Measurements were taken at the solid black image portion after 10,000 copies each.

◎;低温低湿、高温高湿とも濃度が0.010未満(良好)
○;低温低湿、高温高湿とも濃度が0.010以上、0.020以下(実用上問題ないレベル)
×;低温低湿、高温高湿の何れかで濃度が0.020より高い(実用上問題となるレベル)
絶縁破壊;低温低湿(LL:10℃20%RH)、高温高湿(30℃80%RH)で評価
○;LL又はHHで電荷リークによる感光体の絶縁破壊が発生なし。
A: Concentration is less than 0.010 (good) for both low temperature and low humidity and high temperature and high humidity
○: Concentration of 0.010 or more and 0.020 or less for both low temperature and low humidity and high temperature and high humidity
X: Concentration is higher than 0.020 at either low temperature and low humidity or high temperature and high humidity (a level that causes practical problems)
Dielectric breakdown: evaluated at low temperature and low humidity (LL: 10 ° C., 20% RH), high temperature and high humidity (30 ° C., 80% RH) ○: No dielectric breakdown of the photoconductor due to charge leakage at LL or HH.

×;LL又はHHで電荷リークによる感光体の絶縁破壊が発生した。   X: Dielectric breakdown of the photoreceptor due to charge leakage occurred at LL or HH.

周期性の画像欠陥(高温高湿(30℃80%RH))
周期性が感光体の周期と一致し、目視できる黒ポチ、黒筋状の画像欠陥が、A4サイズ当たり何個あるかで判定した。
Periodic image defects (high temperature and high humidity (30 ° C, 80% RH))
The periodicity coincided with the period of the photoconductor, and the number of visible black spots and black streak-like image defects per A4 size was determined.

◎;0.4mm以上の画像欠陥の頻度:全ての複写画像が5個/A4以下(良好)
○;0.4mm以上の画像欠陥の頻度:6個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
×;0.4mm以上の画像欠陥の頻度:11個/A4以上が1枚以上発生(実用上問題有り)
鮮鋭性
画像の鮮鋭性は、低温低湿(10℃20%RH)、高温高湿(30℃80%RH)の両環境において画像を出し、文字潰れで評価した。3ポイント、5ポイントの文字画像を形成し、下記の判断基準で評価した。
A: Frequency of image defects of 0.4 mm or more: All copy images are 5 / A4 or less (good)
○: Frequency of image defects of 0.4 mm or more: 1 or more of 6 / A4 or more and 10 / A4 or less (no problem in practical use)
X: Frequency of image defects of 0.4 mm or more: 11 or more A4 or more occurred (practical problem)
Sharpness The sharpness of the image was evaluated by squashing characters by displaying images in both low temperature and low humidity (10 ° C., 20% RH) and high temperature, high humidity (30 ° C., 80% RH) environments. 3-point and 5-point character images were formed and evaluated according to the following criteria.

◎;画像ボケの発生がなく、3ポイント、5ポイントとも明瞭であり、容易に判読可能
○;画像ボケの発生が軽微であり、3ポイントは一部判読不能、5ポイントは明瞭であり、容易に判読可能
×;画像ボケが発生し、3ポイントは殆ど判読不能、5ポイントも一部あるいは全部が判読不能
◎: No image blurring, 3 points and 5 points are clear and easy to read ○: Image blurring is minor, 3 points are partially unreadable, 5 points are clear and easy ×: Image blur occurs, 3 points are almost unreadable, 5 points are partially or completely unreadable

Figure 2005134515
Figure 2005134515

表2より、本発明の一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用い、電荷注入層を有する感光体1A〜14Aは、高温高湿、低温低湿での残留電位、帯電電位の安定性に優れており、このことから画像濃度が十分で且つカブリ濃度が小さい。しかも絶縁破壊も発生せず、黒ポチ等の改良効果が顕著であり、その結果鮮鋭性が良好な電子写真画像を得ている。一方、n=0の低分子量の化合物のみを用いた感光体15Aは残留電位上昇が大きく、画像濃度が低下し、絶縁破壊も発生し、鮮鋭性も低下している。又、n=3の高分子量の化合物のみを用いた感光体16Aの場合は、バインダー樹脂との溶解不良で、感度等もほとんどなく、評価に値しなかった。又、化合物21A(p=0、q=0)のn=1とn=2の組成比をそれぞれ50%の混合化合物を電荷輸送物質として用いた感光体17Aも電荷輸送物質のバインダー樹脂との溶解性が不十分なため、帯電電位の変動が大きく、カブリが発生し、その結果鮮鋭性も低下している。又、絶縁破壊、黒ポチも発生している。又、電荷注入層を有しない感光体18Aは絶縁破壊、黒ポチが多発し、カブリ濃度も高く、鮮鋭性が劣化している。   From Table 2, the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) of the present invention and the distribution based on n is represented by x, and the composition ratio of the compound of the 2-position component is represented by y. Then, the photoconductors 1A to 14A using a mixed compound with x + y of 99% or less as a charge transport material and having a charge injection layer are excellent in the residual potential and charge potential stability at high temperature and high humidity and low temperature and low humidity. Therefore, the image density is sufficient and the fog density is small. In addition, dielectric breakdown does not occur, and the improvement effect of black spots etc. is remarkable, and as a result, an electrophotographic image with good sharpness is obtained. On the other hand, the photoconductor 15A using only a low molecular weight compound of n = 0 has a large residual potential increase, an image density is lowered, dielectric breakdown occurs, and sharpness is also lowered. Further, in the case of the photoconductor 16A using only a high molecular weight compound of n = 3, it was poorly dissolved in the binder resin, had almost no sensitivity, and was not worthy of evaluation. In addition, the photoconductor 17A using a compound 21A (p = 0, q = 0) having a composition ratio of n = 1 and n = 2 of 50% as a charge transport material is also used as a charge transport material binder resin. Since the solubility is insufficient, the variation of the charging potential is large, fogging occurs, and as a result, the sharpness is also lowered. Moreover, dielectric breakdown and black spots have also occurred. Further, the photoconductor 18A having no charge injection layer frequently causes dielectric breakdown and black spots, has a high fog density, and deteriorates sharpness.

実施例2
下記のごとくして、一般式Bの混合化合物を含有した感光体を作製した。
感光体1Bの作製
〈中間層〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60部
無機微粒子:酸化チタンSMT500SAS(テイカ社製;表面処理は、シリカ処理、アルミナ処理、及びメチルハイドロジェンポリシロキサン処理) 180部
メタノール 1600部
1−ブタノール 400部
上記成分を混合溶解して中間層塗布液を調製した。この塗布液をの円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
〈電荷発生層〉
チタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料) 60部
シリコーン樹脂溶液
(KR5240、15%キシレン−ブタノール溶液:信越化学社製) 700部
2−ブタノン 2000部
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質(合成例(4)の化合物) 150部
バインダー樹脂:ビスフェノールZ型ポリカーボネート
(ユーピロンZ300:三菱ガス化学社製) 300部
酸化防止剤(サノールLS2626:三共社製) 1.7部
テトラヒドロフラン(沸点:64.5℃) 2200部
上記成分を混合溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、100℃40分間乾燥して、膜厚18μmの電荷輸送層を形成した。
Example 2
A photoreceptor containing the mixed compound of the general formula B was produced as follows.
Preparation of photoreceptor 1B <intermediate layer>
Polyamide resin (Amilan CM-8000: manufactured by Toray Industries, Inc.) 60 parts Inorganic fine particles: Titanium oxide SMT500SAS (manufactured by Teica; surface treatment is silica treatment, alumina treatment, and methylhydrogenpolysiloxane treatment) 180 parts Methanol 1600 parts 1- Butanol 400 parts The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
<Charge generation layer>
Titanyl phthalocyanine pigment (pigment with Cu-Kα characteristic X-ray diffraction spectrum and maximum peak of Bragg angle 2θ of 27.3 °) 60 parts Silicone resin solution (KR5240, 15% xylene-butanol solution: Shin-Etsu Chemical Co., Ltd.) 700 parts 2-butanone 2000 parts The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating solution. This coating solution was applied onto the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
<Charge transport layer>
Charge transport material (Compound of Synthesis Example (4)) 150 parts Binder resin: Bisphenol Z type polycarbonate (Iupilon Z300: manufactured by Mitsubishi Gas Chemical Company) 300 parts Antioxidant (Sanol LS2626: manufactured by Sankyo Co., Ltd.) 1.7 parts Tetrahydrofuran ( Boiling point: 64.5 ° C.) 2200 parts The above components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 40 minutes to form a charge transport layer having a thickness of 18 μm.

〈電荷注入層A〉
前記した電荷注入層塗布液Aを前記電荷輸送層の上に円形量規制型塗布装置により電荷注入層を形成し、110℃;60分加熱硬化し、乾燥膜厚5.0μmの電荷注入層を形成し感光体1Bを作製した。
<Charge injection layer A>
The charge injection layer coating solution A is formed on the charge transport layer by a circular amount-regulating coating apparatus, and is cured by heating at 110 ° C. for 60 minutes to form a charge injection layer having a dry film thickness of 5.0 μm. Thus, a photoreceptor 1B was produced.

感光体2B〜14Bの作製
感光体1Bにおいて、電荷発生物質、電荷輸送物質の化合物、化合物の量、電荷輸送層の膜厚、及び電荷注入層を表3のように変更した以外は同様にして感光体2B〜14Bを作製した。但し、電荷注入層A〜Gの処方は前記と同じ。
Preparation of photoconductors 2B to 14B In the photoconductor 1B, the charge generation material, the compound of the charge transport material, the amount of the compound, the thickness of the charge transport layer, and the charge injection layer were changed in the same manner as shown in Table 3. Photoconductors 2B to 14B were prepared. However, the prescriptions of the charge injection layers A to G are the same as described above.

感光体15Bの作製
感光体1Bの作製において、電荷輸送物質(合成例(5)の化合物)を、公知の方法で別途合成した化合物11B(m=0)のn=0のみの成分(成分純度は99%より大)の電荷輸送物質に代えた以外は同様にして感光体15Bを作製した。
Production of Photoreceptor 15B In the production of Photoreceptor 1B, a component (component purity) of n = 0 of Compound 11B (m = 0) synthesized separately by a known method from a charge transport material (the compound of Synthesis Example (5)). Photoconductor 15B was prepared in the same manner except that the charge transport material was replaced by 99% or more.

感光体16Bの作製
感光体1Bの作製において、電荷輸送物質(合成例(5)の化合物)を、合成例(5)の化合物を液体クロマトグラフィーで各成分を分離し、化合物11B(m=0)のn=3のみの成分(成分純度は99%より大)の電荷輸送物質に代えた以外は同様にして感光体16Bを作製したが、電荷輸送物質がバインダー樹脂と相溶せず析出して、評価できる感光体が得られなかった。
Production of Photoreceptor 16B In production of Photoreceptor 1B, the charge transport material (the compound of Synthesis Example (5)) was separated from the compound of Synthesis Example (5) by liquid chromatography to obtain Compound 11B (m = 0). The photoconductor 16B was prepared in the same manner except that it was replaced with a charge transport material having only n = 3 (the component purity was greater than 99%), but the charge transport material was not compatible with the binder resin and deposited. Thus, a photoconductor that can be evaluated was not obtained.

感光体17Bの作製
感光体1Bの作製において、電荷輸送物質(合成例(5)の化合物)を、合成例(5)の化合物を液体クロマトグラフィーで各成分を分離し、化合物11B(m=0)のn=2とn=3の組成比がそれぞれ50%の混合化合物の電荷輸送物質に代えて用いた以外は同様にして感光体17Bを作製した。
Production of Photoreceptor 17B In production of Photoreceptor 1B, the charge transport material (the compound of Synthesis Example (5)) was separated from the compound of Synthesis Example (5) by liquid chromatography to obtain Compound 11B (m = 0). The photoconductor 17B was prepared in the same manner except that it was used instead of the charge transport material of the mixed compound in which the composition ratio of n = 2 and n = 3 was 50%.

感光体18Bの作製
感光体1Bにおいて、電荷注入層を塗布せず、電荷輸送層の膜厚を24μmにした以外は同様にして感光体18Bを作製した。
Production of Photoreceptor 18B Photoreceptor 18B was produced in the same manner as in Photoreceptor 1B, except that the charge injection layer was not applied and the thickness of the charge transport layer was 24 μm.

Figure 2005134515
Figure 2005134515

表中、Y及びZは表1と同じ。   In the table, Y and Z are the same as in Table 1.

(x+y)も表1に同じ。   (X + y) is the same as in Table 1.

又、電荷輸送物質の連鎖構造nの分布(組成比)は高速液体クロマトグラフィーの面積比より求めた。平均分子量Mwはゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)を示す。   The distribution (composition ratio) of the chain structure n of the charge transport material was determined from the area ratio of high performance liquid chromatography. Average molecular weight Mw shows the weight average molecular weight (polystyrene conversion) calculated | required from the gel permeation chromatography (GPC).

評価2
以上のようにして得た感光体1B〜18Bを評価1の条件を下記のように変更した以外は同様にして評価した。評価結果を表4に示す。
Evaluation 2
The photoreceptors 1B to 18B obtained as described above were evaluated in the same manner except that the conditions of Evaluation 1 were changed as follows. The evaluation results are shown in Table 4.

〈評価条件の変更〉
評価1で用いた帯電ローラを磁気ブラシ帯電器に変更し、更に、感光体の線速:140mm/secに改造した以外は評価1と同様にして、感光体1B〜18Bを評価した。
<Change of evaluation conditions>
Photoconductors 1B to 18B were evaluated in the same manner as in Evaluation 1 except that the charging roller used in Evaluation 1 was replaced with a magnetic brush charger and the linear velocity of the photoconductor was modified to 140 mm / sec.

(磁気ブラシ帯電器)
図2の構造を有す。
(Magnetic brush charger)
It has the structure of FIG.

磁気粒子の作製
帯電用磁気ブラシを形成する磁気粒子を下記のように作製した。
Production of magnetic particles Magnetic particles forming a magnetic brush for charging were produced as follows.

Fe23:50モル%
CuO:24モル%
ZnO:24モル%
以上を粉砕、混合し分散剤およびバインダーと水を加えスラリーとした後、スプレードライヤーで造粒操作を行い、分級した後1125℃にて焼成を行った。得られた磁気粒子を解砕処理の後、分級を行い、体積平均粒径が27μmである磁気粒子1を得た。磁気粒子の抵抗率は2×107Ωcm、磁化の強さは65emu/gであった。
Fe 2 O 3 : 50 mol%
CuO: 24 mol%
ZnO: 24 mol%
The above was pulverized and mixed to form a slurry by adding a dispersant, a binder, and water, followed by granulation with a spray dryer and classification, followed by firing at 1125 ° C. The obtained magnetic particles were crushed and then classified to obtain magnetic particles 1 having a volume average particle size of 27 μm. The resistivity of the magnetic particles was 2 × 10 7 Ωcm, and the magnetization strength was 65 emu / g.

磁気粒子の体積平均粒径の測定方法
キャリアの体積平均粒径の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
Measurement Method of Volume Average Particle Size of Magnetic Particles The measurement of the volume average particle size of a carrier is typically performed by a laser diffraction particle size distribution measuring apparatus “HELOS” equipped with a wet disperser (SYMPATEC). Manufactured).

抵抗率(Ωcm)の測定法
磁気粒子を0.50cm2の断面積を有する容器に入れてタッピングした後、詰められた粒子上に1kg/cm2の荷重を掛け、荷重と底面電極との間に1000V/cmの電界が生ずる電圧を印加したときの電流値を読み取ることで得られる値。
After tapping put assay magnetic particles resistivity ([Omega] cm) in a container having a sectional area of 0.50 cm 2, a load of 1 kg / cm 2 on packed particles, between the load and a bottom electrode A value obtained by reading a current value when a voltage generating an electric field of 1000 V / cm is applied to the.

帯電条件
帯電スリーブ;10mmφのステンレス鋼
帯電スリーブに印加される電圧;直流電圧450Vに交流電圧を重畳
帯電領域の磁性粒子量;250mg/cm2
帯電スリーブ/感光体の線速比;0.8
Charging conditions Charging sleeve; 10 mmφ stainless steel Voltage applied to charging sleeve; AC voltage superimposed on DC voltage 450 V Charged magnetic particle amount; 250 mg / cm 2
Charge sleeve / photoconductor linear velocity ratio; 0.8

Figure 2005134515
Figure 2005134515

表4より、本発明の一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用い、電荷注入層を有する感光体1B〜14Bは、高温高湿、低温低湿での残留電位、帯電電位の安定性に優れており、このことから画像濃度が十分で且つカブリ濃度が小さい。しかも絶縁破壊も発生せず、黒ポチ等の改良効果が顕著であり、その結果鮮鋭性が良好な電子写真画像を得ている。一方、n=0の低分子量の化合物のみを用いた感光体15Bは残留電位上昇が大きく、画像濃度が低下し、絶縁破壊も発生し、鮮鋭性も低下している。又、n=3の高分子量の化合物のみを用いた感光体16Bの場合は、バインダー樹脂との溶解不良で、感度等もほとんどなく、評価に値しなかった。化合物11B(m=0)のn=2とn=3の組成比をそれぞれ50%の混合化合物を電荷輸送物質として用いた感光体17Bも電荷輸送物質のバインダー樹脂との溶解性が不十分なため、帯電電位の変動が大きく、カブリが発生し、その結果鮮鋭性も低下している。又、絶縁破壊、黒ポチも発生している。又、電荷注入層を有しない感光体18Bは絶縁破壊、黒ポチが多発し、カブリ濃度も高く、鮮鋭性が劣化している。   From Table 4, the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) of the present invention and the distribution based on n is represented by x, and the composition ratio of the compound of the 2-position component is represented by y. Then, the photoconductors 1B to 14B using a mixed compound with x + y of 99% or less as a charge transport material and having a charge injection layer are excellent in the residual potential and charge potential stability at high temperature and high humidity and low temperature and low humidity. Therefore, the image density is sufficient and the fog density is small. In addition, dielectric breakdown does not occur, and the improvement effect of black spots etc. is remarkable, and as a result, an electrophotographic image with good sharpness is obtained. On the other hand, the photoconductor 15B using only a low molecular weight compound of n = 0 has a large residual potential increase, an image density decreases, dielectric breakdown occurs, and sharpness also decreases. In addition, in the case of the photoreceptor 16B using only a high molecular weight compound of n = 3, the solubility with the binder resin was poor, and there was almost no sensitivity and the like, which was not worthy of evaluation. The photoconductor 17B using the compound 11B (m = 0) in which the compound ratio of n = 2 and n = 3 is 50% as the charge transport material is also insufficient in the solubility of the charge transport material in the binder resin. For this reason, the fluctuation of the charging potential is large, fogging occurs, and as a result, sharpness is also lowered. Moreover, dielectric breakdown and black spots have also occurred. In addition, the photoconductor 18B having no charge injection layer frequently has dielectric breakdown, black spots, high fog density, and sharpness is deteriorated.

実施例3
下記のごとくして、一般式Cの混合化合物を含有した感光体を作製した。
感光体1Cの作製
〈中間層〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60部
無機微粒子:酸化チタンSMT500SAS(テイカ社製;表面処理は、シリカ処理、アルミナ処理、及びメチルハイドロジェンポリシロキサン処理) 180部
メタノール 1600部
1−ブタノール 400部
上記成分を混合溶解して中間層塗布液を調製した。この塗布液をの円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
〈電荷発生層〉
チタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料) 60部
シリコーン樹脂溶液
(KR5240、15%キシレン−ブタノール溶液:信越化学社製) 700部
2−ブタノン 2000部
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質(合成例(6)の化合物) 150部
バインダー樹脂:ビスフェノールZ型ポリカーボネート
(ユーピロンZ300:三菱ガス化学社製) 300部
酸化防止剤(サノールLS2626:三共社製) 1.7部
テトラヒドロフラン(沸点:64.5℃) 2200部
上記成分を混合溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、100℃40分間乾燥して、膜厚18μmの電荷輸送層を形成した。
Example 3
A photoreceptor containing the mixed compound of the general formula C was produced as follows.
Preparation of photoreceptor 1C <intermediate layer>
Polyamide resin (Amilan CM-8000: manufactured by Toray Industries, Inc.) 60 parts Inorganic fine particles: Titanium oxide SMT500SAS (manufactured by Teica; surface treatment is silica treatment, alumina treatment, and methylhydrogenpolysiloxane treatment) 180 parts Methanol 1600 parts 1- Butanol 400 parts The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
<Charge generation layer>
Titanyl phthalocyanine pigment (pigment with Cu-Kα characteristic X-ray diffraction spectrum, maximum peak of Bragg angle 2θ of 27.3 °) 60 parts Silicone resin solution (KR5240, 15% xylene-butanol solution: Shin-Etsu Chemical Co., Ltd.) 700 parts 2-butanone 2000 parts The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating solution. This coating solution was applied onto the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
<Charge transport layer>
Charge transport material (Compound of Synthesis Example (6)) 150 parts Binder resin: Bisphenol Z-type polycarbonate (Iupilon Z300: manufactured by Mitsubishi Gas Chemical Co., Ltd.) 300 parts Antioxidant (Sanol LS2626: Sankyo Co., Ltd.) 1.7 parts Tetrahydrofuran ( Boiling point: 64.5 ° C.) 2200 parts The above components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 40 minutes to form a charge transport layer having a thickness of 18 μm.

〈電荷注入層A〉
前記した電荷注入層塗布液Aを前記電荷輸送層の上に円形量規制型塗布装置により電荷注入層を形成し、110℃;60分加熱硬化し、乾燥膜厚5.0μmの電荷注入層を形成し感光体1Cを作製した。
<Charge injection layer A>
The charge injection layer coating solution A is formed on the charge transport layer by a circular amount-regulating coating apparatus, and is cured by heating at 110 ° C. for 60 minutes to form a charge injection layer having a dry film thickness of 5.0 μm. Thus, a photoreceptor 1C was produced.

感光体2Cの作製
感光体1Cにおいて、電荷輸送物質の化合物を合成例(6)の化合物から合成例(7)の化合物に変更した以外は同様にして感光体2Cを作製した。
Production of Photoreceptor 2C Photoreceptor 2C was produced in the same manner as in Photoreceptor 1C, except that the compound of the charge transport material was changed from the compound of Synthesis Example (6) to the compound of Synthesis Example (7).

感光体3C〜10Cの作製
感光体1Cの作製において、電荷発生物質、電荷輸送物質の化合物、化合物の量、電荷輸送層の膜厚及び電荷注入層を表5のように変更した以外は同様にして感光体3C〜10Cを作製した。
Preparation of photoconductors 3C to 10C In preparation of photoconductor 1C, the same procedure was performed except that the charge generation material, the compound of the charge transport material, the amount of the compound, the thickness of the charge transport layer, and the charge injection layer were changed as shown in Table 5. Photoconductors 3C to 10C were prepared.

感光体11Cの作製
感光体1Cの作製において、電荷輸送物質(合成例(6)の化合物)を、公知の方法で別途合成した化合物、化学構造17Cのn=0のみの成分(成分純度は99%より大)の電荷輸送物質に代えて用いた以外は同様にして感光体11Cを作製した。
Production of Photoreceptor 11C In the production of Photoreceptor 1C, a compound obtained by separately synthesizing a charge transport material (the compound of Synthesis Example (6)) by a known method, a component having only n = 0 of chemical structure 17C (component purity is 99) Photoconductor 11C was prepared in the same manner except that it was used in place of the charge transport material of greater than%.

感光体12Cの作製
感光体1Cの作製において、電荷輸送物質(合成例(6)の化合物)を、合成例(6)の化合物をカラムクロマトグラフィーで各成分を分離し、化学構造17Cのn=5のみの成分(成分純度は99%より大)の電荷輸送物質に代えて用いた以外は同様にして感光体12Cを作製したが、電荷輸送物質がバインダー樹脂と相溶せず析出して、評価できる感光体が得られなかった。
Production of Photoreceptor 12C In the production of Photoreceptor 1C, the charge transport material (the compound of Synthesis Example (6)) was separated from the component of Synthesis Example (6) by column chromatography, and n = Photoreceptor 12C was prepared in the same manner except that it was used in place of the charge transport material having only 5 components (component purity greater than 99%), but the charge transport material was not compatible with the binder resin and deposited. A photoconductor that can be evaluated was not obtained.

感光体13Cの作製
感光体1Cの作製において、電荷輸送物質(合成例(6)の化合物)を、合成例(6)の化合物を液体クロマトグラフィーで各成分を分離し、化学構造17Cのn=4とn=5の組成比がそれぞれ50%の混合化合物の電荷輸送物質に代えて用いた以外は同様にして感光体13Cを作製した。
Production of Photoreceptor 13C In production of Photoreceptor 1C, the charge transport material (the compound of Synthesis Example (6)) was separated from the component of Synthesis Example (6) by liquid chromatography, and n = A photoconductor 13C was prepared in the same manner except that it was used in place of the charge transport material of the mixed compound in which the composition ratio of 4 and n = 5 was 50%.

感光体14Cの作製
感光体1Cにおいて、電荷注入層を塗布せず、電荷輸送層の膜厚を24μmにした以外は同様にして感光体14Cを作製した。
Production of Photoreceptor 14C Photoreceptor 14C was produced in the same manner as in Photoreceptor 1C, except that the charge injection layer was not applied and the thickness of the charge transport layer was 24 μm.

Figure 2005134515
Figure 2005134515

表中、Y及びZは表1と同じ。   In the table, Y and Z are the same as in Table 1.

(x+y)も表1に同じ。   (X + y) is the same as in Table 1.

又、電荷輸送物質の連鎖構造nの分布(組成比)は高速液体クロマトグラフィーの面積比より求めた。平均分子量Mwはゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)を示す。   The distribution (composition ratio) of the chain structure n of the charge transport material was determined from the area ratio of high performance liquid chromatography. Average molecular weight Mw shows the weight average molecular weight (polystyrene conversion) calculated | required from the gel permeation chromatography (GPC).

評価3
以上のようにして得た感光体1C〜14Cを評価1と同じ方法で評価した。評価結果を表6に示す。
Evaluation 3
The photoreceptors 1C to 14C obtained as described above were evaluated by the same method as in Evaluation 1. The evaluation results are shown in Table 6.

Figure 2005134515
Figure 2005134515

表6より、本発明の一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用い、電荷注入層を有する感光体1C〜10Cは、高温高湿、低温低湿での残留電位、帯電電位の安定性に優れており、このことから画像濃度が十分で且つカブリ濃度が小さい。しかも絶縁破壊も発生せず、黒ポチ等の改良効果が顕著であり、その結果鮮鋭性が良好な電子写真画像を得ている。一方、n=1の低分子量の化合物のみを用いた感光体11Cは残留電位上昇が大きく、画像濃度が低下し、絶縁破壊も発生し、鮮鋭性も低下している。又、n=5高分子量の化合物のみを用いた感光体12Cの場合は、バインダー樹脂との溶解不良で、感度等もほとんどなく、評価に値しなかった。又、化学構造17Cのn=4とn=5の組成比をそれぞれ50%の混合化合物を電荷輸送物質として用いた感光体13Cも電荷輸送物質のバインダー樹脂との溶解性が不十分なため、帯電電位の変動が大きく、カブリが発生し、その結果鮮鋭性も低下している。又、絶縁破壊、黒ポチも発生している。又、電荷注入層を有しない感光体14Cは絶縁破壊、黒ポチが多発し、カブリ濃度も高く、鮮鋭性が劣化している。   From Table 6, the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) of the present invention and the distribution based on n is represented by x, and the composition ratio of the compound of the 2-position component is represented by y. Then, the photoconductors 1C to 10C using a mixed compound with x + y of 99% or less as a charge transport material and having a charge injection layer are excellent in residual potential at high temperature and high humidity and low temperature and low humidity, and stability of charging potential. Therefore, the image density is sufficient and the fog density is small. In addition, dielectric breakdown does not occur, and the improvement effect of black spots etc. is remarkable, and as a result, an electrophotographic image with good sharpness is obtained. On the other hand, the photoconductor 11C using only a low molecular weight compound of n = 1 has a large residual potential increase, an image density is lowered, dielectric breakdown occurs, and sharpness is also lowered. Further, in the case of the photoreceptor 12C using only the compound having a high molecular weight of n = 5, the solubility with the binder resin was poor, and there was almost no sensitivity and the like and was not worthy of evaluation. Further, the photosensitive member 13C using a mixed compound having a composition ratio of n = 4 and n = 5 of the chemical structure 17C of 50% as the charge transport material is also insufficiently soluble in the binder resin of the charge transport material. The fluctuation of the charging potential is large, fogging occurs, and as a result, sharpness is also lowered. Moreover, dielectric breakdown and black spots have also occurred. In addition, the photoreceptor 14C having no charge injection layer frequently has dielectric breakdown and black spots, has a high fog density, and deteriorates sharpness.

帯電ローラ帯電を用いた画像形成装置の1例を示す図である。1 is a diagram illustrating an example of an image forming apparatus using charging roller charging. 接触式の磁気ブラシ帯電装置の図である。It is a figure of a contact-type magnetic brush charging device. 図2の帯電装置による交流バイアス電圧と帯電電位との関係を示す図である。It is a figure which shows the relationship between the alternating current bias voltage and charging potential by the charging device of FIG. 磁気ブラシ帯電器を有する画像形成装置の1例を示す断面図である。It is sectional drawing which shows an example of the image forming apparatus which has a magnetic brush charger.

符号の説明Explanation of symbols

1 帯電ローラ
2 感光体ドラム
3 現像装置
4 現像スリーブ
5 除電ランプ
6 転写ローラ
7 搬送ベルト
8 搬送ローラ
20 芯金
50 感光体ドラム
51 露光部
52 磁気ブラシ帯電器
53 像露光器
54 現像器
120 磁気ブラシ帯電装置
120a 帯電スリーブ
220 供給ボトル
300 磁気粒子回収容器
DESCRIPTION OF SYMBOLS 1 Charging roller 2 Photosensitive drum 3 Developing device 4 Developing sleeve 5 Static elimination lamp 6 Transfer roller 7 Conveying belt 8 Conveying roller 20 Core metal 50 Photosensitive drum 51 Exposure unit 52 Magnetic brush charger 53 Image exposing unit 54 Developing unit 120 Magnetic brush Charging device 120a Charging sleeve 220 Supply bottle 300 Magnetic particle recovery container

Claims (17)

下記一般式(1)の構造を有し、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の組成比をx、2位の成分の組成比をyとすると、x+yが99%以下の混合化合物を含有し且つ電荷注入層を有することを特徴とする電子写真感光体。
一般式(1) X−(CTM基)n−Y n=0〜10
一般式(1)中、CTM基は、電荷輸送性基である。
X、Yは水素原子、ハロゲン原子、又は1価の有機基
nは0〜10(但し、X及びYが共に水素原子、ハロゲン原子の場合はnは1〜10)
When a compound having the structure of the following general formula (1) and having a distribution based on n is used, the composition ratio of the maximum component of the compound is x, and the composition ratio of the component at the 2nd position is y, x + y is An electrophotographic photoreceptor comprising 99% or less of a mixed compound and having a charge injection layer.
General formula (1) X- (CTM group) n -Y n = 0 to 10
In general formula (1), the CTM group is a charge transporting group.
X and Y are a hydrogen atom, a halogen atom, or a monovalent organic group n is 0 to 10 (provided that when both X and Y are a hydrogen atom and a halogen atom, n is 1 to 10)
導電性支持体上に電荷発生物質を有する電荷発生層、電荷輸送層を有する電荷輸送層及び電荷注入層を積層した電子写真感光体において、前記電荷輸送層が、上記一般式(1)の構造を有し、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の組成比をx、2位の成分の組成比をyとすると、x+yが99%以下の混合化合物を含有することを特徴とする電子写真感光体。 In the electrophotographic photosensitive member in which a charge generation layer having a charge generation material, a charge transport layer having a charge transport layer, and a charge injection layer are laminated on a conductive support, the charge transport layer has the structure of the above general formula (1). And a compound having a distribution based on n, wherein x is the maximum component composition ratio and x is the second component composition ratio, and x + y is 99% or less. An electrophotographic photosensitive member characterized by comprising: 一般式(1)のx+yが下記の範囲であることを特徴とする請求項1又は2に記載の電子写真感光体。
30%≦x+y≦99%
The electrophotographic photosensitive member according to claim 1, wherein x + y in the general formula (1) is in the following range.
30% ≦ x + y ≦ 99%
前記混合化合物の重量平均分子量が650〜2500であることを特徴とする請求項1〜3のいずれか1項に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the mixed compound has a weight average molecular weight of 650 to 2500. 前記混合化合物の重量平均分子量が800〜2000であることを特徴とする請求項4に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 4, wherein the mixed compound has a weight average molecular weight of 800 to 2,000. 前記x+yが下記の範囲であることを特徴とする請求項3〜5のいずれか1項に記載の電子写真感光体。
45%≦x+y≦90%
6. The electrophotographic photosensitive member according to claim 3, wherein x + y is in the following range.
45% ≦ x + y ≦ 90%
一般式(1)のCTM基、X、Yが下記一般式Aを有することを特徴とする請求項1〜6のいずれか1項に記載の電子写真感光体。
Figure 2005134515
上記一般式A中、Ar1は1価の置換又は無置換の芳香族基を示し、Ar2は2価の置換、無置換の芳香族基、2価のフラン基又はチオフェン基又は下記一般式(2)を示し、R1〜R3は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は下記一般式(3)の基を示す。但し、Ar1とR1は互いに結合して環を形成してもよい。又、複数のAr1、R1、R2、R3は互いに異なっていてもよい。p、qは各々0又は1を表す。
Figure 2005134515
一般式(2)中、Yは単結合、酸素原子、硫黄原子、−CH=CH−、又は−C(R4)(R5)−であり、R4、R5は互いに結合していてもよい。
Figure 2005134515
一般式(3)中、X1は単結合、アルキレン基、酸素原子又は硫黄原子を表し、R6は置換、無置換のアルキル基、置換、無置換の芳香族基を示す。
The electrophotographic photosensitive member according to claim 1, wherein the CTM group of the general formula (1), X, and Y have the following general formula A.
Figure 2005134515
In the above general formula A, Ar 1 represents a monovalent substituted or unsubstituted aromatic group, Ar 2 represents a divalent substituted, unsubstituted aromatic group, divalent furan group or thiophene group, or the following general formula (2) indicates, R 1 to R 3 is a hydrogen atom, a substituted or unsubstituted alkyl group, a monovalent substituent indicates a non-substituted aromatic group, a is a divalent group containing triarylamine group Or the group of the following general formula (3) is shown. However, Ar 1 and R 1 may be bonded to each other to form a ring. A plurality of Ar 1 , R 1 , R 2 , and R 3 may be different from each other. p and q each represents 0 or 1;
Figure 2005134515
In General Formula (2), Y is a single bond, an oxygen atom, a sulfur atom, —CH═CH—, or —C (R 4 ) (R 5 ) —, and R 4 and R 5 are bonded to each other. Also good.
Figure 2005134515
In the general formula (3), X 1 represents a single bond, an alkylene group, an oxygen atom or a sulfur atom, and R 6 represents a substituted, unsubstituted alkyl group, a substituted or unsubstituted aromatic group.
一般式(1)のCTM基、X、Yが下記一般式Bを有することを特徴とする請求項1〜6のいずれか1項に記載の電子写真感光体。
Figure 2005134515
上記一般式B中、Ar1は2価の置換、無置換の芳香族基、2価のフラン基又はチオフェン基、又は前記一般式(2)を示し、R1〜R3は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は前記一般式(3)の基を示し、Bは1価の置換又は無置換の芳香族基を示す。但し、複数のB、R1、R2、R3は互いに異なっていてもよい。mは各々0又は1を表す。
The electrophotographic photosensitive member according to claim 1, wherein the CTM group, X, and Y of the general formula (1) has the following general formula B.
Figure 2005134515
In the general formula B, Ar 1 represents a divalent substituted, unsubstituted aromatic group, divalent furan group or thiophene group, or the general formula (2), and R 1 to R 3 represent a hydrogen atom or a substituted atom. , An unsubstituted alkyl group, a monovalent substituted, an unsubstituted aromatic group, A represents a divalent group containing a triarylamine group or a group of the general formula (3), and B represents a monovalent group. A substituted or unsubstituted aromatic group. However, a plurality of B, R 1 , R 2 and R 3 may be different from each other. m represents 0 or 1 respectively.
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(4)の基であることを特徴とする請求項7又は8に記載の電子写真感光体。
Figure 2005134515
一般式(4)中、Ar3は置換又は無置換の1価の芳香族基を表す。
The electrophotographic photosensitive member according to claim 7 or 8, wherein the divalent group containing the triarylamine group of A is a group of the following general formula (4).
Figure 2005134515
In the general formula (4), Ar 3 represents a substituted or unsubstituted monovalent aromatic group.
前記Ar3が、下記一般式(5)の基であることを特徴とする請求項9に記載の電子写真感光体。
Figure 2005134515
一般式(5)中、R31、R32、R33、R34、R35は水素原子又は炭素数1〜4のアルキル基を示す。但し、R31及びR35の内、少なくとも1つは炭素数1〜4のアルキル基である。
The electrophotographic photosensitive member according to claim 9, wherein Ar 3 is a group of the following general formula (5).
Figure 2005134515
In General Formula (5), R 31 , R 32 , R 33 , R 34 , and R 35 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. However, at least one of R 31 and R 35 is an alkyl group having 1 to 4 carbon atoms.
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(6)の基であることを特徴とする請求項7又は8に記載の電子写真感光体。
Figure 2005134515
一般式(6)中、X2は単結合、置換又は無置換のアルキレン基、置換又は無置換の2価の芳香族基、Ar4、Ar5は置換又は無置換の1価の芳香族基を示す。
9. The electrophotographic photosensitive member according to claim 7, wherein the divalent group containing the triarylamine group of A is a group of the following general formula (6).
Figure 2005134515
In general formula (6), X 2 is a single bond, a substituted or unsubstituted alkylene group, a substituted or unsubstituted divalent aromatic group, and Ar 4 and Ar 5 are substituted or unsubstituted monovalent aromatic groups. Indicates.
前記Bが下記一般式(7)で表される基であることを特徴とする請求項8に記載の電子写真感光体。
Figure 2005134515
一般式(7)中、R41、R42、R43、R44、R45、R51、R52、R53、R54、R55は水素原子または炭素数1〜4のアルキル基を示す。ただし、R41、R45、R51、R55のうち少なくともひとつは炭素数1〜4のアルキル基である。
The electrophotographic photosensitive member according to claim 8, wherein B is a group represented by the following general formula (7).
Figure 2005134515
In General Formula (7), R 41 , R 42 , R 43 , R 44 , R 45 , R 51 , R 52 , R 53 , R 54 , and R 55 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. . However, at least one of R 41 , R 45 , R 51 and R 55 is an alkyl group having 1 to 4 carbon atoms.
一般式(1)のCTM基、X、Yが下記一般式Cを有することを特徴とする請求項1〜6のいずれか1項に記載の電子写真感光体。
Figure 2005134515
上記一般式C中、Ar1は1価の置換、無置換の芳香族基、Ar2は2価の置換、無置換の芳香族基、2価の複素環基、又は下記一般式(8)を示し、Rは置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示す。但し、複数のAr1、Ar2、Rは互いに異なっていてもよい。
Figure 2005134515
一般式(8)中、Yは酸素原子、硫黄原子、−CH=CH−、又は−CH2−CH2−である。但しR1、R2は水素原子又は炭素数1〜4のアルキル基である。
The electrophotographic photosensitive member according to any one of claims 1 to 6, wherein the CTM group, X and Y in the general formula (1) has the following general formula C.
Figure 2005134515
In the above general formula C, Ar 1 is a monovalent substituted or unsubstituted aromatic group, Ar 2 is a divalent substituted, unsubstituted aromatic group, divalent heterocyclic group, or the following general formula (8) R represents a substituted, unsubstituted alkyl group, a monovalent substituted, or an unsubstituted aromatic group. However, the plurality of Ar 1 , Ar 2 , and R may be different from each other.
Figure 2005134515
In General Formula (8), Y is an oxygen atom, a sulfur atom, —CH═CH—, or —CH 2 —CH 2 —. However R 1, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
前記電荷注入層が導電性粒子を含有することを特徴とする請求項1〜13のいずれか1項に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the charge injection layer contains conductive particles. 前記一般式(1)の構造を有し、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の組成比をx、2位の成分の組成比をyとすると、x+yが99%以下の混合化合物を含有し且つ電荷注入層を有する電子写真感光体と該電子写真感光体に接触して、電子写真感光体を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。 When the compound having the structure of the general formula (1) and having a distribution based on n is used, the composition ratio of the maximum component of the compound is x, and the composition ratio of the component at the 2-position is y, x + y is An electrophotographic photosensitive member containing 99% or less of a mixed compound and having a charge injection layer, charging means for uniformly charging the electrophotographic photosensitive member in contact with the electrophotographic photosensitive member, and a charged electrophotographic photosensitive member A latent image forming means for forming an electrostatic latent image on the electrophotographic photosensitive member, a developing means for visualizing the electrostatic latent image on the electrophotographic photosensitive member, and a toner image visualized on the electrophotographic photosensitive member on a transfer material. And at least one of a transfer means for transferring the toner, a charge eliminating means for removing charges on the electrophotographic photosensitive member after the transfer, and a cleaning means for removing residual toner on the electrophotographic photosensitive member after the transfer. And can be detachably attached to the image forming apparatus main body. The process cartridge according to claim. 電子写真感光体に接触して、電子写真感光体を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段を有する画像形成装置において、該電子写真感光体が前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ電荷注入層を有することを特徴とする画像形成装置。 A charging means for uniformly charging the electrophotographic photosensitive member in contact with the electrophotographic photosensitive member, a latent image forming means for forming an electrostatic latent image on the charged electrophotographic photosensitive member, and a static on the electrophotographic photosensitive member. In an image forming apparatus comprising developing means for developing an electrostatic latent image and transfer means for transferring a toner image visualized on the electrophotographic photosensitive member onto a transfer material, the electrophotographic photosensitive member is represented by the general formula When the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of (1) and having a distribution based on n is x, and the composition ratio of the compound of the 2-position component is y, x + y is 99% or less. An image forming apparatus comprising a mixed compound and having a charge injection layer. 請求項16に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。 An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 16.
JP2003368609A 2003-10-29 2003-10-29 Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image Pending JP2005134515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368609A JP2005134515A (en) 2003-10-29 2003-10-29 Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368609A JP2005134515A (en) 2003-10-29 2003-10-29 Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image

Publications (1)

Publication Number Publication Date
JP2005134515A true JP2005134515A (en) 2005-05-26

Family

ID=34646219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368609A Pending JP2005134515A (en) 2003-10-29 2003-10-29 Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image

Country Status (1)

Country Link
JP (1) JP2005134515A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302032A (en) * 2003-03-31 2004-10-28 Konica Minolta Holdings Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2004302033A (en) * 2003-03-31 2004-10-28 Konica Minolta Holdings Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005099777A (en) * 2003-08-28 2005-04-14 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2005134607A (en) * 2003-10-30 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005134606A (en) * 2003-10-30 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2005134516A (en) * 2003-10-29 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005156797A (en) * 2003-11-25 2005-06-16 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005181679A (en) * 2003-12-19 2005-07-07 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005215010A (en) * 2004-01-27 2005-08-11 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2006028122A (en) * 2004-07-20 2006-02-02 Kyocera Mita Corp Stilbene derivative, method for producing the same and electrophotographic receptor
JP2018097166A (en) * 2016-12-14 2018-06-21 コニカミノルタ株式会社 Electrophotographic image forming apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302032A (en) * 2003-03-31 2004-10-28 Konica Minolta Holdings Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2004302033A (en) * 2003-03-31 2004-10-28 Konica Minolta Holdings Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005099777A (en) * 2003-08-28 2005-04-14 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2005134516A (en) * 2003-10-29 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005134607A (en) * 2003-10-30 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005134606A (en) * 2003-10-30 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2005156797A (en) * 2003-11-25 2005-06-16 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005181679A (en) * 2003-12-19 2005-07-07 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005215010A (en) * 2004-01-27 2005-08-11 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2006028122A (en) * 2004-07-20 2006-02-02 Kyocera Mita Corp Stilbene derivative, method for producing the same and electrophotographic receptor
JP4601349B2 (en) * 2004-07-20 2010-12-22 京セラミタ株式会社 Electrophotographic photoreceptor
JP2018097166A (en) * 2016-12-14 2018-06-21 コニカミノルタ株式会社 Electrophotographic image forming apparatus

Similar Documents

Publication Publication Date Title
JP4819427B2 (en) Image forming apparatus, image forming method, and process cartridge
JP4617369B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP4069862B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134515A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4069845B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
KR100881381B1 (en) Image holding member and image forming apparatus
JP4069781B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2006276158A (en) Process cartridge, image forming device, cleaning method, and cleaning apparatus
JP2005134709A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4069846B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP3952990B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005221539A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4075874B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4066938B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2004302033A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP5935700B2 (en) Image forming apparatus, image forming method, and process cartridge
JP2004347772A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2004347854A (en) Electrophotographic photoreceptor, processing cartridge and image forming apparatus
JP4333511B2 (en) Image forming method and image forming apparatus
JP4307197B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4103810B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2004117994A (en) Image forming method and image forming apparatus
JP2004145074A (en) Organic photoreceptor, image forming method, and image forming apparatus
JP2006047457A (en) Cleanerless image forming method, cleanerless image forming apparatus, process cartridge and organic electrophotographic photoreceptor
JP2004347771A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method