JP2005089585A - Manufacturing method for biodegradable high molecular-weight aliphatic polyester - Google Patents

Manufacturing method for biodegradable high molecular-weight aliphatic polyester Download PDF

Info

Publication number
JP2005089585A
JP2005089585A JP2003323880A JP2003323880A JP2005089585A JP 2005089585 A JP2005089585 A JP 2005089585A JP 2003323880 A JP2003323880 A JP 2003323880A JP 2003323880 A JP2003323880 A JP 2003323880A JP 2005089585 A JP2005089585 A JP 2005089585A
Authority
JP
Japan
Prior art keywords
aliphatic
high molecular
molecular weight
general formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003323880A
Other languages
Japanese (ja)
Other versions
JP3643875B2 (en
Inventor
Yoichi Taguchi
洋一 田口
Akihiro Oishi
晃広 大石
Kenichi Fujita
賢一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003323880A priority Critical patent/JP3643875B2/en
Publication of JP2005089585A publication Critical patent/JP2005089585A/en
Application granted granted Critical
Publication of JP3643875B2 publication Critical patent/JP3643875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a manufacturing method for an excellently biodegradable high molecular-weight aliphatic polyester as is industrially profitable and as is capable of shortening the reacting time until the attainment of a high molecular-weight. <P>SOLUTION: The manufacturing method comprises a polycondensation reaction, in the presence of aspartic acid, of an aliphatic dicarboxylic acid and its diester or an aliphatic dicarboxylic acid anhydride or of a mixture of them with an aliphatic diol. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、脂肪族ジカルボン酸と脂肪族ジオールから得られる生分解性高分子量脂肪族ポリエステルの迅速な製造方法に関するものである。   The present invention relates to a rapid method for producing a biodegradable high molecular weight aliphatic polyester obtained from an aliphatic dicarboxylic acid and an aliphatic diol.

ポリオレフィンや芳香族ポリエステル等の合成高分子は、日常生活に欠かせない原材料として大量に使われているが、これらの合成高分子は、自然環境で分解されないことから、消費量の増加に伴って環境問題が顕在化している。このため、生分解性プラスチックの開発が進められており、生分解性を有する高分子として、脂肪族ポリエステルが注目されている。なかでもコハク酸またはその誘導体とブタンジオールとから製造されるポリブチレンサクシネートは融点や機械的強度に優れており注目されている。   Synthetic polymers such as polyolefins and aromatic polyesters are used in large quantities as raw materials indispensable for daily life, but these synthetic polymers are not decomposed in the natural environment. Environmental problems are becoming apparent. For this reason, development of biodegradable plastics is underway, and aliphatic polyesters are attracting attention as biodegradable polymers. Among them, polybutylene succinate produced from succinic acid or a derivative thereof and butanediol is attracting attention because of its excellent melting point and mechanical strength.

また、ポリブチレンサクシネートのみでは必ずしも実用上十分な機械的強度及び加工性が得られないため、種々の多価アルコール、ヒドロキシ酸などとの共重合による物性の改良が検討され、本発明者らも、先に3-アルコキシ-1,2-プロパンジオールを脂肪族ジカルボン酸ジエステルと脂肪族ジオールに共重合させることによりホモポリマーよりも高い伸度を示す新規な構造を有する高分子量脂肪族ポリエステルを提案した(特許文献1〜3)。   In addition, since polybutylene succinate alone does not always provide practically sufficient mechanical strength and processability, improvement of physical properties by copolymerization with various polyhydric alcohols, hydroxy acids, etc. has been studied. However, a high molecular weight aliphatic polyester having a novel structure exhibiting higher elongation than a homopolymer by copolymerizing 3-alkoxy-1,2-propanediol with an aliphatic dicarboxylic acid diester and an aliphatic diol first. Proposed (Patent Documents 1 to 3).

しかし、上記の脂肪族ジカルボン酸と脂肪族ジオールからの生分解性高分子量脂肪族ポリエステル及びその共重合体の製造には高分子量化するまで減圧下での長時間の反応時間が必要である、という難点があった。   However, the production of the biodegradable high molecular weight aliphatic polyester and the copolymer thereof from the aliphatic dicarboxylic acid and the aliphatic diol requires a long reaction time under reduced pressure until the molecular weight is increased. There was a difficulty.

一方、生分解性ポリエステルの物性等を向上させるため、ポリエステル中にアミド基を導入することが検討されている(特許文献4〜5)。しかし、天然のアミノ酸を基剤とする生分解性ポリエステルアミドの合成では満足な物性を有するものが得られていない(特許文献6)。また、脂肪族ジカルボン酸−脂肪族ジオール−2官能オキシカルボン酸−天然アミノ酸の重合によるアミド結合を有する高分子量脂肪族ポリエステルを合成する方法も知られているが(特許文献7)、脂肪族オキシカルボン酸が存在しないと十分な分子量を持つポリエステルアミドが生成しないとされ、更には、アスパラギン酸が特異的に重合時間を短縮することは何ら示唆されていない。   On the other hand, in order to improve the physical properties of biodegradable polyester, introduction of an amide group into the polyester has been studied (Patent Documents 4 to 5). However, in the synthesis of biodegradable polyesteramides based on natural amino acids, those having satisfactory physical properties have not been obtained (Patent Document 6). A method for synthesizing a high molecular weight aliphatic polyester having an amide bond by polymerization of aliphatic dicarboxylic acid-aliphatic diol-2 functional oxycarboxylic acid-natural amino acid is also known (Patent Document 7). In the absence of carboxylic acid, it is considered that a polyesteramide having a sufficient molecular weight is not formed, and further, it is not suggested that aspartic acid specifically shortens the polymerization time.

特許第3066500号公報Japanese Patent No. 3066500 特許第3438027号公報Japanese Patent No. 3438027 特開2003-147056号公報Japanese Patent Laid-Open No. 2003-147056 特公昭57-61286号公報Japanese Patent Publication No.57-61286 特公昭63-45690号公報Japanese Patent Publication No. 63-45690 特開平7-102061号公報Japanese Unexamined Patent Publication No. 7-2061 特許第3387304号公報Japanese Patent No. 3387304

本発明は、高分子量化するまでの反応時間を短縮できると共に生分解性に優れた高分子量脂肪族ポリエステルの工業的に有利な製造方法を提供することを目的とする。   An object of the present invention is to provide an industrially advantageous production method of a high molecular weight aliphatic polyester that can shorten the reaction time until the molecular weight is increased and is excellent in biodegradability.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、以下の発明が提供される。
下記 一般式(1)で表される脂肪族ジカルボン酸もしくはそのジエステル、

Figure 2005089585
(式中、R1は炭素数2〜12の2価脂肪族基、R2はHまたは炭素数1〜8のアルキル基を示す)
または下記一般式(2)で表される脂肪族ジカルボン酸無水物、
Figure 2005089585

(式中、R1は前記と同じ)
あるいは両者の混合物と、
下記一般式(3)で表される脂肪族ジオールとの重縮合反応を、
Figure 2005089585
(式中、R3は炭素数1〜12の二価脂肪族基を示す)
アスパラギン酸の存在下で行うことを特徴とする、
下記一般式(4)で示されるポリエステル部と下記一般式(5)で示されるアスパラギン酸部とを含有する、生分解性高分子量脂肪族ポリエステルの製造方法。
Figure 2005089585


(式中、R1及びR3は前記と同じ。)
Figure 2005089585
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, according to the present invention, the following inventions are provided.
An aliphatic dicarboxylic acid represented by the following general formula (1) or a diester thereof,
Figure 2005089585
(Wherein R1 represents a divalent aliphatic group having 2 to 12 carbon atoms, R2 represents H or an alkyl group having 1 to 8 carbon atoms)
Or an aliphatic dicarboxylic acid anhydride represented by the following general formula (2):
Figure 2005089585

(Wherein R1 is the same as above)
Or a mixture of both,
A polycondensation reaction with an aliphatic diol represented by the following general formula (3):
Figure 2005089585
(Wherein R3 represents a C1-C12 divalent aliphatic group)
Characterized in that it is carried out in the presence of aspartic acid,
The manufacturing method of biodegradable high molecular weight aliphatic polyester containing the polyester part shown by following General formula (4), and the aspartic acid part shown by following General formula (5).
Figure 2005089585


(In the formula, R1 and R3 are the same as above.)
Figure 2005089585

そして、本発明の高分子量脂肪族ポリエステルの製造方法は、縮合反応をアスパラギン酸の存在下で行うことから、従来のポリエステルの製造方法に比較して短い反応時間で高分子量ポリエステルを製造することができる。しかも、この高分子量脂肪族ポリエステルは、その脂肪族エステル結合に基づく生分解性を有する。   And since the manufacturing method of the high molecular weight aliphatic polyester of the present invention performs the condensation reaction in the presence of aspartic acid, the high molecular weight polyester can be manufactured in a shorter reaction time than the conventional polyester manufacturing method. it can. Moreover, the high molecular weight aliphatic polyester has biodegradability based on the aliphatic ester bond.

本発明の高分子量脂肪側ポリエステルの製造方法は、一般式(1)で表される脂肪族ジカルボン酸およびそのジエステル、または一般式(2)で表される脂肪族ジカルボン酸無水物、あるいは両者の混合物と、前記一般式(3)で表される脂肪族ジオールと、アスパラギン酸の存在下で縮合反応させることを特徴とする。   The method for producing the high molecular weight fatty polyester of the present invention comprises the aliphatic dicarboxylic acid represented by the general formula (1) and its diester, the aliphatic dicarboxylic acid anhydride represented by the general formula (2), or both of them. A condensation reaction is performed in the presence of the mixture, the aliphatic diol represented by the general formula (3), and aspartic acid.

本発明で用いるアスパラギン酸は、後記比較例にみられるように、ポリエステルの生分解性を向上させる作用の他に上記縮合反応時間をたとえば、1/2〜1/10程度まで短縮する機能を有する。この場合、アスラギン酸以外のアミノ酸たとえはグルタミン酸では、このような作用効果を奏しない。この理由は、現時点では定かではないが、アスパラギン酸分子内のカルボキシル基間の距離が反応性に大きな影響を与えているものと推定される。   Aspartic acid used in the present invention has a function of shortening the condensation reaction time to, for example, about 1/2 to 1/10 in addition to the effect of improving the biodegradability of polyester as seen in Comparative Examples described later. . In this case, amino acids other than asragic acid, such as glutamic acid, do not have such effects. The reason for this is not clear at present, but it is presumed that the distance between the carboxyl groups in the aspartic acid molecule has a great influence on the reactivity.

アスパラギン酸の使用量は、目的とするポリマーの分子量2万以上になるような範囲であればよく、通常、脂肪族ジカルボン酸ユニット1モルあたり、0.0005〜0.30モル、好ましくは0.001〜0.10モルの割合である。アスパラギン酸の使用割合が前記範囲より多くなると、得られるポリマー(重縮合体)の三次元化が進行しゲル化が起こるので好ましくない。   The amount of aspartic acid used may be within a range such that the target polymer has a molecular weight of 20,000 or more, and is usually 0.0005 to 0.30 mol, preferably 0.001 to 0.10 mol, per mol of the aliphatic dicarboxylic acid unit. It is. If the aspartic acid usage rate exceeds the above range, the resulting polymer (polycondensate) will become three-dimensional and gelation will occur, which is not preferable.

前記一般式(1)で示される脂肪族ジカルボン酸及びそのジエステル、ならびに一般式(2)で示される脂肪族ジカルボン酸無水物としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸、そのジエステル、及びそれらの酸無水物が挙げられる。   Examples of the aliphatic dicarboxylic acid and its diester represented by the general formula (1) and the aliphatic dicarboxylic acid anhydride represented by the general formula (2) include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid. Aliphatic dicarboxylic acids such as diesters thereof, and acid anhydrides thereof.

また、一般式(1)で示される脂肪族ジカルボン酸と縮合させる、前記一般式(3)で表される脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール等が挙げられる。   Examples of the aliphatic diol represented by the general formula (3) to be condensed with the aliphatic dicarboxylic acid represented by the general formula (1) include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6 -Hexanediol, 1,4-cyclohexanedimethanol and the like.

本発明に係る前記縮合反応は、従来公知のエステル交換反応用触媒の存在下で好ましく行われる。これらの系にカプロラクトンのようなラクトン類、乳酸のようなオキシカルボン酸を加えてもよい。前記反応において、その反応温度は、100〜300℃、好ましくは120〜270℃である。反応圧力は、減圧、常圧またはやや加圧(0.5kg/cm2G以下)であることができるが、好ましくは、常圧ないし減圧である。   The condensation reaction according to the present invention is preferably carried out in the presence of a conventionally known transesterification catalyst. Lactones such as caprolactone and oxycarboxylic acids such as lactic acid may be added to these systems. In the reaction, the reaction temperature is 100 to 300 ° C, preferably 120 to 270 ° C. The reaction pressure can be reduced pressure, normal pressure or slightly increased pressure (0.5 kg / cm 2 G or less), preferably normal pressure or reduced pressure.

前記縮合反応を行う場合、反応は予備縮合工程(第1工程)と、高分子量化工程(第2工程)との二つの工程で行うのが好ましい。
前記予備縮合工程においては、末端に脂肪族ジオールの結合した低分子量の縮合物を生成させる。この縮合物の数平均分子量は、5000〜10000にするのがよく、その分子量は反応条件及び反応時間により適当に調節することができる。
When the condensation reaction is performed, the reaction is preferably performed in two steps, a precondensation step (first step) and a high molecular weight step (second step).
In the precondensation step, a low molecular weight condensate having an aliphatic diol bonded to the terminal is formed. The number average molecular weight of the condensate is preferably 5000 to 10,000, and the molecular weight can be appropriately adjusted depending on the reaction conditions and reaction time.

前記高分子量工程においては、低分子量の縮合物の末端に結合する脂肪族ジオールを脱離させながら縮合させて高分子量の縮合物を生成させる工程であり、この工程により、数平均分子量が2万以上の縮合物を生成させることができる。この場合の反応条件は、副生する脂肪族ジオールが気体として存在しうる条件であればよい。この分子量化工程は、前記予備縮合工程を実施する反応装置と同じ装置又は攪拌効率のよい重合装置で実施することができる。同じ装置を用いる場合は、予備縮合反応の終了後に、反応条件を変えて、例えば、反応温度を高くしかつ反応圧力を低くして、予備縮合体の縮合反応を行えばよい。   The high molecular weight step is a step of producing a high molecular weight condensate by condensing an aliphatic diol bonded to the terminal of the low molecular weight condensate while eliminating it, and this step has a number average molecular weight of 20,000. The above condensate can be produced. The reaction conditions in this case may be any conditions that allow the by-produced aliphatic diol to exist as a gas. This molecular weighting step can be carried out in the same apparatus as the reactor for carrying out the precondensation step or a polymerization apparatus having good stirring efficiency. When the same apparatus is used, after completion of the precondensation reaction, the reaction conditions may be changed, for example, the reaction temperature may be increased and the reaction pressure may be decreased to perform the condensation reaction of the precondensate.

本発明方法で得られる生分解性高分子量脂肪族ポリエステルは、前記一般式(4)のポリエステル部と前記一般式(5)のアスパラギン酸部とからなる。
この場合、ポリエステル部を示す一般式(4)において、R1は鎖状または環状の二価脂肪族基を示すが、その炭素数は1〜12、好ましくは2〜6である。このような二価脂肪族基としては、アルキレン基、例えば、メチレン、エチレン、プロピレン、ブチレン、ヘキシレン、オクチレン、ドデシレン、シクロヘキシレン、シクロヘキサンジメチレン等が挙げられる。R3は鎖状または環状の二価脂肪族基を示すが、その炭素数は1〜12、好ましくは2〜6である。このような二価脂肪族基としては、アルキレン基、例えば、メチレン、エチレン、プロピレン、ブチレン、ヘキシレン、オクチレン、ドデシレン、シクロヘキシレン、シクロヘキサンジメチレン等が挙げられる。
The biodegradable high molecular weight aliphatic polyester obtained by the method of the present invention comprises the polyester part of the general formula (4) and the aspartic acid part of the general formula (5).
In this case, in General formula (4) which shows a polyester part, R1 shows a linear or cyclic divalent aliphatic group, The carbon number is 1-12, Preferably it is 2-6. Examples of such divalent aliphatic groups include alkylene groups such as methylene, ethylene, propylene, butylene, hexylene, octylene, dodecylene, cyclohexylene, and cyclohexanedimethylene. R3 represents a chain or cyclic divalent aliphatic group, and the carbon number thereof is 1 to 12, preferably 2 to 6. Examples of such divalent aliphatic groups include alkylene groups such as methylene, ethylene, propylene, butylene, hexylene, octylene, dodecylene, cyclohexylene, and cyclohexanedimethylene.

本発明の高分子量ポリエステルは、2万以上、好ましくは3万以上の数平均分子量を有するものである。この場合、その数平均分子量の上限は100万程度である。   The high molecular weight polyester of the present invention has a number average molecular weight of 20,000 or more, preferably 30,000 or more. In this case, the upper limit of the number average molecular weight is about 1 million.

次に本発明を実施例によって具体的に説明する。脂肪族ポリエステルの種々の物性値は下記の方法によって測定した。   Next, the present invention will be specifically described with reference to examples. Various physical properties of the aliphatic polyester were measured by the following methods.

(分子量及び分子量分布)ゲルパーミエーションクロマトグラフ(GPC)法を用いて標準ポリスチレンから校正曲線を作成し、数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、溶離液はクロロホルムを用いた。   (Molecular weight and molecular weight distribution) Using a gel permeation chromatograph (GPC) method, a calibration curve is prepared from standard polystyrene, and the number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) are obtained. It was. Note that chloroform was used as the eluent.

(熱的性質)示差走査熱量分析装置(DSC)により融解温度及びガラス転移点を求めた。また熱重量分析装置(TG)により熱分解温度を求めた。   (Thermal properties) Melting temperature and glass transition point were determined by a differential scanning calorimeter (DSC). Moreover, the thermal decomposition temperature was calculated | required with the thermogravimetric analyzer (TG).

実施例1
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸20.8g(0.177モル)、1,4-ブタンジオール16.8g(0.187モル)、L-アスパラギン酸0.526g(3.58 ミリモル)、チタンテトライソプロポキシド20ml(0.1ミリモル)を仕込み、窒素雰囲気下、160℃で1時間反応した。昇温して180℃で1時間反応したのち、30分後200℃に昇温した。さらに30分後反応温度を230℃にして、徐々に減圧し、10分で真空度0.1mmHgに到達した。その後さらに30分反応を続けたところ、反応物は粘性が高くなり撹拌羽に絡みついた。得られたポリマーは白色で、Mn 43,300、Mw 249,400を有し、そのMw/Mnは5.76であった。またその融解温度は111.7℃であり、その2%重量減温度は299.1℃であった。このポリマー中に含まれるアスパラギン酸の割合は、ポリマー中に含まれる脂肪族ジカルボン酸成分100モル当り、2.0モルの割合である。
Example 1
In a glass reactor with a stirring volume of 100 ml, succinic acid 20.8 g (0.177 mol), 1,4-butanediol 16.8 g (0.187 mol), L-aspartic acid 0.526 g (3.58 mmol), titanium tetraisopropoxy 20 ml (0.1 mmol) was charged and reacted at 160 ° C. for 1 hour in a nitrogen atmosphere. After raising the temperature and reacting at 180 ° C. for 1 hour, the temperature was raised to 200 ° C. after 30 minutes. After another 30 minutes, the reaction temperature was raised to 230 ° C., the pressure was gradually reduced, and the degree of vacuum reached 0.1 mmHg in 10 minutes. Thereafter, the reaction was further continued for 30 minutes. As a result, the reaction product became viscous and entangled with the stirring blades. The resulting polymer was white and had Mn 43,300, Mw 249,400, and its Mw / Mn was 5.76. The melting temperature was 111.7 ° C., and the 2% weight loss temperature was 299.1 ° C. The proportion of aspartic acid contained in the polymer is 2.0 moles per 100 moles of the aliphatic dicarboxylic acid component contained in the polymer.

比較例1
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸20.8g(0.177モル)、1,4-ブタンジオール16.8g(0.187モル)、チタンテトライソプロポキシド20μl(0.1ミリモル)を仕込み、窒素雰囲気下、160℃で1時間反応した。昇温して180℃で1時間反応したのち、30分後200℃に昇温した。さらに30分後反応温度を230℃にして、徐々に減圧し、10分で真空度0.1mmHgに到達した。その後さらに3時間反応を続けたところ、反応物は粘性が高くなり撹拌羽に絡みついた。得られたポリマーは白色で、Mn 76,500、Mw 142,000を有し、そのMw/Mnは1.86であった。またその融解温度は114.9℃であり、その2%重量減温度は308.1℃であった。
Comparative Example 1
A glass reactor with a stirring volume of 100 ml is charged with 20.8 g (0.177 mol) of succinic acid, 16.8 g (0.187 mol) of 1,4-butanediol, and 20 μl (0.1 mmol) of titanium tetraisopropoxide in a nitrogen atmosphere. The reaction was carried out at 160 ° C. for 1 hour. After raising the temperature and reacting at 180 ° C. for 1 hour, the temperature was raised to 200 ° C. after 30 minutes. After another 30 minutes, the reaction temperature was raised to 230 ° C., the pressure was gradually reduced, and the degree of vacuum reached 0.1 mmHg in 10 minutes. Thereafter, the reaction was further continued for 3 hours. As a result, the reaction product became viscous and entangled with the stirring blades. The resulting polymer was white and had Mn 76,500, Mw 142,000 and its Mw / Mn was 1.86. The melting temperature was 114.9 ° C., and the 2% weight loss temperature was 308.1 ° C.

実施例2
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.2g(0.180モル)、1,4-ブタンジオール17.0g(0.189モル)、L-アスパラギン酸0.237g(1.78 ミリモル)、チタンテトライソプロポキシド20μl(0.1ミリモル)を仕込み、窒素雰囲気下、160℃で1時間反応した。昇温して180℃で1時間反応したのち、30分後200℃に昇温した。さらに30分後反応温度を230℃にして、徐々に減圧し、10分で真空度0.1mmHgに到達した。その後さらに1時間40分反応を続けたところ、反応物は粘性が高くなり撹拌羽に絡みついた。得られたポリマーは白色で、Mn 46,500、Mw 138,000を有し、そのMw/Mnは2.97であった。またその融解温度は109.5℃であり、その2%重量減温度は311.6℃であった。このポリマー中に含まれるアスパラギン酸の割合は、ポリマー中に含まれる脂肪族ジカルボン酸成分100モル当り、1.0モルの割合である。
Example 2
In a glass reactor with a stirring volume of 100 ml, 21.2 g (0.180 mol) of succinic acid, 17.0 g (0.189 mol) of 1,4-butanediol, 0.237 g (1.78 mmol) of L-aspartic acid, titanium tetraisopropoxy 20 μl (0.1 mmol) was charged and reacted at 160 ° C. for 1 hour in a nitrogen atmosphere. After raising the temperature and reacting at 180 ° C. for 1 hour, the temperature was raised to 200 ° C. after 30 minutes. After another 30 minutes, the reaction temperature was raised to 230 ° C., the pressure was gradually reduced, and the degree of vacuum reached 0.1 mmHg in 10 minutes. Thereafter, the reaction was further continued for 1 hour and 40 minutes. As a result, the reaction product became viscous and entangled with the stirring blades. The resulting polymer was white and had Mn 46,500, Mw 138,000, and its Mw / Mn was 2.97. The melting temperature was 109.5 ° C, and the 2% weight loss temperature was 311.6 ° C. The proportion of aspartic acid contained in the polymer is 1.0 mole per 100 moles of the aliphatic dicarboxylic acid component contained in the polymer.

比較例2
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.2g(0.180モル)、1,4-ブタンジオール16.9g(0.188モル)、L-グルタミン酸0.261g(1.77 ミリモル)、チタンテトライソプロポキシド20μl(0.1ミリモル)を仕込み、窒素雰囲気下、160℃で1時間反応した。昇温して180℃で1時間反応したのち、30分後200℃に昇温した。さらに30分後反応温度を230℃にして、徐々に減圧し、10分で真空度0.1mmHgに到達した。その後さらに7時間反応を続けた。得られたポリマーは茶色で、Mn 37,800、Mw 75,400を有し、そのMw/Mnは201であった。またその融解温度は111.4℃であり、その2%重量減温度は339.1℃であった。このポリマー中に含まれるグルタミン酸の割合は、ポリマー中に含まれる脂肪族ジカルボン酸成分100モル当り、1.0モルの割合である。
Comparative Example 2
In a glass reactor with a stirring volume of 100 ml, succinic acid 21.2 g (0.180 mol), 1,4-butanediol 16.9 g (0.188 mol), L-glutamic acid 0.261 g (1.77 mmol), titanium tetraisopropoxide 20 μl (0.1 mmol) was charged and reacted at 160 ° C. for 1 hour in a nitrogen atmosphere. After raising the temperature and reacting at 180 ° C. for 1 hour, the temperature was raised to 200 ° C. after 30 minutes. After another 30 minutes, the reaction temperature was raised to 230 ° C., the pressure was gradually reduced, and the degree of vacuum reached 0.1 mmHg in 10 minutes. Thereafter, the reaction was continued for another 7 hours. The resulting polymer was brown and had Mn 37,800, Mw 75,400, and its Mw / Mn was 201. The melting temperature was 111.4 ° C., and the 2% weight loss temperature was 339.1 ° C. The ratio of glutamic acid contained in this polymer is 1.0 mole per 100 moles of the aliphatic dicarboxylic acid component contained in the polymer.

実施例3
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸20.6g(0.175モル)、1,4-ブタンジオール16.8g(0.187モル)、L-アスパラギン酸0.788g(5.36 ミリモル)、チタンテトライソプロポキシド20μl(0.1ミリモル)を仕込み、窒素雰囲気下、160℃で1時間反応した。昇温して180℃で1時間反応したのち、30分後200℃に昇温した。さらに30分後反応温度を230℃にして、徐々に減圧し、10分で真空度0.1mmHgに到達した。その後さらに15分反応を続けたところ、反応物は粘性が高くなり撹拌羽に絡みついた。得られたポリマーは白色で、Mn 36,800、Mw 247,100を有し、そのMw/Mnは6.71であった。またその融解温度は108.9℃であり、その2%重量減温度は300.3℃であった。このポリマー中に含まれるアスパラギン酸の割合は、ポリマー中に含まれる脂肪族ジカルボン酸成分100モル当り、3.0モルの割合である。
Example 3
In a glass reactor with a stirring volume of 100 ml, succinic acid 20.6 g (0.175 mol), 1,4-butanediol 16.8 g (0.187 mol), L-aspartic acid 0.788 g (5.36 mmol), titanium tetraisopropoxy 20 μl (0.1 mmol) was charged and reacted at 160 ° C. for 1 hour in a nitrogen atmosphere. After raising the temperature and reacting at 180 ° C. for 1 hour, the temperature was raised to 200 ° C. after 30 minutes. After another 30 minutes, the reaction temperature was raised to 230 ° C., the pressure was gradually reduced, and the degree of vacuum reached 0.1 mmHg in 10 minutes. When the reaction was continued for another 15 minutes, the reaction product became highly viscous and entangled with the stirring blades. The resulting polymer was white and had Mn 36,800, Mw 247,100, and its Mw / Mn was 6.71. The melting temperature was 108.9 ° C., and the 2% weight loss temperature was 300.3 ° C. The ratio of aspartic acid contained in the polymer is 3.0 moles per 100 moles of the aliphatic dicarboxylic acid component contained in the polymer.

実施例4
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.2g(0.180モル)、1,4-ブタンジオール17.0g(0.189モル)、γ-カプロラクトン2.01g(17.6ミリモル)、L-アスパラギン酸0.718g(5.40ミリモル)、チタンテトライソプロポキシド20μl(0.1ミリモル)を仕込み、窒素雰囲気下、160℃で1時間反応した。昇温して180℃で1時間反応したのち、30分後200℃に昇温した。さらに30分後反応温度を230℃にして、徐々に減圧し、10分で真空度0.1mmHgに到達した。その後さらに20分反応を続けたところ、反応物は粘性が高くなり撹拌羽に絡みついた。得られたポリマーは白色で、Mn 38,800、Mw 259,000を有し、そのMw/Mnは6.68であった。またその融解温度は101.6℃であり、その2%重量減温度は300.7℃であった。このポリマー中に含まれるアスパラギン酸の割合は、ポリマー中に含まれる脂肪族ジカルボン酸成分100モル当り、3.0モルの割合である。
Example 4
In a glass reactor with a stirring volume of 100 ml, succinic acid 21.2 g (0.180 mol), 1,4-butanediol 17.0 g (0.189 mol), γ-caprolactone 2.01 g (17.6 mmol), L-aspartic acid 0.718 g (5.40 mmol) and 20 μl (0.1 mmol) of titanium tetraisopropoxide were charged and reacted at 160 ° C. for 1 hour in a nitrogen atmosphere. After raising the temperature and reacting at 180 ° C. for 1 hour, the temperature was raised to 200 ° C. after 30 minutes. After another 30 minutes, the reaction temperature was raised to 230 ° C., the pressure was gradually reduced, and the degree of vacuum reached 0.1 mmHg in 10 minutes. Thereafter, the reaction was further continued for 20 minutes. As a result, the reaction product became highly viscous and entangled with the stirring blades. The resulting polymer was white and had Mn 38,800, Mw 259,000, and its Mw / Mn was 6.68. The melting temperature was 101.6 ° C., and the 2% weight loss temperature was 300.7 ° C. The ratio of aspartic acid contained in the polymer is 3.0 moles per 100 moles of the aliphatic dicarboxylic acid component contained in the polymer.

比較例3
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.2g(0.180モル)、1,4-ブタンジオール17.0g(0.189モル)、γ-カプロラクトン2.06g(18.0ミリモル)、チタンテトライソプロポキシド20μl(0.1ミリモル)を仕込み、窒素雰囲気下、160℃で1時間反応した。昇温して180℃で1時間反応したのち、30分後200℃に昇温した。さらに30分後反応温度を230℃にして、徐々に減圧し、10分で真空度0.1mmHgに到達した。その後さらに4時間反応を続けたところ、反応物は粘性が高くなり撹拌羽に絡みついた。得られたポリマーは白色で、Mn 89,900、Mw 137,000を有し、そのMw/Mnは1.52であった。またその融解温度は105.2℃であり、その2%重量減温度は331.3℃であった。
Comparative Example 3
In a glass reactor with a stirring volume of 100 ml, succinic acid 21.2 g (0.180 mol), 1,4-butanediol 17.0 g (0.189 mol), γ-caprolactone 2.06 g (18.0 mmol), titanium tetraisopropoxide 20 μl (0.1 mmol) was charged and reacted at 160 ° C. for 1 hour in a nitrogen atmosphere. After raising the temperature and reacting at 180 ° C. for 1 hour, the temperature was raised to 200 ° C. after 30 minutes. After another 30 minutes, the reaction temperature was raised to 230 ° C., the pressure was gradually reduced, and the degree of vacuum reached 0.1 mmHg in 10 minutes. When the reaction was continued for another 4 hours, the reaction product became viscous and entangled with the stirring blades. The resulting polymer was white and had Mn 89,900, Mw 137,000, and its Mw / Mn was 1.52. The melting temperature was 105.2 ° C, and the 2% weight loss temperature was 331.3 ° C.

Claims (1)

下記一般式(1)で表される脂肪族ジカルボン酸もしくはそのジエステル、
Figure 2005089585
(式中、R1は炭素数2〜12の2価脂肪族基、R2はHまたは炭素数1〜8のアルキル基を示す)
または下記一般式(2)で表される脂肪族ジカルボン酸無水物、
Figure 2005089585
(式中、R1は前記と同じ)
あるいは両者の混合物と、
下記一般式(3)で表される脂肪族ジオールとの重縮合反応を、
Figure 2005089585
(式中、R3は炭素数2〜12の2価脂肪族基を示す)
アスパラギン酸の存在下で行うことを特徴とする、
下記一般式(4)で示されるポリエステル部と下記一般式(5)で示されるアスパラギン酸部とを含有する生分解性高分子量脂肪族ポリエステルの製造方法。
Figure 2005089585
(式中、R1及びR3は前記と同じ。)
Figure 2005089585
An aliphatic dicarboxylic acid represented by the following general formula (1) or a diester thereof,
Figure 2005089585
(Wherein R1 represents a divalent aliphatic group having 2 to 12 carbon atoms, R2 represents H or an alkyl group having 1 to 8 carbon atoms)
Or an aliphatic dicarboxylic acid anhydride represented by the following general formula (2):
Figure 2005089585
(Wherein R1 is the same as above)
Or a mixture of both,
A polycondensation reaction with an aliphatic diol represented by the following general formula (3):
Figure 2005089585
(Wherein R3 represents a divalent aliphatic group having 2 to 12 carbon atoms)
Characterized in that it is carried out in the presence of aspartic acid,
The manufacturing method of biodegradable high molecular weight aliphatic polyester containing the polyester part shown by following General formula (4), and the aspartic acid part shown by following General formula (5).
Figure 2005089585
(In the formula, R1 and R3 are the same as above.)
Figure 2005089585
JP2003323880A 2003-09-17 2003-09-17 Process for producing biodegradable high molecular weight aliphatic polyester Expired - Lifetime JP3643875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003323880A JP3643875B2 (en) 2003-09-17 2003-09-17 Process for producing biodegradable high molecular weight aliphatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003323880A JP3643875B2 (en) 2003-09-17 2003-09-17 Process for producing biodegradable high molecular weight aliphatic polyester

Publications (2)

Publication Number Publication Date
JP2005089585A true JP2005089585A (en) 2005-04-07
JP3643875B2 JP3643875B2 (en) 2005-04-27

Family

ID=34454792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003323880A Expired - Lifetime JP3643875B2 (en) 2003-09-17 2003-09-17 Process for producing biodegradable high molecular weight aliphatic polyester

Country Status (1)

Country Link
JP (1) JP3643875B2 (en)

Also Published As

Publication number Publication date
JP3643875B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP5120944B2 (en) Biodegradable high molecular weight aliphatic polyester and method for producing the same
JPH09272789A (en) Aliphatic polyester composition
JPH08239461A (en) Aliphatic polyester copolymer and its production
JP3643875B2 (en) Process for producing biodegradable high molecular weight aliphatic polyester
JP4696306B2 (en) Biodegradable polyester and method for producing the same
JP3292874B2 (en) Method for producing high molecular weight aliphatic polyester polymer
JPH08259680A (en) Production of aliphatic polyester copolymer
KR100793195B1 (en) Aromatic amide block copolymer and process of producing the same
JP3374616B2 (en) Method for producing aliphatic polyester copolymer
JP3000149B1 (en) Biodegradable high molecular weight aliphatic polyester and method for producing the same
KR101941123B1 (en) Biodegradable resin composition and biodegradable film prepared therefrom
JP3044235B2 (en) High molecular weight aliphatic polyester carbonate and method for producing the same
JPH0710979A (en) Amine-functional polyester
JPH1135680A (en) Biodegradable polylatic acid esteramide and its production
JP3141326B1 (en) Method for producing high molecular weight aliphatic polyester polymer
JP3066500B1 (en) Biodegradable high-molecular aliphatic polyester and method for producing the same
JP3438027B2 (en) Method for producing biodegradable high molecular weight aliphatic polyester
KR100308535B1 (en) Polyester resin composition and method for producing the same
JP3374617B2 (en) Method for producing aliphatic polyester copolymer
JP4047160B2 (en) Film made of aliphatic polyester copolymer
JP3273767B2 (en) Aliphatic polyester polymer and method for producing the same
JP3521231B2 (en) Process for producing biodegradable high molecular weight aliphatic polyester having ether side chain
JP2008222783A (en) Biodegradable polyester-amide and its production method
JP3131603B2 (en) Method for producing biodegradable high molecular weight aliphatic polyester ether
JP3342570B2 (en) Method for producing polyethylene succinate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Ref document number: 3643875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term