JP4696306B2 - Biodegradable polyester and method for producing the same - Google Patents

Biodegradable polyester and method for producing the same Download PDF

Info

Publication number
JP4696306B2
JP4696306B2 JP2006199063A JP2006199063A JP4696306B2 JP 4696306 B2 JP4696306 B2 JP 4696306B2 JP 2006199063 A JP2006199063 A JP 2006199063A JP 2006199063 A JP2006199063 A JP 2006199063A JP 4696306 B2 JP4696306 B2 JP 4696306B2
Authority
JP
Japan
Prior art keywords
molecular weight
general formula
polyester
aliphatic
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006199063A
Other languages
Japanese (ja)
Other versions
JP2008024825A (en
Inventor
洋一 田口
晃広 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006199063A priority Critical patent/JP4696306B2/en
Publication of JP2008024825A publication Critical patent/JP2008024825A/en
Application granted granted Critical
Publication of JP4696306B2 publication Critical patent/JP4696306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規な共重合構造を有する高分子量脂肪族ポリエステル及びその製造方法に関するものである。   The present invention relates to a high molecular weight aliphatic polyester having a novel copolymer structure and a method for producing the same.

ポリオレフィンや芳香族ポリエステル等の合成高分子は、日常生活に欠かせない原材料として大量に使われているが、これらの合成高分子は、自然環境で分解されないことから、消費量の増加に伴って環境問題が顕在化している。このため、環境中で微生物により二酸化炭素と水に分解する生分解性プラスチックの開発が進められており、生分解性を有する高分子として、脂肪族ポリエステルが注目されている。なかでもコハク酸またはその誘導体とブタンジオールとから製造されるポリブチレンサクシネートは融点や機械的強度に優れており注目されている。   Synthetic polymers such as polyolefins and aromatic polyesters are used in large quantities as raw materials indispensable for daily life, but these synthetic polymers are not decomposed in the natural environment. Environmental problems are becoming apparent. For this reason, biodegradable plastics that decompose into carbon dioxide and water by microorganisms in the environment are being developed, and aliphatic polyesters have attracted attention as biodegradable polymers. Among them, polybutylene succinate produced from succinic acid or a derivative thereof and butanediol is attracting attention because of its excellent melting point and mechanical strength.

しかしながら、ポリブチレンサクシネートのみでは必ずしも実用上十分な機械的強度及び加工性が得られないため、種々の多価アルコール、ヒドロキシ酸などとの共重合による物性の改良が検討され、本発明者らも、先に3-アルコキシ-1,2-プロパンジオールを脂肪族ジカルボン酸ジエステルと脂肪族グリコールに共重合させることによりホモポリマーよりも高い伸度を示す新規な構造を有する高分子量脂肪族ポリエステルを提案した(特許文献1〜3)。   However, since polybutylene succinate alone does not necessarily provide practically sufficient mechanical strength and processability, improvement of physical properties by copolymerization with various polyhydric alcohols, hydroxy acids, etc. has been studied. However, a high molecular weight aliphatic polyester having a novel structure showing higher elongation than a homopolymer by copolymerizing 3-alkoxy-1,2-propanediol with an aliphatic dicarboxylic acid diester and an aliphatic glycol first. Proposed (Patent Documents 1 to 3).

更に、本発明者等は上記特許文献に記載の改良方法としては、少量のアスパラギン酸を添加して共重合を行うことにより、高分子量化するまでの時間を短縮することができる方法を提案した(特許文献4)。   Furthermore, the present inventors proposed a method capable of shortening the time required to increase the molecular weight by adding a small amount of aspartic acid and carrying out copolymerization as an improved method described in the above patent document. (Patent Document 4).

特許第3066500号公報Japanese Patent No. 3066500 特許第343802号公報Japanese Patent No. 343802 特許第3521231号公報Japanese Patent No.3521231 特許第3643875号公報Japanese Patent No. 3643875

本発明は、上記に示した高分子量脂肪族ポリエステルを更に改良発展させたものであり、高分子量化するまでの反応時間が短く、生分解性に優れた新規な高分子量脂肪族ポリエステル、およびその工業的に有利な製造方法を提供することを目的とする。   The present invention is a further improved development of the above-described high molecular weight aliphatic polyester, a novel high molecular weight aliphatic polyester having a short reaction time until high molecular weight and excellent biodegradability, and its An object is to provide an industrially advantageous production method.

本発明者らは、前記課題を解決するために、もとのポリマーと同等の熱的性質と重量平均分子量を持ち、しかも重合時間が短縮された生分解性ポリエステルの合成を鋭意検討した結果、脂肪族ジカルボン酸と脂肪族ジオールに少量のジエタノールアミンを共重合させることにより製造される新規な高分子量脂肪族ポリエステルがその目的に合致することを見出した。
すなわち、この出願によれば、以下の発明が提供される。
〈1〉 一般式(1)

Figure 0004696306
(式中、Rは炭素数1〜12の二価脂肪族基、Rは炭素数2〜12の二価脂肪族基、pはポリエステル中に含まれる前記一般式(1)で示されるエステル部のモル分率を示す)
で表されるエステル部Aと、一般式(2)
Figure 0004696306
(式中、Rは炭素数1〜12の二価脂肪族基、R はHまたはポリエステル残基、rはポリエステル中に含まれる前記一般式(2)で示されるエステル部のモル分率を示す)
で表されるエステル部Bとからなり、かつ 該エステル部Bのモル分率rの値が0.001〜0.10の範囲にあることを特徴とする生分解性高分子量脂肪族ポリエステル。
〈2〉Rが(CHで、Rが(CHであることを特徴とする〈1〉記載の生分解性高分子量脂肪族ポリエステル。
〈3〉下記一般式(3)
Figure 0004696306
(式中、Rは炭素数2〜12の2価脂肪族基を示し、RはHまたは炭素数1〜8のアルキル基を示す)
または下記一般式(4)
Figure 0004696306
(式中、R1は前記と同じ)
で表される脂肪族ジカルボン酸誘導体、あるいはそれらのその混合物と、下記一般式(5)
Figure 0004696306
(式中、Rは炭素数2〜12の2価脂肪族基を示す)
で表される脂肪族グリコールと、ジエタノールアミンとを縮合反応させることを特徴とする〈1〉又は〈2〉に記載の生分解性高分子量脂肪族ポリエステルの製造方法。 In order to solve the above problems, the present inventors have intensively studied the synthesis of a biodegradable polyester having the same thermal properties and weight average molecular weight as the original polymer, and having a reduced polymerization time. It has been found that a novel high molecular weight aliphatic polyester produced by copolymerizing an aliphatic dicarboxylic acid and an aliphatic diol with a small amount of diethanolamine meets the purpose.
That is, according to this application, the following invention is provided.
<1> General formula (1)
Figure 0004696306
(In the formula, R 1 is a divalent aliphatic group having 1 to 12 carbon atoms, R 2 is a divalent aliphatic group having 2 to 12 carbon atoms, and p is represented by the general formula (1) contained in the polyester. Indicates the mole fraction of the ester part)
An ester part A represented by the general formula (2)
Figure 0004696306
(Wherein R 1 is a divalent aliphatic group having 1 to 12 carbon atoms, R 3 is H or a polyester residue, and r is a mole fraction of the ester moiety represented by the general formula (2) contained in the polyester. Indicate)
A biodegradable high molecular weight aliphatic polyester comprising an ester part B represented by the formula (I) and a molar fraction r of the ester part B in the range of 0.001 to 0.10.
<2> The biodegradable high molecular weight aliphatic polyester according to <1>, wherein R 1 is (CH 2 ) 2 and R 2 is (CH 2 ) 4 .
<3> The following general formula (3)
Figure 0004696306
(In the formula, R 1 represents a divalent aliphatic group having 2 to 12 carbon atoms, and R 4 represents H or an alkyl group having 1 to 8 carbon atoms.)
Or the following general formula (4)
Figure 0004696306
(Wherein R1 is the same as above)
An aliphatic dicarboxylic acid derivative represented by the following formula or a mixture thereof, and the following general formula (5)
Figure 0004696306
(Wherein R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms)
The method for producing a biodegradable high molecular weight aliphatic polyester according to <1> or <2>, wherein the aliphatic glycol represented by the formula is subjected to a condensation reaction with diethanolamine.

本発明の高分子量脂肪族ポリエステルは、生分解特性を示し、しかもジエタノールアミンとの共重合構造を有することから、もとのポリマーと同等の熱的性質と重量平均分子量を持ち、また高分子量化するまでの時間も短縮されたものである。   The high molecular weight aliphatic polyester of the present invention exhibits biodegradation characteristics and has a copolymer structure with diethanolamine, so it has the same thermal properties and weight average molecular weight as the original polymer, and also has a high molecular weight. The time until is shortened.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明の生分解性高分子量脂肪族ポリエステルは、前記一般式(1)のエステル部Aと前記一般式(2)のエステル部Bとからなることを特徴としている。
この場合、エステル部Aを示す一般式(1)において、Rは鎖状又は環状の二価脂肪族基を示すが、その炭素数は1〜12、好ましくは2〜6である。このような二価脂肪族基としては、アルキレン基、例えば、メチレン、エチレン、プロピレン、ブチレン、ヘキシレン、シクロヘキサンジメチレン等が挙げられる。Rは鎖状又は環状の二価脂肪族基を示すが、その炭素数は2〜12、好ましくは2〜6である。このような二価脂肪族基としては、アルキレン基、例えば、メチレン、エチレン、プロピレン、ブチレン、ヘキシレン、オクチレン、ドデシレン、シクロヘキシレン、シクロヘキサンジメチレン等が挙げられる。
なお、本発明の生分解性高分子量脂肪族ポリエステルは、前記一般式(1)で示されるエステル部を主鎖とするものであればよく、これを主鎖とする単独重合体は勿論のことその一部が他の成分に置換された共重合体であってよい。共重合体を形成する成分としては、たとえば、アルカンジカルボン酸、ジグリコール酸、シクロヘキサンジカルボン酸、テレフタル酸などのジカルボン酸類、アルカンジオール、モノグリセリド、3-アルコキシ-1,2-プロパンジオール、シクロヘキサンジメタノールなどのジオール類、グリコール酸、乳酸、Σ-カプロラクトン由来のヒドロキシアルカン酸類などが挙げられる。
また、ジエタノールアミンは、アセチル基などのアシル基によって置換されていてもよい。
The biodegradable high molecular weight aliphatic polyester of the present invention is characterized by comprising an ester part A of the general formula (1) and an ester part B of the general formula (2).
In this case, in the general formula (1) showing the ester part A, R 1 represents a chain or cyclic divalent aliphatic group, and the carbon number thereof is 1 to 12, preferably 2 to 6. Examples of such divalent aliphatic groups include alkylene groups such as methylene, ethylene, propylene, butylene, hexylene, cyclohexanedimethylene and the like. R 2 represents a chain or cyclic divalent aliphatic group, and the carbon number thereof is 2 to 12, preferably 2 to 6. Examples of such divalent aliphatic groups include alkylene groups such as methylene, ethylene, propylene, butylene, hexylene, octylene, dodecylene, cyclohexylene, and cyclohexanedimethylene.
In addition, the biodegradable high molecular weight aliphatic polyester of the present invention may be one having an ester moiety represented by the general formula (1) as a main chain, and of course a homopolymer having this as the main chain. The copolymer may be a copolymer partially substituted with other components. Examples of the component forming the copolymer include dicarboxylic acids such as alkanedicarboxylic acid, diglycolic acid, cyclohexanedicarboxylic acid, terephthalic acid, alkanediol, monoglyceride, 3-alkoxy-1,2-propanediol, cyclohexanedimethanol Diols such as, glycolic acid, lactic acid, and hydroxyalkanoic acids derived from Σ-caprolactone.
In addition, diethanolamine may be substituted with an acyl group such as an acetyl group.

前記エステル部Bを示す一般式(2)において、Rは前記と同じであり、Rは水素またはポリエステル残基を示す。
ここでいう、ポリエステル残基とは、ジエタノール成分のアミノ基と前記一般式(3)または(4)で示されるジカルボン酸誘導体との縮合によるアミド結合の生成から開始される、前記一般式(1)で示されるポリエステル部位を意味する。
In the general formula (2) showing the ester part B, R 1 is the same as described above, and R 3 represents hydrogen or a polyester residue.
The polyester residue as used herein refers to the general formula (1) starting from the formation of an amide bond by condensation between the amino group of the diethanol component and the dicarboxylic acid derivative represented by the general formula (3) or (4). ) Means a polyester moiety.

本発明の生分解性高分子量脂肪族ポリエステルは、ポリエステル分子中のエステル部Bの割合(モル分率r)は、0.001〜0.10、好ましくは0.002〜0.05である。
このエステル部Bの割合が多くなりすぎると、エタノールアミンによるポリマーの三次元化が進行し、ゲル化するとともに、もろいポリマーとなる等の問題が生じ、一方、少なすぎると、物性及び反応時間がもとのポリマーと変わらない等の問題を生じる。
In the biodegradable high molecular weight aliphatic polyester of the present invention, the ratio (molar fraction r) of the ester part B in the polyester molecule is 0.001 to 0.10, preferably 0.002 to 0.05.
When the ratio of the ester part B is too large, the three-dimensionalization of the polymer by ethanolamine proceeds and gelation occurs, and the problem of becoming a fragile polymer occurs. Problems such as not changing from the original polymer occur.

本発明の高分子量脂肪族ポリエステルは各種の方法で製造することができるが、その好ましい方法の一つは、前記一般式(3)または(4)で表される二価脂肪族ジカルボン酸誘導体と、前記一般式(5)で表される脂肪族グリコールと、ジエタノールアミンを縮合反応させる方法である。   The high molecular weight aliphatic polyester of the present invention can be produced by various methods, and one preferred method thereof is a divalent aliphatic dicarboxylic acid derivative represented by the general formula (3) or (4). In this method, the aliphatic glycol represented by the general formula (5) is subjected to a condensation reaction with diethanolamine.

前記一般式(3)または(4)で表される脂肪族ジカルボン酸誘導体としては、コハク酸、アジピン酸、スべリン酸、セバシン酸、ドデカン二酸、そのジエステル(ジメチルエステル、ジエチルエステル、ジプロピルエステル、ジブチルエステル)、及びその無水物が挙げられる。   Examples of the aliphatic dicarboxylic acid derivative represented by the general formula (3) or (4) include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, diester thereof (dimethyl ester, diethyl ester, diester Propyl ester, dibutyl ester), and anhydrides thereof.

前記一般式(5)で表される脂肪族ジグリコールとしては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。脂肪族グリコールの使用割合は、通常、脂肪族ジカルボン酸誘導体1モル当たり0.90〜1.10モル、好ましくは0.95〜1.05モルの割合である。   Examples of the aliphatic diglycol represented by the general formula (5) include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, polyethylene glycol, and polypropylene glycol. Etc. The proportion of the aliphatic glycol used is usually 0.90 to 1.10 mol, preferably 0.95 to 1.05 mol, per mol of the aliphatic dicarboxylic acid derivative.

前記縮合反応は、従来公知のエステル交換反応用触媒の存在下で好ましく行われる。前記縮合反応を行う場合、反応は予備縮合工程(第一工程)と、高分子量化工程(第二工程)との2つの工程で行うのが好ましい。前記予備縮合工程においては、末端に脂肪族グリコールの結合した低分子量の縮合物を生成させる。この縮合物の数平均分子量は、500〜10000、好ましくは1000〜5000程度にするのがよく、その分子量は反応条件及び反応時間により適当に調節することができる。また、この場合の反応条件は、副生するヒドロキシ化合物が反応条件下で気体として存在しうる条件であればよい。   The condensation reaction is preferably performed in the presence of a conventionally known transesterification catalyst. When performing the said condensation reaction, it is preferable to carry out reaction by two processes, a precondensation process (1st process) and a high molecular weight process (2nd process). In the precondensation step, a low molecular weight condensate having an aliphatic glycol bonded to the terminal is formed. The number average molecular weight of the condensate is preferably about 500 to 10,000, preferably about 1,000 to 5,000, and the molecular weight can be appropriately adjusted depending on reaction conditions and reaction time. Moreover, the reaction conditions in this case should just be the conditions by which the by-produced hydroxy compound can exist as gas under reaction conditions.

前記高分子量化工程においては、低分子量の縮合物の末端に結合する脂肪族グリコールを脱離させながら縮合させて高分子量の縮合物を生成させる工程であり、この工程により、重量平均分子量が3万以上の縮合物を生成させることができる。この場合の反応条件は、副生する脂肪族グリコールが気体として存在しうる条件であればよい。この高分子量化工程は、前記予備縮合工程を実施する反応装置と同じ装置または撹拌効率のよい本重合装置で実施することができる。同じ装置を用いる場合は、予備縮合反応の終了後に、反応条件を変えて、例えば、反応温度を高くしかつ反応圧力を低くして、予備縮合体の縮合反応を行えばよい。   The high molecular weight forming step is a step of producing a high molecular weight condensate by condensation while detaching the aliphatic glycol bonded to the terminal of the low molecular weight condensate. With this step, the weight average molecular weight is 3 More than 10,000 condensates can be produced. The reaction conditions in this case may be any conditions that allow the by-produced aliphatic glycol to exist as a gas. This high molecular weight process can be performed in the same apparatus as the reaction apparatus in which the precondensation process is performed or in the main polymerization apparatus having good stirring efficiency. When the same apparatus is used, after completion of the precondensation reaction, the reaction conditions may be changed, for example, the reaction temperature may be increased and the reaction pressure may be decreased to perform the condensation reaction of the precondensate.

本発明の高分子量ポリエステルは、3万以上、好ましくは5万以上の重量平均分子量を有するものである。この場合、その重量平均分子量の上限は100万程度である。   The high molecular weight polyester of the present invention has a weight average molecular weight of 30,000 or more, preferably 50,000 or more. In this case, the upper limit of the weight average molecular weight is about 1 million.

本発明の高分子量ポリエステルは、その分子中に、前記一般式(2)で表されるジエタノールアミン由来の共重合構造を有し、ジエタノールアミンまたはそのアシル化体の少量の添加により、高分子量化工程の時間を短縮し、さらに生分解性をも有するものである。   The high molecular weight polyester of the present invention has a copolymer structure derived from diethanolamine represented by the general formula (2) in the molecule, and can be added in a small amount by adding a small amount of diethanolamine or an acylated product thereof. It shortens the time and also has biodegradability.

次に本発明を実施例によって具体的に説明する。脂肪族ポリエステルの種々の物性値は下記の方法によって測定した。   Next, the present invention will be specifically described with reference to examples. Various physical properties of the aliphatic polyester were measured by the following methods.

(分子量及び分子量分布)ゲルパーミエーションクロマトグラフ(GPC)法を用いて標準ポリスチレンから校正曲線を作成し、数平均分子量(Mn)、重量平均分子量(Mw)および分子量分布(Mw/Mn)を求めた。なお、溶離液はクロロホルムを用いた。 (Molecular weight and molecular weight distribution) A calibration curve is prepared from standard polystyrene using a gel permeation chromatograph (GPC) method, and a number average molecular weight (Mn), a weight average molecular weight (Mw) and a molecular weight distribution (Mw / Mn) are obtained. It was. Note that chloroform was used as the eluent.

(熱的性質)示差走査熱量分析装置(DSC)により融解温度及びカラス転移点を求めた。また熱重量分析装置(TG)により熱分解温度を求めた。 (Thermal Properties) Melting temperature and crow transition point were determined by a differential scanning calorimeter (DSC). Moreover, the thermal decomposition temperature was calculated | required with the thermogravimetric analyzer (TG).

実施例1
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.24g(0.180モル)、1,4-ブタンジオール16.81g(0.187モル)、ジエタノールアミン0.056g(0.53ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで1時間10分反応を続けた。得られたポリマーは白色で、Mn 55,100、Mw 146,500を有し、そのMw/Mnは2.66であった。またその融解温度は115.2℃であり、その2%重量減温度は318.5℃であった。このポリマー中に含まれるジエタノールアミンの割合は、ポリマー中に含まれる脂肪族カルボン酸成分100モル当たり、0.29モルの割合である。
Example 1
In a glass reactor with a stirring volume of 100 ml, 21.24 g (0.180 mol) of succinic acid, 16.81 g (0.187 mol) of 1,4-butanediol, 0.056 g (0.53 mmol) of diethanolamine, 25 micron of titanium tetraisopropoxide 1 liter (0.1 mmol) was charged, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and held for 1 hour, and then pressure reduction was started, and the reaction was continued for 1 hour and 10 minutes at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn 55,100, Mw 146,500 and its Mw / Mn was 2.66. The melting temperature was 115.2 ° C, and the 2% weight loss temperature was 318.5 ° C. The proportion of diethanolamine contained in the polymer is 0.29 mol per 100 mol of the aliphatic carboxylic acid component contained in the polymer.

実施例2
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.35g(0.181モル)、1,4-ブタンジオール16.83g(0.187モル)、ジエタノールアミン0.118g(1.13ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで40分反応を続けた。得られたポリマーは白色で、Mn 55,600、Mw 306,000を有し、そのMw/Mnは5.51であった。またその融解温度は114.9℃であり、その2%重量減温度は308.6℃であった。このポリマー中に含まれるジエタノールアミンの割合は、ポリマー中に含まれる脂肪族カルボン酸成分100モル当たり、0.62モルの割合である。
Example 2
In a glass reactor with a stirring volume of 100 ml, 21.35 g (0.181 mol) of succinic acid, 16.83 g (0.187 mol) of 1,4-butanediol, 0.118 g (1.13 mmol) of diethanolamine, 25 micron of titanium tetraisopropoxide 1 liter (0.1 mmol) was charged, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and maintained for 1 hour, and then pressure reduction was started, and the reaction was continued for 40 minutes at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn 55,600, Mw 306,000, and its Mw / Mn was 5.51. The melting temperature was 114.9 ° C., and the 2% weight loss temperature was 308.6 ° C. The proportion of diethanolamine contained in this polymer is 0.62 mol per 100 mol of the aliphatic carboxylic acid component contained in the polymer.

実施例3
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.29g(0.180モル)、1,4-ブタンジオール16.81g(0.187モル)、ジエタノールアミン0.211g(2.01ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで15分反応を続けた。得られたポリマーは白色で、Mn 12,500、Mw 291,100を有し、そのMw/Mnは23.3であった。またその融解温度は112.4℃であり、その2%重量減温度は309.1℃であった。このポリマー中に含まれるジエタノールアミンの割合は、ポリマー中に含まれる脂肪族カルボン酸成分100モル当たり、1.10モルの割合である。
Example 3
In a glass reactor with a stirring volume of 100 ml, 21.29 g (0.180 mol) of succinic acid, 16.81 g (0.187 mol) of 1,4-butanediol, 0.211 g (2.01 mmol) of diethanolamine, 25 micron of titanium tetraisopropoxide 1 liter (0.1 mmol) was charged, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and held for 1 hour, and then pressure reduction was started, and the reaction was continued for 15 minutes at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn 12,500, Mw 291,100, and its Mw / Mn was 23.3. The melting temperature was 112.4 ° C., and the 2% weight loss temperature was 309.1 ° C. The proportion of diethanolamine contained in the polymer is 1.10 moles per 100 moles of the aliphatic carboxylic acid component contained in the polymer.

実施例4
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.23g(0.180モル)、1,4-ブタンジオール16.86g(0.187モル)、ジエタノールアミントリアセテート0.312g(1.82ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで1時間30分反応を続けた。得られたポリマーは白色で、Mn 38,800、Mw 139,000を有し、そのMw/Mnは3.59であった。またその融解温度は115.2℃であり、その2%重量減温度は322.8℃であった。このポリマー中に含まれるジエタノールアミンの割合は、ポリマー中に含まれる脂肪族カルボン酸成分100モル当たり、1.01モルの割合である。
Example 4
In a glass reactor with a stirring volume of 100 ml, 21.23 g (0.180 mol) of succinic acid, 16.86 g (0.187 mol) of 1,4-butanediol, 0.312 g (1.82 mmol) of diethanolamine triacetate, 25 of titanium tetraisopropoxide Microliter (0.1 mmol) was charged, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and maintained for 1 hour, and then pressure reduction was started, and the reaction was continued for 1 hour 30 minutes at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn 38,800, Mw 139,000, and its Mw / Mn was 3.59. The melting temperature was 115.2 ° C, and the 2% weight loss temperature was 322.8 ° C. The proportion of diethanolamine contained in this polymer is 1.01 mole per 100 moles of the aliphatic carboxylic acid component contained in the polymer.

比較例1
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.25g(0.180モル)、1,4-ブタンジオール16.89g(0.188モル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで3時間反応を続けた。得られたポリマーは白色で、Mn 76,500、Mw 142,000を有し、そのMw/Mnは1.86であった。またその融解温度は114.9℃であり、その2%重量減温度は308.1℃であった。
Comparative Example 1
A glass reactor with a stirring blade with a capacity of 100 ml was charged with 21.25 g (0.180 mol) of succinic acid, 16.89 g (0.188 mol) of 1,4-butanediol, and 25 microliters (0.1 mmol) of titanium tetraisopropoxide. Under a nitrogen atmosphere, the temperature was raised to 160 ° C., and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and maintained for 1 hour, and then pressure reduction was started, and the reaction was continued for 3 hours at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn 76,500, Mw 142,000 and its Mw / Mn was 1.86. The melting temperature was 114.9 ° C., and the 2% weight loss temperature was 308.1 ° C.

実施例5
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.27g(0.180モル)、1,4-ブタンジオール15.96g(0.177モル)、バチルアルコール3.09g(8.97ミリモル)、ジエタノールアミン0.125g(1.19ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで2時間50分反応を続けた。得られたポリマーは乳白色で、Mn 60.300、Mw 251,000を有し、そのMw/Mnは4.17であった。またその融解温度は108.9℃であり、その2%重量減温度は315.0℃であった。このポリマー中に含まれるジエタノールアミンの割合は、ポリマー中に含まれる脂肪族カルボン酸成分100モル当たり、0.66モルの割合である。
Example 5
In a glass reactor with a stirring volume of 100 ml, succinic acid 21.27 g (0.180 mol), 1,4-butanediol 15.96 g (0.177 mol), batyl alcohol 3.09 g (8.97 mmol), diethanolamine 0.125 g (1.19 mmol) ), 25 microliters (0.1 mmol) of titanium tetraisopropoxide were charged, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and maintained for 1 hour, and then pressure reduction was started, and the reaction was continued for 2 hours and 50 minutes at a vacuum degree of 0.2 mmHg. The resulting polymer was milky white and had Mn 60.300, Mw 251,000, and its Mw / Mn was 4.17. The melting temperature was 108.9 ° C., and the 2% weight loss temperature was 315.0 ° C. The proportion of diethanolamine contained in this polymer is 0.66 mol per 100 mol of the aliphatic carboxylic acid component contained in the polymer.

比較例2
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.27g(0.180モル)、1,4-ブタンジオール15.96g(0.177モル)、バチルアルコール3.10g(9.0ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで7時間反応を続けた。得られたポリマーは乳白色で、Mn 97,100、Mw 187,800を有し、そのMw/Mnは1.94であった。またその融解温度は107.9℃であり、その2%重量減温度は328.1℃であった。
Comparative Example 2
In a glass reactor with a stirring volume of 100 ml, succinic acid 21.27 g (0.180 mol), 1,4-butanediol 15.96 g (0.177 mol), batyl alcohol 3.10 g (9.0 mmol), titanium tetraisopropoxide 25 Microliter (0.1 mmol) was charged, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and held for 1 hour, and then pressure reduction was started, and the reaction was continued for 7 hours at a vacuum degree of 0.2 mmHg. The polymer obtained was milky white and had Mn 97,100, Mw 187,800, and its Mw / Mn was 1.94. The melting temperature was 107.9 ° C., and the 2% weight loss temperature was 328.1 ° C.

実施例6
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.24g(0.180モル)、1,4-ブタンジオール15.93g(0.177モル)、3-メトキシ-1,2-プロパンジオール0.97g(9.15ミリモル)、ジエタノールアミン0.182g(1.73ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで45分反応を続けた。得られたポリマーは白色で、Mn 42,400、Mw 192,300を有し、そのMw/Mnは4.54であった。またその融解温度は111.3℃であり、その2%重量減温度は316.0℃であった。このポリマー中に含まれるジエタノールアミンの割合は、ポリマー中に含まれる脂肪族カルボン酸成分100モル当たり、0.96モルの割合である。
Example 6
In a glass reactor with a stirring volume of 100 ml, 21.24 g (0.180 mol) of succinic acid, 15.93 g (0.177 mol) of 1,4-butanediol, 0.97 g (9.15 mmol) of 3-methoxy-1,2-propanediol ), 0.182 g (1.73 mmol) of diethanolamine and 25 microliters (0.1 mmol) of titanium tetraisopropoxide, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and maintained for 1 hour, and then pressure reduction was started, and the reaction was continued for 45 minutes at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn 42,400, Mw 192,300, and its Mw / Mn was 4.54. The melting temperature was 111.3 ° C., and the 2% weight loss temperature was 316.0 ° C. The proportion of diethanolamine contained in this polymer is 0.96 mol per 100 mol of the aliphatic carboxylic acid component contained in the polymer.

比較例3
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.25g(0.180モル)、1,4-ブタンジオール15.92g(0.177モル)、3-メトキシ-1,2-プロパンジオール0.96g(9.05ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで4時間反応を続けた。得られたポリマーは白色で、Mn 81,100、Mw 141,500を有し、そのMw/Mnは1.74であった。またその融解温度は112.5℃であり、その2%重量減温度は323.1℃であった。
Comparative Example 3
In a glass reactor with a stirring volume of 100 ml, succinic acid 21.25 g (0.180 mol), 1,4-butanediol 15.92 g (0.177 mol), 3-methoxy-1,2-propanediol 0.96 g (9.05 mmol) ), 25 microliters (0.1 mmol) of titanium tetraisopropoxide were charged, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and maintained for 1 hour, and then pressure reduction was started, and the reaction was continued for 4 hours at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn 81,100, Mw 141,500 and its Mw / Mn was 1.74. The melting temperature was 112.5 ° C., and the 2% weight loss temperature was 323.1 ° C.

実施例7
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.27g(0.180モル)、1,4-ブタンジオール16.70g(0.186モル)、カプロラクトン4.09g(35.9ミリモル)、ジエタノールアミン0.185g(1.76ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで1時間30分反応を続けた。得られたポリマーは白色で、Mn38,900、Mw 173,900を有し、そのMw/Mnは4.47であった。またその融解温度は97.6℃であり、その2%重量減温度は332.6℃であった。このポリマー中に含まれるジエタノールアミンの割合は、ポリマー中に含まれる脂肪族カルボン酸成分100モル当たり、0.98モルの割合である。
Example 7
In a glass reactor with a stirring volume of 100 ml, succinic acid 21.27 g (0.180 mol), 1,4-butanediol 16.70 g (0.186 mol), caprolactone 4.09 g (35.9 mmol), diethanolamine 0.185 g (1.76 mmol) Then, 25 microliters (0.1 mmol) of titanium tetraisopropoxide was charged, the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and maintained for 1 hour, and then pressure reduction was started, and the reaction was continued for 1 hour 30 minutes at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn38,900, Mw 173,900 and its Mw / Mn was 4.47. The melting temperature was 97.6 ° C, and the 2% weight loss temperature was 332.6 ° C. The proportion of diethanolamine contained in this polymer is 0.98 mole per 100 moles of the aliphatic carboxylic acid component contained in the polymer.

比較例4
撹拌羽つき内容量100ミリリットルのガラス製反応器にコハク酸21.28g(0.180モル)、1,4-ブタンジオール16.84g(0.187モル)、カプロラクトン4.12g(36.2ミリモル)、チタンテトライソプロポキシド25マイクロリットル(0.1ミリモル)を仕込み、窒素雰囲気下、160℃まで昇温して1時間水の留出を行った。反応温度を徐々に230℃まで昇温して1時間保持したのち、減圧を開始し、真空度0.2mmHgで4時間反応を続けた。得られたポリマーは白色で、Mn87,200、Mw 156,000を有し、そのMw/Mnは1.79であった。またその融解温度は100.9℃であり、その2%重量減温度は322.0℃であった。
Comparative Example 4
In a glass reactor with a stirring volume of 100 ml, 21.28 g (0.180 mol) of succinic acid, 16.84 g (0.187 mol) of 1,4-butanediol, 4.12 g (36.2 mmol) of caprolactone, 25 micron of titanium tetraisopropoxide 1 liter (0.1 mmol) was charged, and the temperature was raised to 160 ° C. in a nitrogen atmosphere, and water was distilled off for 1 hour. The reaction temperature was gradually raised to 230 ° C. and maintained for 1 hour, and then pressure reduction was started, and the reaction was continued for 4 hours at a vacuum degree of 0.2 mmHg. The resulting polymer was white and had Mn87,200, Mw 156,000, and its Mw / Mn was 1.79. The melting temperature was 100.9 ° C, and the 2% weight loss temperature was 322.0 ° C.

Claims (3)

一般式(1)
Figure 0004696306
(式中、Rは炭素数1〜12の二価脂肪族基、Rは炭素数2〜12の二価脂肪族基、pはポリエステル中に含まれる前記一般式(1)で示されるエステル部のモル分率を示す)
で表されるエステル部Aと、一般式(2)
Figure 0004696306
(式中、Rは炭素数1〜12の二価脂肪族基、R はHまたはポリエステル残基、rはポリエステル中に含まれる前記一般式(2)で示されるエステル部のモル分率を示す)
で表されるエステル部Bとからなり、かつ 該エステル部Bのモル分率rの値が0.001〜0.10の範囲にあることを特徴とする生分解性高分子量脂肪族ポリエステル。
General formula (1)
Figure 0004696306
(In the formula, R 1 is a divalent aliphatic group having 1 to 12 carbon atoms, R 2 is a divalent aliphatic group having 2 to 12 carbon atoms, and p is represented by the general formula (1) contained in the polyester. Indicates the mole fraction of the ester part)
An ester part A represented by the general formula (2)
Figure 0004696306
(Wherein R 1 is a divalent aliphatic group having 1 to 12 carbon atoms, R 3 is H or a polyester residue, and r is a mole fraction of the ester moiety represented by the general formula (2) contained in the polyester. Indicate)
A biodegradable high molecular weight aliphatic polyester comprising an ester part B represented by the formula (I) and a molar fraction r of the ester part B in the range of 0.001 to 0.10.
が(CHで、Rが(CHであることを特徴とする請求項1記載の生分解性高分子量脂肪族ポリエステル。 The biodegradable high molecular weight aliphatic polyester according to claim 1, wherein R 1 is (CH 2 ) 2 and R 2 is (CH 2 ) 4 . 下記一般式(3)
Figure 0004696306
(式中、Rは炭素数2〜12の2価脂肪族基を示し、RはHまたは炭素数1〜8のアルキル基を示す)
または下記一般式(4)
Figure 0004696306
(式中、R1は前記と同じ)
で表される脂肪族ジカルボン酸誘導体、あるいはそれらのその混合物と、下記一般式(5)
Figure 0004696306
(式中、Rは炭素数2〜12の2価脂肪族基を示す)
で表される脂肪族グリコールと、ジエタノールアミンとを縮合反応させることを特徴とする請求項1又は2に記載の生分解性高分子量脂肪族ポリエステルの製造方法。
The following general formula (3)
Figure 0004696306
(In the formula, R 1 represents a divalent aliphatic group having 2 to 12 carbon atoms, and R 4 represents H or an alkyl group having 1 to 8 carbon atoms.)
Or the following general formula (4)
Figure 0004696306
(Wherein R1 is the same as above)
An aliphatic dicarboxylic acid derivative represented by the following formula or a mixture thereof, and the following general formula (5)
Figure 0004696306
(Wherein R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms)
The method for producing a biodegradable high molecular weight aliphatic polyester according to claim 1, wherein the aliphatic glycol represented by the formula is subjected to a condensation reaction with diethanolamine.
JP2006199063A 2006-07-21 2006-07-21 Biodegradable polyester and method for producing the same Expired - Fee Related JP4696306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199063A JP4696306B2 (en) 2006-07-21 2006-07-21 Biodegradable polyester and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199063A JP4696306B2 (en) 2006-07-21 2006-07-21 Biodegradable polyester and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008024825A JP2008024825A (en) 2008-02-07
JP4696306B2 true JP4696306B2 (en) 2011-06-08

Family

ID=39115802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199063A Expired - Fee Related JP4696306B2 (en) 2006-07-21 2006-07-21 Biodegradable polyester and method for producing the same

Country Status (1)

Country Link
JP (1) JP4696306B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120944B2 (en) * 2008-04-25 2013-01-16 独立行政法人産業技術総合研究所 Biodegradable high molecular weight aliphatic polyester and method for producing the same
JP5799636B2 (en) * 2011-07-26 2015-10-28 三菱化学株式会社 Polyester manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138772A (en) * 1984-12-04 1986-06-26 日本合成化学工業株式会社 Warp yarn size for fiber
JPH04122724A (en) * 1990-09-12 1992-04-23 Nippon Oil & Fats Co Ltd Resin for pigment dispersion
JP2006231859A (en) * 2005-02-28 2006-09-07 Unitika Ltd Biodegradable damp-proof material and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138772A (en) * 1984-12-04 1986-06-26 日本合成化学工業株式会社 Warp yarn size for fiber
JPH04122724A (en) * 1990-09-12 1992-04-23 Nippon Oil & Fats Co Ltd Resin for pigment dispersion
JP2006231859A (en) * 2005-02-28 2006-09-07 Unitika Ltd Biodegradable damp-proof material and its manufacturing method

Also Published As

Publication number Publication date
JP2008024825A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP5120944B2 (en) Biodegradable high molecular weight aliphatic polyester and method for producing the same
JP6231549B2 (en) Polymer, process for synthesizing it and composition comprising it
JP5618040B2 (en) High molecular weight aliphatic polyester ether using bio-based raw material and process for producing the same
JP4696306B2 (en) Biodegradable polyester and method for producing the same
JP3292874B2 (en) Method for producing high molecular weight aliphatic polyester polymer
CN113272356B (en) Functional resin composition comprising biomass-derived component
JP2016520706A (en) Biodegradable polyester resin and article containing the same
JP3263728B2 (en) Method for producing high molecular weight aliphatic polyester polymer
JP3000149B1 (en) Biodegradable high molecular weight aliphatic polyester and method for producing the same
KR101941123B1 (en) Biodegradable resin composition and biodegradable film prepared therefrom
JP3643875B2 (en) Process for producing biodegradable high molecular weight aliphatic polyester
JPH0710979A (en) Amine-functional polyester
JP3066500B1 (en) Biodegradable high-molecular aliphatic polyester and method for producing the same
JP3141326B1 (en) Method for producing high molecular weight aliphatic polyester polymer
JP3073985B1 (en) Method for producing aliphatic polyester-based polymer
JP4266359B2 (en) Process for producing aliphatic polyester polymer and aliphatic polyester polymer
JP3273767B2 (en) Aliphatic polyester polymer and method for producing the same
JP3131603B2 (en) Method for producing biodegradable high molecular weight aliphatic polyester ether
JP3438027B2 (en) Method for producing biodegradable high molecular weight aliphatic polyester
JP2002356548A (en) Method for producing aliphatic polyester and aliphatic polyester
JP3521231B2 (en) Process for producing biodegradable high molecular weight aliphatic polyester having ether side chain
TWI457364B (en) Poly(dicarboxylate-co-oxalate) copolymer and polyurethane thereof
JP2700628B2 (en) High molecular weight aliphatic polyester and method for producing the same
JP2004083882A (en) Aliphatic polyester polyether copolymer and method for producing the same
JP2000204143A (en) White, high molecular weight and aliphatic polyester- based polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees