JP2005089293A - Method for producing perovskite compound powder - Google Patents

Method for producing perovskite compound powder Download PDF

Info

Publication number
JP2005089293A
JP2005089293A JP2004236105A JP2004236105A JP2005089293A JP 2005089293 A JP2005089293 A JP 2005089293A JP 2004236105 A JP2004236105 A JP 2004236105A JP 2004236105 A JP2004236105 A JP 2004236105A JP 2005089293 A JP2005089293 A JP 2005089293A
Authority
JP
Japan
Prior art keywords
perovskite compound
group
fixed
powder
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004236105A
Other languages
Japanese (ja)
Other versions
JP4356552B2 (en
Inventor
Hisashi Shikida
尚志 式田
Shinji Ogama
信治 大釜
Yoshiaki Ikeda
美昭 池田
Kazuhisa Hidaka
一久 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004236105A priority Critical patent/JP4356552B2/en
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to US11/660,231 priority patent/US9005568B2/en
Priority to CN2005800274104A priority patent/CN101014538B/en
Priority to KR1020077005718A priority patent/KR101158985B1/en
Priority to EP05710287.3A priority patent/EP1798200B1/en
Priority to PCT/JP2005/002387 priority patent/WO2006016428A1/en
Priority to TW094104149A priority patent/TWI331135B/en
Publication of JP2005089293A publication Critical patent/JP2005089293A/en
Application granted granted Critical
Publication of JP4356552B2 publication Critical patent/JP4356552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a perovskite compound powder, which method does not utilize conventional mechanical disintegration means or an impact by a grinding medium or an air stream and gives a disintegrated product not contaminated with impurities from the grinding medium, being highly pure, being free from chipping particles, and having a sharp particle size distribution. <P>SOLUTION: The method for producing the perovskite compound powder comprises the first step of obtaining an agglomerated perovskite compound having at least one member selected from among Mg, Ca, Sr, Ba, and Pb as group A element, having at least one member selected from among Ti, Zr, Hf, and Sn as group B element, and represented by the formula: ABO<SB>3</SB>(wherein A is at least one group A element, and B is at least one group B element) and the second step of disintegrating the agglomerated perovskite compound obtained in the first step by heating in the temperature range of 30 to 500°C in a solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はペロブスカイト化合物粉体の製造方法に関し、詳しくは、熱処理によってペロブスカイト化合物が凝集し、融着し、又は焼結してなる固着物を溶媒中で加熱することによって解砕して、チッピング粒子を含まず、粒度分布が狭く、高純度のペロブスカイト化合物粉体を得ることができる方法に関する。   The present invention relates to a method for producing a perovskite compound powder. Specifically, the perovskite compound is agglomerated by heat treatment, fused or sintered, and the fixed matter formed by heating in a solvent is crushed to produce chipping particles. It is related with the method which can obtain perovskite compound powder with a narrow particle size distribution and high purity.

一般に、ペロブスカイト化合物とは、チタン酸カルシウム鉱(ペロブスカイト)と同様な結晶構造を有する化合物をいい、このような化合物を成形し、焼結することによって、誘電性、圧電性及び半導性を有する誘電体セラミックスを得ることができ、これらは、近年、コンデンサー、伝播フィルター、圧電素子、サーミスター等として、通信機やコンピュータのような電子機器に広く用いられている。   In general, the perovskite compound is a compound having a crystal structure similar to that of calcium titanate ore (perovskite), and has such a dielectric property, piezoelectricity, and semiconductivity by molding and sintering such a compound. Dielectric ceramics can be obtained, and these are widely used in recent years as electronic devices such as communication devices and computers as capacitors, propagation filters, piezoelectric elements, thermistors and the like.

従来、このようなペロブスカイト化合物の代表的な製造方法として固相法がよく知られている。ペロブスカイト化合物の代表例として、チタン酸バリウムを例にとれば、固相法とは、炭酸バリウムと酸化チタンを1000℃以上の温度に加熱してチタン酸バリウムを生成させるものであって、このような固相法によるチタン酸バリウムの製造においては、生成したチタン酸バリウム粒子が相互に凝集し、融着してなる固着物として得られるので、従来は、この固着物を機械的な解砕手段や媒体ミル、気流式解砕機等を用いて解砕し、て、望ましい平均粒子径を有するチタン酸バリウム粒子を得ている(例えば、非特許文献1参照)。   Conventionally, a solid phase method is well known as a typical method for producing such a perovskite compound. Taking barium titanate as an example of a perovskite compound as an example, the solid phase method is a method in which barium carbonate and titanium oxide are heated to a temperature of 1000 ° C. or more to produce barium titanate, In the production of barium titanate by a simple solid phase method, the produced barium titanate particles are aggregated and fused together to obtain a fixed product. And barium titanate particles having a desirable average particle size are obtained by pulverization using a medium mill, an airflow pulverizer, or the like (see, for example, Non-Patent Document 1).

上記機械的な解砕手段としては、例えば、ロールミル、ハンマーミル、ピンミル等を挙げることができ、また、媒体ミルとしては、例えば、ボールミル、チューブミル、コニカルミル、振動ミル、タワーミル、アトライター、ビスコミル、サンドミル、アニュラーミル等が用いられる。気流式解砕機としては、例えば、ジェットミル等を挙げることができる(非特許文献2参照)。   Examples of the mechanical crushing means include a roll mill, a hammer mill, and a pin mill. Examples of the medium mill include a ball mill, a tube mill, a conical mill, a vibration mill, a tower mill, an attritor, and a visco mill. , Sand mill, annular mill, etc. are used. Examples of the airflow crusher include a jet mill (see Non-Patent Document 2).

しかし、機械的な解砕手段を用いる場合は、得られる粉体の粉砕度が低く、他方、媒体ミルを用いる場合には、粉砕媒体であるアルミナ、ジルコニア、瑪瑙玉石等の磨耗によって生成する不純物や、また、粉砕媒体によってチタン酸バリウムが過度に解砕され、粉砕されて生成する微粒子、即ち、チッピング粒子が目的であるチタン酸バリウム粉体に混入するので、このようにして得られるチタン酸バリウム粉体は、純度や粒度分布の点において十分に満足できるものではない。そこで、粉砕媒体に由来する不純物の混入を避けるために、チタン酸バリウムを主成分とする粉砕媒体を用いることも提案されているが、チッピング粒子の混入は依然として避けることができない(例えば、特許文献1参照)。   However, when a mechanical crushing means is used, the degree of pulverization of the obtained powder is low. On the other hand, when a medium mill is used, impurities generated due to wear of grinding media such as alumina, zirconia, and jadestone. In addition, since barium titanate is excessively crushed by the grinding medium and fine particles produced by grinding, that is, chipping particles are mixed into the target barium titanate powder, titanic acid thus obtained Barium powder is not fully satisfactory in terms of purity and particle size distribution. Therefore, in order to avoid contamination of impurities derived from the grinding media, it has also been proposed to use a grinding media mainly composed of barium titanate, but contamination of chipping particles cannot be avoided (for example, patent document). 1).

チタン酸バリウム粉体を製造する別の方法として、アルコキシド法、有機酸塩法、水熱法、ゾル−ゲル法等の湿式法も知られている。しかし、有機酸塩法とゾル−ゲル法では、原料を加熱下に反応させてチタン酸バリウムからなる固着物を生成させるので、上記固相法と同様に、生成したチタン酸バリウムからなる固着物を解砕することが必要であり、ここに、上述したと同様に、得られるチタン酸バリウム粉体に不純物の混入やチッピング粒子の混入が避けられない。   As another method for producing barium titanate powder, wet methods such as an alkoxide method, an organic acid salt method, a hydrothermal method, and a sol-gel method are also known. However, in the organic acid salt method and the sol-gel method, since the raw material is reacted under heating to produce a sticking substance made of barium titanate, the sticking substance made of generated barium titanate is formed in the same manner as the solid phase method. It is necessary to crush, and here, as described above, it is inevitable that impurities and chipping particles are mixed in the obtained barium titanate powder.

他方、アルコキシド法や水熱法によれば、直接、チタン酸バリウムを合成することができるが、正方晶系に変態させると共に、実用上の必要性から、粒子径を若干大きくするために、製造工程中に熱処理を含んでおり、結局、生成するチタン酸バリウムは固着物として得られるので、この固着物を解砕する工程が必要となる。かくして、アルコキシド法や水熱法による場合も、同様に、得られるチタン酸バリウム粉体に不純物の混入やチッピング粒子の混入が避けられない(例えば、特許文献2参照)。   On the other hand, according to the alkoxide method and hydrothermal method, barium titanate can be directly synthesized, but in order to transform it into a tetragonal system and to increase the particle size slightly from the practical necessity, it is manufactured. Since heat treatment is included in the process, eventually, the generated barium titanate is obtained as a fixed substance, and thus a step of crushing the fixed substance is required. Thus, even when the alkoxide method or the hydrothermal method is used, it is unavoidable that impurities and chipping particles are mixed into the obtained barium titanate powder (see, for example, Patent Document 2).

このように、従来、ペロブスカイト化合物粉体の製造において、得られ固着物を通常の機械的解砕手段を用いれば、得られる粉体の粉砕度が低い。そこで、所要の平均粒子径を有する粉体を得るために、ペロブスカイト化合物の固着物の解砕に媒体ミルを用いれば、得られる粉砕物にチッピング粒子や粉砕媒体に由来する不純物の混入することが避けられず、他方、気流式解砕方法によれば、処理中の固着物中のペロブスカイト化合物粒子が衝撃によって歪を生じ、そのために得られるペロブスカイト化合物粉体は、均一な誘電体セラミックスを得るには必ずしも満足できる特性を有するものではなく、例えば、コンデンサー、フィルター、サーミスター等の電子部品の小型化、高性能化に基づく要求に対して、十分に応えることができないという問題があった。
特開平03−174355号公報 特開平05−330824号公報 粉体工学会誌、第34巻第11号第32頁、佐々木▲きょう▼一「チタン酸バリウムとその複合粒子の製造法とプロセス」(1997年) 粉体工学会編「粉砕・分級と表面改質」第99頁(2001年発行)
Thus, conventionally, in the production of the perovskite compound powder, if the obtained fixed substance is used with a normal mechanical crushing means, the degree of pulverization of the obtained powder is low. Therefore, in order to obtain a powder having a required average particle size, if a medium mill is used for crushing the fixed substance of the perovskite compound, impurities derived from the chipping particles and the pulverizing medium may be mixed into the obtained pulverized substance. On the other hand, according to the airflow-type crushing method, the perovskite compound particles in the fixed matter being processed are distorted by impact, and the resulting perovskite compound powder is used to obtain uniform dielectric ceramics. Does not necessarily have satisfactory characteristics. For example, there is a problem that it cannot sufficiently meet the demands based on downsizing and high performance of electronic parts such as capacitors, filters, and thermistors.
Japanese Patent Laid-Open No. 03-174355 JP 05-330824 A Journal of Powder Engineering, Vol. 34, No. 11, p. 32, Sasaki, “Kyoichi” “Production and Process of Barium Titanate and its Composite Particles” (1997) Edited by the Society of Powder Technology, “Crushing / Classification and Surface Modification”, page 99 (issued in 2001)

本発明は、ペロブスカイト化合物粉体の製造における上述した問題を解決するためになされたものであって、ペロブスカイト化合物の固着物の解砕のために粉砕媒体や気流による衝撃を利用することなく、得られる解砕物に粉砕媒体からの不純物の混入がなく、高純度であって、また、チッピング粒子をも含まないペロブスカイト化合物粉体の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems in the production of perovskite compound powder, and can be obtained without using an impact caused by a grinding medium or an air current for crushing a fixed substance of the perovskite compound. It is an object of the present invention to provide a method for producing a perovskite compound powder that is free from impurities from the grinding medium, has high purity, and does not contain chipping particles.

本発明によれば、A群元素としてMg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種を有し、B群元素としてTi、Zr、Hf及びSnから選ばれる少なくとも1種を有し、一般式
ABO3
(式中、Aは少なくとも1種のA群元素を示し、Bは少なくとも1種のB群元素を示す。)
で表されるペロブスカイト化合物の固着物を得る第一工程と、上記第一工程で得られたペロブスカイト化合物の固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕する第二工程とを含むことを特徴とするペロブスカイト化合物粉体の製造方法が提供される。
According to the present invention, the group A element has at least one selected from Mg, Ca, Sr, Ba and Pb, the group B element has at least one selected from Ti, Zr, Hf and Sn, General formula
ABO 3
(In the formula, A represents at least one group A element, and B represents at least one group B element.)
A first step of obtaining a fixed substance of the perovskite compound represented by the formula (2), and a second step of crushing the fixed substance of the perovskite compound obtained in the first step by heating in a solvent at a temperature in the range of 30 to 500 ° C. And a process for producing a perovskite compound powder characterized by comprising the steps of:

好ましくは、本発明によれば、
(1)水熱法によって、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の水酸化物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の酸化物及び/又は水酸化物との混合物を水性媒体の存在下、100〜300℃の範囲の温度で水熱処理し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、又は
(2)固相法によって、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の酸化物及び/又は加熱により酸化物を生成する化合物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の酸化物及び/又は加熱により酸化物を生成する化合物との混合物を600〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、又は
(3)有機酸塩法によって、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の水溶性塩とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の水溶性塩とシュウ酸及びクエン酸から選ばれる少なくとも1種の有機酸とから複塩を形成した後、この複塩を400〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、又は
(4)アルコキシド法によって、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素のアルコキシド及び/又は水酸化物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素のアルコキシドとの混合物を加水分解し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、又は
(5)ゾル−ゲル法によって、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素のゾルとTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素のゾルとの混合物をゲル化し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、
次いで、上記第一工程で得られたペロブスカイト化合物の固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕する第二工程とを含むことを特徴とするペロブスカイト化合物粉体の製造方法が提供される。
Preferably, according to the invention,
(1) By the hydrothermal method, in the first step, at least one kind of hydroxide of at least one group A element selected from Mg, Ca, Sr, Ba and Pb and Ti, Zr, Hf and Sn is selected. And a mixture of the oxide and / or hydroxide of the group B element in the presence of an aqueous medium at a temperature in the range of 100 to 300 ° C., and the resulting reaction product in the range of 100 to 1400 ° C. Heating at a temperature to obtain a fixed perovskite compound, or (2) an oxide of at least one group A element selected from Mg, Ca, Sr, Ba and Pb in the first step by a solid phase method And / or a mixture of a compound that generates an oxide by heating and an oxide of at least one group B element selected from Ti, Zr, Hf, and Sn and / or a compound that generates an oxide by heating is 600 to 1 Heat at a temperature in the range of 00 ° C. to obtain a fixed perovskite compound, or (3) at least one selected from Mg, Ca, Sr, Ba and Pb in the first step by the organic acid salt method A double salt is formed from a water-soluble salt of a group A element, at least one water-soluble salt of a group B element selected from Ti, Zr, Hf and Sn, and at least one organic acid selected from oxalic acid and citric acid. Then, the double salt is heated at a temperature in the range of 400 to 1400 ° C. to obtain a fixed substance of the perovskite compound, or (4) In the first step, Mg, Ca, Sr, Ba and Pb are obtained by the alkoxide method. A mixture of an alkoxide and / or hydroxide of at least one group A element selected from: and an alkoxide of at least one group B element selected from Ti, Zr, Hf and Sn; Water decomposition is performed, and the obtained reaction product is heated at a temperature in the range of 100 to 1400 ° C. to obtain a fixed perovskite compound, or (5) Mg, Ca in the first step by a sol-gel method , A mixture of at least one group A element sol selected from Sr, Ba and Pb and at least one group B element sol selected from Ti, Zr, Hf and Sn, and obtained reaction product The product is heated at a temperature in the range of 100 to 1400 ° C. to obtain a fixed product of the perovskite compound,
Next, a second step of crushing the perovskite compound fixed product obtained in the first step by heating in a solvent at a temperature in the range of 30 to 500 ° C. to crush the perovskite compound powder, A manufacturing method is provided.

更に、本発明によれば、上述した方法の第一工程において、ペロブスカイト化合物粒子の成長を促進させ、又は抑制する添加剤を含むペロブスカイト化合物の固着物を得るペロブスカイト化合物粉体の製造方法が提供される。   Furthermore, according to the present invention, there is provided a method for producing a perovskite compound powder that obtains a fixed product of a perovskite compound containing an additive that promotes or suppresses the growth of perovskite compound particles in the first step of the above-described method. The

本発明の方法によれば、ペロブスカイト化合物の固着物を溶媒中、加熱して解砕するので、摩耗した粉砕媒体に由来する不純物の混入がなく、また、ペロブスカイト化合物自体のチッピング粒子の混入もなく、かくして、高純度で粒度分布の狭いペロブスカイト化合物粉体を得ることができる。   According to the method of the present invention, the fixed substance of the perovskite compound is pulverized by heating in a solvent, so that there is no contamination of impurities derived from the worn grinding media, and there is no contamination of chipping particles of the perovskite compound itself. Thus, a perovskite compound powder having a high purity and a narrow particle size distribution can be obtained.

また、本発明によれば、ペロブスカイト化合物の製造時にペロブスカイト化合物粒子の成長を促進させ、又は抑制する添加剤を原料に混合して、ペロブスカイト化合物の固着物を得る場合や、また、予め製造したペロブスカイト化合物にペロブスカイト化合物粒子の成長を促進させ、又は抑制する添加剤を混合し、加熱して、ペロブスカイト化合物の固着物を得る場合にも、そのような固着物を溶媒中、加熱して解砕することによって、摩耗した粉砕媒体に由来する不純物の混入がなく、また、ペロブスカイト化合物自体のチッピング粒子の混入もない高純度で粒度分布の狭いペロブスカイト化合物粉体を得ることができる。   Further, according to the present invention, when the perovskite compound is produced, an additive that promotes or suppresses the growth of the perovskite compound particles is mixed with the raw material to obtain a fixed product of the perovskite compound. Even when an additive that promotes or suppresses the growth of perovskite compound particles is mixed with the compound and heated to obtain a fixed substance of the perovskite compound, such a fixed substance is heated and crushed in a solvent. As a result, it is possible to obtain a perovskite compound powder having a high purity and a narrow particle size distribution in which impurities derived from a worn grinding medium are not mixed and chipping particles of the perovskite compound itself are not mixed.

本発明によるペロブスカイト化合物粉体の製造方法によれば、先ず、第一工程として、水熱法、固相法、有機酸塩法、アルコキシド法又はゾル−ゲル法によって、ペロブスカイト化合物が熱処理によって凝集、融着又は焼結してなるペロブスカイト化合物の固着物を得、次いで、第二工程として、このペロブスカイト化合物の固着物を溶媒中、30〜500℃の範囲の温度で加熱して解砕するものである。   According to the method for producing a perovskite compound powder according to the present invention, first, as a first step, the hydrothermal method, solid phase method, organic acid salt method, alkoxide method or sol-gel method, the perovskite compound is aggregated by heat treatment, A perovskite compound fixed material obtained by fusing or sintering is obtained, and then, as a second step, the perovskite compound fixed material is heated and pulverized in a solvent at a temperature in the range of 30 to 500 ° C. is there.

本発明によれば、第一工程で得られたペロブスカイト化合物の固着物は、媒体ミルや気流式解砕機やその他の従来より知られている解砕手段にて解砕することなく、そのまま、本発明に従って、第二工程において解砕してもよく、また、第一工程で得られたペロブスカイト化合物の固着物は、予め、上述したような従来の解砕手段にて解砕した後に、本発明に従って、第二工程において解砕してもよい。   According to the present invention, the fixed substance of the perovskite compound obtained in the first step can be used as it is without being crushed by a medium mill, an airflow type pulverizer or other conventionally known crushing means. According to the invention, it may be crushed in the second step, and the fixed product of the perovskite compound obtained in the first step is previously crushed by the conventional crushing means as described above, and then the present invention. According to this, you may crush in a 2nd process.

ペロブスカイト化合物の固着物が、予め、上述したように、従来の解砕手段によって解砕されているときは、第二工程において、溶媒の存在下に固着物を加熱することによって、粒子間の固着、所謂ネッキング粒子を解砕し、また、チッピング粒子を溶解させて、より大きい粒子表面に再析出させることによって、粒度分布の狭い粉体として得ることができる。また、固着物が予め、上述したような従来の解砕手段にて解砕されていないときは、チッピング粒子の生成なしに、一次粒子まで解砕された粉体を得ることができる。   When the fixed substance of the perovskite compound is previously crushed by the conventional crushing means as described above, the fixed substance between particles is heated in the second step by heating the fixed substance in the presence of a solvent. The so-called necking particles are crushed, and the chipping particles are dissolved and re-precipitated on the surface of larger particles, whereby a powder having a narrow particle size distribution can be obtained. Moreover, when the fixed matter is not crushed in advance by the conventional pulverization means as described above, a powder crushed to primary particles can be obtained without generating chipping particles.

本発明によれば、水熱法によって、ペロブスカイト化合物を製造するときは、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の水酸化物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の酸化物及び/又は水酸化物との混合物を水性媒体の存在下、100〜300℃の範囲の温度で水熱処理し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、第二工程において、この固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕する。   According to the present invention, when the perovskite compound is produced by a hydrothermal method, in the first step, at least one group A element hydroxide selected from Mg, Ca, Sr, Ba and Pb and Ti, Obtained by hydrothermally treating a mixture of an oxide and / or a hydroxide of at least one group B element selected from Zr, Hf and Sn at a temperature in the range of 100 to 300 ° C. in the presence of an aqueous medium. The reaction product is heated at a temperature in the range of 100 to 1400 ° C. to obtain a fixed product of the perovskite compound. In the second step, the fixed product is heated in a solvent at a temperature in the range of 30 to 500 ° C. Crush.

固相法によって、ペロブスカイト化合物を製造するときは、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の酸化物及び/又は加熱により酸化物を生成する化合物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の酸化物及び/又は加熱により酸化物を生成する化合物との混合物を600〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、第二工程において、この固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕する。上記加熱により酸化物を生成する化合物としては、例えば、炭酸塩、水酸化物、硝酸塩、有機酸塩等を挙げることができる。   When producing a perovskite compound by a solid phase method, in the first step, an oxide of at least one group A element selected from Mg, Ca, Sr, Ba and Pb and / or an oxide is generated by heating. Heating a mixture of the compound and an oxide of at least one group B element selected from Ti, Zr, Hf and Sn and / or a compound which generates an oxide by heating at a temperature in the range of 600 to 1400 ° C .; A fixed substance of the perovskite compound is obtained, and in the second step, the fixed substance is heated and pulverized in a solvent at a temperature in the range of 30 to 500 ° C. As a compound which produces | generates an oxide by the said heating, carbonate, a hydroxide, nitrate, organic acid salt etc. can be mentioned, for example.

有機酸塩法によって、ペロブスカイト化合物を製造するときは、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の水溶性塩とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の水溶性塩とシュウ酸及びクエン酸から選ばれる少なくとも1種の有機酸とから複塩を形成した後、この複塩を400〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、第二工程において、この固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕する。   When the perovskite compound is produced by the organic acid salt method, in the first step, at least one group A element water-soluble salt selected from Mg, Ca, Sr, Ba and Pb and Ti, Zr, Hf and Sn are used. After forming a double salt from at least one water-soluble salt of group B element selected from oxalic acid and citric acid, and then subjecting the double salt to a temperature in the range of 400 to 1400 ° C. To obtain a fixed substance of the perovskite compound. In the second step, the fixed substance is heated and pulverized in a solvent at a temperature in the range of 30 to 500 ° C.

また、アルコキシド法によって、ペロブスカイト化合物を製造するときは、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素のアルコキシド及び/又は水酸化物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素のアルコキシドとの混合物を加水分解し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、第二工程において、この固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕する。   When a perovskite compound is produced by the alkoxide method, in the first step, at least one group A element alkoxide and / or hydroxide selected from Mg, Ca, Sr, Ba and Pb and Ti, Zr are used. Hydrolyzing a mixture with an alkoxide of at least one group B element selected from Hf and Sn, and heating the resulting reaction product at a temperature in the range of 100 to 1400 ° C. In the second step, this fixed substance is crushed by heating in a solvent at a temperature in the range of 30 to 500 ° C.

更に、本発明によれば、ゾル−ゲル法によって、ペロブスカイト化合物を製造するときは、第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素のゾルとTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素のゾルとの混合物をゲル化し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得、第二工程において、この固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕する。   Furthermore, according to the present invention, when the perovskite compound is produced by the sol-gel method, at least one A group element sol selected from Mg, Ca, Sr, Ba and Pb and Ti are used in the first step. A mixture of at least one group B element sol selected from Zr, Zr, Hf and Sn is gelled, and the resulting reaction product is heated at a temperature in the range of 100 to 1400 ° C. to fix the perovskite compound In the second step, the fixed matter is crushed by heating in a solvent at a temperature in the range of 30 to 500 ° C.

ペロブスカイト化合物の種々の製造方法は、それ自体は、既によく知られている。本発明によれば、このような従来より知られている方法によってペロブスカイト化合物を固着物として得、この固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕することによって、高純度で粒度分布の狭いペロブスカイト化合物粉体を得るものである。   Various methods for producing perovskite compounds are already well known per se. According to the present invention, a perovskite compound is obtained as a fixed substance by such a conventionally known method, and this fixed substance is heated and pulverized in a solvent at a temperature in the range of 30 to 500 ° C. A perovskite compound powder having a high purity and a narrow particle size distribution is obtained.

更に、本発明によれば、上述したような種々の方法によってペロブスカイト化合物を製造する際に、生成するペロブスカイト化合物粒子の成長を促進させ、又は抑制する添加剤を原料に混合して、ペロブスカイト化合物の固着物を得、これを解砕して、所要の平均粒子径を有するペロブスカイト化合物粉体を得ることができる。即ち、原料にペロブスカイト化合物粒子の成長を促進させ、又は抑制する添加剤を混合して、ペロブスカイト化合物の固着物を得る工程を第一工程とし、この第一工程で得られたペロブスカイト化合物の固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕することによって、望ましい平均粒子径を有すると共に狭い粒度分布を有するペロブスカイト化合物粉体を得ることができる。   Furthermore, according to the present invention, when the perovskite compound is produced by various methods as described above, an additive that promotes or suppresses the growth of the perovskite compound particles to be produced is mixed with the raw material, A fixed substance can be obtained and pulverized to obtain a perovskite compound powder having a required average particle size. That is, the step of obtaining a fixed product of the perovskite compound by mixing the raw material with an additive that promotes or suppresses the growth of the perovskite compound particles is defined as the first step, and the fixed material of the perovskite compound obtained in the first step Is heated in a solvent at a temperature in the range of 30 to 500 ° C. and pulverized to obtain a perovskite compound powder having a desired average particle size and a narrow particle size distribution.

別の方法として、予め、製造したペロブスカイト化合物に粒子の成長を促進させ、又は抑制する添加剤を混合し、加熱して、ペロブスカイト化合物の固着物を得、これを解砕して、所要の平均粒子径を有するペロブスカイト化合物粉体を得ることもできる。即ち、予め、製造したペロブスカイト化合物に粒子の成長を促進させ、又は抑制する添加剤を混合し、加熱して、ペロブスカイト化合物の固着物を得る工程を第一工程とし、この第一工程で得られたペロブスカイト化合物の固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕することによっても、望ましい平均粒子径を有すると共に狭い粒度分布を有するペロブスカイト化合物粉体を得ることができる。   As another method, an additive that promotes or suppresses the growth of particles is mixed with the manufactured perovskite compound in advance, and heated to obtain a fixed substance of the perovskite compound, which is crushed to obtain the required average A perovskite compound powder having a particle size can also be obtained. That is, the first step is a step in which an additive that promotes or suppresses the growth of particles is mixed with the manufactured perovskite compound and heated to obtain a fixed product of the perovskite compound. The perovskite compound powder having a desirable average particle size and a narrow particle size distribution can also be obtained by heating and crushing the fixed substance of the perovskite compound in a solvent at a temperature in the range of 30 to 500 ° C. .

上記ペロブスカイト化合物の粒子の成長を促進させ、又は粒子の結晶化度を向上させるための添加剤としては、所謂焼結助剤、粒子成長促進剤、結晶化促進剤、フラックス剤等と呼ばれるものが知られている。このような添加剤は、限定されるものではないが、具体例を挙げれば、酸化ホウ素、酸化銅、酸化鉛、酸化ビスマス、酸化モリブデン等のような酸化物や、フッ化ナトリウム、フッ化カリウム、フッ化アルミニウム、塩化ナトリウム、塩化カリウム、塩化バリウム、塩化ストロンチウム等のハロゲン化物を挙げることができる。   Additives for promoting the growth of particles of the perovskite compound or improving the crystallinity of the particles include so-called sintering aids, particle growth promoters, crystallization promoters, fluxing agents, and the like. Are known. Such additives are not limited, but specific examples include oxides such as boron oxide, copper oxide, lead oxide, bismuth oxide, molybdenum oxide, sodium fluoride, potassium fluoride. And halides such as aluminum fluoride, sodium chloride, potassium chloride, barium chloride, and strontium chloride.

また、これらの添加剤とは反対の効果を目的とする添加剤、即ち、所謂焼結防止剤、粒子成長抑制剤等と呼ばれるものも知られている。このような添加剤としては、限定されるものではないが、具体例を挙げれは、酸化ニオブ、酸化タンタル、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等を挙げることができる。即ち、本発明によれば、第一工程として、予め、製造したペロブスカイト化合物に上述したような添加剤を加え、これを熱処理して、例えば、粒子を成長させた後、得られた固着物を解砕して、所要の平均粒子径を有する粉体を得るのである。   In addition, additives that have an effect opposite to those of these additives, that is, so-called sintering inhibitors and particle growth inhibitors are also known. Examples of such additives include, but are not limited to, niobium oxide, tantalum oxide, silicon oxide, aluminum oxide, zirconium oxide, and the like. That is, according to the present invention, as a first step, the additive as described above is added to the perovskite compound produced in advance, and this is heat-treated, for example, after growing the particles, By crushing, a powder having a required average particle size is obtained.

これらの添加剤は、従来のペロブスカイト化合物の固着物の解砕方法によれば、粒子間(粒界)に残存して、粒子を固着させ、かくして、得られる粉体の粒度分布を悪化させたり、また、製品(例えば、誘電体セラミックス)の特性に悪影響を及ぼす場合がある。また、ペロブスカイト化合物粉体を製造するために用いる原料のうちの過剰な成分についても、同様である。   According to the conventional method for crushing a fixed substance of a perovskite compound, these additives remain between the particles (grain boundaries) to fix the particles, thus deteriorating the particle size distribution of the obtained powder. In addition, the characteristics of products (for example, dielectric ceramics) may be adversely affected. The same applies to the excess components of the raw materials used to produce the perovskite compound powder.

しかし、本発明の方法によれば、ペロブスカイト化合物の固着物は、上述したような焼結助剤、粒子成長促進剤、結晶化促進剤、フラックス剤や、又は焼結防止剤、粒子成長抑制剤等を含んでいる場合であっても、これらの添加剤や過剰の原料のような、本来、不必要な成分を第二工程において溶媒中に溶解させることによって、ペロブスカイト化合物から除去することもできるので、固着している粒子の解粒と整粒効果に加えて、ペロブスカイト化合物粒子の高純度化することもできる。   However, according to the method of the present invention, the fixed substance of the perovskite compound is a sintering aid, a particle growth accelerator, a crystallization accelerator, a flux agent, or a sintering inhibitor, a particle growth inhibitor as described above. Can be removed from the perovskite compound by dissolving essentially unnecessary components such as these additives and excess raw materials in the solvent in the second step. Therefore, in addition to the pulverization and sizing effect of the adhered particles, the perovskite compound particles can be highly purified.

特に、本発明によれば、このように、第二工程において、溶媒への添加剤や過剰の原料のような不必要な成分の溶解度を増加させるために、例えば、水酸化カリウムや水酸化リチウムのような塩基や、塩化ナトリウム、塩化カリウム等の無機塩や酢酸アンモニウム、酢酸ナトリウム等の有機酸塩、塩酸等の無機酸や酢酸等の有機酸塩を加えると、上述した効果をより高めることができる。   In particular, according to the present invention, in order to increase the solubility of unnecessary components such as additives in solvents and excess raw materials in the second step, for example, potassium hydroxide or lithium hydroxide is used. When adding a base such as sodium chloride, an inorganic salt such as sodium chloride or potassium chloride, an organic acid salt such as ammonium acetate or sodium acetate, an inorganic acid such as hydrochloric acid or an organic acid salt such as acetic acid, the above-described effects are further enhanced. Can do.

本発明において用いる溶媒は、有機溶媒、無機溶媒を問わないが、好ましくは、ペロブスカイト化合物のチッピング粒子やペロブスカイト化合物の固着物の粒界成分を溶解し得る程度の溶解性を有する溶媒が用いられ、特に、取扱いやすいことから、水や、水混和性有機溶媒と水との混合物が好ましく用いられる。例えば、溶媒として水を用いるとき、水は、ペロブスカイト化合物の固着物の水スラリー濃度がABO3 換算で、通常、0.1〜5モル/Lとなるように用いられる。 The solvent used in the present invention is not limited to an organic solvent or an inorganic solvent, but preferably a solvent having a solubility sufficient to dissolve the grain boundary components of the perovskite compound chipping particles and the perovskite compound fixed matter, In particular, since it is easy to handle, water or a mixture of a water-miscible organic solvent and water is preferably used. For example, when water is used as the solvent, the water is usually used so that the concentration of the water slurry of the fixed substance of the perovskite compound is 0.1 to 5 mol / L in terms of ABO 3 .

このような溶媒中でペロブスカイト化合物の固着物を加熱する温度は、通常、30〜500℃の範囲であるが、好ましくは、60〜500℃の範囲であり、なかでも、処理の効率や経済性を考えると、最も好ましくは、100〜300℃の範囲である。   The temperature at which the fixed substance of the perovskite compound is heated in such a solvent is usually in the range of 30 to 500 ° C., preferably in the range of 60 to 500 ° C. Among them, the processing efficiency and economical efficiency Is most preferably in the range of 100 to 300 ° C.

本発明によれば、このような第二工程における加熱処理に際して、ペロブスカイト化合物の固着物の解砕を促進するのみならず、チッピング粒子の溶解と再析出を促進するために、好ましくは、溶媒中に、塩基、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウムのようなアルカリ金属やアルカリ土類金属の水酸化物のような無機塩基、有機アミン類のような有機塩基や、例えば、酸、例えば、塩酸、硝酸等の無機酸、シュウ酸、クエン酸、酒石酸等のような有機酸を溶媒に加える。また、溶媒に加えることによって、酸又は塩基として働くものを溶媒に加えてもよい。本発明によれば、このようにして、溶媒中、酸又は塩基の存在下に、好ましくは、攪拌しながら、ペロブスカイト化合物の固着物を加熱することによって、効率よく、解砕することができる。但し、溶媒中、ペロブスカイト化合物の固着物の加熱処理時、攪拌は、必ずしも、必要ではない。   According to the present invention, in the heat treatment in the second step, in order not only to promote the crushing of the fixed substance of the perovskite compound but also to promote the dissolution and reprecipitation of the chipping particles, And bases such as inorganic bases such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and barium hydroxide, organic bases such as organic amines, For example, an acid, for example, an inorganic acid such as hydrochloric acid or nitric acid, or an organic acid such as oxalic acid, citric acid, tartaric acid or the like is added to the solvent. Moreover, you may add to a solvent what acts as an acid or a base by adding to a solvent. According to the present invention, in this way, it is possible to efficiently crush by heating the fixed substance of the perovskite compound in the solvent in the presence of an acid or a base, preferably with stirring. However, stirring is not necessarily required during the heat treatment of the fixed substance of the perovskite compound in the solvent.

このようにして、本発明によれば、ペロブスカイト化合物の固着物を溶媒中で、好ましくは、攪拌下に、加熱することによって、ペロブスカイト化合物粒子間に存在する粒界を溶解すると共に、微細な粒子を溶解し、別の粒子上に析出させるようにして、解砕を進めることによって、ペロブスカイト化合物を整粒された粉体として得ることができる。このようなペロブスカイト化合物の固着物の解砕においては、溶媒に加える塩基の量が多い程、また、加熱温度が高い程、固着物の解砕と微細な粒子の溶解、再析出が促進されるので望ましく、また、このように、微細な粒子が溶解、再析出を繰り返すことによって、粒子を成長させることもできる。このように、本発明によれば、固着したペロブスカイト化合物粒子を解粒、整粒することができるのみならず、大粒子化することがもきる。   As described above, according to the present invention, the fixed substance of the perovskite compound is heated in a solvent, preferably with stirring, thereby dissolving the grain boundaries existing between the perovskite compound particles and fine particles. The perovskite compound can be obtained as a sized powder by proceeding the pulverization so that it is dissolved and precipitated on another particle. In the crushing of the fixed substance of such a perovskite compound, the larger the amount of base added to the solvent and the higher the heating temperature, the more the crushing of the fixed substance and the dissolution and reprecipitation of fine particles are promoted. Therefore, it is desirable, and the particles can be grown by repeating dissolution and reprecipitation of the fine particles. As described above, according to the present invention, not only the fixed perovskite compound particles can be pulverized and sized, but also the particles can be enlarged.

他方、ペロブスカイト化合物、例えば、チタン酸バリウムを熱処理する際、粒子成長を抑制して、異常粒成長を防止するために、原料であるバリウム成分を化学量論量よりも過剰に加えることがあるが、この場合、粒界成分としてBa2TiO4 が副生する。本発明に従って、このように、Ba2TiO4 を含む固着物を解砕することによって、同時に、望ましくない上記副生物をチタン酸バリウムから除去することができる。 On the other hand, when heat-treating a perovskite compound, for example, barium titanate, the raw material barium component may be added in excess of the stoichiometric amount in order to suppress particle growth and prevent abnormal grain growth. In this case, Ba 2 TiO 4 is by-produced as a grain boundary component. In accordance with the present invention, in this way, by crushing the adherent containing Ba 2 TiO 4 , the undesirable by-products can be simultaneously removed from the barium titanate.

更に、溶媒中、ペロブスカイト化合物の固着物を加熱することによって、微細なペロブスカイト化合物粒子は溶媒中に溶解し、より大きい粒子上に再析出することによって消失し、その結果、本発明によれば、整粒され、粒度分布の狭いペロブスカイト粉体を得ることができる。従って、予め、固着物が前述したような従来の解砕手段にて解砕したものであるとき、その固着物はチッピング粒子を含んでいるが、本発明の方法に従って、そのような固着物を解砕すれば、固着物からそのようなチッピング粒子を除去しながら、整粒したペロブスカイト化合物粉体を得ることができる。   Furthermore, by heating the fixed substance of the perovskite compound in the solvent, the fine perovskite compound particles dissolve in the solvent and disappear by reprecipitation on larger particles, and as a result, according to the present invention, A perovskite powder that is sized and has a narrow particle size distribution can be obtained. Therefore, when the fixed matter is previously crushed by the conventional crushing means as described above, the fixed matter contains chipping particles. According to the method of the present invention, such a fixed matter is If pulverized, it is possible to obtain a sized perovskite compound powder while removing such chipping particles from the fixed matter.

また、ペロブスカイト化合物粉体を用いて誘電体セラミックスを製造する場合に、その粉体の焼結性や焼結体の電気特性を調節するために、例えば、ホウ素、ビスマス、アルカリ金属(例えば、リチウム、カリウム、ナトリウム等)、希土類元素(例えば、イットリウム、ジスプロシウム、エルビウム、ホルミウム等)、遷移金属(例えば、マンガン、鉄、コバルト、ニオブ等)、ケイ素、アルミニウム等の化合物を添加剤としてペロブスカイト化合物粉体に添加することがあるが、本発明に従って、ペロブスカイト化合物の固着物を解砕する際に、そのような添加剤をペロブスカイト化合物に含有させてもよいことはいうまでもない。本発明によれば、そのような添加剤を溶媒に加え、その溶媒中で固着物を加熱してもよく、また、加熱処理前や加熱処理後のペロブスカイト化合物に加えてもよい。   In addition, when producing dielectric ceramics using perovskite compound powder, in order to adjust the sinterability of the powder and the electrical characteristics of the sintered body, for example, boron, bismuth, alkali metal (for example, lithium Perovskite compound powder using compounds such as rare earth elements (eg, yttrium, dysprosium, erbium, holmium), transition metals (eg, manganese, iron, cobalt, niobium), silicon, aluminum, etc. as additives Although it may be added to the body, it goes without saying that such an additive may be contained in the perovskite compound when crushing the fixed substance of the perovskite compound according to the present invention. According to the present invention, such an additive may be added to the solvent, and the fixed substance may be heated in the solvent, or may be added to the perovskite compound before or after the heat treatment.

以下に実施例と共に比較例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。粒子の種々の物性や粉体写真の撮影は以下に記載する方法によった。   Hereinafter, the present invention will be described with reference to comparative examples together with examples, but the present invention is not limited to these examples. Various physical properties of the particles and powder photography were taken by the method described below.

(平均粒子径の測定)
適量の粉体を0.025重量%濃度のヘキサメタリン酸ナトリウム水溶液に加え、日本精機製作所製超音波ホモジナイザー(US−600T)で2分間分散させて検液を調製し、この検液について、粒度分布測定装置(日機装製マイクロトラックX−100)を用いて測定した。
(Measurement of average particle size)
An appropriate amount of powder is added to a 0.025 wt% sodium hexametaphosphate aqueous solution and dispersed for 2 minutes with an ultrasonic homogenizer (US-600T) manufactured by Nippon Seiki Seisakusho. It measured using the measuring apparatus (Nikkiso Microtrac X-100).

(比表面積の測定)
BET式のマウンテック社製Macsorb model−1203を用いて測定した。
(Measurement of specific surface area)
The measurement was performed using a BET-type Macsorb model 1203.

(ペロブスカイト化合物粉体中の不純物の測定)
プラズマ発光分析装置(セイコーインスツルメンツ社製SPS3000)を用いて測定した。
(Measurement of impurities in perovskite compound powder)
The measurement was performed using a plasma emission analyzer (SPS3000 manufactured by Seiko Instruments Inc.).

(粉体写真の撮影)
日本電子製走査型電子顕微鏡JSM−5600を用いて撮影した。
(Powder photography)
Images were taken using a scanning electron microscope JSM-5600 manufactured by JEOL.

実施例1
(水熱法によるチタン酸バリウム粉体の製造)
(第一工程)
水酸化チタン( 酸化チタンとして30重量%)131.5g(チタンとして0.5モル) に窒素雰囲気下で水酸化バリウム八水塩(Ba(OH)2・8H2O)157.5g(バリウムとして0.5モル) を加え、加水して、スラリー濃度を1.0モル/L(BaTiO3 換算) に調整した。このスラリーをチタン製ビーカーに入れ、1L容量のオートクレープに仕込み、550〜600rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて5時間水熱反応を行った。反応終了後、得られたスラリーにpHが6.5になるまで炭酸ガスを吹き込んだ後、水洗、濾過し、110℃で乾燥して、チタン酸バリウムを得た。以下、このチタン酸バリウムを実施例1で得た水熱法によるチタン酸バリウムという。このチタン酸バリウムを加熱して、比表面積4.4m2/gのチタン酸バリウム固着物を得た。
Example 1
(Production of barium titanate powder by hydrothermal method)
(First step)
Titanium hydroxide (30% by weight as titanium oxide) 131.5 g (0.5 mol as titanium) and 157.5 g (as barium hydroxide) barium hydroxide octahydrate (Ba (OH) 2 .8H 2 O) in a nitrogen atmosphere 0.5 mol) was added and the mixture was hydrated to adjust the slurry concentration to 1.0 mol / L (in terms of BaTiO 3 ). This slurry is put into a titanium beaker, charged in a 1 L autoclave, heated to 200 ° C. at a rate of 100 ° C./hour with stirring at 550 to 600 rpm, and subjected to a hydrothermal reaction at 200 ° C. for 5 hours. It was. After completion of the reaction, carbon dioxide gas was blown into the resulting slurry until the pH became 6.5, then washed with water, filtered, and dried at 110 ° C. to obtain barium titanate. Hereinafter, this barium titanate is referred to as barium titanate obtained by the hydrothermal method obtained in Example 1. This barium titanate was heated to obtain a barium titanate fixed product having a specific surface area of 4.4 m 2 / g.

(第二工程)
このチタン酸バリウム固着物をそのままチタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウム固着物に対して同モルの水酸化バリウムを加え、加水した後、スラリー濃度を0.3モル/L(BaTiO3 換算) に調整した。これを容量1Lのオートクレーブ装置に仕込み、200〜250rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて2時間加熱した。この後、スラリーを濾過、水洗して、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
This barium titanate-fixed product was put in a titanium beaker as it was, and the same mole of barium hydroxide was added to the barium titanate-fixed product in a nitrogen atmosphere, and after addition, the slurry concentration was 0.3 mol / L (BaTiO3). Adjusted to 3 ). This was charged into an autoclave apparatus having a capacity of 1 L, heated to 200 ° C. at a rate of 100 ° C./hour while being stirred at 200 to 250 rpm, and heated at 200 ° C. for 2 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウムの粒度分布測定の結果、平均粒子径は0.5μmであり、比表面積は5.3m2/gであった。 The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate thus obtained, the average particle size was 0.5 μm and the specific surface area was 5.3 m 2 / g.

上記第一工程で得られたチタン酸バリウム固着物の電子顕微鏡写真を図1に示し、粒度分布を図2に示し、更に、第二工程で得られたチタン酸バリウム粉体の電子顕微鏡写真を図3に示し、粒度分布を図4に示す。   The electron micrograph of the barium titanate fixed substance obtained in the first step is shown in FIG. 1, the particle size distribution is shown in FIG. 2, and further, the electron micrograph of the barium titanate powder obtained in the second step. FIG. 3 shows the particle size distribution.

実施例2
(固相法によるチタン酸バリウム粉体の製造)
(第一工程)
堺化学工業(株)製高純度炭酸バリウムと高純度酸化チタンを等モル秤量し、鉄芯入りナイロンボール入りポリエチレン製ポットミルを用いて湿式混合した。この混合物を乾燥した後、1200℃で2時間加熱して、チタン酸バリウム固着物を得た。この固着物の比表面積は1.2m2/gであった。
Example 2
(Production of barium titanate powder by solid phase method)
(First step)
High-purity barium carbonate manufactured by Sakai Chemical Industry Co., Ltd. and high-purity titanium oxide were weighed in an equimolar amount, and wet-mixed using a polyethylene pot mill with a cored nylon ball. This mixture was dried and then heated at 1200 ° C. for 2 hours to obtain a barium titanate-fixed product. The specific surface area of this fixed substance was 1.2 m 2 / g.

(第二工程)
このチタン酸バリウム固着物を瑪瑙製乳鉢で解砕した後、チタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウム固着物に対して同モルの水酸化バリウムを加え、加水した後、スラリー濃度を1.0モル/L(BaTiO3 換算)に調整した。このスラリーを容量1Lのオートクレーブ装置に仕込み、550〜600rpmで攪拌しながら、100℃/時の割合で250℃まで昇温し、250℃にて5時間加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
After this barium titanate fixed material was crushed in a smoked mortar, it was placed in a titanium beaker, and the same mole of barium hydroxide was added to the barium titanate fixed material in a nitrogen atmosphere and hydrated. The amount was adjusted to 1.0 mol / L (BaTiO 3 conversion). The slurry was charged into an autoclave apparatus having a capacity of 1 L, heated to 250 ° C. at a rate of 100 ° C./hour while being stirred at 550 to 600 rpm, and heated at 250 ° C. for 5 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにうして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウム粉体の粒度分布測定の結果、平均粒子径は1.0μmであり、比表面積は1.7m2/gであった。 The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate powder thus obtained, the average particle size was 1.0 μm and the specific surface area was 1.7 m 2 / g.

上記第一工程で得られたチタン酸バリウム固着物の電子顕微鏡写真を図5に示し、粒度分布を図6に示し、また、上記第二工程で得られたチタン酸バリウム粉体の電子顕微鏡写真を図7に示し、粒度分布を図8に示す。   An electron micrograph of the barium titanate fixed product obtained in the first step is shown in FIG. 5, the particle size distribution is shown in FIG. 6, and an electron micrograph of the barium titanate powder obtained in the second step. Is shown in FIG. 7, and the particle size distribution is shown in FIG.

実施例3
(有機酸塩法によるチタン酸バリウム粉体の製造)
(第一工程)
濃度50g/L(チタン換算) の四塩化チタン水溶液450mLに濃度267.3g/L(塩化バリウム換算) の塩化バリウム水溶液450mLを加えて混合溶液を調製した。この混合溶液を温度70℃に保持した濃度144.7g/L(シュウ酸二水和物換算)のシュウ酸水溶液900mL中に加えて、シュウ酸バリウムチタニルを得た。このシュウ酸バリウムチタニルを水洗した後、130℃で乾燥した。このシュウ酸バリウムチタニルを860℃で2時間加熱してチタン酸バリウム固着物を得た。この固着物の比表面積は7.9m2/gであった。
Example 3
(Production of barium titanate powder by organic acid salt method)
(First step)
A mixed solution was prepared by adding 450 mL of an aqueous solution of barium chloride having a concentration of 267.3 g / L (converted to barium chloride) to 450 mL of an aqueous solution of titanium tetrachloride having a concentration of 50 g / L (converted to titanium). This mixed solution was added to 900 mL of an aqueous oxalic acid solution having a concentration of 144.7 g / L (converted to oxalic acid dihydrate) maintained at a temperature of 70 ° C. to obtain barium titanyl oxalate. The barium titanyl oxalate was washed with water and dried at 130 ° C. This barium titanyl oxalate was heated at 860 ° C. for 2 hours to obtain a barium titanate fixed product. The specific surface area of this fixed substance was 7.9 m 2 / g.

(第二工程)
このチタン酸バリウム固着物を瑪瑙製乳鉢で解砕した後、チタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウム固着物に対して同モルの水酸化バリウムを加え、加水した後、スラリー濃度を1.0モル/L(BaTiO3 換算) に調整した。このスラリーを容量1Lのオートクレーブ装置に仕込み、550〜600rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて2時間加熱した。加熱後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
After this barium titanate fixed material was crushed in a smoked mortar, it was placed in a titanium beaker, and the same mole of barium hydroxide was added to the barium titanate fixed material in a nitrogen atmosphere and hydrated. It was adjusted to 1.0 mol / L (BaTiO 3 conversion). The slurry was charged into an autoclave apparatus having a capacity of 1 L, heated to 200 ° C. at a rate of 100 ° C./hour while being stirred at 550 to 600 rpm, and heated at 200 ° C. for 2 hours. After heating, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウム粉体の粒度分布測定の結果、平均粒子径は3.8μmであり、比表面積は7.2m2/gであった。 The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate powder thus obtained, the average particle size was 3.8 μm and the specific surface area was 7.2 m 2 / g.

実施例4
(第一工程)
実施例1で得た水熱法によるチタン酸バリウムに、過剰の原料としてこのチタン酸バリウムに対して0.3モル%の堺化学工業(株)製高純度炭酸バリウムを加え、ジルコニアボール入りポリエチレン製ポットミルを用いて湿式混合し、これを加熱して、比表面積1.4m2/gのチタン酸バリウム固着物を得た。この固着物のX線回折によれば、チタン酸バリウム以外にオルトチタン酸バリウム(Ba2TiO4)のピークがみられた。
Example 4
(First step)
To the barium titanate obtained by the hydrothermal method obtained in Example 1, 0.3 mol% of high-purity barium carbonate manufactured by Sakai Chemical Industry Co., Ltd. is added as an excess raw material, and polyethylene containing zirconia balls is added. Wet mixing was performed using a pot mill, and this was heated to obtain a barium titanate fixed substance having a specific surface area of 1.4 m 2 / g. According to the X-ray diffraction of the fixed substance, a barium orthotitanate (Ba 2 TiO 4 ) peak was observed in addition to barium titanate.

(第二工程)
このチタン酸バリウム固着物をそのままチタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウム固着物に対して同モルの水酸化バリウムを加え、加水した後、スラリー濃度を0.3モル/Lに調整した。このスラリーを容量1Lのオートクレーブ装置に仕込み、200〜250rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて2時間加熱した。加熱後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
This barium titanate fixed substance is put in a titanium beaker as it is, and after adding the same mole of barium hydroxide to the barium titanate fixed substance in a nitrogen atmosphere and adding water, the slurry concentration is adjusted to 0.3 mol / L. did. The slurry was charged into an autoclave apparatus having a capacity of 1 L, heated to 200 ° C. at a rate of 100 ° C./hour while being stirred at 200 to 250 rpm, and heated at 200 ° C. for 2 hours. After heating, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体のX線回折によれば、Ba2TiO4 のピークは消失しており、更に、蛍光X線を用いて、この粉体がチタン酸バリウムであることを確認した。このようにして得られたチタン酸バリウム粉体の比表面積は2.0m2/gであった。 According to the X-ray diffraction of the powder thus obtained, the peak of Ba 2 TiO 4 has disappeared, and further, it is confirmed by using fluorescent X-ray that the powder is barium titanate. did. The specific surface area of the barium titanate powder thus obtained was 2.0 m 2 / g.

実施例5
(第一工程)
実施例1で得た水熱法によるチタン酸バリウムに、粒子成長促進剤としてチタン酸バリウムに対して1重量%の堺化学工業(株)製塩化バリウム二水塩を加えて、ポリエチレン製ポットミルで湿式混合した後、噴霧乾燥した。この乾燥物を加熱して、比表面積4.2m2/gのチタン酸バリウム固着物を得た。
Example 5
(First step)
To the barium titanate obtained by the hydrothermal method obtained in Example 1, 1% by weight of barium titanate dihydrate produced by Sakai Chemical Industry Co., Ltd. with respect to barium titanate as a particle growth accelerator was added. After wet mixing, it was spray dried. This dried product was heated to obtain a barium titanate fixed product having a specific surface area of 4.2 m 2 / g.

(第二工程)
このチタン酸バリウム固着物をそのままチタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウム固着物に対して1.5倍モルの水酸化バリウムを加え、加水した後、スラリー濃度を0.3モル/Lに調整した。このスラリーを容量1Lのオートクレープ装置に装着し、200〜250rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて2時間加熱した。加熱後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
This barium titanate-fixed product was put in a titanium beaker as it was, and 1.5 times moles of barium hydroxide was added to the barium titanate-fixed product in a nitrogen atmosphere. Adjusted to L. The slurry was attached to an autoclave apparatus having a capacity of 1 L, heated to 200 ° C. at a rate of 100 ° C./hour while being stirred at 200 to 250 rpm, and heated at 200 ° C. for 2 hours. After heating, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウム粉体の粒度分布測定の結果、平均粒子径は0.6μmであり、比表面積は4.6m2/gであった。更に、このようにして得られたチタン酸バリウム中の塩素含有量を蛍光X線分析装置により測定した結果、100ppm以下であった。 The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate powder thus obtained, the average particle size was 0.6 μm and the specific surface area was 4.6 m 2 / g. Furthermore, as a result of measuring the chlorine content in the barium titanate thus obtained with a fluorescent X-ray analyzer, it was 100 ppm or less.

実施例6
(第一工程)
実施例1で得た水熱法によるチタン酸バリウムに、粒子成長抑制剤としてチタン酸バリウムに対して0.3重量%の酸化ケイ素を加えて、ポリエチレン製ポットミルで湿式混合した後、噴霧乾燥した。この乾燥物を加熱して、比表面積は6.2m2/gのチタン酸バリウム固着物を得た。
Example 6
(First step)
To the barium titanate obtained by the hydrothermal method obtained in Example 1, 0.3% by weight of silicon oxide with respect to barium titanate was added as a particle growth inhibitor, wet-mixed in a polyethylene pot mill, and then spray-dried. . This dried product was heated to obtain a barium titanate fixed product having a specific surface area of 6.2 m 2 / g.

(第二工程)
このチタン酸バリウム固着物をそのままチタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウム固着物に対して等モルの水酸化バリウムを加え、加水した後、スラリー濃度を0.4モル/Lに調整した。このスラリーを容量200mLのオートクレーブ装置に仕込み、200〜250rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて2時間加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
This barium titanate fixed substance is put in a titanium beaker as it is, and after adding equimolar barium hydroxide to the barium titanate fixed substance in a nitrogen atmosphere and adding water, the slurry concentration is adjusted to 0.4 mol / L. did. The slurry was charged into an autoclave apparatus having a capacity of 200 mL, heated to 200 ° C. at a rate of 100 ° C./hour while being stirred at 200 to 250 rpm, and heated at 200 ° C. for 2 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウム粉体の粒度分布測定の結果、平均粒子径は0.5μmであり、比表面積は6.5m2/gであった。更に、このようにして得られたチタン酸バリウム中の酸化ケイ素含有量をプラズマ発光分光分析装置により測定した結果、900ppmであった。 The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate powder thus obtained, the average particle size was 0.5 μm and the specific surface area was 6.5 m 2 / g. Furthermore, the silicon oxide content in the barium titanate thus obtained was measured with a plasma emission spectroscopic analyzer, and as a result, it was 900 ppm.

実施例7
(固相法によるジルコン酸カルシウム粉体の製造)
(第一工程)
堺化学工業(株)製高純度炭酸カルシウムと高純度酸化ジルコニウムを等モル秤量し、ジルコニアボール入りポリエチレン製ポットミルを用いて湿式混合した。この混合物を乾燥した後、1150℃で2時間加熱して、比表面積3.0m2/gのジルコン酸カルシウム固着物を得た。
Example 7
(Production of calcium zirconate powder by solid phase method)
(First step)
High-purity calcium carbonate manufactured by Sakai Chemical Industry Co., Ltd. and high-purity zirconium oxide were weighed in an equimolar amount and wet-mixed using a polyethylene pot mill containing zirconia balls. This mixture was dried and then heated at 1150 ° C. for 2 hours to obtain a fixed calcium zirconate having a specific surface area of 3.0 m 2 / g.

(第二工程)
このジルコン酸カルシウム固着物を瑪瑙製乳鉢にて粗砕した後、チタン製ビーカーに入れ、ジルコン酸カルシウム固着物に対して同モルの水酸化ナトリウムを加え、加水した後、スラリー濃度を1.0モル/Lに調整した。このスラリーを容量1Lのオートクレーブ装置に仕込み、400〜450rpmで攪拌しながら、100℃/時の割合で250℃で昇温し、250℃にて5時間加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
The calcium zirconate fixed substance is roughly crushed in a smoked mortar, and then placed in a titanium beaker. After adding the same mole of sodium hydroxide to the calcium zirconate fixed substance and adding water, the slurry concentration is 1.0. Adjusted to mol / L. The slurry was charged into an autoclave apparatus having a capacity of 1 L, heated at 250 ° C. at a rate of 100 ° C./hour while being stirred at 400 to 450 rpm, and heated at 250 ° C. for 5 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線線を用いてジルコン酸カルシウムであることを確認した。また、このようにして得られたジルコン酸カルシウム粉体の粒度分布測定の結果、平均粒子径は1.2μmであり、比表面積は3.3m2/gであった。 The powder thus obtained was confirmed to be calcium zirconate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the calcium zirconate powder obtained in this manner, the average particle size was 1.2 μm and the specific surface area was 3.3 m 2 / g.

実施例8
(固相法によるチタン酸マグネシウム粉体の製造)
(第一工程)
堺化学工業(株)製高純度酸化マグネシウムと高純度酸化チタンを等モル秤量し、ジルコニアボール入りポリエチレン製ポットミルを用いて湿式混合した。この混合物を乾燥した後、850℃で2時間加熱して、比表面積2.5m2/gのチタン酸マグネシウム固着物を得た。
Example 8
(Manufacture of magnesium titanate powder by solid phase method)
(First step)
High-purity magnesium oxide and high-purity titanium oxide manufactured by Sakai Chemical Industry Co., Ltd. were equimolarly weighed and wet mixed using a polyethylene pot mill containing zirconia balls. The mixture was dried and then heated at 850 ° C. for 2 hours to obtain a magnesium titanate fixed product having a specific surface area of 2.5 m 2 / g.

(第二工程)
このチタン酸マグネシウム固着物を瑪瑙製乳鉢にて粗砕した後、チタン製ビーカーに入れ、チタン酸マグネシウム固着物に対して同モルの水酸化ナトリウムを加え、加水した後、スラリー濃度を1.0モル/Lに調整した。このスラリーを容量1Lのオートクレーブ装置に仕込み、100〜150rpmで攪拌しながら、100℃/時の割合で220℃まで昇温し、220℃にて5時間加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
The magnesium titanate-fixed product is roughly crushed in a smoked mortar and then placed in a titanium beaker. After adding the same mole of sodium hydroxide to the magnesium titanate-fixed product and adding water, the slurry concentration is 1.0. Adjusted to mol / L. The slurry was charged into an autoclave apparatus having a capacity of 1 L, heated to 220 ° C. at a rate of 100 ° C./hour while being stirred at 100 to 150 rpm, and heated at 220 ° C. for 5 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸マグネシウムであることを確認した。また、このようにして得られたチタン酸マグネシウム粉体の粒度分布測定の結果、平均粒子径は4.2μmであり、比表面積は2.9m2/gであった。 The powder thus obtained was confirmed to be magnesium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the magnesium titanate powder thus obtained, the average particle size was 4.2 μm, and the specific surface area was 2.9 m 2 / g.

実施例9
(水熱法によるチタン酸ストロンチウム粉体の製造)
(第一工程)
水酸化チタン(酸化チタンとして30重量%)131.5g(チタンとして0.5モル) に窒素雰囲気下で水酸化ストロンチウム八水塩(Sr(OH)2・8H2O)132.9g(ストロンチウムとして0.5モル) を加え、加水して、スラリー濃度を1.0モル/L(SrTiO3 換算) に調整した。このスラリーをチタン製ビーカーに入れ、容量1Lのオートクレーブに仕込み、550〜600rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて5時間水熱反応を行った。反応終了後、得られたスラリーにpHが6.5になるまで炭酸ガスを吹き込んだ後、水洗、濾過し、110℃で乾燥して、チタン酸ストロンチウムを得た。このチタン酸ストロンチウムを加熱して、比表面積2.5m2/gのチタン酸ストロンチウム固着物を得た。
Example 9
(Production of strontium titanate powder by hydrothermal method)
(First step)
131.5 g (as strontium) of strontium hydroxide octahydrate (Sr (OH) 2 .8H 2 O) in a nitrogen atmosphere to 131.5 g of titanium hydroxide (30% by weight as titanium oxide) (0.5 mol as titanium) 0.5 mol) was added and water was added to adjust the slurry concentration to 1.0 mol / L (in terms of SrTiO 3 ). The slurry was put into a titanium beaker, charged in a 1 L autoclave, heated to 200 ° C. at a rate of 100 ° C./hour with stirring at 550 to 600 rpm, and subjected to a hydrothermal reaction at 200 ° C. for 5 hours. . After completion of the reaction, carbon dioxide gas was blown into the obtained slurry until the pH became 6.5, then washed with water, filtered, and dried at 110 ° C. to obtain strontium titanate. This strontium titanate was heated to obtain a fixed strontium titanate having a specific surface area of 2.5 m 2 / g.

(第二工程)
このチタン酸ストロンチウム固着物をそのままチタン製ビーカーに入れ、窒素雰囲気下でチタン酸ストロンチウム固着物に対して同モルの水酸化ストロンチウムを加え、加水した後、スラリー濃度を0.5モル/Lに調整した。このスラリーを容量1Lのオートクレーブ装置に仕込み、550〜600rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて5時間加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
This strontium titanate fixed substance is put in a titanium beaker as it is, and after adding the same mole of strontium hydroxide to the strontium titanate fixed substance in a nitrogen atmosphere and adding water, the slurry concentration is adjusted to 0.5 mol / L. did. The slurry was charged into an autoclave apparatus having a capacity of 1 L, heated to 200 ° C. at a rate of 100 ° C./hour while being stirred at 550 to 600 rpm, and heated at 200 ° C. for 5 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸ストロンチウムであることを確認した。また、このようにして得られたチタン酸ストロンチウム粉体の粒度分布測定の結果、平均粒子径は0.7μmであり、比表面積は3.0m2/gであった。 The powder thus obtained was confirmed to be strontium titanate using X-ray diffraction and fluorescent X-ray. As a result of the particle size distribution measurement of the strontium titanate powder thus obtained, the average particle size was 0.7 μm and the specific surface area was 3.0 m 2 / g.

実施例10
(固相法によるチタン酸ジルコン酸バリウムカルシウム粉体の製造)
(第一工程)
高純度炭酸バリウム、炭酸カルシウム、酸化チタン及び酸化ジルコニウムをBa:Ca:Ti:Zrモル比が0.95:0.05:0.9:0.1となるように秤量し、ジルコニアボール入りポリエチレン製ポットミルを用いて湿式混合した。この混合物を乾燥した後、1000℃で2時間加熱して、比表面積3.1m2/gのチタン酸ジルコン酸バリウムカルシウム固着物を得た。
Example 10
(Production of barium calcium zirconate titanate powder by solid phase method)
(First step)
High-purity barium carbonate, calcium carbonate, titanium oxide and zirconium oxide are weighed so that the Ba: Ca: Ti: Zr molar ratio is 0.95: 0.05: 0.9: 0.1, and polyethylene containing zirconia balls Wet mixing was performed using a pot mill. This mixture was dried and then heated at 1000 ° C. for 2 hours to obtain a barium calcium zirconate titanate fixed product having a specific surface area of 3.1 m 2 / g.

(第二工程)
このチタン酸ジルコン酸バリウムカルシウム固着物を瑪瑙製乳鉢にて粗砕した後、チタン製ビーカーに入れ、窒素雰囲気下でチタン酸ジルコン酸バリウムカルシウム固着物に対して同モルの水酸化バリウムを加え、加水した後、スラリー濃度を1.0モル/Lに調整した。これを容量1Lのオートクレープ装置に仕込み、200〜250rpmで攪拌しながら、100℃/時の割合で180℃まで昇温し、180℃にて20時間加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
After roughly crushing this barium calcium zirconate titanate fixed product in a smoked mortar, put it in a titanium beaker, add the same mole of barium hydroxide to the barium calcium zirconate titanate fixed matter in a nitrogen atmosphere, After adding water, the slurry concentration was adjusted to 1.0 mol / L. This was charged in an autoclave apparatus having a capacity of 1 L, heated to 180 ° C. at a rate of 100 ° C./hour while being stirred at 200 to 250 rpm, and heated at 180 ° C. for 20 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸ジルコン酸バリウムカルシウムであることを確認した。また、このようにして得られたチタン酸ジルコン酸バリウムカルシウム粉体の粒度分布測定の結果、平均粒子径は0.8μmであり、比表面積は4.0m2/gであった。 The powder thus obtained was confirmed to be barium calcium zirconate titanate using X-ray diffraction and fluorescent X-ray. In addition, as a result of measuring the particle size distribution of the barium calcium zirconate titanate powder thus obtained, the average particle size was 0.8 μm and the specific surface area was 4.0 m 2 / g.

実施例11
(固相法によるチタン酸バリウム粉体の製造)
(第一工程)
堺化学工業(株)製高純度炭酸バリウムと高純度酸化チタンを等モル秤量し、更に、炭酸バリウムと酸化チタンとの合計量に、粒子成長促進剤として0.1重量%の塩化ナトリウムを加えて、ジルコニアボール入りポリエチレン製ポットミルを用いて湿式混合した。この混合物を噴霧乾燥した後、1150℃2時間加熱して、比表面積1.1m2/gのチタン酸バリウム固着物を得た。
Example 11
(Production of barium titanate powder by solid phase method)
(First step)
Equimolar amounts of high-purity barium carbonate and high-purity titanium oxide manufactured by Sakai Chemical Industry Co., Ltd. are added, and 0.1% by weight of sodium chloride is added as a particle growth promoter to the total amount of barium carbonate and titanium oxide. Then, wet mixing was performed using a polyethylene pot mill containing zirconia balls. This mixture was spray-dried and then heated at 1150 ° C. for 2 hours to obtain a barium titanate fixed product having a specific surface area of 1.1 m 2 / g.

(第二工程)
このチタン酸バリウム固着物を瑪瑙製乳鉢にて粗砕した後、チタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウム固着物に対して同モルの水酸化バリウムを加え、加水した後、スラリー濃度を1.0モル/Lに調整した。このスラリーを容量1Lのオートクレーブ装置に仕込み、550〜600rpmで攪拌しながら、100℃/時の割合で250℃まで昇温し、250℃にて3時間加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
After roughly crushing this barium titanate fixed substance in a smoked mortar, it was put in a titanium beaker, and the same mole of barium hydroxide was added to the barium titanate fixed substance in a nitrogen atmosphere, and after adding water, the slurry concentration Was adjusted to 1.0 mol / L. The slurry was charged into an autoclave apparatus having a capacity of 1 L, heated to 250 ° C. at a rate of 100 ° C./hour while being stirred at 550 to 600 rpm, and heated at 250 ° C. for 3 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウム粉体の粒度分布測定の結果、平均粒子径は1.1μmであり、比表面積は1.3m2/gであった。更に、このようにして得られたチタン酸バリウム中のナトリウム含有量をプラズマ発光分光分析装置により測定した結果、150ppmであった。 The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate powder thus obtained, the average particle size was 1.1 μm and the specific surface area was 1.3 m 2 / g. Further, the sodium content in the barium titanate thus obtained was measured by a plasma emission spectroscopic analyzer, and as a result, it was 150 ppm.

実施例12
(第一工程)
実施例1で得た水熱法によるチタン酸バリウムにポリピニルアルコールを加え、造粒した後、直径20mm、厚み2mmの成形体を作製した。この成形体を1400℃で4時間加熱して、タブレット状の焼結体を得た。
Example 12
(First step)
Polypinyl alcohol was added to the hydrothermal barium titanate obtained in Example 1 and granulated, and then a molded body having a diameter of 20 mm and a thickness of 2 mm was produced. This molded body was heated at 1400 ° C. for 4 hours to obtain a tablet-like sintered body.

(第二工程)
この焼結体をチタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウムに対して8モル倍の水酸化バリウムを加え、加水した。このスラリーを容量200mLのオートクレーブ装置に仕込み、100℃/時の割合で250℃まで昇温し、250℃にて50時間、攪拌することなく、加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
This sintered body was put into a titanium beaker, and 8 moles of barium hydroxide was added to the barium titanate in a nitrogen atmosphere to add water. This slurry was charged into an autoclave apparatus having a capacity of 200 mL, heated to 250 ° C. at a rate of 100 ° C./hour, and heated at 250 ° C. for 50 hours without stirring. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウム粉体の粒度分布測定の結果、平均粒子径は40μmであり、比表面積は0.11m2/gであった。このようにして得られたチタン酸バリウム粉体の電子顕微鏡写真を図9に示す。 The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate powder thus obtained, the average particle size was 40 μm and the specific surface area was 0.11 m 2 / g. An electron micrograph of the barium titanate powder thus obtained is shown in FIG.

実施例13
(アルコキシド法によるチタン酸バリウム粉体の製造)
(第一工程)
金属バリウムを窒素雰囲気下、80℃で脱水処理したイソプロピルアルコールに溶解させて、0.2モル/L濃度のバリウムイソプロポキシド溶液を調製した。また、チタンイソプロポキシドを窒素雰囲気下、脱水処理したイソプロピルアルコールに溶解させ、1.0モル/L濃度のチタンイソプロポキシド溶液を調整した。これらのバリウムイソプロポキシド溶液とチタンイソプロポキシド溶液をBa/Tiモル比が1/1になるようにフラスコに秤量し、窒素雰囲気下、2時間、攪拌しながら還流した。この後、脱炭酸した蒸留水をゆっくり加えて3時間熟成した後、室温まで冷却して、チタン酸バリウムを得た。このチタン酸バリウムを加熱して、比表面積2.5m2/gのチタン酸バリウム固着物を得た。
Example 13
(Production of barium titanate powder by alkoxide method)
(First step)
Metal barium was dissolved in isopropyl alcohol dehydrated at 80 ° C. in a nitrogen atmosphere to prepare a 0.2 mol / L barium isopropoxide solution. Further, titanium isopropoxide was dissolved in dehydrated isopropyl alcohol under a nitrogen atmosphere to prepare a 1.0 mol / L titanium isopropoxide solution. These barium isopropoxide solution and titanium isopropoxide solution were weighed in a flask so that the Ba / Ti molar ratio was 1/1 and refluxed with stirring for 2 hours in a nitrogen atmosphere. Thereafter, decarboxylated distilled water was slowly added and aged for 3 hours, and then cooled to room temperature to obtain barium titanate. This barium titanate was heated to obtain a barium titanate-fixed product having a specific surface area of 2.5 m 2 / g.

(第二工程)
このチタン酸バリウム固着物をそのままチタン製ビーカーに入れ、窒素雰囲気下でチタン酸バリウム固着物に対して同モルの水酸化バリウムを加え、加水した後、スラリー濃度を0.3モル/L(BaTiO3 換算) に調整した。このスラリーを容量1Lのオートクレーブ装置に仕込み、200〜250rpmで攪拌しながら、100℃/時の割合で200℃まで昇温し、200℃にて2時間加熱した。この後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。
(Second step)
This barium titanate-fixed product was put in a titanium beaker as it was, and the same mole of barium hydroxide was added to the barium titanate-fixed product in a nitrogen atmosphere, and after addition, the slurry concentration was 0.3 mol / L (BaTiO3). Adjusted to 3 ). The slurry was charged into an autoclave apparatus having a capacity of 1 L, heated to 200 ° C. at a rate of 100 ° C./hour while being stirred at 200 to 250 rpm, and heated at 200 ° C. for 2 hours. Thereafter, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder.

このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウム粉体の粒度分布測定の結果、平均粒子径は0.7μmであり、比表面積は3.1m2/gであった。 The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate powder thus obtained, the average particle size was 0.7 μm and the specific surface area was 3.1 m 2 / g.

比較例1
実施例2の第一工程で得られたチタン酸バリウム固着物は、プラズマ発光分光分析装置を用いて測定した結果、用いた原料に由来して、不純物としてジルコニウム8ppmを含むものであった。
Comparative Example 1
The barium titanate fixed product obtained in the first step of Example 2 was measured using a plasma emission spectroscopic analyzer, and as a result, derived from the raw material used, contained 8 ppm of zirconium as an impurity.

このチタン酸バリウム固着物をジルコニアボール入りナイロン製ポットに入れ、フリッチュ社製遊星ボールミルを用いて湿式粉砕した。このようにして得られた粉体は、X線回折及び蛍光X線を用いてチタン酸バリウムであることを確認した。また、このようにして得られたチタン酸バリウム粉体の粒度分布測定の結果、平均粒子径は0.8μmであり、比表面積は2.8m2/gであった。更に、このようにして得られたチタン酸バリウム中のジルコニウム含有量をプラズマ発光分析装置にて測定した結果、630ppmであった。このようにして得られたチタン酸バリウム粉体の電子顕微鏡写真を図10に示し、粒度分布を図11に示す。 This barium titanate-fixed substance was placed in a nylon pot containing zirconia balls and wet-ground using a planetary ball mill manufactured by Fritsch. The powder thus obtained was confirmed to be barium titanate using X-ray diffraction and fluorescent X-ray. As a result of measuring the particle size distribution of the barium titanate powder thus obtained, the average particle size was 0.8 μm and the specific surface area was 2.8 m 2 / g. Furthermore, as a result of measuring the zirconium content in the barium titanate thus obtained with a plasma emission analyzer, it was 630 ppm. An electron micrograph of the barium titanate powder thus obtained is shown in FIG. 10, and the particle size distribution is shown in FIG.

比較例2
実施例1の第一工程で得られたチタン酸バリウム固着物をガラス製ビーカーに入れ、加水して、スラリー濃度を1.0モル/Lに調整した。このスラリーを20℃で5時間、攪拌した後、スラリーを濾過、水洗し、110℃で乾燥し、瑪瑙製乳鉢で粉砕して粉体を得た。このようにして得られたチタン酸バリウムの粒度分布と比表面積を測定したが、いずれも熱処理前の固着物と変わらず、解砕されていなかった。
Comparative Example 2
The barium titanate-fixed product obtained in the first step of Example 1 was placed in a glass beaker and hydrated to adjust the slurry concentration to 1.0 mol / L. After stirring this slurry at 20 ° C. for 5 hours, the slurry was filtered, washed with water, dried at 110 ° C., and pulverized in a smoked mortar to obtain a powder. The particle size distribution and specific surface area of the barium titanate thus obtained were measured, but none of them was the same as the fixed matter before the heat treatment and was not crushed.

実施例1において、第一工程にて得られたチタン酸バリウム固着物の電子顕微鏡写真である。In Example 1, it is an electron micrograph of the barium titanate fixed thing obtained at the 1st process. 実施例1において、第一工程にて得られたチタン酸バリウム固着物の粒度分布を示すグラフである。In Example 1, it is a graph which shows the particle size distribution of the barium titanate fixed substance obtained at the 1st process. 実施例1において、第二工程にて得られたチタン酸バリウムの電子顕微鏡写真である。In Example 1, it is an electron micrograph of the barium titanate obtained at the 2nd process. 実施例1において、第二工程にて得られたチタン酸バリウムの粒度分布を示すグラフである。In Example 1, it is a graph which shows the particle size distribution of the barium titanate obtained at the 2nd process. 実施例2において、第一工程にて得られたチタン酸バリウム固着物の電子顕微鏡写真である。In Example 2, it is an electron micrograph of the barium titanate fixed thing obtained at the 1st process. 実施例2において、第一工程にて得られたチタン酸バリウム固着物の粒度分布を示すグラフである。In Example 2, it is a graph which shows the particle size distribution of the barium titanate fixed substance obtained at the 1st process. 実施例2において、第二工程にて得られたチタン酸バリウムの電子顕微鏡写真である。In Example 2, it is an electron micrograph of the barium titanate obtained at the 2nd process. 実施例2において、第二工程にて得られたチタン酸バリウムの粒度分布を示すグラフである。In Example 2, it is a graph which shows the particle size distribution of the barium titanate obtained at the 2nd process. 実施例12において、第二工程にて得られたチタン酸バリウムの電子顕微鏡写真である。In Example 12, it is an electron micrograph of the barium titanate obtained at the 2nd process. 比較例1において、粉砕媒体としてジルコニアビーズを用いてチタン酸バリウム固着物を湿式粉砕して得られたチタン酸バリウム粉体の電子顕微鏡写真である。In the comparative example 1, it is an electron micrograph of the barium titanate powder obtained by wet-grinding the barium titanate fixed substance using zirconia beads as a grinding medium. 比較例1において、粉砕媒体としてジルコニアビーズを用いてチタン酸バリウム固着物を湿式粉砕して得られたチタン酸バリウム粉体の粒度分布を示すグラフである。In Comparative example 1, it is a graph which shows the particle size distribution of the barium titanate powder obtained by wet-grinding the barium titanate fixed substance using a zirconia bead as a grinding medium.

Claims (8)

A群元素としてMg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種を有し、B群元素としてTi、Zr、Hf及びSnから選ばれる少なくとも1種を有し、一般式
ABO3
(式中、Aは少なくとも1種のA群元素を示し、Bは少なくとも1種のB群元素を示す。)
で表されるペロブスカイト化合物の固着物を得る第一工程と、上記第一工程で得られたペロブスカイト化合物の固着物を溶媒中で30〜500℃の範囲の温度で加熱して解砕する第二工程とを含むことを特徴とするペロブスカイト化合物粉体の製造方法。
The group A element has at least one selected from Mg, Ca, Sr, Ba and Pb, and the group B element has at least one selected from Ti, Zr, Hf and Sn.
ABO 3
(In the formula, A represents at least one group A element, and B represents at least one group B element.)
A first step of obtaining a fixed substance of the perovskite compound represented by the formula (2), and a second step of crushing the fixed substance of the perovskite compound obtained in the first step by heating in a solvent at a temperature in the range of 30 to 500 ° C. And a process for producing a perovskite compound powder.
第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の水酸化物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の酸化物及び/又は水酸化物との混合物を水性媒体の存在下、100〜300℃の範囲の温度で水熱処理し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得る請求項1に記載の方法。   In the first step, a hydroxide of at least one group A element selected from Mg, Ca, Sr, Ba and Pb and an oxide of at least one group B element selected from Ti, Zr, Hf and Sn, and A hydroperothermic treatment of the mixture with the hydroxide in the presence of an aqueous medium at a temperature in the range of 100 to 300 ° C., and heating the resulting reaction product at a temperature in the range of 100 to 1400 ° C. to form a perovskite compound The method according to claim 1, wherein a fixed product is obtained. 第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の酸化物及び/又は加熱により酸化物を生成する化合物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の酸化物及び/又は加熱により酸化物を生成する化合物との混合物を600〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得る請求項1に記載の方法。   In the first step, an oxide of at least one group A element selected from Mg, Ca, Sr, Ba and Pb and / or a compound which generates an oxide by heating and at least selected from Ti, Zr, Hf and Sn The mixture of the oxide of 1 type B element and / or the compound which produces | generates an oxide by heating is heated at the temperature of the range of 600-1400 degreeC, The fixed thing of a perovskite compound is obtained. Method. 第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素の水溶性塩とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素の水溶性塩とシュウ酸及びクエン酸から選ばれる少なくとも1種の有機酸とから複塩を形成した後、この複塩を400〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得る請求項1に記載の方法。   In the first step, a water-soluble salt of at least one group A element selected from Mg, Ca, Sr, Ba and Pb and a water-soluble salt of at least one group B element selected from Ti, Zr, Hf and Sn A double salt is formed from at least one organic acid selected from oxalic acid and citric acid, and the double salt is heated at a temperature in the range of 400 to 1400 ° C. to obtain a fixed perovskite compound. The method according to 1. 第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素のアルコキシド及び/又は水酸化物とTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素のアルコキシドとの混合物を加水分解し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得る請求項1に記載の方法。   In the first step, an alkoxide and / or hydroxide of at least one group A element selected from Mg, Ca, Sr, Ba and Pb and at least one group B element selected from Ti, Zr, Hf and Sn The method according to claim 1, wherein the mixture of alkoxide with alkoxide is hydrolyzed, and the obtained reaction product is heated at a temperature in the range of 100 to 1400 ° C. to obtain a fixed perovskite compound. 第一工程において、Mg、Ca、Sr、Ba及びPbから選ばれる少なくとも1種のA群元素のゾルとTi、Zr、Hf及びSnから選ばれる少なくとも1種のB群元素のゾルとの混合物をゲル化し、得られた反応生成物を100〜1400℃の範囲の温度で加熱して、ペロブスカイト化合物の固着物を得る請求項1に記載の方法。   In the first step, a mixture of a sol of at least one group A element selected from Mg, Ca, Sr, Ba and Pb and a sol of at least one group B element selected from Ti, Zr, Hf and Sn is used. The method according to claim 1, wherein the reaction product obtained by gelation is heated at a temperature in the range of 100 to 1400 ° C. to obtain a fixed perovskite compound. 第一工程において、ペロブスカイト化合物粒子の成長を促進させ、又は抑制する添加剤を含むペロブスカイト化合物の固着物を得る請求項1から6のいずれかに記載の方法。   The method according to any one of claims 1 to 6, wherein in the first step, a fixed substance of the perovskite compound containing an additive that promotes or suppresses the growth of the perovskite compound particles is obtained. 第二工程において、酸又は塩基を含む溶媒中でペロブスカイト化合物の固着物を加熱する請求項1から7のいずれかに記載の方法。

The method according to any one of claims 1 to 7, wherein in the second step, the fixed substance of the perovskite compound is heated in a solvent containing an acid or a base.

JP2004236105A 2003-08-13 2004-08-13 Method for producing perovskite compound powder Expired - Fee Related JP4356552B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004236105A JP4356552B2 (en) 2003-08-13 2004-08-13 Method for producing perovskite compound powder
CN2005800274104A CN101014538B (en) 2004-08-13 2005-02-09 Method for producing perovskite compound powder
KR1020077005718A KR101158985B1 (en) 2004-08-13 2005-02-09 Process for producing perovskite compound powder
EP05710287.3A EP1798200B1 (en) 2004-08-13 2005-02-09 Process for producing perovskite compound powder
US11/660,231 US9005568B2 (en) 2004-08-13 2005-02-09 Process for production of powder of perovskite compound
PCT/JP2005/002387 WO2006016428A1 (en) 2004-08-13 2005-02-09 Process for producing perovskite compound powder
TW094104149A TWI331135B (en) 2004-08-13 2005-02-14 Process for production of powder of perovskite compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003293261 2003-08-13
JP2004236105A JP4356552B2 (en) 2003-08-13 2004-08-13 Method for producing perovskite compound powder

Publications (2)

Publication Number Publication Date
JP2005089293A true JP2005089293A (en) 2005-04-07
JP4356552B2 JP4356552B2 (en) 2009-11-04

Family

ID=34466885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236105A Expired - Fee Related JP4356552B2 (en) 2003-08-13 2004-08-13 Method for producing perovskite compound powder

Country Status (1)

Country Link
JP (1) JP4356552B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036603A (en) * 2004-07-28 2006-02-09 Tdk Corp Method for manufacturing barium titanate powder, barium titanate powder and electronic component
JP2007088022A (en) * 2005-09-20 2007-04-05 Kyocera Corp Multilayer piezoelectric body
WO2010026982A1 (en) * 2008-09-04 2010-03-11 住友化学株式会社 Aluminum titanate ceramic manufacturing method
CN102205718A (en) * 2010-03-12 2011-10-05 精工爱普生株式会社 Liquid ejecting head and liquid ejecting apparatus
JP2013227212A (en) * 2012-03-30 2013-11-07 Canon Inc Piezoelectric ceramic, piezoelectric element, liquid ejection head, ultrasonic motor, and dust removing device
JP2015151996A (en) * 2014-02-19 2015-08-24 三菱日立パワーシステムズ株式会社 Turbine member temperature estimation method
JP2017501103A (en) * 2013-12-20 2017-01-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Method for producing single crystal MgTiO3 flakes
CN113292096A (en) * 2021-06-09 2021-08-24 曲阜师范大学 Preparation method for synthesizing inorganic perovskite nanocrystalline by non-injection one-step method
WO2022202583A1 (en) * 2021-03-26 2022-09-29 デンカ株式会社 Inorganic oxide powder, resin composition, and compression molded article
WO2022202584A1 (en) * 2021-03-26 2022-09-29 デンカ株式会社 Inorganic oxide powder, resin composition, and compression-molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103904A (en) * 1987-02-25 1989-04-21 Nippon Shokubai Kagaku Kogyo Co Ltd Production of inorganic globular particulates
JPH03174355A (en) * 1989-12-01 1991-07-29 Nippon Chem Ind Co Ltd Spherical porcelain for fixing and milling and method for mixing and milling starting material for titanate ceramic
JPH0524845A (en) * 1991-07-19 1993-02-02 Fuji Elelctrochem Co Ltd Method for controlling dielectric characteristic of dielectric porcelain composition
JPH05178617A (en) * 1991-12-28 1993-07-20 Naigai Ceramics Kk Production of spherical particulate made of titanate and spherical particulate obtained by the same
JPH05330824A (en) * 1991-04-19 1993-12-14 Teika Corp Barium titanate and its production
JP2003212543A (en) * 2002-01-17 2003-07-30 Samsung Electro Mech Co Ltd Method for manufacturing barium titanate powder through oxalate
JP2004137115A (en) * 2002-10-18 2004-05-13 Murata Mfg Co Ltd Production method for calcium-modified barium titanate powder, and calcium-modified barium titanate powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103904A (en) * 1987-02-25 1989-04-21 Nippon Shokubai Kagaku Kogyo Co Ltd Production of inorganic globular particulates
JPH03174355A (en) * 1989-12-01 1991-07-29 Nippon Chem Ind Co Ltd Spherical porcelain for fixing and milling and method for mixing and milling starting material for titanate ceramic
JPH05330824A (en) * 1991-04-19 1993-12-14 Teika Corp Barium titanate and its production
JPH0524845A (en) * 1991-07-19 1993-02-02 Fuji Elelctrochem Co Ltd Method for controlling dielectric characteristic of dielectric porcelain composition
JPH05178617A (en) * 1991-12-28 1993-07-20 Naigai Ceramics Kk Production of spherical particulate made of titanate and spherical particulate obtained by the same
JP2003212543A (en) * 2002-01-17 2003-07-30 Samsung Electro Mech Co Ltd Method for manufacturing barium titanate powder through oxalate
JP2004137115A (en) * 2002-10-18 2004-05-13 Murata Mfg Co Ltd Production method for calcium-modified barium titanate powder, and calcium-modified barium titanate powder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036603A (en) * 2004-07-28 2006-02-09 Tdk Corp Method for manufacturing barium titanate powder, barium titanate powder and electronic component
JP4626207B2 (en) * 2004-07-28 2011-02-02 Tdk株式会社 Method for producing barium titanate powder
JP2007088022A (en) * 2005-09-20 2007-04-05 Kyocera Corp Multilayer piezoelectric body
WO2010026982A1 (en) * 2008-09-04 2010-03-11 住友化学株式会社 Aluminum titanate ceramic manufacturing method
CN102143925A (en) * 2008-09-04 2011-08-03 住友化学株式会社 Aluminum titanate ceramic manufacturing method
CN102205718A (en) * 2010-03-12 2011-10-05 精工爱普生株式会社 Liquid ejecting head and liquid ejecting apparatus
JP2013227212A (en) * 2012-03-30 2013-11-07 Canon Inc Piezoelectric ceramic, piezoelectric element, liquid ejection head, ultrasonic motor, and dust removing device
JP2017501103A (en) * 2013-12-20 2017-01-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Method for producing single crystal MgTiO3 flakes
JP2015151996A (en) * 2014-02-19 2015-08-24 三菱日立パワーシステムズ株式会社 Turbine member temperature estimation method
WO2022202583A1 (en) * 2021-03-26 2022-09-29 デンカ株式会社 Inorganic oxide powder, resin composition, and compression molded article
WO2022202584A1 (en) * 2021-03-26 2022-09-29 デンカ株式会社 Inorganic oxide powder, resin composition, and compression-molded article
JP7574407B2 (en) 2021-03-26 2024-10-28 デンカ株式会社 Inorganic oxide powder, resin composition and compression molded product
JP7574406B2 (en) 2021-03-26 2024-10-28 デンカ株式会社 Inorganic oxide powder, resin composition and compression molded product
CN113292096A (en) * 2021-06-09 2021-08-24 曲阜师范大学 Preparation method for synthesizing inorganic perovskite nanocrystalline by non-injection one-step method

Also Published As

Publication number Publication date
JP4356552B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
US9005568B2 (en) Process for production of powder of perovskite compound
JP2004300027A (en) Barium titanate and its production method
JP4356552B2 (en) Method for producing perovskite compound powder
US7871595B2 (en) Fine barium titanate particles
JP5353728B2 (en) Method for producing the composition
JP5445412B2 (en) Method for producing composite oxide powder
JP2007137759A (en) Barium titanate particulate powder and dispersion
JP4702515B2 (en) Tetragonal barium titanate fine particle powder and production method thereof
JP5879078B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2005075700A (en) Method for manufacturing composition
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2005089294A (en) Method for disintegrating agglomerated inorganic compound particle
JP4806893B2 (en) Method for producing oxide powder having perovskite structure
JP2004315344A (en) Method for manufacturing single crystal ceramic particle
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP3216160B2 (en) Method for producing perovskite-type composite oxide powder
WO2019111586A1 (en) Method for producing perovskite barium titanate powder
JP2011225425A (en) Barium titanate powder and method for producing the same
JP2007186379A (en) Method for manufacturing alpha alumina particle
JP2009078960A (en) Method for producing compound oxide powder
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2005289791A (en) Method for producing fine particle alpha-alumina exhibiting high rate of polishing
JP2022031132A (en) Nitride phosphor and production method of the same
CN117645538A (en) Method for preparing alkali-catalyzed superfine barium titanyl oxalate and method for preparing barium titanate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4356552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees