JP2005091016A - X-ray inspection device - Google Patents

X-ray inspection device Download PDF

Info

Publication number
JP2005091016A
JP2005091016A JP2003321549A JP2003321549A JP2005091016A JP 2005091016 A JP2005091016 A JP 2005091016A JP 2003321549 A JP2003321549 A JP 2003321549A JP 2003321549 A JP2003321549 A JP 2003321549A JP 2005091016 A JP2005091016 A JP 2005091016A
Authority
JP
Japan
Prior art keywords
ray
data
inspection object
ray detector
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003321549A
Other languages
Japanese (ja)
Other versions
JP3955558B2 (en
Inventor
Masahiro Yagi
将博 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2003321549A priority Critical patent/JP3955558B2/en
Publication of JP2005091016A publication Critical patent/JP2005091016A/en
Application granted granted Critical
Publication of JP3955558B2 publication Critical patent/JP3955558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform stable inspection without being influenced even if displacement occurs in detection data outputted from an X-ray detector whose sensitivity is corrected. <P>SOLUTION: The first mean value calculation means 17a calculates the mean value of the whole concentration data having the prescribed number of lines outputted from the X-ray detector 10. The second mean value calculation means 17b calculates in each element, the mean value of the concentration data corresponding to a single element from among the concentration data having the prescribed number of lines outputted from the X-ray detector 10. A difference calculation means 17c calculates in each element, difference data determined by subtracting the mean value calculated by the second mean value calculation means 17b from the mean value calculated by the first mean value calculation means 17a. A correction means 17d corrects the detection data by subtracting the difference data of the element corresponding to X-ray transmission data of each element on each line of the X-ray detector 10 including the inspection object W. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、X線を曝射したときのX線透過量から被検査物中の異物混入の有無などを検査するX線検査装置に関し、特に感度補正されたX線検出器から出力される検出データにずれが生じても誤判定を招くことなく安定した検査を行うことが可能なX線検査装置に関するものである。   The present invention relates to an X-ray inspection apparatus for inspecting the presence or absence of foreign matter in an inspection object from the amount of X-ray transmission when X-rays are exposed, and in particular, detection output from a sensitivity-corrected X-ray detector. The present invention relates to an X-ray inspection apparatus capable of performing a stable inspection without causing erroneous determination even if a deviation occurs in data.

X線検査装置は、搬送路上を所定間隔で順次搬送されてくる各品種の被検査物(例えば、生肉、魚、加工食品、医薬など)にX線を曝射し、この曝射したX線の透過量から被検査物中に金属、ガラス、石、骨などの異物が混入しているか否かや被検査物の欠品などを検査する装置である。   The X-ray inspection apparatus irradiates X-rays to inspection products of various varieties (for example, raw meat, fish, processed foods, medicines, etc.) that are sequentially transported at predetermined intervals on the transport path, and this exposed X-rays. This is an apparatus for inspecting whether or not foreign objects such as metal, glass, stones, and bones are mixed in the inspected object based on the permeation amount of the inspected object and the inspected object missing item.

この種のX線検査装置では、例えば下記特許文献1でも開示されるように、X線の曝射に伴って被検査物を透過してくるX線を検出するX線検出器としてアレイ状のラインセンサを用いている。X線検出器10は、搬送される被検査物の搬送方向の平面上で搬送方向と直交する方向に複数の素子が一直線上に配置されたものであり、図5に示すように、ライン状に整列して配設された複数のフォトダイオード10aと、ライン状のフォトダイオード10a上に設けられたシンチレータ10bとを備えてアレイ状に構成される。
特開2002−168806号公報
In this type of X-ray inspection apparatus, as disclosed in, for example, Patent Document 1 below, an array of X-ray detectors that detect X-rays that pass through an object to be inspected upon exposure to X-rays. A line sensor is used. The X-ray detector 10 has a plurality of elements arranged in a straight line in a direction orthogonal to the transport direction on the plane of the transport direction of the object to be transported, as shown in FIG. A plurality of photodiodes 10a arranged in line with each other and a scintillator 10b provided on the line-shaped photodiode 10a are configured in an array.
JP 2002-168806 A

ところで、従来、アレイ状のラインセンサからなるX線検出器10を用いて被検査物の検査を行う際には、被検査物を搬送していない検査前にX線検出器10の各素子の出力レベルが一定値となるように、X線検出器10に対して適切な補正値を設定しておき、この補正値に基づいて検査前にX線検出器10の出力レベルの感度補正を行っていた。   By the way, conventionally, when an inspection object is inspected using the X-ray detector 10 formed of an array-shaped line sensor, each element of the X-ray detector 10 is inspected before the inspection is not carried. An appropriate correction value is set for the X-ray detector 10 so that the output level becomes a constant value, and the sensitivity of the output level of the X-ray detector 10 is corrected based on this correction value before inspection. It was.

しかしながら、この種のX線検査装置に使用されるアレイ状のX線検出器10は、温度や湿度などの外部要因によって素子単体の感度が変動し、素子毎に出力レベルに差が生じてくる。   However, in the array-shaped X-ray detector 10 used in this type of X-ray inspection apparatus, the sensitivity of a single element varies depending on external factors such as temperature and humidity, and the output level varies depending on the element. .

また、仮にX線検出器10の受光面にゴミが付着した状態で上述した感度補正を行い、その後、付着したゴミが取れた状態で検査が行われると、ゴミが取れた部分の素子の出力レベルに誤差が生じ、その部分が異物検出などに影響を与えて誤判定を招くおそれがあり、安定した検査が行えないという問題を生じる。また、感度補正後にX線検出器10の受光面にゴミが付着しても同様の問題を招く。   Further, if the above-described sensitivity correction is performed in a state where dust is attached to the light receiving surface of the X-ray detector 10, and then the inspection is performed in a state where the attached dust is removed, the output of the element in the portion where the dust is removed An error occurs in the level, and this part may affect foreign object detection and the like, leading to erroneous determination, resulting in a problem that stable inspection cannot be performed. Further, even if dust adheres to the light receiving surface of the X-ray detector 10 after the sensitivity correction, the same problem is caused.

このように、従来のX線検査装置では、検査前にX線検出器10の感度補正を行い、各素子が出力する検出データの出力レベルを一定値に補正しても、その後、温度や湿度などの外部要因に伴う各素子の出力レベルの差、受光面へのゴミなどの付着によって感度補正後にX線検出器10が出力する検出データにずれが生じることがある。   As described above, in the conventional X-ray inspection apparatus, even if the sensitivity of the X-ray detector 10 is corrected before the inspection and the output level of the detection data output from each element is corrected to a constant value, the temperature and humidity are thereafter changed. The detection data output from the X-ray detector 10 after the sensitivity correction may be shifted due to the difference in the output level of each element due to external factors such as adhesion of dust or the like to the light receiving surface.

そして、図6(a)に示す各素子の出力レベルが一定値に補正された感度補正直後の検出データにずれが生じると、補正された検出データのレベルの高低差が濃淡画像の色調の変化としてデータに現われる。例えば感度補正後の検出データにずれが生じた素子の出力レベルが基準値より高い場合には、その部分の濃淡画像がグレーの線として表示される(図6(b)の黒塗り部分)。これに対し、感度補正後の検出データにずれが生じた素子の出力レベルが基準値より低い場合には、その部分の濃淡画像が白の線として表示される(図6(b)のハッチング部分)。そして、上記のように感度補正後の検出データにずれが生じた部分が異物検出などに影響を与えて誤判定を招き、安定した正確な検査が行えないという問題を招いていた。   Then, when a deviation occurs in the detection data immediately after the sensitivity correction in which the output level of each element shown in FIG. 6A is corrected to a constant value, the level difference of the corrected detection data level changes the tone of the grayscale image. As it appears in the data. For example, when the output level of the element in which the detection data after the sensitivity correction is shifted is higher than the reference value, the gray image of that portion is displayed as a gray line (black portion in FIG. 6B). On the other hand, when the output level of the element in which the detection data after the sensitivity correction is shifted is lower than the reference value, the gray image of that portion is displayed as a white line (hatched portion in FIG. 6B). ). In addition, as described above, the portion where the detection data after the sensitivity correction has been shifted has an influence on the foreign object detection and the like, resulting in erroneous determination, resulting in a problem that stable and accurate inspection cannot be performed.

そこで、本発明は、上記問題点に鑑みてなされたものであり、感度補正されたX線検出器から出力される検出データにずれが生じても、その影響を受けずに安定した検査を行うことができるX線検査装置を提供することを目的としている。   Therefore, the present invention has been made in view of the above-described problems, and even if a deviation occurs in detection data output from the sensitivity-corrected X-ray detector, a stable inspection is performed without being affected by the deviation. An object of the present invention is to provide an X-ray inspection apparatus capable of performing the above.

上記目的を達成するため、本発明の請求項1に記載されたX線検査装置は、搬送路上を搬送される被検査物WにX線を曝射するX線発生器9と、前記被検査物の搬送方向Xの平面上で直交する方向Yに直線状に配置された複数の素子によって前記被検査物を透過するX線を検出し、その検出した濃度データを素子毎に前記複数の素子数を1ラインとして順次出力し、前記被検査物の搬送に伴い前記順次出力を繰り返すX線検出器10を備え、該X線検出器から出力される濃度データに基づいて前記被検査物の検査を行うX線検査装置において、
前記X線検出器から出力される所定ライン数の濃度データ全体の平均値を算出する第1の平均値算出手段17aと、
前記X線検出器から出力される所定ライン数の濃度データの中から単体素子に対応する濃度データの平均値を素子毎に算出する第2の平均値算出手段17bと、
前記第1の平均値算出手段が算出した平均値から前記第2の平均値算出手段が算出した平均値を差し引いた差分データを前記素子毎に算出する差分算出手段17cと、
前記被検査物を含む前記X線検出器のライン毎の各素子の濃度データに対応する素子の前記差分データを差し引いて前記X線検出器からの濃度データを補正する補正手段17dとを備えたことを特徴とする。
In order to achieve the above object, an X-ray inspection apparatus according to claim 1 of the present invention includes an X-ray generator 9 that emits X-rays to an inspection object W transported on a transport path, and the inspection target. X-rays passing through the object to be detected are detected by a plurality of elements arranged linearly in a direction Y orthogonal to the plane of the object transport direction X, and the detected density data is detected for each element. An X-ray detector 10 that sequentially outputs the number as one line and repeats the sequential output as the inspection object is conveyed is provided, and the inspection object is inspected based on density data output from the X-ray detector. In the X-ray inspection apparatus that performs
First average value calculating means 17a for calculating an average value of the entire density data of a predetermined number of lines output from the X-ray detector;
Second average value calculating means 17b for calculating an average value of density data corresponding to a single element from density data of a predetermined number of lines output from the X-ray detector;
Difference calculation means 17c for calculating, for each element, difference data obtained by subtracting the average value calculated by the second average value calculation means from the average value calculated by the first average value calculation means;
Correction means 17d for correcting the density data from the X-ray detector by subtracting the difference data of the elements corresponding to the density data of each element for each line of the X-ray detector including the inspection object; It is characterized by that.

請求項2に記載されたX線検査装置は、請求項1に記載のX線検査装置において、
前記補正手段17dで補正された濃度データの前記被検査物Wの内容物領域内における内容物の異物の有無を判別する判別手段19を備えたことを特徴とする。
The X-ray inspection apparatus according to claim 2 is the X-ray inspection apparatus according to claim 1,
It is characterized by comprising a discriminating means 19 for discriminating the presence / absence of foreign matter in the contents in the content area of the object W of the density data corrected by the correcting means 17d.

請求項3に記載されたX線検査装置は、請求項1に記載のX線検査装置において、
前記補正手段17dで補正された濃度データの前記被検査物Wの内容物領域内における内容物の欠品の有無を判別する判別手段19を備えたことを特徴とする。
The X-ray inspection apparatus according to claim 3 is the X-ray inspection apparatus according to claim 1,
It is characterized by comprising a discriminating means 19 for discriminating the presence / absence of a missing content in the content area of the inspection object W of the density data corrected by the correcting means 17d.

請求項4に記載されたX線検査装置は、請求項1に記載のX線検査装置において、
前記補正手段17dで補正された濃度データから外形を抽出し、この抽出した外形を基準として、予め設定されたシール部情報に基づいて前記被検査物Wのシール部領域を算出するシール部算出手段18と、
該シール部算出手段が算出したシール部領域の画像の濃淡レベルと前記被検査物の内容物の画像の濃淡レベルとの比較によりシール不良の有無を判別する判別手段19とを備えたことを特徴とする。
The X-ray inspection apparatus according to claim 4 is the X-ray inspection apparatus according to claim 1,
A seal part calculation unit that extracts an outer shape from the density data corrected by the correction unit 17d and calculates a seal part region of the inspection object W based on preset seal part information using the extracted outer shape as a reference. 18 and
And a discriminating means 19 for discriminating whether or not there is a seal defect by comparing the gray level of the image of the seal portion area calculated by the seal portion calculating means with the gray level of the image of the contents of the inspection object. And

本発明によれば、検査前に感度補正されたX線検出器から出力される検出データにずれが生じても、被検査物が搬送されてくる直前のX線検出器のデータを用いてグレーや白の線の影響値を差し引くデータ補正を行い、感度補正されたX線検出器から出力される検出データのずれが異物検出、欠品検出、シール不良検出などに影響することなく、常に安定した正確な各種検査を行うことができる。   According to the present invention, even if the detection data output from the X-ray detector whose sensitivity has been corrected before the inspection is deviated, the data of the X-ray detector immediately before the object to be inspected is grayed out. Correction of data that subtracts the influence value of white lines and white lines, and the detection data output from the sensitivity-corrected X-ray detector is always stable without affecting foreign object detection, missing part detection, seal defect detection, etc. It is possible to perform various accurate inspections.

図1は本発明に係るX線検査装置の概略構成を示す斜視図、図2は本発明に係るX線検査装置のブロック図、図3は本発明に係るX線検査装置における被検査物とデータ補正に用いるデータとの時間的位置関係を示す図、図4(a),(b)は本発明に係るX線検査装置のデータ補正に関する説明図である。   1 is a perspective view showing a schematic configuration of an X-ray inspection apparatus according to the present invention, FIG. 2 is a block diagram of the X-ray inspection apparatus according to the present invention, and FIG. 3 shows an object to be inspected in the X-ray inspection apparatus according to the present invention. FIGS. 4A and 4B are diagrams illustrating a temporal positional relationship with data used for data correction, and FIGS. 4A and 4B are explanatory diagrams regarding data correction of the X-ray inspection apparatus according to the present invention.

本例のX線検査装置1は、製造ラインの一部に設けられ、所定間隔をおいて順次搬送されてくる被検査物W中の異物混入の有無、内容物の噛み込みによるシール部不良の有無、内容物の欠品の有無などの各種検査を行うものである。   The X-ray inspection apparatus 1 of the present example is provided in a part of the production line, and the presence or absence of foreign matter in the inspection object W that is sequentially conveyed at a predetermined interval, and the seal portion failure due to the biting of the contents. Various inspections such as presence / absence and absence / existence of contents are performed.

図1に示すX線検査装置1は、搬送部2と異物検出部3とが装置本体4内部に設けられ、表示器5が装置本体4の前面上部に設けられている。   In the X-ray inspection apparatus 1 shown in FIG. 1, a conveyance unit 2 and a foreign matter detection unit 3 are provided in the apparatus main body 4, and a display 5 is provided in the upper front portion of the apparatus main body 4.

搬送部2は、同一品種の被検査物Wを、一定速度で所定間隔おきに搬送路上を順次搬送している。この搬送部2は、例えば装置本体4に対して水平に配置されたベルトコンベアで構成することができる。搬送部2は、図1に示す駆動モータ6の駆動により予め設定された所定の搬送速度で搬入口7から搬入された被検査物Wを搬出口8側(図中搬送方向X)に向けて搬送させる。   The transport unit 2 sequentially transports the same type of inspection object W on the transport path at predetermined intervals at a constant speed. This conveyance part 2 can be comprised with the belt conveyor arrange | positioned horizontally with respect to the apparatus main body 4, for example. The conveyance unit 2 directs the inspection object W carried in from the carry-in port 7 at a predetermined conveyance speed set in advance by driving of the drive motor 6 shown in FIG. 1 toward the carry-out port 8 side (carrying direction X in the drawing). Transport.

異物検出部3は、搬送される被検査物Wを搬送路途中において異物混入の有無、シール部の不良の有無、内容物の欠品の有無などを検出するためのもので、搬送部2の上方に所定高さ離れて設けられるX線発生器9と、搬送部2内にX線発生器9と対向して設けられるX線検出器10を備えて構成される。   The foreign matter detection unit 3 is used to detect the presence or absence of foreign matter, the presence or absence of a defective seal portion, the presence or absence of a missing part of the contents of the inspection object W being conveyed, An X-ray generator 9 provided at a predetermined height above and an X-ray detector 10 provided to face the X-ray generator 9 in the transport unit 2 are provided.

X線発生器9は、金属製の箱体11内部に設けられる円筒状のX線管12を不図示の絶縁油により浸漬した構成であり、X線管12の陰極からの電子ビームを陽極ターゲットに照射させてX線を生成している。X線管12は、その長手方向が被検査物Wの搬送方向Xと直交する方向(Y方向)に設けられている。X線管12により生成されたX線は、下方のX線検出器10に向けて、長手方向に沿った不図示のスリットにより略三角形状のスクリーン状にして曝射するようになっている。   The X-ray generator 9 has a configuration in which a cylindrical X-ray tube 12 provided in a metal box 11 is immersed in insulating oil (not shown), and an electron beam from the cathode of the X-ray tube 12 is an anode target. X-rays are generated by irradiation. The X-ray tube 12 is provided in a direction (Y direction) whose longitudinal direction is orthogonal to the conveyance direction X of the inspection object W. The X-rays generated by the X-ray tube 12 are exposed to the lower X-ray detector 10 in the form of a substantially triangular screen by a slit (not shown) along the longitudinal direction.

X線検出器10は、被検査物Wの搬送方向Xの平面上で直交する方向Yに直線状に配置された複数の素子によって被検査物Wを透過するX線を検出し、その検出した濃度データを素子毎に複数の素子数を1ラインとして順次出力し、被検査物Wの搬送に伴って1ラインからの順次出力を繰り返している。X線検出器10は、従来技術でも説明したように、図5に示す如く、搬送される被検査物Wの搬送方向Xの平面上で搬送方向Xと直交するY方向に複数の素子が一直線上に配置されたものである。複数の素子は、ライン状に整列して配設された複数のフォトダイオード10aと、ライン状のフォトダイオード10a上に設けられたシンチレータ10bとから構成される。   The X-ray detector 10 detects and detects X-rays that pass through the inspection object W by a plurality of elements arranged linearly in a direction Y orthogonal to the plane of the inspection object W in the transport direction X. Concentration data is sequentially output as one line with a plurality of elements for each element, and the sequential output from one line is repeated as the object W is conveyed. As described in the prior art, the X-ray detector 10 has a plurality of elements straight in the Y direction perpendicular to the transport direction X on the plane of the transport direction X of the object W to be transported, as shown in FIG. It is arranged on the line. The plurality of elements includes a plurality of photodiodes 10a arranged in a line and a scintillator 10b provided on the line-shaped photodiode 10a.

図2に示すように、搬送部2の搬入口7側には、被検査物Wの通過を検出するための位置検出手段13が設けられている。この位置検出手段13は、例えば搬送部2としてのベルトコンベアの入口側に設けられる一対の投受光器からなるフォトセンサで構成される。この構成により、被検査物Wがフォトセンサの前を通過している間では位置検出手段13からオン信号が信号処理手段14にタイミング信号として入力される。   As shown in FIG. 2, position detection means 13 for detecting the passage of the inspection object W is provided on the carry-in entrance 7 side of the transport unit 2. This position detection means 13 is comprised by the photo sensor which consists of a pair of light projector / receiver provided in the entrance side of the belt conveyor as the conveyance part 2, for example. With this configuration, an ON signal is input from the position detection unit 13 to the signal processing unit 14 as a timing signal while the inspection object W passes in front of the photosensor.

このような構成によるX線検出器10では、搬送部2上を搬送される被検査物Wに対してX線発生器9からX線が曝射される。そして、この被検査物WへのX線の曝射に伴って被検査物Wを透過してくるX線をシンチレータ10bで受けて光に変換する。このシンチレータ10bで変換された光は、その下部に配置されるフォトダイオード10aによって受光される。そして、各フォトダイオード10aは、受光した光を電気信号に変換して出力する。このX線検出器10は、受けたX線の強さに対応したレベルを有した電気信号を信号処理手段14に出力する。   In the X-ray detector 10 having such a configuration, X-rays are exposed from the X-ray generator 9 to the inspection object W transported on the transport unit 2. Then, the X-rays transmitted through the inspection object W accompanying the X-ray exposure to the inspection object W are received by the scintillator 10b and converted into light. The light converted by the scintillator 10b is received by the photodiode 10a disposed below the scintillator 10b. Each photodiode 10a converts the received light into an electrical signal and outputs it. The X-ray detector 10 outputs an electric signal having a level corresponding to the intensity of the received X-ray to the signal processing means 14.

図2において、信号処理手段14は、CPUやメモリなどを備えて構成され、位置検出手段13が被検査物Wを検出したときのオン信号をタイミング信号とする所定時間後に、X線検出器10からの電気信号を取り込んで各種信号処理を行っている。   In FIG. 2, the signal processing means 14 includes a CPU, a memory, and the like, and after a predetermined time using the ON signal when the position detection means 13 detects the inspection object W as a timing signal, the X-ray detector 10. Various signal processing is performed by taking in electrical signals from

図2に示すように、信号処理手段14は、設定入力手段15、記憶手段(データメモリ)16、データ補正処理手段17、シール部算出手段18、判別手段19を備えている。   As shown in FIG. 2, the signal processing unit 14 includes a setting input unit 15, a storage unit (data memory) 16, a data correction processing unit 17, a seal portion calculation unit 18, and a determination unit 19.

設定入力手段15は、被検査物Wの異物検査、シール不良検査、欠品検査や表示に関する各種設定や指示を与えるためのユーザが操作する複数のキーやスイッチ等で構成される。さらに説明すると、設定入力手段15は、搬送部2の搬送速度の設定、被検査物W中の異物の混入の有無を判定するための基準となる検出リミット値、被検査物Wのシール部におけるシール不良の有無を判定するための基準となる検出リミット値などを設定している。また、設定入力手段15では、複数の検査を行う際に、被検査物W中の異物の混入の有無や内容物の欠品の有無を判定するための基準となる検出リミット値が設定可能となっている。これら検出リミット値は、被検査物Wの品種や検出対象となる異物の種類などに応じて適宜設定される。   The setting input means 15 includes a plurality of keys and switches operated by the user for giving various settings and instructions regarding foreign matter inspection, seal defect inspection, shortage inspection and display of the inspection object W. More specifically, the setting input means 15 sets the conveyance speed of the conveyance unit 2, the detection limit value serving as a reference for determining the presence or absence of foreign matter in the inspection object W, and the seal portion of the inspection object W. A detection limit value is set as a reference for determining whether or not there is a seal failure. Further, the setting input means 15 can set a detection limit value serving as a reference for determining the presence or absence of foreign matter in the inspection object W and the presence or absence of a missing item when performing a plurality of inspections. It has become. These detection limit values are appropriately set according to the type of the inspection object W, the type of foreign matter to be detected, and the like.

なお、設定入力手段15からは、上記設定の他、被検査物Wのシール部の幅寸法(例えば外形が矩形状であれば、外形の4辺から内側に向かう寸法)を適宜数値入力することができる。また、設定入力手段15は、シール部を有する箇所の数を入力したり、被検査物Wの品種を指定することにより予め記憶された被検査物Wの品種に対応したシール部の幅寸法を設定するなど、シール部に関する各種情報を入力することができる。   In addition to the above settings, the setting input means 15 appropriately inputs a numerical value for the width dimension of the seal portion of the inspection object W (for example, if the outer shape is rectangular, the dimension is directed inward from the four sides of the outer shape). Can do. Further, the setting input means 15 inputs the number of locations having the seal portion, or designates the type of the inspection object W, thereby specifying the width dimension of the seal portion corresponding to the type of the inspection object W stored in advance. Various information regarding the seal portion can be input such as setting.

記憶手段16には、各被検査物W毎のX線透過データが格納される。このX線透過データは、X線検出器10からの電気信号を不図示のA/D変換器によりA/D変換して得られる。さらに説明すると、この記憶手段16には、1つの被検査物Wの検査を行う毎に、X線検出器10の1ライン(Y方向)あたり例えば640個のX線透過データが、少なくとも搬送される被検査物Wの搬送方向の長さ(前端から後端までの検出期間に相当)に対応した所定ライン数(例えば480ライン)だけ格納される。   The storage means 16 stores X-ray transmission data for each inspection object W. This X-ray transmission data is obtained by A / D converting an electric signal from the X-ray detector 10 by an A / D converter (not shown). More specifically, every time one inspection object W is inspected, for example, 640 pieces of X-ray transmission data per line (Y direction) of the X-ray detector 10 are conveyed to the storage means 16 at least. A predetermined number of lines (for example, 480 lines) corresponding to the length of the inspection object W in the transport direction (corresponding to a detection period from the front end to the rear end) is stored.

データ補正処理手段17は、第1の平均値算出手段17a、第2の平均値算出手段17b、差分算出手段17c、補正手段17dを備えて構成される。このデータ補正処理手段17では、位置検出手段13からの検出信号をタイミング信号とし、記憶手段16に格納されたX線検出器10からの検出データのうち、被検査物Wが搬送されてくる直前の検出データを用いてデータ補正を行っている。   The data correction processing unit 17 includes a first average value calculating unit 17a, a second average value calculating unit 17b, a difference calculating unit 17c, and a correcting unit 17d. The data correction processing means 17 uses the detection signal from the position detection means 13 as a timing signal, and of the detection data from the X-ray detector 10 stored in the storage means 16, immediately before the inspection object W is conveyed. Data correction is performed using the detected data.

第1の平均値算出手段17aは、X線検出器10から出力される所定ライン数の濃度データ全体の平均値を算出している。さらに説明すると、図4(a)に示すように、被検査物Wの搬送方向Xの平面上で搬送方向Xと直交するY方向に配列されるX線検出器10の幅方向の全素子から出力される所定ライン数(N)の濃度データ全体の平均値Iを、記憶手段16から読み出したX線透過データより算出している。   The first average value calculating means 17a calculates the average value of the entire density data of a predetermined number of lines output from the X-ray detector 10. More specifically, as shown in FIG. 4 (a), from all the elements in the width direction of the X-ray detector 10 arranged in the Y direction orthogonal to the transport direction X on the plane in the transport direction X of the inspection object W. The average value I of the entire density data of a predetermined number of lines (N) to be output is calculated from the X-ray transmission data read from the storage means 16.

第2の平均値算出手段17bは、X線検出器10から出力される所定ライン数の濃度データの中から単体素子に対応する濃度データの平均値を素子毎に算出している。さらに説明すると、図4(b)に示すように、X線検出器10の各素子から出力される所定ライン数(N)の濃度データの中から単体素子に対応する各素子毎の濃度データの平均値Pi(iはX線検出器10の素子数)を、記憶手段16から読み出したX線透過データより算出している。図4(b)の例では、X線検出器10の素子数iが640個なので、P1,P2,…,P640の640個の平均値Piが算出される。   The second average value calculating means 17b calculates an average value of density data corresponding to a single element from density data of a predetermined number of lines output from the X-ray detector 10 for each element. More specifically, as shown in FIG. 4B, density data for each element corresponding to a single element is selected from density data of a predetermined number of lines (N) output from each element of the X-ray detector 10. The average value Pi (i is the number of elements of the X-ray detector 10) is calculated from the X-ray transmission data read from the storage means 16. In the example of FIG. 4B, since the number of elements i of the X-ray detector 10 is 640, 640 average values Pi of P1, P2,..., P640 are calculated.

差分算出手段17cは、第1の平均値算出手段17aが算出した平均値から第2の平均値算出手段17bが算出した平均値を差し引いた差分データを素子毎に算出している。さらに説明すると、第1の平均値算出手段17aが算出したX線検出器10から出力される所定ライン数(N)の濃度データ全体の平均値Iから第2の平均値算出手段17bが算出したX線検出器10から出力される所定ライン数の濃度データの中から単位素子に対応する各素子毎の濃度データの平均値Piを差し引き、X線検出器10の各素子毎の差分データLi(iはX線検出器10の素子数)を算出している。例えばX線検出器10の素子数i=640であれば、L1,L2,…,L640の640個の差分データLiが算出される。   The difference calculating unit 17c calculates difference data for each element by subtracting the average value calculated by the second average value calculating unit 17b from the average value calculated by the first average value calculating unit 17a. More specifically, the second average value calculating means 17b calculates from the average value I of the entire density data of the predetermined number of lines (N) output from the X-ray detector 10 calculated by the first average value calculating means 17a. The average value Pi of the density data for each element corresponding to the unit element is subtracted from the density data of a predetermined number of lines output from the X-ray detector 10 to obtain difference data Li ( i is the number of elements of the X-ray detector 10). For example, if the number of elements i of the X-ray detector 10 is i = 640, 640 differential data Li of L1, L2,..., L640 are calculated.

補正手段17dは、被検査物Wを含むX線透過データをライン毎に記憶手段16から読み出し、この読み出したライン毎の各素子のX線透過データに対応する素子の差分データLiを差し引いてX線検出器10による検出データを補正している。この補正後の検出データは、被検査物Wに関する正規のX線透過データ(濃淡データ)としてシール部算出手段18に出力される。   The correcting unit 17d reads out the X-ray transmission data including the inspection object W from the storage unit 16 for each line, and subtracts the difference data Li of the element corresponding to the X-ray transmission data of each element for each read line to obtain X Data detected by the line detector 10 is corrected. The corrected detection data is output to the seal portion calculation means 18 as normal X-ray transmission data (shading data) regarding the inspection object W.

なお、データ補正処理手段17では、位置検出手段13からの検出信号をタイミング信号として、被検査物Wが搬送されてくる直前のX線検出器10からのデータを記憶手段16から読み出してデータ補正を行うのが好ましいが、被検査物Wが搬送されていない部分のデータ、すなわち順次搬送される被検査物W間のデータを用いることができる。その際も位置検出手段13からの検出信号をタイミング信号としてデータ補正が行われる。   The data correction processing means 17 reads out data from the X-ray detector 10 immediately before the inspection object W is conveyed from the storage means 16 using the detection signal from the position detection means 13 as a timing signal, and performs data correction. However, it is possible to use data of a portion where the inspection object W is not conveyed, that is, data between the inspection objects W which are sequentially conveyed. At that time, data correction is performed using the detection signal from the position detection means 13 as a timing signal.

シール部算出手段18は、補正手段17dにより補正されたX線透過データから全体の濃淡画像(搬送部2のベルト面を含む被検査物W毎の全体画像)を作成し、この作成された全体の濃淡画像から内容物の濃淡画像を抽出している。   The seal portion calculation means 18 creates a whole grayscale image (overall image for each inspection object W including the belt surface of the transport section 2) from the X-ray transmission data corrected by the correction means 17d, and this created whole The gray image of the contents is extracted from the gray image.

また、シール部算出手段18は、補正手段17dにより補正されたX線透過データによる全体画像から被検査物Wの輪郭から内側の面積を示す外形領域を抽出している。さらに説明すると、このシール部算出手段18では、補正手段17dにより補正されたX線透過データから全体のヒストグラムを求める。そして、求めた全体のヒストグラムから被検査物WのデータD1と、被検査物W以外(実際には搬送部2のベルト面)のデータD2とに切り分けて2値化する。例えば被検査物のデータD1を255とし、被検査物以外のデータD2を0とする。そして、2値化された被検査物のデータD1を外形領域として抽出している。   Moreover, the seal | sticker part calculation means 18 has extracted the outline area | region which shows an inner area from the outline of the to-be-inspected object W from the whole image by the X-ray transmission data corrected by the correction means 17d. More specifically, the seal portion calculation means 18 obtains the entire histogram from the X-ray transmission data corrected by the correction means 17d. Then, the data D1 of the inspection object W and the data D2 other than the inspection object W (actually the belt surface of the conveyance unit 2) are divided into binary values from the obtained entire histogram. For example, the data D1 of the inspection object is set to 255, and the data D2 other than the inspection object is set to 0. Then, the binarized inspection object data D1 is extracted as an outer region.

さらに、シール部算出手段18は、抽出した外形領域からシール部領域を算出している。このシール部領域は、設定入力手段15からシール部に関する情報、例えばシール部の幅寸法の数値が入力されると、抽出された外形領域の画像を設定入力された幅寸法だけ縮小する。そして、縮小された画像を外形領域の画像から差し引いてシール部領域を算出する。   Further, the seal portion calculation means 18 calculates a seal portion region from the extracted outer region. When information on the seal portion, for example, a numerical value of the width dimension of the seal portion is input from the setting input unit 15 to the seal portion region, the image of the extracted outer region is reduced by the set width size. Then, the reduced image is subtracted from the image of the outer region to calculate the seal portion region.

判別手段19は、異物判別手段19a、シール部不良判別手段19b、欠品判別手段19cを備え、これらの判別結果(異物混入の有無、シール部不良の有無、欠品の有無の組合せによる判別結果)に応じて被検査物Wを良品又は不良品として選別するための選別信号を外部出力している。   The discriminating means 19 includes a foreign matter discriminating means 19a, a seal portion defect discriminating means 19b, and a missing part discriminating means 19c. ), A selection signal for selecting the inspection object W as a non-defective product or a defective product is output to the outside.

異物判別手段19aは、補正手段17dが補正した被検査物Wの内容物領域において、内容物領域内で濃淡レベルが他と違う部分を異物として判断している。すなわち、内容物領域内に他の部分より濃淡レベルの高い部分が存在するとき、その濃淡レベルの高い部分を異物として判断している。さらに説明すると、異物判別手段19aは、補正手段17dによって補正された被検査物Wの内容物領域のX線透過データの濃淡レベルと、設定入力手段15により予め設定された異物検出リミット値とを比較し、X線透過データが異物検出リミット値を超えたときに、その被検査物Wに異物が混入していると判断し、異物有りを示す選別信号を出力している。なお、異物検出リミット値は、被検査物W毎にその内容物に応じて適宜設定入力手段15から設定可能とされている。   The foreign matter discriminating means 19a judges the portion of the content area of the inspection object W corrected by the correcting means 17d as a foreign matter in the content area where the contrast level is different from the others. That is, when a portion having a higher light and dark level than the other portion exists in the content area, the portion having the higher light and dark level is determined as a foreign object. More specifically, the foreign matter discrimination means 19a uses the density level of the X-ray transmission data of the contents area of the inspection object W corrected by the correction means 17d and the foreign matter detection limit value preset by the setting input means 15. In comparison, when the X-ray transmission data exceeds the foreign matter detection limit value, it is determined that foreign matter is mixed in the inspection object W, and a selection signal indicating the presence of foreign matter is output. The foreign object detection limit value can be set from the setting input unit 15 as appropriate for each inspection object W according to the contents.

シール部不良判別手段19bは、シール部算出手段18が算出したシール部領域の画像の濃淡レベルと、被検査物Wの内容物の画像の濃淡レベルとの比較によりシール不良の有無を判別し、この判別結果からシール正常又はシール不良を示す選別信号を出力している。すなわち、このシール部不良判別手段19bでは、シール部領域の中に被検査物Wの内容物の画像の濃淡レベルと同等以上の濃淡レベルが存在するときに、その被検査物Wにシール不良ありと判別し、シール不良を示す選別信号を出力している。なお、シール部不良の検出リミット値は、被検査物W毎にその内容物に応じて適宜設定入力手段15から設定可能とされている。   The seal portion failure determination means 19b determines the presence or absence of a seal failure by comparing the shade level of the image of the seal portion area calculated by the seal portion calculation means 18 with the shade level of the image of the contents of the inspection object W, From this discrimination result, a selection signal indicating normal seal or poor seal is output. That is, in this seal portion defect determination means 19b, when there is a light / dark level equal to or higher than the light / dark level of the image of the contents of the test object W in the seal region, the test object W has a seal failure. And a sorting signal indicating a sealing failure is output. It should be noted that the detection limit value of the defective seal portion can be appropriately set from the setting input means 15 for each inspection object W according to the contents.

欠品判別手段19cは、補正手段17dによって補正された被検査物Wの内容物領域において、濃淡レベルが予め設定される欠品検出リミット値より低い(X線透過量が大きい)ときに、包装材中にある例えば湿布薬の枚数が少なくなっていると判別し、欠品有りを示す選別信号を出力している。また、欠品判別手段20cは、予め設定された欠品用検出マスク領域を用い、この欠品用検出マスク領域の各内容物領域毎に内容物と同等の濃淡レベルが存在する面積に応じて内容物の有無を判別している。なお、欠品検出リミット値や欠品用検出マスク領域は、被検査物W毎にその内容物に応じて適宜設定入力手段15から設定入力可能とされている。   The missing item discriminating means 19c is packaged when the density level is lower than a preset missing item detection limit value (the X-ray transmission amount is large) in the contents area of the inspection object W corrected by the correcting means 17d. For example, it is determined that the number of poultices in the material is low, and a selection signal indicating that there is a shortage is output. In addition, the shortage determination means 20c uses a preset shortage detection mask area, and according to the area where the density level equivalent to the content exists for each content area of the shortage detection mask area. The presence or absence of contents is determined. It should be noted that the shortage detection limit value and the shortage detection mask area can be set and input from the setting input unit 15 as appropriate for each inspection object W according to the contents.

なお、図示はしないが、信号処理手段14はフィルタ手段を備えており、被検査物Wとして、例えば湿布薬のような極めて薄い包装材に内容物が収容されている場合、補正手段17dにより補正された被検査物WのX線透過データに対して所定のフィルタ処理を施している。このフィルタ処理の際には、例えば微分フィルタ(Robertsフィルタ、Prewittフィルタ、Sobelフィルタ)やラプラシアンフィルタなどの特徴抽出フィルタが用いられる。これにより、全体画像を強調してエッジ検出し易くするとともに、検出対象の異物情報や噛み込み情報をより強調して抽出し易くしている。そのため、異物判別手段19aは、濃淡画像のレベルと異物検出リミット値との比較に限らず、フィルタ処理後の異物情報が強調された画像に対し、設定された異物検出リミット値と比較して異物の有無を判断してもよい。また、シール部不良判別手段19bは、フィルタ処理後のシール部領域内におけるエッジ成分の有無でシール不良を判断してもよい。   Although not shown in the drawings, the signal processing means 14 includes a filter means, and when the contents are accommodated in the extremely thin packaging material such as a poultice, for example, as the inspection object W, correction is performed by the correction means 17d. A predetermined filtering process is applied to the X-ray transmission data of the inspected object W. In this filter processing, for example, a feature extraction filter such as a differential filter (Roberts filter, Prewitt filter, Sobel filter) or a Laplacian filter is used. This enhances the entire image to facilitate edge detection, and further enhances and facilitates extraction of foreign object information and biting information to be detected. Therefore, the foreign matter determination means 19a is not limited to the comparison between the level of the grayscale image and the foreign matter detection limit value, and the foreign matter is compared with the set foreign matter detection limit value for the image in which the foreign matter information after the filter processing is emphasized. The presence or absence of may be judged. Further, the seal portion failure determination means 19b may determine a seal failure based on the presence or absence of an edge component in the seal portion region after the filtering process.

表示器5の表示画面には、シール部算出手段18が抽出した被検査物Wの全体画像、外形領域の画像、シール部領域の画像、判別手段19の判別結果に基づいて被検査物Wを平面視したX線透過画像、「OK」や「NG」の良否判定結果、総検査数、良品数、NG総数などの検査結果が設定入力手段15からの所定のキー操作に基づいて表示される。   On the display screen of the display 5, the inspection object W is displayed on the basis of the entire image of the inspection object W extracted by the seal portion calculation means 18, the image of the outline area, the image of the seal area, and the determination result of the determination means 19. X-ray transmission image in plan view, “OK” or “NG” pass / fail judgment result, inspection results such as total number of inspections, number of non-defective products, total number of NG, etc. are displayed based on predetermined key operations from the setting input means 15. .

そして、上記構成のX線検査装置1によってデータ補正を行う場合には、データ補正処理手段17において以下に説明する処理が実行される。以下、データ補正手段17の処理動作について図3及び図4を参照しながら説明する。   When data correction is performed by the X-ray inspection apparatus 1 having the above-described configuration, the data correction processing unit 17 performs processing described below. The processing operation of the data correction unit 17 will be described below with reference to FIGS.

本例では、図3に示すように、位置検出手段13が被検査物Wを検出してから所定時間後の被検査物WがX線曝射位置に到達する直前のX線検出器10からの所定ライン数の検出データ(図3のハッチング部分)を用いてグレーや白の線の影響値を差し引くデータ補正を行っている。   In this example, as shown in FIG. 3, from the X-ray detector 10 immediately before the inspection object W reaches the X-ray exposure position after a predetermined time since the position detection means 13 detects the inspection object W. The data correction is performed by subtracting the influence values of the gray and white lines using the detection data of the predetermined number of lines (hatched portion in FIG. 3).

データ補正を行う際には、まず、被検査物Wの搬送方向Xの平面上で搬送方向Xと直交するY方向に配列されるX線検出器10から出力される所定ライン数(N)の濃度データ全体の平均値Iを算出する。この所定ライン数(N)の濃度データ全体の平均値Iは、第1の平均値算出手段17aが記憶手段16からX線透過データを読み出して算出する。   When performing data correction, first, a predetermined number (N) of lines output from the X-ray detectors 10 arranged in the Y direction orthogonal to the transport direction X on the plane of the test object W in the transport direction X. An average value I of the entire density data is calculated. The average value I of the entire density data of the predetermined number of lines (N) is calculated by the first average value calculation means 17a reading out the X-ray transmission data from the storage means 16.

次に、X線検出器10から出力される所定ライン数(N)の濃度データの中から単体素子に対応する素子毎の濃度データの平均値Pi(iはX線検出器10の素子数)を算出する。この単体素子に対応する素子毎の濃度データの平均値Piは、第2の平均値算出手段17bが記憶手段16からX線透過データを読み出して算出する。図4(b)に示すように、X線検出器10の素子数iを640個とすると、P1,P2,…,P640の640個の平均値Piが算出される。   Next, an average value Pi of density data for each element corresponding to a single element from density data of a predetermined number of lines (N) output from the X-ray detector 10 (i is the number of elements of the X-ray detector 10). Is calculated. The average value Pi of the density data for each element corresponding to this single element is calculated by the second average value calculation means 17b reading out the X-ray transmission data from the storage means 16. As shown in FIG. 4B, when the number of elements i of the X-ray detector 10 is 640, 640 average values Pi of P1, P2,..., P640 are calculated.

次に、差分算出手段17cは、第1の平均値算出手段17aが算出したX線検出器10の所定ライン数(N)の濃度データ全体の平均値Iから第2の平均値算出手段17bが算出したX線検出器10の単体素子に対応する各素子毎の濃度データの平均値Piを差し引き、X線検出器10の各素子毎の差分データLi(iはX線検出器10の素子数)を算出する。図4(a),(b)に示すように、X線検出器10の素子数iを640個とすると、L1,L2,…,L640の640個の差分データLiが算出される。   Next, the difference calculating unit 17c is configured so that the second average value calculating unit 17b calculates from the average value I of the entire density data of the predetermined number of lines (N) of the X-ray detector 10 calculated by the first average value calculating unit 17a. The difference value Li for each element of the X-ray detector 10 (i is the number of elements of the X-ray detector 10) is subtracted from the calculated average value Pi of the density data for each element corresponding to the single element of the X-ray detector 10. ) Is calculated. As shown in FIGS. 4A and 4B, if the number of elements i of the X-ray detector 10 is 640, 640 differential data Li of L1, L2,..., L640 are calculated.

そして、補正手段17dは、被検査物Wを含むX線透過データを記憶手段16から読み出し、この読み出したライン毎の各素子のX線透過データに対応する素子の差分データLiを差し引いてX線検出器10による検出データを補正する。これにより、感度補正されたX線検出器から出力される検出データのずれによるグレーや白の線を発生させる影響値が差し引かれたX線透過データを得ることができる。そして、この補正後の検出データ(被検査物Wを含むX線透過データ)は、正規のX線透過データとしてシール部算出手段18および判別手段19に出力される。その後、判別手段19は、シール部算出手段18で算出されたシール部領域とこの補正後の検出データに基づいて被検査物の良否を判別し、判別に応じた選別信号を外部に出力する。   Then, the correcting unit 17d reads out the X-ray transmission data including the inspection object W from the storage unit 16, and subtracts the difference data Li of the element corresponding to the X-ray transmission data of each element for each read line to obtain the X-ray. Data detected by the detector 10 is corrected. Thereby, X-ray transmission data from which an influence value that generates a gray or white line due to a shift in detection data output from a sensitivity-corrected X-ray detector is subtracted can be obtained. The corrected detection data (X-ray transmission data including the inspection object W) is output as normal X-ray transmission data to the seal portion calculation means 18 and the determination means 19. Thereafter, the discriminating means 19 discriminates pass / fail of the inspected object based on the seal portion area calculated by the seal portion calculating means 18 and the corrected detection data, and outputs a selection signal corresponding to the discrimination to the outside.

このように、本例のX線検査装置1では、検査前に感度補正されたX線検出器10から出力される検出データにずれが生じても、順次搬送されてくる被検査物W間のX線検出器10のデータを用いて被検査物WにX線が曝射される前にグレーや白の線を消すデータ補正を行うので、感度補正されたX線検出器から出力される検出データのずれによる影響値が除去され、被検査物Wを含むX線透過画像(画像データ)上にグレーや白の線が表示されることがなく、感度補正されたX線検出器から出力される検出データのずれが異物検出、欠品検出、シール不良検出などに影響せず、常に安定した正確な各種検査(異物混入の有無の検査、欠品の有無の検査、シール不良の有無の検査)を行うことができる。   As described above, in the X-ray inspection apparatus 1 of the present example, even if the detection data output from the X-ray detector 10 whose sensitivity has been corrected before the inspection is deviated, the inspection object W that is sequentially transported is detected. Since data correction for erasing gray and white lines is performed before X-rays are exposed to the inspection object W using the data of the X-ray detector 10, detection output from the X-ray detector whose sensitivity has been corrected is performed. The influence value due to the data shift is removed, and no gray or white line is displayed on the X-ray transmission image (image data) including the inspection object W, and it is output from the sensitivity-corrected X-ray detector. Detection data shift does not affect foreign object detection, missing part detection, seal defect detection, etc., and always stable and accurate inspections (existence of foreign matter contamination, inspection for presence of missing parts, inspection for defective seals) )It can be performed.

本発明に係るX線検査装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the X-ray inspection apparatus which concerns on this invention. 本発明に係るX線検査装置のブロック図である。1 is a block diagram of an X-ray inspection apparatus according to the present invention. 本発明に係るX線検査装置における被検査物とX線検出器の感度補正に用いるデータとの関係を示す図である。It is a figure which shows the relationship between the to-be-inspected object in the X-ray inspection apparatus which concerns on this invention, and the data used for the sensitivity correction of an X-ray detector. (a),(b)本発明に係るX線検査装置のデータ補正に関する説明図である。(A), (b) It is explanatory drawing regarding the data correction of the X-ray inspection apparatus which concerns on this invention. X線検査装置に採用されるX線検出器の概略構成を示す図である。It is a figure which shows schematic structure of the X-ray detector employ | adopted as an X-ray inspection apparatus. (a)X線検査装置のX線検出器から出力される検出データを補正した際の直後のデータを示す図である。 (b)感度補正されたX線検出器から出力される検出データにずれが生じた場合のデータを示す図である。(A) It is a figure which shows the data immediately after correct | amending the detection data output from the X-ray detector of an X-ray inspection apparatus. (B) It is a figure which shows data when a shift | offset | difference arises in the detection data output from the X-ray detector by which the sensitivity correction | amendment was carried out.

符号の説明Explanation of symbols

1 X線検査装置
10 X線検出器
13 位置検出手段
14 信号処理手段
16 記憶手段
17 データ補正処理手段
17a 第1の平均値算出手段
17b 第2の平均値算出手段
17c 差分算出手段
17d 補正手段
18 シール部算出手段
19 判別手段
W 被検査物
DESCRIPTION OF SYMBOLS 1 X-ray inspection apparatus 10 X-ray detector 13 Position detection means 14 Signal processing means 16 Storage means 17 Data correction processing means 17a 1st average value calculation means 17b 2nd average value calculation means 17c Difference calculation means 17d Correction means 18 Seal part calculation means 19 Discrimination means W Inspected

Claims (4)

搬送路上を搬送される被検査物(W)にX線を曝射するX線発生器(9)と、前記被検査物の搬送方向(X)の平面上で直交する方向(Y)に直線状に配置された複数の素子によって前記被検査物を透過するX線を検出し、その検出した濃度データを素子毎に前記複数の素子数を1ラインとして順次出力し、前記被検査物の搬送に伴い前記順次出力を繰り返すX線検出器(10)を備え、該X線検出器から出力される濃度データに基づいて前記被検査物の検査を行うX線検査装置において、
前記X線検出器から出力される所定ライン数の濃度データ全体の平均値を算出する第1の平均値算出手段(17a)と、
前記X線検出器から出力される所定ライン数の濃度データの中から単体素子に対応する濃度データの平均値を素子毎に算出する第2の平均値算出手段(17b)と、
前記第1の平均値算出手段が算出した平均値から前記第2の平均値算出手段が算出した平均値を差し引いた差分データを前記素子毎に算出する差分算出手段(17c)と、
前記被検査物を含む前記X線検出器のライン毎の各素子の濃度データに対応する素子の前記差分データを差し引いて前記X線検出器からの濃度データを補正する補正手段(17d)とを備えたことを特徴とするX線検査装置。
An X-ray generator (9) that emits X-rays to the inspection object (W) conveyed on the conveyance path, and a straight line in a direction (Y) orthogonal to the plane of the inspection object conveyance direction (X) X-rays passing through the inspection object are detected by a plurality of elements arranged in a shape, and the detected density data is sequentially output for each element with the plurality of elements as one line, and the inspection object is conveyed. In the X-ray inspection apparatus comprising the X-ray detector (10) which repeats the sequential output along with the inspection object to inspect the inspection object based on the density data output from the X-ray detector,
First average value calculating means (17a) for calculating an average value of the entire density data of a predetermined number of lines output from the X-ray detector;
Second average value calculating means (17b) for calculating, for each element, an average value of density data corresponding to a single element from density data of a predetermined number of lines output from the X-ray detector;
Difference calculation means (17c) for calculating difference data for each element by subtracting the average value calculated by the second average value calculation means from the average value calculated by the first average value calculation means;
Correction means (17d) for correcting the density data from the X-ray detector by subtracting the difference data of the elements corresponding to the density data of each element of each line of the X-ray detector including the inspection object; An X-ray inspection apparatus comprising:
前記補正手段(17d)で補正された濃度データの前記被検査物(W)の内容物領域内における内容物の異物の有無を判別する判別手段(19)を備えたことを特徴とする請求項1記載のX線検査装置。 The discriminating means (19) for discriminating the presence or absence of foreign substances in the contents in the contents area of the inspection object (W) of the density data corrected by the correcting means (17d). The X-ray inspection apparatus according to 1. 前記補正手段(17d)で補正された濃度データの前記被検査物(W)の内容物領域内における内容物の欠品の有無を判別する判別手段(19)を備えたことを特徴とする請求項1記載のX線検査装置。 A determination means (19) for determining the presence or absence of a content shortage in the content area of the inspection object (W) of the density data corrected by the correction means (17d). Item 1. The X-ray inspection apparatus according to Item 1. 前記補正手段(17d)で補正された濃度データから外形を抽出し、この抽出した外形を基準として、予め設定されたシール部情報に基づいて前記被検査物(W)のシール部領域を算出するシール部算出手段(18)と、
該シール部算出手段が算出したシール部領域の画像の濃淡レベルと前記被検査物の内容物の画像の濃淡レベルとの比較によりシール不良の有無を判別する判別手段(19)とを備えたことを特徴とする請求項1記載のX線検査装置。
An outer shape is extracted from the density data corrected by the correction means (17d), and a seal portion area of the object to be inspected (W) is calculated based on the preset seal portion information using the extracted outer shape as a reference. Seal part calculating means (18);
And a discriminating means (19) for discriminating whether or not there is a seal defect by comparing the gray level of the image of the seal portion area calculated by the seal portion calculating means with the gray level of the image of the contents of the inspection object. The X-ray inspection apparatus according to claim 1.
JP2003321549A 2003-09-12 2003-09-12 X-ray inspection equipment Expired - Lifetime JP3955558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321549A JP3955558B2 (en) 2003-09-12 2003-09-12 X-ray inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321549A JP3955558B2 (en) 2003-09-12 2003-09-12 X-ray inspection equipment

Publications (2)

Publication Number Publication Date
JP2005091016A true JP2005091016A (en) 2005-04-07
JP3955558B2 JP3955558B2 (en) 2007-08-08

Family

ID=34453200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321549A Expired - Lifetime JP3955558B2 (en) 2003-09-12 2003-09-12 X-ray inspection equipment

Country Status (1)

Country Link
JP (1) JP3955558B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132796A (en) * 2005-11-10 2007-05-31 Ishida Co Ltd X-ray inspection device and x-ray inspection program
WO2008013063A1 (en) * 2006-07-24 2008-01-31 Ishida Co., Ltd. X-ray inspecting device, and x-ray inspecting program
JP2008122184A (en) * 2006-11-10 2008-05-29 Shimadzu Corp X-ray inspection system
JP2009042172A (en) * 2007-08-10 2009-02-26 Lion Engineering Co Ltd Inspection system and method for single-dose package sheet
JP2013024613A (en) * 2011-07-16 2013-02-04 Image Tech Kk X-ray inspection device and computer program for x-ray inspection device
JP2015203574A (en) * 2014-04-11 2015-11-16 イメージテック株式会社 X-ray inspection device and x-ray sensitivity correction method
CN106950230A (en) * 2016-01-06 2017-07-14 三菱电机株式会社 Computational methods, decision method, selection method and device for sorting
US10718725B2 (en) 2017-06-30 2020-07-21 Anritsu Infivis Co., Ltd. X-ray inspection apparatus and correction method for X-ray inspection apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132796A (en) * 2005-11-10 2007-05-31 Ishida Co Ltd X-ray inspection device and x-ray inspection program
WO2008013063A1 (en) * 2006-07-24 2008-01-31 Ishida Co., Ltd. X-ray inspecting device, and x-ray inspecting program
JP2008026198A (en) * 2006-07-24 2008-02-07 Ishida Co Ltd X-ray inspection device and x-ray inspection program
US7980760B2 (en) 2006-07-24 2011-07-19 Ishida Co., Ltd. X-ray inspection apparatus and X-ray inspection program
CN101495854B (en) * 2006-07-24 2012-01-25 株式会社石田 X-ray inspecting device, and x-ray inspecting method
JP2008122184A (en) * 2006-11-10 2008-05-29 Shimadzu Corp X-ray inspection system
JP2009042172A (en) * 2007-08-10 2009-02-26 Lion Engineering Co Ltd Inspection system and method for single-dose package sheet
JP2013024613A (en) * 2011-07-16 2013-02-04 Image Tech Kk X-ray inspection device and computer program for x-ray inspection device
JP2015203574A (en) * 2014-04-11 2015-11-16 イメージテック株式会社 X-ray inspection device and x-ray sensitivity correction method
CN106950230A (en) * 2016-01-06 2017-07-14 三菱电机株式会社 Computational methods, decision method, selection method and device for sorting
CN106950230B (en) * 2016-01-06 2020-01-31 三菱电机株式会社 Calculation method, determination method, selection method, and selection device
US10718725B2 (en) 2017-06-30 2020-07-21 Anritsu Infivis Co., Ltd. X-ray inspection apparatus and correction method for X-ray inspection apparatus

Also Published As

Publication number Publication date
JP3955558B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP5041751B2 (en) X-ray inspection apparatus and X-ray inspection program
JP3943099B2 (en) X-ray inspection equipment
JP6126230B2 (en) Inspection device
JP5848881B2 (en) X-ray foreign object detection device
JP5912427B2 (en) Non-destructive inspection apparatus and misalignment detection method using the apparatus
JP2012242289A (en) X-ray inspection device
JP3955558B2 (en) X-ray inspection equipment
JP3860154B2 (en) X-ray inspection equipment
JP3917129B2 (en) X-ray inspection equipment
JP3618701B2 (en) X-ray foreign object detection device
JP3737950B2 (en) X-ray foreign object detection apparatus and defective product detection method in the apparatus
JP6619547B2 (en) Inspection device
JP5356184B2 (en) Inspection equipment
JP2005127962A (en) X-ray inspection system
JP4170366B2 (en) X-ray inspection equipment
JP2003042975A (en) Jointing inspection device
JP3955559B2 (en) X-ray inspection equipment
JPWO2019235022A1 (en) Inspection equipment
JP6412076B2 (en) Inspection equipment
JP3860144B2 (en) X-ray inspection equipment
JP3828843B2 (en) X-ray foreign object detection device, X-ray foreign object detection method, and X-ray foreign object detection program
JP6556671B2 (en) X-ray inspection equipment
JP4020711B2 (en) X-ray foreign object detection device and X-ray foreign object detection method
JP2023162622A (en) X-ray inspection apparatus and x-ray inspection method
JP6306352B2 (en) X-ray inspection equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Ref document number: 3955558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term