JP2005089810A - Grain-oriented silicon steel sheet, its manufacturing method, and pvd treatment device - Google Patents

Grain-oriented silicon steel sheet, its manufacturing method, and pvd treatment device Download PDF

Info

Publication number
JP2005089810A
JP2005089810A JP2003324030A JP2003324030A JP2005089810A JP 2005089810 A JP2005089810 A JP 2005089810A JP 2003324030 A JP2003324030 A JP 2003324030A JP 2003324030 A JP2003324030 A JP 2003324030A JP 2005089810 A JP2005089810 A JP 2005089810A
Authority
JP
Japan
Prior art keywords
layer
steel sheet
tin
electrical steel
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003324030A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003324030A priority Critical patent/JP2005089810A/en
Publication of JP2005089810A publication Critical patent/JP2005089810A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a grain-oriented silicon steel sheet having a TiN film of high heat resistance at a relatively low cost, and to provide a PVD treatment device to be used therefor. <P>SOLUTION: A mixed layer containing Fe, Ti and N is formed on a surface of a finish-annealed grain-oriented silicon steel sheet. A TiN layer of a general formula Ti<SB>X</SB>N<SB>(2-X)</SB>(where, X: 0.2-1.3) except inevitable impurities is formed on the mixed layer. In addition, a face layer consisting of Ti-Me-N (where Me is Si and/or Al) except inevitable impurities and containing 5-70 mass% is formed on the TiN layer. The content of Me in the TiN layer and the face layer is increased from the mixed layer side to a surface part of the face layer. An insulating film containing phosphate and silica can be formed on the face layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は仕上焼鈍された一方向性電磁鋼板の表面にTiN被膜を施してなる一方向性電磁鋼板、その製造方法及びその製造に好適に用いることができるPVD処理装置に関する。   The present invention relates to a unidirectional electrical steel sheet obtained by applying a TiN coating on the surface of a finish annealed unidirectional electrical steel sheet, a manufacturing method thereof, and a PVD processing apparatus that can be suitably used for the manufacture thereof.

一方向性電磁鋼板の磁気特性、特にその鉄損値を低下させるためには、仕上焼鈍により二次再結晶粒を(110)[001]方位に高度に集積させるとともに、その表面を平滑化仕上し、これにTiNなどのセラミック被膜を被成して張力を付与するとともに絶縁性を付与することが有効であることが知られている(例えば特許文献1)。   In order to reduce the magnetic properties of unidirectional electrical steel sheets, especially the iron loss value, secondary recrystallized grains are highly accumulated in the (110) [001] orientation by finish annealing and the surface is smoothened. In addition, it is known that it is effective to apply a ceramic film such as TiN to provide tension and to provide insulation (for example, Patent Document 1).

上記TiN被膜の被成には、中空陰極法(Hollow Cathode Discharge, HCD)が知られているが、被膜被成に要する時間が長い上に生成された被膜が高温酸化雰囲気で劣化し易いため、耐熱性が十分でないという問題がある。また、TiN被膜中にフリーのTi、O、N等が存在すると、高温の歪み取り焼鈍の際にこれら元素が電磁鋼板地鉄中に拡散して磁気特性、特に鉄損を劣化させるという問題がある。   The hollow cathode method (Hollow Cathode Discharge, HCD) is known for the formation of the TiN film, but the time required for the film formation is long and the generated film tends to deteriorate in a high-temperature oxidizing atmosphere. There is a problem that heat resistance is not sufficient. In addition, when free Ti, O, N, etc. are present in the TiN coating, there is a problem that these elements diffuse into the magnetic steel sheet iron during high-temperature strain relief annealing and deteriorate the magnetic properties, particularly iron loss. is there.

このような問題の解決のために、例えば特許文献2には、一方向性珪素鋼板の表面に複数のセラミック層を被覆するに際し、被覆第1層として、鋼板に対し-100V以上の高バイアス電圧の付与下に、中空陰極法によりTiNO被膜を形成する手段が開示されている。   In order to solve such a problem, for example, in Patent Document 2, when a plurality of ceramic layers are coated on the surface of a unidirectional silicon steel plate, a high bias voltage of −100 V or more is applied to the steel plate as the first coating layer. A means for forming a TiNO film by the hollow cathode method is disclosed.

特開平11-131252号公報Japanese Patent Laid-Open No. 11-131252 特開平2002-356751号公報Japanese Unexamined Patent Publication No. 2002-356751

しかしながら、上記特許文献2記載の手段によってもなお、歪み取り焼鈍後の被膜密着性が十分ではなく、そのため歪み取り焼鈍後の状態で鉄損を十分に低減させることが困難であるという問題がある。さらに、上記手段はHCD法とマグネトロンスパッタ法の2種類の被膜被成手段を用いるため、被膜被成にコストが掛かりすぎるという問題もある。本発明は、比較的低コストで、耐熱性が高いTiN系被膜を有する一方向性電磁鋼板、その製造方法及びその製造に好適に利用することができるPVD処理装置を提案することを目的とする。   However, even with the means described in Patent Document 2, the film adhesion after the strain relief annealing is not sufficient, and therefore there is a problem that it is difficult to sufficiently reduce the iron loss in the state after the strain relief annealing. . Further, since the above means uses two kinds of film forming means, that is, HCD method and magnetron sputtering method, there is a problem that it is too expensive to form the film. An object of the present invention is to propose a unidirectional electrical steel sheet having a TiN-based coating film having a relatively low cost and high heat resistance, a method for producing the same, and a PVD processing apparatus that can be suitably used for the production. .

本発明に係る一方向性電磁鋼板は、仕上焼鈍された一方向性電磁鋼板の表面にFe、Ti及びNを含有する混合層を有し、該混合層上に不可避不純物を除き一般式TiXN(2-X)(ただしX:0.2〜1.3)からなるTiN層を有し、さらに該TiN層上に不可避不純物を除きTi-Me-N(ただしMeはSi及び/又はAl)からなり、Meを5〜70mass%含有する表層を有するとともに、前記TiN層及び表層のMeの含有量が前記混合層側から表層の表面部に至るにしたがい増加しているものである。前記表層上にりん酸塩とシリカを含有する絶縁被膜を有せしめることができる。 The unidirectional electrical steel sheet according to the present invention has a mixed layer containing Fe, Ti, and N on the surface of a finish-oriented annealed unidirectional electrical steel sheet, and the general formula Ti X excluding inevitable impurities on the mixed layer. It has a TiN layer composed of N (2-X) (where X is 0.2 to 1.3), and further comprises Ti-Me-N (where Me is Si and / or Al) excluding inevitable impurities on the TiN layer, While it has a surface layer containing 5 to 70 mass% of Me, the content of Me in the TiN layer and the surface layer increases as it reaches the surface portion of the surface layer from the mixed layer side. An insulating coating containing phosphate and silica can be provided on the surface layer.

上記一方向性電磁鋼板は、仕上焼鈍された一方向性電磁鋼板の表面にTiN系被膜をPVD法によって被成する一方向性電磁鋼板の製造方法において、前記一方向性電磁鋼板の表面にFe、Ti及びNを含有する混合層を形成しながら不可避不純物を除き一般式TiXN(2-x)(ただしX:0.2〜1.3)からなるTiN層を形成した後、不可避不純物を除きTi-Me-N(ただしMeはSi及び/又はAl)からなり、Meを5〜70mass%含有する表層を形成し、その際前記TiN層及び表層のMeの含有量を前記混合層側から表層の表面部に至るにしたがい増加させることによって製造することができる。この製造方法において、前記表層に重ねてりん酸塩とシリカを含有する絶縁被膜を被成することができる。 The unidirectional electrical steel sheet is a method of manufacturing a unidirectional electrical steel sheet in which a TiN-based coating is formed on a surface of a finish annealed unidirectional electrical steel sheet by a PVD method. After forming a TiN layer of the general formula Ti X N (2-x) (where X: 0.2 to 1.3) except for unavoidable impurities while forming a mixed layer containing Ti and N, Ti- It is made of Me-N (where Me is Si and / or Al) and forms a surface layer containing 5 to 70 mass% of Me. It can be manufactured by increasing as it reaches the part. In this manufacturing method, an insulating film containing phosphate and silica can be formed on the surface layer.

上記一方向性電磁鋼板は、帯状体を順次通板する入側差圧室と、PVD被覆帯と、出側差圧室を備え、該帯状体表面に被膜を施すPVD処理装置において、前記PVD被覆帯を互いに連接され、かつ仕切り板によって仕切られた複数の被覆室によって構成するとともに、前記複数の被覆室にはそれぞれ前記帯状体の通路を挟んで少なくとも1対のマルチアーク放電部及び少なくとも1個の反応ガス導入孔を具備せしめ、さらに前記マルチアーク放電部に任意組成のターゲットを配置可能としてなるPVD処理装置を用いることによって製造することができる。   The unidirectional electrical steel sheet includes an inlet side differential pressure chamber through which a strip is sequentially passed, a PVD coating strip, and an outlet side differential pressure chamber. In the PVD processing apparatus that coats the surface of the strip, the PVD The coating band is constituted by a plurality of coating chambers connected to each other and partitioned by a partition plate, and each of the plurality of coating chambers includes at least one pair of multi-arc discharge portions and at least one across the path of the strip-shaped body. It can be manufactured by using a PVD processing apparatus that includes a plurality of reactive gas introduction holes and that can arrange a target of any composition in the multi-arc discharge section.

本発明により、比較的低コストで、耐熱性が高いTiN系被膜を有する一方向性電磁鋼板の製造が可能になる。また、本発明により得られる一方向性電磁鋼板は、歪み取り焼鈍後の鉄損値が低く、被膜の曲げ密着性に優れるので、巻トランス等に利用すれば、省エネルギーに寄与するものである。また、本発明に係るPVD処理装置を用いることによって上記耐熱性の高いTiN系被膜を有する一方向性電磁鋼板を連続的に効率よく製造することが可能になる。   According to the present invention, it becomes possible to produce a unidirectional electrical steel sheet having a TiN-based coating film having a relatively low cost and high heat resistance. In addition, the unidirectional electrical steel sheet obtained by the present invention has a low iron loss value after strain relief annealing and is excellent in the bending adhesion of the coating film. Therefore, if it is used for a winding transformer or the like, it contributes to energy saving. Further, by using the PVD processing apparatus according to the present invention, it becomes possible to continuously and efficiently produce the unidirectional electrical steel sheet having the TiN-based film having high heat resistance.

本発明は、仕上焼鈍された一方向性電磁鋼板に適用される。一方向性電磁鋼板はSiを2.5〜4.5mass%含有し、高度に集積された(110)[001]集合組織を有し、公知の手段で製造される。本発明の一方向性電磁鋼板は、上記仕上焼鈍された一方向性電磁鋼板の表面に以下に詳細に説明するTiN系被膜を被成してなるものである。   The present invention is applied to a finish-oriented unidirectional electrical steel sheet. The unidirectional electrical steel sheet contains 2.5 to 4.5 mass% of Si, has a highly integrated (110) [001] texture, and is manufactured by a known means. The unidirectional electrical steel sheet of the present invention is formed by depositing a TiN-based coating described in detail below on the surface of the finish-annealed unidirectional electrical steel sheet.

TiN系被膜は一方向性電磁鋼板の地鉄に対して小さい熱膨張係数を有するものであり、これにより一方向性電磁鋼板の磁歪を抑制し、使用時の電力損失を低減する機能を有する。その機能を十分発揮させるためには、一方向性電磁鋼板を地鉄表面が露出した状態とし、地鉄表面に直接TiN系被膜が被成されるようにするのが好ましい。   The TiN-based coating has a small thermal expansion coefficient with respect to the ground iron of the unidirectional electrical steel sheet, thereby suppressing the magnetostriction of the unidirectional electrical steel sheet and reducing the power loss during use. In order to fully exhibit the function, it is preferable that the unidirectional electrical steel sheet is in a state in which the surface of the ground iron is exposed, and the TiN-based coating is directly formed on the surface of the ground iron.

なお、地鉄表面が露出した一方向性電磁鋼板の製造方法は、多数提案されているもののいずれも採用することができる。なお、地鉄の露出程度は、いわゆるフォルステライト系被膜の存在によって鉄損値が害されない程度でよい。仕上の程度はいわゆる平滑化とすれば十分であり、その程度は必要な鉄損値等によって定めればよい。なお、公知の磁区細分化処理を施したものも本発明の適用対象とすることができ、それによりさらなる鉄損の低下を達成することができる。   In addition, as for the manufacturing method of the unidirectional electrical steel sheet in which the surface of the ground iron is exposed, any of many proposed methods can be adopted. In addition, the extent of exposure of the ground iron may be such that the iron loss value is not harmed by the presence of a so-called forsterite-based coating. It is sufficient that the finishing degree is so-called smoothing, and the degree may be determined by a necessary iron loss value or the like. In addition, what gave the well-known magnetic domain subdivision process can also be made into the application object of this invention, and, thereby, the fall of a further iron loss can be achieved.

本発明において一方向性電磁鋼板の表面に被成されるTiN系被膜は、その鋼板の地鉄に接する部分(地鉄近傍)と表面近傍とでは機能を異にし、地鉄近傍では鋼板地鉄との密着性が高く、表面近傍ではたとえば歪み取り焼鈍時などの高温下での耐熱性が高くなるようになっている。これらの中間部では、上記特性が傾斜して変化するようになっている。   In the present invention, the TiN-based coating formed on the surface of the unidirectional electrical steel sheet has different functions between the portion of the steel sheet in contact with the ground iron (near the ground iron) and the surface vicinity, In the vicinity of the surface, for example, heat resistance at high temperatures such as during strain relief annealing is increased. In these intermediate portions, the above characteristics change in an inclined manner.

具体的には、図1に模式的に示すように、一方向性電磁鋼板の地鉄42にFe、Ti及びNを含有する混合層43を有し、該混合層43上に不可避不純物を除き一般式TiXN(2-X)(ただしX:0.2〜1.3)からなるTiN層44を有し、さらに該TiN層44上に不可避不純物を除きTi-Me-N(ただしMeはSi及び/又はAl)からなり、Meを5〜70mass%含有する表層45を有している。そして、前記TiN層44及び表層45のMeの含有量は前記混合層43側から表層45の表面部46に至るまで次第に増加している。 Specifically, as schematically shown in FIG. 1, a base layer 42 of a unidirectional electrical steel sheet has a mixed layer 43 containing Fe, Ti, and N, and unavoidable impurities are removed on the mixed layer 43. It has a TiN layer 44 of the general formula Ti X N (2-X) (where X is 0.2 to 1.3), and Ti-Me-N (where Me is Si and / or) except for inevitable impurities on the TiN layer 44. Or Al) and has a surface layer 45 containing 5 to 70 mass% Me. The Me content in the TiN layer 44 and the surface layer 45 gradually increases from the mixed layer 43 side to the surface portion 46 of the surface layer 45.

上記混合層43はPVD法によりTiN系被膜を被成する際に必然的に生成される層であって、一方向性電磁鋼板の地鉄42からTiN層44の間にわたって存在している。   The mixed layer 43 is a layer that is inevitably generated when the TiN-based film is deposited by the PVD method, and exists between the ground iron 42 and the TiN layer 44 of the unidirectional electrical steel sheet.

これに続くTiN層44は、不可避不純物を除き一般式TiXN(2-X)(ただしX:0.2〜1.3)からなり、本発明によって被成される被膜層の主要部分をなしている。化学量論的にはTiNはTiとNが原子比で1:1に結合したものであるが、PVD法等で被成されるTiN被膜は、このような理論化学組成をもつものではなく、TiをNに対して過剰にあるいは過小に含む一般式TiXN(2-X)を有するものとなっている。この場合において、Nに対するTiの含有量が過剰又は過小に過ぎると、例えば、高温の歪み取り焼鈍中に、生成された被膜層から地鉄電磁鋼板中にTi又はNが拡散浸透して鉄損値を低下させる原因になる。したがって、上記TiN層44の化学組成は一般式TiXN(2-X)におけるXの値を0.2〜1.3とすることが必要である。なお、Xの値は、後述するように、たとえばGDS(Glow Discharge Spectroscopy)又はXPS(X-ray Photoelectoron Spectroscopy)を用いて求めることができる。 The subsequent TiN layer 44 is of the general formula Ti X N (2-X) (where X is 0.2 to 1.3) except for inevitable impurities, and forms the main part of the coating layer formed by the present invention. Stoichiometrically, TiN is a combination of Ti and N in an atomic ratio of 1: 1, but the TiN film formed by the PVD method etc. does not have such a theoretical chemical composition, It has the general formula Ti X N (2-X) that contains Ti in excess or in excess of N. In this case, if the content of Ti with respect to N is excessive or too low, for example, during high-temperature strain relief annealing, Ti or N diffuses and penetrates from the generated coating layer into the ground iron electrical steel sheet, resulting in iron loss. Causes the value to decrease. Therefore, the chemical composition of the TiN layer 44 requires that the value of X in the general formula Ti X N (2-X) be 0.2 to 1.3. Note that the value of X can be determined using, for example, GDS (Glow Discharge Spectroscopy) or XPS (X-ray Photoelector Spectroscopy) as will be described later.

なお、このTiN層44はその混合層43からの移行部(以下、「初期TiN層」という)では純度が極めて高いことが望ましい。たとえば、不純物であるSi及びAlは、高温の歪み取り焼鈍の過程で地鉄中に拡散浸透して製品の鉄損値を低下させる原因になるので、上記初期TiN層においてはこれら元素はそれぞれSi:0.1mass%、Al:0.1mass%以下に制限するのがよい。この目的を達するためには、混合層43から少なくとも0.02μm程度の厚さに亘っては、純度の高いTiターゲットを用いて初期TiN層を形成するのが望ましい。なお、上記TiN層(初期TiN層を含む)の被成厚さ及び組成は、後述するように、たとえば、GDS(Glow Discharge Spectroscopy)又はXPS(X-ray Photoelectoron Spectroscopy)を用いて求めることができる。   The TiN layer 44 preferably has a very high purity at the transition from the mixed layer 43 (hereinafter referred to as “initial TiN layer”). For example, the impurities Si and Al diffuse and penetrate into the ground iron in the process of high-temperature strain relief annealing and cause a reduction in the iron loss value of the product. Therefore, in the initial TiN layer, these elements are each Si. : 0.1 mass%, Al: It is better to limit to 0.1 mass% or less. In order to achieve this purpose, it is desirable to form an initial TiN layer using a high purity Ti target from the mixed layer 43 to a thickness of at least about 0.02 μm. The deposited thickness and composition of the TiN layer (including the initial TiN layer) can be determined using, for example, GDS (Glow Discharge Spectroscopy) or XPS (X-ray Photoelectoron Spectroscopy), as will be described later. .

これに対し、表層45は、不可避不純物を除きTi-Me-N(ただしMeはSi及び/又はAl)からなり、かつMeの含有量が5〜70mass%となるようにする。このように被膜表層をSi、Alリッチな層とするのは、TiN系被膜の耐熱性を850℃以上に向上させるためである。表層45においてMeが5mass%未満であると、歪み取り焼鈍中にTiN系被膜が劣化し易く、一方、これら元素の存在量が70mass%を超えると、歪み取り焼鈍中における被膜酸化が著しく、被膜が脆くなる。したがって、被膜の表層45のおけるMeの含有量は5〜70mass%、好ましくは15〜50mass%に制限される。なお、この表層45におけるMeの含有量は、後述するように、たとえば、GDS又はXPSによるデプスプロファイルにより求めることができる。   On the other hand, the surface layer 45 is made of Ti—Me—N (where Me is Si and / or Al) except for inevitable impurities, and has a Me content of 5 to 70 mass%. The reason why the surface layer of the film is Si and Al-rich is to improve the heat resistance of the TiN-based film to 850 ° C. or higher. If the Me is less than 5 mass% in the surface layer 45, the TiN-based film is likely to deteriorate during strain relief annealing. On the other hand, if the abundance of these elements exceeds 70 mass%, the film oxidation during the strain relief annealing is significant. Becomes brittle. Therefore, the content of Me in the surface layer 45 of the coating is limited to 5 to 70 mass%, preferably 15 to 50 mass%. Note that the content of Me in the surface layer 45 can be obtained, for example, by a depth profile by GDS or XPS as described later.

この表層45はその機能上、少なくとも0.1μm以上の厚さを有することが望ましいが、Si、Alリッチな層厚があまりに厚いと歪み取り焼鈍後脆くなり、被膜の密着性を害するので、その厚さは0.2μm以下に制限するのが好ましい。なお、なお、上記表層45の厚さ及び組成は、上記TiN層(初期TiN層を含む)と同様にして測定することができる。   The surface layer 45 desirably has a thickness of at least 0.1 μm or more in terms of its function, but if the Si or Al-rich layer thickness is too thick, it becomes brittle after strain relief annealing, and the adhesion of the film is impaired. The thickness is preferably limited to 0.2 μm or less. It should be noted that the thickness and composition of the surface layer 45 can be measured in the same manner as the TiN layer (including the initial TiN layer).

前記TiN層44及び表層45のMeの含有量は前記混合層43側から表層の表面部46に至るにしたがい増加するものとする。上記混合層43及びそこからTiN層44に移行する初期TiN層においてはMeの含有量ほぼ0の状態であるが、TiN層44内及び表層45内において次第に増加し、表層の表面部46で最大値を取るようにするのが好ましい。なお、上記混合層43から表層45へかけてのMeの増加は、局部的に極端な濃度差を生ずることなく行われるのがよく、それにより方向性電磁鋼板表面にTiN系被膜を密着性よく保持できるようになる。   The Me content in the TiN layer 44 and the surface layer 45 is increased from the mixed layer 43 side to the surface portion 46 of the surface layer. In the mixed layer 43 and the initial TiN layer transferred from there to the TiN layer 44, the Me content is almost zero, but gradually increases in the TiN layer 44 and the surface layer 45, and reaches the maximum at the surface portion 46 of the surface layer. It is preferable to take a value. The increase in Me from the mixed layer 43 to the surface layer 45 should be carried out without causing a local extreme concentration difference, whereby a TiN-based coating is applied to the surface of the grain-oriented electrical steel sheet with good adhesion. It can be held.

図2、図3はそれぞれ本発明に従いMeを混合層側から表層の表面部に至るにしたがって増加させた場合について得られた一方向性電磁鋼板の表面近傍のGDS(Glow Discharge Spectroscopy)によるデプス・プロファイルの例である。ここに示されているように、混合層43ではFeの含有量が減少するとともにTi及びNの含有量が増加し、TiN層44への移行部(初期TiN層)では、Fe、Si及びAlの各含有量がほぼ0になっている。TiN層44ではTiとともにNの含有量が増加し、不可避不純物を除き一般式TiXN(2-x)に従うセラミックが形成されていることを示している。表層45では、Tiの含有量が減少している。図2に示す場合ではSiが、図3に示す場合ではAlが、TiN層44の厚さ方向中間部から次第に増加し始め表層45の表面部で最大値に達している。 2 and 3 respectively show the depth by GDS (Glow Discharge Spectroscopy) near the surface of the unidirectional electrical steel sheet obtained when Me is increased from the mixed layer side to the surface part of the surface layer according to the present invention. It is an example of a profile. As shown here, in the mixed layer 43, the content of Fe decreases and the content of Ti and N increases, and in the transition to the TiN layer 44 (initial TiN layer), Fe, Si and Al Each content of is almost zero. In the TiN layer 44, the N content increases with Ti, indicating that a ceramic according to the general formula Ti X N (2-x) is formed except for inevitable impurities. In the surface layer 45, the Ti content is reduced. In the case shown in FIG. 2, Si starts increasing gradually from the middle portion in the thickness direction of the TiN layer 44 and reaches the maximum value on the surface portion of the surface layer 45 in the case shown in FIG. 3.

ここに示すように地鉄42、混合層43、TiN層44及び表層45の境界は、それほどクリティカルなものではない。本発明では、図2、3に示すように地鉄−混合層の境界はFe含有量の遷移点(地鉄側からと混合層側からのFe強度線の外挿線の交点)と、混合層−TiN層の境界はFe含有量が実質的に0となる点と、TiN層−表層の境界はTi含有量の減少し始める点(TiN層側からのと表層側からのTi強度線の外挿線の交点)と定めておく。また、初期TiN層は上記混合層−TiN層の境界からMeの含有量が実質的に0である範囲をいうものとする。   As shown here, the boundaries between the base iron 42, the mixed layer 43, the TiN layer 44, and the surface layer 45 are not so critical. In the present invention, as shown in FIGS. 2 and 3, the boundary between the base iron and the mixed layer is mixed with the transition point of Fe content (intersection of the extrapolation line of the Fe intensity line from the base iron side and the mixed layer side). The boundary between the layer and the TiN layer is that the Fe content is substantially zero, and the boundary between the TiN layer and the surface layer is the point where the Ti content starts to decrease (the Ti intensity line from the TiN layer side and from the surface layer side). The intersection of extrapolated lines). The initial TiN layer refers to a range in which the Me content is substantially 0 from the boundary between the mixed layer and the TiN layer.

重要なことは、形成された被膜中の各成分は連続的に変化し、成分変化の不連続な点を持たないということである。表1には、上記図2、図3のデプスプロファイルから上記の定義に従って決定した混合層厚、TiN層厚、初期TiN層厚、表層厚、前記一般式TiXN(2-x)のXの値を表層におけるMeの含有量とともに示した。ここで、各層厚は図2、図3から読みとって求め、一方、表層におけるMeの含有量は表層の最表層(表面から深さ0の部分)におけるAl及びSiのそれぞれの強度を、Al、Siの含有量が100mass%のときの強度によって除したものの合計値として求めた。また、TiN層が一般式TiXN(2-x)と表されるときのXの値は図2及び図3のTiN層のTiとNの強度変化から求めた。 What is important is that each component in the formed coating changes continuously and does not have discontinuous points of component change. Table 1 shows the mixed layer thickness, TiN layer thickness, initial TiN layer thickness, surface layer thickness, X of the general formula Ti X N (2-x) determined from the depth profiles of FIGS. The value of was shown together with the content of Me in the surface layer. Here, the thickness of each layer is obtained by reading from FIG. 2 and FIG. 3, while the content of Me in the surface layer is the strength of each of Al and Si in the outermost surface layer (the portion having a depth of 0 from the surface) as Al, It calculated | required as a total value of what remove | divided with the intensity | strength when content of Si was 100 mass%. Further, the value of X when the TiN layer is represented by the general formula Ti X N (2-x) was obtained from the strength change of Ti and N of the TiN layer in FIGS.

Figure 2005089810
Figure 2005089810

上記の構造をもつTiN系被膜を表面に有する一方向性電磁鋼板は、そのままの形で利用することもできるが、さらにその上に絶縁被膜47を形成することもでき、それによりトランスコアとして利用できるようになる。絶縁被膜47としては有機系、無機系又は有機−無機複合系のいずれも採用できるが、りん酸塩とシリカを含有する絶縁被膜とするのが、電磁鋼板の絶縁性を高め、さらに張力付与機能を付与するのに好適である。   The unidirectional electrical steel sheet with the TiN-based coating on the surface can be used as it is, but an insulating coating 47 can also be formed on it, which can be used as a transformer core. become able to. As the insulating film 47, any of organic, inorganic or organic-inorganic composite systems can be adopted. However, an insulating film containing phosphate and silica improves the insulation of the electrical steel sheet and further provides a tensioning function. It is suitable for imparting.

上記TiN系被膜を表面に有する一方向性電磁鋼板を製造するには、まず公知の手段により仕上焼鈍された一方向性電磁鋼板(好ましくは地鉄表面が露出したもの)を製造し、これに対し、以下に説明するPVD処理装置を用いてマルチアーク放電により混合層43、TiN層44、及び表層45を形成する。また、必要に応じて絶縁被膜47を形成する。   In order to produce a unidirectional electrical steel sheet having the TiN-based coating on its surface, first, a unidirectional electrical steel sheet (preferably with the exposed surface of the ground iron) that has been annealed by known means is produced. On the other hand, the mixed layer 43, the TiN layer 44, and the surface layer 45 are formed by multi-arc discharge using a PVD processing apparatus described below. Further, an insulating coating 47 is formed as necessary.

図4は本発明を実施するために好適に用いることができるPVD被覆装置の一例を示す模式断面図であり、図5は図4に示す装置に用いられるマルチアーク放電部の部分拡大説明図である。ここに示すように、本例のPVD処理装置は、帯状体Sを順次通板する入側差圧帯10と、PVD被覆帯20と、出側差圧帯30を備え、いわゆるエア−トゥ−エア(air to air)方式で連続的に一方向性電磁鋼帯等の帯状体Sの表面にTiN系被膜等を被成できるようになっている。   FIG. 4 is a schematic cross-sectional view showing an example of a PVD coating apparatus that can be suitably used for carrying out the present invention, and FIG. 5 is a partially enlarged explanatory view of a multi-arc discharge section used in the apparatus shown in FIG. is there. As shown here, the PVD processing apparatus of this example includes an inlet side differential pressure zone 10, a PVD coating zone 20, and an outlet side differential pressure zone 30 through which the strip S is sequentially passed, so-called air toe. A TiN-based film or the like can be continuously formed on the surface of the strip S such as a unidirectional electromagnetic steel strip by an air to air method.

入側差圧帯10はそれぞれ入側、出側にシールロール11(11A〜11D)と排気口12(12A〜12C)を備えた差圧室13(13A〜13C)を直列に配置して構成され、鋼帯Sを大気中から減圧されたPVD被覆帯20に導入できるようになっている。出側差圧帯30も同様の構成を有し、鋼帯Sを減圧されたPVD被覆帯20から大気中に搬出できるようになっている。   The inlet-side differential pressure zone 10 is configured by arranging differential pressure chambers 13 (13A-13C) with seal rolls 11 (11A-11D) and exhaust ports 12 (12A-12C) on the inlet and outlet sides in series, respectively. Thus, the steel strip S can be introduced into the PVD-coated strip 20 that has been decompressed from the atmosphere. The delivery side differential pressure zone 30 has the same configuration, and the steel strip S can be carried out from the decompressed PVD coating zone 20 to the atmosphere.

PVD被覆帯20は、仕切り壁24(24A〜24C)によって複数の被覆室(21A〜21D)に仕切られており、各被覆室には図4及び図5に示すようにそれぞれ被覆室外壁25の中にマルチアーク放電部34(34A〜34D)及び反応ガス導入口23を備えている。マルチアーク放電部34は帯状帯Sの通路を挟んで上下一対に設けられている。そして、ターゲット26と電極41間に電源29が設けられ両者間で放電が行われるようになっている。上記被覆室21に取りつけるターゲット26は任意組成のものとすることができ、また、各被覆室21内の雰囲気を反応ガス導入口23(23A〜23D)から導入されるガスGの組成を変更することにより自由に制御できるようになっている。   The PVD coating band 20 is partitioned into a plurality of coating chambers (21A to 21D) by partition walls 24 (24A to 24C), and each coating chamber has a coating chamber outer wall 25 as shown in FIGS. A multi-arc discharge section 34 (34A to 34D) and a reaction gas inlet 23 are provided therein. The multi-arc discharge part 34 is provided in a pair of upper and lower sides across the path of the belt-like band S. A power source 29 is provided between the target 26 and the electrode 41, and discharge is performed between the two. The target 26 attached to the coating chamber 21 can have an arbitrary composition, and the atmosphere in each coating chamber 21 is changed in the composition of the gas G introduced from the reaction gas inlet 23 (23A to 23D). Can be controlled freely.

なお、被覆室には上記ターゲット26を被覆室外壁25から上下できるターゲット設置部を備え、ターゲット26の頂部近傍周囲には棒磁石27、28がおかれ、かつこれら棒磁石の磁極はN極とS極が円周上で交互に位置するように置くこととするのがよい。これにより、長時間にわたる連続操業が可能となり、アーク放電の際に陰極表面の均一化、微細溶融化などの効果がもたらされる。   The covering chamber is provided with a target installation portion that can move the target 26 up and down from the outer wall 25 of the covering chamber, bar magnets 27 and 28 are provided around the top of the target 26, and the magnetic poles of these bar magnets are N poles. It is recommended that the S poles be placed alternately on the circumference. As a result, continuous operation over a long period of time becomes possible, and effects such as uniformization of the cathode surface and fine melting are brought about during arc discharge.

なお、上記各被覆帯を仕切る仕切り壁24(24A〜24D)は、各被覆室間のガス流の流通を妨げる程度のものでよく、被覆室間にたとえばシールロールなどを設けることを要しない。   The partition walls 24 (24A to 24D) for partitioning the respective coating strips may be of a level that prevents the gas flow between the respective coating chambers, and it is not necessary to provide, for example, a seal roll between the coating chambers.

上記のような構成をもつPVD被覆装置を用いることにより、PVD被覆帯20の各被覆室毎に任意の組成の被膜を形成し得る。たとえば、第一の被覆室21Aに純度の極めて高いTi金属(代表的にはJIS H 4600に規定する第1種チタン条など)を設置し、続く第二室21Bには低価格のTi金属(代表的にはJIS H 4600に規定する第2種のチタン条など)を設置し、第三室21CにはAlの低いTi-Al合金からなる条を設置し、さらに第四室21DにはAlの含有量の高いAl-Ti合金を配置することによって、通板される一方向性電磁鋼板の表面に順次混合層、TiN層、表層を形成することができ、しかもその際にTiN層及び表層に亘って被膜の表面部に至るに従いAlの含有量を増加させることができる。   By using the PVD coating apparatus having the above-described configuration, a coating film having an arbitrary composition can be formed for each coating chamber of the PVD coating band 20. For example, a very high purity Ti metal (typically the first type titanium strip specified in JIS H 4600) is installed in the first coating chamber 21A, and a low-cost Ti metal ( (Typical type 2 titanium strip specified in JIS H 4600) is installed, and the third chamber 21C is installed with a strip made of Ti-Al alloy with low Al, and the fourth chamber 21D is Al. By arranging an Al-Ti alloy with a high content, a mixed layer, TiN layer, and surface layer can be sequentially formed on the surface of the unidirectional electrical steel sheet to be passed, and at that time, the TiN layer and surface layer Over this, the Al content can be increased as it reaches the surface of the coating.

C:0.075mass%、Si:3.49mass%、Mn:0.073mass%、Se:0.020mass%、Sb:0.025mass%、Al:0.020mass%、Mo:0.011mass%及びN:0.0070mass%を含有し、残部実質的にFeの組成からなる電磁鋼板用スラブを、1350℃で3h加熱後、熱間圧延を施して熱延板とし、これに1030℃の中間焼鈍を挟む2回の冷間圧延を施して0.23mmの冷延板とした。   Contains C: 0.075 mass%, Si: 3.49 mass%, Mn: 0.073 mass%, Se: 0.020 mass%, Sb: 0.025 mass%, Al: 0.020 mass%, Mo: 0.011 mass% and N: 0.0070 mass% The remainder of the slab for magnetic steel sheet, which is substantially composed of Fe, is heated at 1350 ° C for 3 hours, then hot rolled to form a hot rolled sheet, and then cold-rolled twice with 1030 ° C intermediate annealing. To give a 0.23 mm cold-rolled sheet.

得られた冷延板にその圧延方向にほぼ直角方向に4mm間隔に幅200μm、深さ20μmの溝を形成する磁区細分化処理を施した後、840℃の湿水素中で脱炭焼鈍を兼ねた再結晶焼鈍を施した後、SiO2:3mass%、Al2O3:2mass%、MgO:65mass%、SbCl3:25mass%、Sr(OH)2:5mass%からなる焼鈍分離剤を塗布し、850℃で15h保持後、13℃/hで1050℃まで昇温後、1220℃の乾水素中で純化する最終焼鈍を施してフォルステライト被膜を有さない地鉄の露出した一方向性電磁鋼板を得た。 The obtained cold-rolled sheet was subjected to magnetic domain refinement treatment to form grooves with a width of 200 μm and a depth of 20 μm at intervals of 4 mm in a direction substantially perpendicular to the rolling direction, and also used for decarburization annealing in wet hydrogen at 840 ° C. After recrystallization annealing, an annealing separator composed of SiO 2 : 3 mass%, Al 2 O 3 : 2 mass%, MgO: 65 mass%, SbCl 3 : 25 mass%, Sr (OH) 2 : 5 mass% is applied. , After holding at 850 ° C for 15 hours, heating up to 1050 ° C at 13 ° C / h, and then performing final annealing to purify in dry hydrogen at 1220 ° C to expose the unidirectional electromagnetic radiation of the base metal without forsterite coating A steel plate was obtained.

得られた地鉄露出の一方向性電磁鋼板に図1に示す構造のPVD処理装置を用い、マルチアーク放電部21A〜21Dにはそれぞれ表2に示すターゲットを設置し、マルチアーク放電投入電力:25V×250AでPVD処理を行った。   A PVD processing apparatus having the structure shown in FIG. 1 is used for the obtained unidirectional electrical steel sheet exposed to the ground iron, and the targets shown in Table 2 are installed in the multi-arc discharge sections 21A to 21D, respectively. PVD treatment was performed at 25V × 250A.

なお、比較例は前記実施例と同様に最終焼鈍までの処理を行い、その後のPVD処理においてはターゲットをすべて第1種チタンとした。   In the comparative example, the process up to the final annealing was performed in the same manner as in the above example, and in the subsequent PVD process, the target was all the first type titanium.

Figure 2005089810
Figure 2005089810

得られたTiN系被膜被成済の一方向性電磁鋼板に、コロイダルシリカとりん酸塩を主成分とする絶縁被膜を形成させた後、窒素中で800℃で3hの歪み取り焼鈍を行った。絶縁被膜形成前における一方向性電磁鋼板の表面近傍のGDS(Glow Discharge Spectroscopy)によるデプス・プロファイルを図6に示す。また、図6から求めた混合層、TiN層並びに表層の各厚さ、一般式TiXN(2-x)のXの値及び表層のMe(Al+Si)の含有量を比較例とともに表3に示す。また、歪み取り焼鈍後の製品の特性を比較例とともに表4に示す。 After forming an insulating coating mainly composed of colloidal silica and phosphate on the obtained unidirectional electrical steel sheet with TiN coating, the strain relief annealing was performed in nitrogen at 800 ° C for 3h. . FIG. 6 shows a depth profile by GDS (Glow Discharge Spectroscopy) in the vicinity of the surface of the unidirectional electrical steel sheet before the formation of the insulating coating. Table 3 shows the mixed layer, TiN layer and surface layer thicknesses obtained from FIG. 6, the value of X in the general formula Ti X N (2-x) , and the content of Me (Al + Si) in the surface layer together with comparative examples. Show. Table 4 shows the characteristics of the product after strain relief annealing together with comparative examples.

図6及び表3から分かるように、本発明では、地鉄の上に混合層、TiN層及び表層が形成されており、かつTiN層及び表層のMe(Si+Al)の含有量が混合層側から表層の表面部に至るにしたがい増加している。これにより、TiN系被膜の密着性及び耐熱性が確保されている。また、表4から分かるように、本発明によるTiN系被膜を被成させた場合には、磁気特性に優れ、かつ、歪み取り焼鈍後の被膜の密着性が優れている。なお、被膜密着性は180°曲げで被膜が剥離しない最小直径によって測定したものである。   As can be seen from FIG. 6 and Table 3, in the present invention, the mixed layer, TiN layer, and surface layer are formed on the ground iron, and the content of Me (Si + Al) in the TiN layer and the surface layer is from the mixed layer side. It increases as it reaches the surface of the surface layer. Thereby, the adhesiveness and heat resistance of the TiN-based coating are ensured. Further, as can be seen from Table 4, when the TiN coating according to the present invention is deposited, the magnetic properties are excellent and the adhesion of the coating after strain relief annealing is excellent. The film adhesion is measured by the minimum diameter at which the film does not peel when bent by 180 °.

Figure 2005089810
Figure 2005089810

Figure 2005089810
Figure 2005089810

本発明に係る一方向性電磁鋼板の表面構造を示す模式説明図である。It is a schematic explanatory view showing the surface structure of the unidirectional electrical steel sheet according to the present invention. 本発明に従いSiを混合層側から最外層に至るにしたがい増加させた場合について得られた一方向性電磁鋼板の表面近傍GDSによるデプス・プロファイルの一例である。It is an example of the depth profile by the surface near-surface GDS of the unidirectional electrical steel sheet obtained when increasing Si from the mixed layer side to the outermost layer according to the present invention. 本発明に従いAlを混合層側から最外層に至るにしたがい増加させた場合について得られた一向性電磁鋼板の表面近傍のGDSによるデプス・プロファイルに一例である。This is an example of the GDS depth profile near the surface of the unidirectional electrical steel sheet obtained when Al is increased from the mixed layer side to the outermost layer according to the present invention. 本発明を実施するための装置の一例を示す模式断面図である。It is a schematic cross section which shows an example of the apparatus for implementing this invention. 図4に示す装置に用いられるマルチアーク放電部の拡大説明図である。It is an expansion explanatory view of the multi-arc discharge part used for the device shown in FIG. 本発明に従う実施例の一方向性電磁鋼板の表面近傍GDSデプス・プロファイルのチャートである。It is a chart of the near surface GDS depth profile of the unidirectional electrical steel sheet of the Example according to this invention.

符号の説明Explanation of symbols

10:入側差圧帯
11(11A〜11D):シールロール
12(12A〜12C):排気口
13(13A〜13C):入側差圧室
20:PVD被覆帯
21(21A〜21D):被覆室
22(22A〜22D):排気口
24(24A〜24C):仕切り壁
23(23A〜23D):反応ガス導入口
25:被覆室外壁
26:ターゲット
27:棒磁石
28:棒磁石
29:電源
30:出側差圧帯
31(31A〜31D):シールロール
32(32A〜32C):排気口
33(33A〜33C):出側差圧室
34(34A〜34D):マルチアーク放電部
42:(一方向性電磁鋼板の)地鉄
43:混合層
44:TiN層
45:表層
46:(表層45の)表面部
47:(上塗り)絶縁被膜
10: Inlet differential pressure zone
11 (11A to 11D): Seal roll
12 (12A-12C): Exhaust port
13 (13A-13C): Entry side differential pressure chamber
20: PVD coated belt
21 (21A-21D): Coating room
22 (22A-22D): Exhaust port
24 (24A-24C): Partition wall
23 (23A-23D): Reaction gas inlet
25: Outer wall of coating room
26: Target
27: Bar magnet
28: Bar magnet
29: Power supply
30: Outlet differential pressure zone
31 (31A to 31D): Seal roll
32 (32A to 32C): Exhaust port
33 (33A to 33C): Outlet differential pressure chamber
34 (34A to 34D): Multi-arc discharge section
42: Steel (unidirectional electrical steel sheet)
43: Mixed layer
44: TiN layer
45: Surface
46: Surface part (of surface layer 45)
47: (Overcoat) Insulating coating

Claims (5)

仕上焼鈍された一方向性電磁鋼板の表面にFe、Ti及びNを含有する混合層を有し、
該混合層上に不可避不純物を除き一般式TiXN(2-X)(ただしX:0.2〜1.3)からなるTiN層を有し、
さらに該TiN層上に不可避不純物を除きTi-Me-N(ただしMeはSi及び/又はAl)からなり、Meを5〜70mass%含有する表層を有するとともに、
前記TiN層及び表層のMeの含有量が前記混合層側から表層の表面部に至るにしたがい増加しているものであることを特徴とする一方向性電磁鋼板。
It has a mixed layer containing Fe, Ti and N on the surface of the unidirectional electrical steel sheet that has been annealed,
The mixed layer has a TiN layer composed of the general formula Ti X N (2-X) (where X is 0.2 to 1.3) excluding inevitable impurities,
Further, Ti-Me-N (Me is Si and / or Al) excluding inevitable impurities on the TiN layer, and having a surface layer containing 5 to 70 mass% Me,
The unidirectional electrical steel sheet according to claim 1, wherein the MeN content of the TiN layer and the surface layer is increased from the mixed layer side to the surface portion of the surface layer.
前記表層上にりん酸塩とシリカを含有する絶縁被膜を有することを特徴とする請求項1記載の一方向性電磁鋼板。   The unidirectional electrical steel sheet according to claim 1, further comprising an insulating coating containing phosphate and silica on the surface layer. 仕上焼鈍された一方向性電磁鋼板の表面にTiN系被膜をPVD法によって被成する一方向性電磁鋼板の製造方法において、
前記一方向性電磁鋼板の表面にFe、Ti及びNを含有する混合層を形成しながら不可避不純物を除き一般式TiXN(2-X)(ただしX:0.2〜1.3)からなるTiN層を形成した後、
不可避不純物を除きTi-Me-N(ただしMeはSi及び/又はAl)からなり、Meを5〜70mass%含有する表層を形成し、
その際、前記TiN層及び表層のMeの含有量を前記混合層側から表層の表面部に至るにしたがい増加させることを特徴とする一方向性電磁鋼板の製造方法。
In the method for producing a unidirectional electrical steel sheet, in which a TiN-based coating is formed on the surface of the finish annealed unidirectional electrical steel sheet by the PVD method,
While forming a mixed layer containing Fe, Ti and N on the surface of the unidirectional electrical steel sheet, a TiN layer composed of a general formula Ti X N (2-X) (where X is 0.2 to 1.3) except for inevitable impurities After forming
It consists of Ti-Me-N (where Me is Si and / or Al), excluding inevitable impurities, and forms a surface layer containing 5 to 70 mass% of Me,
At that time, the content of Me in the TiN layer and the surface layer is increased as it reaches from the mixed layer side to the surface portion of the surface layer.
前記表層上にりん酸塩とシリカを含有する絶縁被膜を被成することを特徴とする請求項3記載の一方向性電磁鋼板の製造方法。   The method for producing a unidirectional electrical steel sheet according to claim 3, wherein an insulating film containing phosphate and silica is formed on the surface layer. 帯状体を順次通板する入側差圧室と、PVD被覆帯と、出側差圧室を備え、該帯状体表面に被膜を施すPVD処理装置において、
前記PVD被覆帯を互いに連接され、かつ仕切り板によって仕切られた複数の被覆室によって構成するとともに、前記複数の被覆室にはそれぞれ前記帯状体の通路を挟んで少なくとも1対のマルチアーク放電部及び少なくとも1個の反応ガス導入孔を具備せしめ、さらに前記マルチアーク放電部に任意組成のターゲットを配置可能としてなることを特徴とするPVD処理装置。
In a PVD processing apparatus comprising an inlet side differential pressure chamber for sequentially passing a strip, a PVD coating zone, and an exit differential pressure chamber, and applying a coating on the surface of the strip,
The PVD coating strip is constituted by a plurality of coating chambers connected to each other and partitioned by a partition plate, and each of the plurality of coating chambers includes at least a pair of multi-arc discharge portions and a passage of the strip-shaped body. A PVD processing apparatus comprising: at least one reactive gas introduction hole; and a target having an arbitrary composition can be disposed in the multi-arc discharge section.
JP2003324030A 2003-09-17 2003-09-17 Grain-oriented silicon steel sheet, its manufacturing method, and pvd treatment device Pending JP2005089810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324030A JP2005089810A (en) 2003-09-17 2003-09-17 Grain-oriented silicon steel sheet, its manufacturing method, and pvd treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324030A JP2005089810A (en) 2003-09-17 2003-09-17 Grain-oriented silicon steel sheet, its manufacturing method, and pvd treatment device

Publications (1)

Publication Number Publication Date
JP2005089810A true JP2005089810A (en) 2005-04-07

Family

ID=34454896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324030A Pending JP2005089810A (en) 2003-09-17 2003-09-17 Grain-oriented silicon steel sheet, its manufacturing method, and pvd treatment device

Country Status (1)

Country Link
JP (1) JP2005089810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20102018A1 (en) * 2010-10-29 2012-04-30 Daejin Dsp Co Ltd DECORATIVE LAMINATE SHEET IN STAINLESS STEEL WITH EMBOSSED DRAWING AND ITS MANUFACTURING PROCESS
WO2019188976A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet and continuous film-forming device
EP3534383A4 (en) * 2016-12-21 2019-10-23 JFE Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20102018A1 (en) * 2010-10-29 2012-04-30 Daejin Dsp Co Ltd DECORATIVE LAMINATE SHEET IN STAINLESS STEEL WITH EMBOSSED DRAWING AND ITS MANUFACTURING PROCESS
EP3534383A4 (en) * 2016-12-21 2019-10-23 JFE Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
US11180834B2 (en) 2016-12-21 2021-11-23 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
WO2019188976A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet and continuous film-forming device
JPWO2019188976A1 (en) * 2018-03-30 2020-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet and continuous film forming apparatus
KR20200118850A (en) 2018-03-30 2020-10-16 제이에프이 스틸 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet and continuous film forming apparatus
EP3760758A4 (en) * 2018-03-30 2021-05-19 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet and continuous film-forming device

Similar Documents

Publication Publication Date Title
JP6690714B2 (en) Non-oriented electrical steel sheet, method for producing non-oriented electrical steel sheet, and method for producing motor core
RU2526642C1 (en) Texturised electric steel sheet
CN108475553B (en) Insulating film composition for oriented electrical steel sheet, method for forming insulating film on oriented electrical steel sheet, and oriented electrical steel sheet
JP3387914B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
EP3045559B1 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
JP2009018573A (en) Grain-oriented electromagnetic steel sheet including electrically insulating coating
JP2000355717A (en) Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
JP2019137883A (en) Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet
JP2005089810A (en) Grain-oriented silicon steel sheet, its manufacturing method, and pvd treatment device
JP6842550B2 (en) Directional electrical steel sheet and its manufacturing method
JP5047466B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP7352108B2 (en) grain-oriented electrical steel sheet
JP7315857B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4192818B2 (en) Oriented electrical steel sheet
JP2006253555A6 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP4259061B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004027345A (en) Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same
JP4259369B2 (en) Method for producing grain-oriented electrical steel sheet
JP2006261602A (en) Super-low iron loss directive electromagnetic steel sheet excellent in coat adhesiveness
JPH10183310A (en) Non-oriented silicon steel sheet excellent in magnetic characteristic after stress relief annealing
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JP4206942B2 (en) Oriented electrical steel sheet with extremely low iron loss and excellent film adhesion and method for producing the same
JP2019123936A (en) Method for manufacturing grain-oriented electromagnetic steel sheets
JP4241126B2 (en) Method for producing grain-oriented electrical steel sheet