JP2005088465A - Manufacturing method for conductor-coated polyimide film and conductor-coated polyimide film - Google Patents

Manufacturing method for conductor-coated polyimide film and conductor-coated polyimide film Download PDF

Info

Publication number
JP2005088465A
JP2005088465A JP2003327183A JP2003327183A JP2005088465A JP 2005088465 A JP2005088465 A JP 2005088465A JP 2003327183 A JP2003327183 A JP 2003327183A JP 2003327183 A JP2003327183 A JP 2003327183A JP 2005088465 A JP2005088465 A JP 2005088465A
Authority
JP
Japan
Prior art keywords
conductor
polyimide
polyimide film
layer
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003327183A
Other languages
Japanese (ja)
Inventor
Hitoshi Kimura
均 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003327183A priority Critical patent/JP2005088465A/en
Publication of JP2005088465A publication Critical patent/JP2005088465A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily form a conductive layer having a thickness of less than 10 μm, to enhance adhesion strength between the conductive layer and a sheet at a high temperature and during heat-holding, and to give a flat jointing boundary surface between the conductive layer and a sheet to prevent variation of pattern width due to unevenness of the jointing boundary surface between the conductive layer and the sheet from being generated in the case of forming a fine pattern on the conductive layer. <P>SOLUTION: The method comprises a process of conducting electroless plating of not more than 5 μm to a polyimide film (3) made by integrally laminating a thermoplastic resin layer (1) having a glass transition temperature of not lower than 150°C on at least one surface of a film (2) of a highly heat-resistant aromatic polyimide, a process of precipitating electro-copper-plating to desired thickness, and a process of heating the integrated conductive layer and the polyimide resin layer of the obtained conductor-coated polyimide at 260°C to 550°C in vacuum or under inert atmosphere to strengthen the adhesion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子部品製造においてプリント配線板等の材料として使用される導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムに関するものである。   The present invention relates to a method for producing a conductor-coated polyimide film used as a material for printed wiring boards and the like in the production of electronic components, and a conductor-coated polyimide film.

ポリイミド樹脂は、優れた耐熱性を有し、機械的、電気的そして化学的特性も良好であり、フレキシブルプリント回路基板(FPC)、テープ自動ボンディング(TAB)用基板等の絶縁材料として用いられている。例えば、芳香族ポリイミドフィルムと銅箔とをエポキシ樹脂などの熱硬化性接着剤で貼り合わせてラミネート法によるFPC用やTBA用のフレキシブル基板とすることが行われている。ラミネート法によるフレキシブル基板では、銅箔の接着力が保持できる温度が低いという熱時の接着強度の問題や、エッチング工程で熱硬化性接着剤層に塩素や硫酸イオン等が吸着されて絶縁が劣化する恐れがあるという問題があった。そこで、無接着剤タイプのフレキシブル基板が開発されてきている。無接着剤タイプのフレキシブル基板の製造法としては、ポリイミドフィルム表面にスパッタリング、イオンプレーティング、蒸着等により直接金属層を被着する方法が検討されている。また、ポリイミドの前駆体であるポリアミック酸を銅箔上に塗布した後、ポリアミドをイミド化してフレキシブル基板とする方法や、芳香族ポリイミドからなる基体層の片面または両面に、熱圧着性を有するポリイミドを積層したシートを作製し、このシートと銅箔とを重ね合せ加熱圧着して、絶縁層が全てポリイミドからなるフレキシブル基板が検討されている(例えば、特許文献1、特許文献2参照。)。
特開平10−075053号公報(第2頁、第3頁) 特公平7−102649号公報
Polyimide resin has excellent heat resistance and good mechanical, electrical and chemical properties, and is used as an insulating material for flexible printed circuit boards (FPC) and automatic tape bonding (TAB) substrates. Yes. For example, an aromatic polyimide film and a copper foil are bonded together with a thermosetting adhesive such as an epoxy resin to form a flexible substrate for FPC or TBA by a laminating method. In the flexible substrate by the laminate method, the insulation temperature deteriorates due to the problem of adhesive strength during heating that the temperature at which the adhesive strength of the copper foil can be maintained is low and the thermosetting adhesive layer is adsorbed to the thermosetting adhesive layer in the etching process. There was a problem of fear of doing. Therefore, an adhesive-free flexible substrate has been developed. As a method for producing a non-adhesive type flexible substrate, a method of directly depositing a metal layer on a polyimide film surface by sputtering, ion plating, vapor deposition or the like has been studied. Also, after applying polyamic acid, which is a polyimide precursor, on a copper foil, a method of imidizing polyamide to form a flexible substrate, or a polyimide having thermocompression bonding on one or both sides of a base layer made of aromatic polyimide A flexible substrate in which the insulating layer is entirely made of polyimide has been studied by laminating sheets and laminating and heat-pressing the sheet and copper foil (see, for example, Patent Document 1 and Patent Document 2).
Japanese Patent Laid-Open No. 10-075053 (page 2, page 3) Japanese Examined Patent Publication No. 7-102649

上述したポリイミドフィルム表面にスパッタリング、イオンプレーティング、蒸着等により直接金属層を被着する方法では、金属層を被着した後で銅層を電気めっきで形成できるため、屈曲性を有しファインパターンの形成に適した厚さ9μm未満の導体層を容易に形成でき、かつ導体層とポリイミドフィルムとの接合界面が平坦であるため、ファインパターンの形成に適した方法であるが、導体層の接着強度が不十分であるという問題と、加熱保持時の導体層の接着強度の低下が著しいという問題があった。さらに、金属層を被着する際に微小なピンホールが発生し、それを起因とする、金属層上に形成した銅層の欠落の問題が発生している。   In the above-described method of directly depositing a metal layer on the polyimide film surface by sputtering, ion plating, vapor deposition, etc., the copper layer can be formed by electroplating after the metal layer is deposited. A conductor layer with a thickness of less than 9 μm that is suitable for the formation of metal can be easily formed, and the bonding interface between the conductor layer and the polyimide film is flat. There was a problem that the strength was insufficient and a problem that the adhesive strength of the conductor layer during the heating and holding was significantly reduced. Furthermore, when a metal layer is deposited, a minute pinhole is generated, which causes a problem of lack of a copper layer formed on the metal layer.

一方、ポリイミドの前駆体であるポリアミック酸を銅箔上に塗布した後、ポリアミドをイミド化してフレキシブル基板とする方法や、芳香族ポリイミドからなる基体層の片面または両面に、熱圧着性を有するポリイミドを積層したシートを作製し、このシートと銅箔とを重ね合せ加熱圧着して、絶縁層が全てポリイミドからなるフレキシブル基板とする方法の場合には、銅箔を使用するため、屈曲性を有しファインパターンの形成に適した厚さ10μm未満の導体層を形成することが困難であり、また、銅箔のアンカー効果を利用して銅箔とポリイミドとの接着を行っているため、接着強度は高いが、エッチングによってファインパターンを形成したときに、アンカー効果を生じさせる銅箔表面の凹凸を起因とするパターン幅のバラツキが発生するという問題があった。   On the other hand, after applying polyamic acid, which is a polyimide precursor, on a copper foil, a method of imidizing polyamide to form a flexible substrate, or a polyimide having thermocompression bonding on one or both sides of a base layer made of aromatic polyimide In the case of a method in which a sheet is laminated and this sheet and a copper foil are laminated and heat-bonded to form a flexible substrate in which the insulating layer is entirely made of polyimide, the copper foil is used. However, it is difficult to form a conductor layer with a thickness of less than 10 μm, which is suitable for forming fine patterns, and because the copper foil and polyimide are bonded using the anchor effect of the copper foil, However, when the fine pattern is formed by etching, the pattern width varies due to the unevenness of the copper foil surface that causes the anchor effect. There has been a problem that is.

本発明は、上記の事情に鑑みて成されたもので、その目的とするところは、芳香族ポリイミドを基体層とするシート上に導体層を形成している導体被覆ポリイミド基板であって、導体層の厚みを10μm未満に容易に形成でき、導体層とシートとの常温時及び加熱保持時の接着強度が高く、かつ、導体層とシートとの接合界面が平坦であって、導体層にファインパターンを形成したときに、導体層とシートとの接合界面の凹凸に起因するパターン幅のバラツキが生じないようにできる導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is a conductor-coated polyimide substrate in which a conductor layer is formed on a sheet having an aromatic polyimide as a base layer, the conductor The thickness of the layer can be easily formed to be less than 10 μm, the adhesive strength between the conductor layer and the sheet at room temperature and at the time of heating and holding is high, the bonding interface between the conductor layer and the sheet is flat, and the conductor layer is fine. An object of the present invention is to provide a method for producing a conductor-coated polyimide film and a conductor-coated polyimide film that can prevent variations in pattern width caused by unevenness of the bonding interface between the conductor layer and the sheet when a pattern is formed.

本願発明者は、熱可塑ポリイミド樹脂層が、加熱しても形態の変化がない耐熱性の芳香族ポリイミドフィルムに積層されているフィルムの熱可塑性ポリイミド樹脂層上に、所定の厚み以下の無電解めっき薄膜と続けて電気銅めっきをおこなった導体層が,弱い接合にて一体化されているものを、加熱してその熱可塑ポリイミド樹脂層が軟化し導体層との接着性を更に強めることで、導体層とシートとの界面が平滑でも、十分に高い常温時および加熱保持時の接合強度が得られることを見出し、本発明に至ったものである。   The inventor of the present application is an electroless device having a predetermined thickness or less on a thermoplastic polyimide resin layer of a film laminated on a heat-resistant aromatic polyimide film in which the thermoplastic polyimide resin layer does not change in form even when heated. By heating a plated thin film and a conductive layer that has been electroplated with copper, followed by weak bonding, the thermoplastic polyimide resin layer is softened to further strengthen the adhesion to the conductive layer. The present inventors have found that even when the interface between the conductor layer and the sheet is smooth, a sufficiently high bonding strength can be obtained at room temperature and during heating and holding.

具体的には、本発明の請求項1に係る導体被覆ポリイミドフィルムの製造方法は、ガラス転移温度が150℃以上の熱可塑性ポリイミド樹脂層が高耐熱性の芳香族ポリイミドからなるフィルムの少なくとも片側に一体に積層されているポリイミドフィルムに、5μm以下の無電解めっきを行う工程と、次いで、電気銅めっきを所望の厚みまで析出させる工程と、得られた導体被覆ポリイミドの一体化した導体層とポリイミド樹脂層を260℃〜550℃の温度で真空又は不活性雰囲気で加熱し接着強化することを特徴としている。   Specifically, in the method for producing a conductor-coated polyimide film according to claim 1 of the present invention, a thermoplastic polyimide resin layer having a glass transition temperature of 150 ° C. or higher is formed on at least one side of a film made of highly heat-resistant aromatic polyimide. A step of performing electroless plating of 5 μm or less on the integrally laminated polyimide film, a step of depositing electrolytic copper plating to a desired thickness, and a conductor layer and polyimide obtained by integrating the obtained conductor-coated polyimide The resin layer is heated at a temperature of 260 ° C. to 550 ° C. in a vacuum or an inert atmosphere to enhance adhesion.

本発明の請求項2に係る導体被覆ポリイミドフィルムの製造方法は、厚み10μm以下の電気銅めっきをし加熱したものに、さらに電気銅めっきを施すことを特徴としている。   The method for producing a conductor-coated polyimide film according to claim 2 of the present invention is characterized in that electrolytic copper plating having a thickness of 10 μm or less is applied to the heated one, and further subjected to electrolytic copper plating.

本発明の請求項3に係る導体被覆ポリイミドフィルムの製造方法は、ガラス転移温度が150℃以上の熱可塑性ポリイミド樹脂層が芳香族テトラカルボン酸類と複数個のベンゼン環を有する芳香族ジアミンとから得られた熱可塑性の芳香族ポリイミドからなり高耐熱性の芳香族ポリイミドが、ビフェニルテトラカルボン酸類とフェニレンジアミンとから得られた芳香族ポリイミド、または、ピロメット酸二無水物と芳香族ジアミンから得られたものであることを特徴としている。   In the method for producing a conductor-coated polyimide film according to claim 3 of the present invention, a thermoplastic polyimide resin layer having a glass transition temperature of 150 ° C. or higher is obtained from an aromatic tetracarboxylic acid and an aromatic diamine having a plurality of benzene rings. A heat-resistant aromatic polyimide composed of the obtained thermoplastic aromatic polyimide was obtained from an aromatic polyimide obtained from biphenyltetracarboxylic acid and phenylenediamine, or from pyrometic dianhydride and aromatic diamine. It is characterized by being.

本発明の請求項4に係る導体被覆ポリイミドフィルムの製造方法は、5μm以下の無電解めっきが銅、または、ニッケル、または、コバルトの導体、または、それら合金であることを特徴としている。   The method for producing a conductor-coated polyimide film according to claim 4 of the present invention is characterized in that the electroless plating of 5 μm or less is a copper, nickel, or cobalt conductor, or an alloy thereof.

本発明の請求項5に係る導体被覆ポリイミドフィルムの製造方法は、ポリイミドへの無電解めっきが熱可塑樹脂に加熱接着した貴金属微粒子または還元された銅微粒子を核として無電解めっきを行うことを特徴としている。   The method for producing a conductor-coated polyimide film according to claim 5 of the present invention is characterized in that electroless plating on polyimide performs electroless plating using noble metal fine particles heat-bonded to a thermoplastic resin or reduced copper fine particles as a nucleus. It is said.

本発明の請求項6に係る導体被覆ポリイミドフィルムは、請求項1ないし請求項5いずれか記載の導体被覆ポリイミドフィルムの製造方法を用いて製造してなることを特徴としている。   A conductor-coated polyimide film according to a sixth aspect of the present invention is characterized by being manufactured using the method for producing a conductor-coated polyimide film according to any one of the first to fifth aspects.

本発明の請求項1ないし請求項5に係る導体被覆ポリイミドフィルムの製造方法によると、導体層の厚みを10μm未満に容易に形成することができ、導体層とシートとの常温時及び加熱保持時の接着強度が高く、かつ、導体層とシートとの接合界面が平坦であって、導体層にファインパターンを形成したときに、導体層とシートとの接合界面の凹凸に起因するパターン幅のバラツキが生じないようにできる導体被覆ポリイミドフィルムを製造することができる。   According to the method for producing a conductor-coated polyimide film according to claims 1 to 5 of the present invention, the thickness of the conductor layer can be easily formed to be less than 10 μm, and the conductor layer and the sheet are at room temperature and when heated. The bonding strength between the conductor layer and the sheet is flat, and when the fine pattern is formed on the conductor layer, the pattern width varies due to the unevenness of the joint interface between the conductor layer and the sheet. It is possible to produce a conductor-coated polyimide film that can prevent the occurrence of

本発明の請求項6に係る導体被覆ポリイミドフィルムによると、請求項1ないし請求項5いずれか記載の導体被覆ポリイミドフィルムの製造方法を用いて製造してなるものであるので、導体層の厚みを10μm未満に容易に形成することができ、導体層とシートとの常温時及び加熱保持時の接着強度が高く、かつ、導体層とシートとの接合界面が平坦であって、導体層にファインパターンを形成したときに、導体層とシートとの接合界面の凹凸に起因するパターン幅のバラツキが生じないようにできる導体被覆ポリイミドフィルムとなる。   According to the conductor-coated polyimide film according to claim 6 of the present invention, the conductor-coated polyimide film is produced by using the method for producing a conductor-coated polyimide film according to any one of claims 1 to 5. It can be easily formed to be less than 10 μm, the adhesive strength between the conductor layer and the sheet at room temperature and at the time of heating and holding is high, the bonding interface between the conductor layer and the sheet is flat, and the conductor layer has a fine pattern. When the is formed, a conductor-coated polyimide film can be obtained in which variations in the pattern width due to the unevenness of the bonding interface between the conductor layer and the sheet do not occur.

以下に、本発明を実施するための最良の形態について、図面に基づいて詳しく説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は、本発明の導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを説明するための断面図である。図2は、本発明の導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムにおいて得られる導体被覆ポリイミドフィルムを示した断面図である。図3は、本発明の導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを説明するための図1におけるポリイミドフィルムの部分のみを示した断面図である。   FIG. 1 is a cross-sectional view for explaining the method for producing a conductor-coated polyimide film of the present invention and the conductor-coated polyimide film. FIG. 2 is a cross-sectional view showing the conductor-coated polyimide film obtained in the method for producing a conductor-coated polyimide film of the present invention and the conductor-coated polyimide film. FIG. 3 is a cross-sectional view showing only the portion of the polyimide film in FIG. 1 for explaining the method for producing a conductor-coated polyimide film of the present invention and the conductor-coated polyimide film.

本発明の導体被覆ポリイミドフィルムの製造方法では、図3に示すように、ガラス転移温度が150℃以上の熱可塑性ポリイミド樹脂層(1)が高耐熱性の芳香族ポリイミドからなるフィルム(2)の少なくとも片側に一体に積層されているポリイミドフィルム(3)が用いられ、このポリイミドフィルム(3)に5μm以下の無電解めっきを行う工程が行われて、図1に示すごとく、無電解めっき層(4)が形成されるとともに、電気銅めっきを所望の厚みまで析出させる工程により、電解銅めっき層(5)が形成されるものである。   In the method for producing a conductor-coated polyimide film of the present invention, as shown in FIG. 3, the thermoplastic polyimide resin layer (1) having a glass transition temperature of 150 ° C. or higher is made of a highly heat-resistant aromatic polyimide film (2). A polyimide film (3) integrally laminated on at least one side is used, and a step of performing electroless plating of 5 μm or less on this polyimide film (3) is performed. As shown in FIG. 4) is formed, and the electrolytic copper plating layer (5) is formed by the step of depositing electrolytic copper plating to a desired thickness.

また、図2に示すごとく、厚み10μm以下の電気銅めっきをし加熱したものに、さらに電気銅めっきを施すことにより、上記電解銅めっき層(5)の上に2次電解銅めっき層(6)が形成されたものであってもかまわないものである。   Moreover, as shown in FIG. 2, the electrolytic copper plating having a thickness of 10 μm or less is heated and further subjected to electrolytic copper plating, whereby a secondary electrolytic copper plating layer (6) is formed on the electrolytic copper plating layer (5). ) May be formed.

以下、本発明を詳細に説明していく。   Hereinafter, the present invention will be described in detail.

本発明において使用される高耐熱性の芳香族ポリイミドは芳香族テトラカルボン酸又はその誘導体である芳香族テトラカルボン酸類と芳香族ジアミンとから得られるポリイミドである。芳香族テトラカルボン酸及び酸類としては、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸の1種または2種の組み合わせ、芳香族ジアミンフェニレンジアミン4,4’−ジアミノジフェニルエーテルの1種または2種の組み合わせなどが挙げられる。特に、芳香族テトラカルボン酸類としてピロメリット酸二無水物を用い、芳香族ジアミンとしてジアミノジフェニルエーテルを用いた芳香族ポリイミドと、芳香族テトラカルボン酸類として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を用い、芳香族ジアミンとしてフェニレンジアミンを用いた芳香族ポリイミドとが、耐熱性、機械強度、寸法安定性の点から好ましい。そして、上述した芳香族ポリイミドでシートの基体層は形成される。   The highly heat-resistant aromatic polyimide used in the present invention is a polyimide obtained from an aromatic tetracarboxylic acid or an aromatic tetracarboxylic acid which is a derivative thereof and an aromatic diamine. As aromatic tetracarboxylic acid and acids, one or two kinds of pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid are used. Combination, aromatic diamine phenylenediamine 4,4′-diaminodiphenyl ether, or a combination of two or more. In particular, an aromatic polyimide using pyromellitic dianhydride as the aromatic tetracarboxylic acid, diaminodiphenyl ether as the aromatic diamine, and 3,3 ′, 4,4′-biphenyltetracarboxylic as the aromatic tetracarboxylic acid. An aromatic polyimide using an acid dianhydride and using phenylenediamine as an aromatic diamine is preferable from the viewpoint of heat resistance, mechanical strength, and dimensional stability. And the base layer of a sheet | seat is formed with the aromatic polyimide mentioned above.

この基体層と積層させる熱可塑性樹脂層を形成する熱可塑性樹脂は、加熱を行うことで軟化し、接する無電解めっき薄膜(後述)と一体化し、冷却後に強固な接着性を示す樹脂である。すなわち、本発明で使用する熱可塑性樹脂は加熱によって接着性が生じるという加熱接着性を有する熱可塑性樹脂である。熱可塑性ポリイミド樹脂としては主鎖にイミド構造を有するポリマーであってガラス転移温度が、好ましくは150〜350℃の範囲内にあり、このガラス転移温度では弾性率が急激に低下するものを言う。例えばこれらポリイミドも芳香族芳香族テトラカルボン酸又はその誘導体である芳香族テトラカルボン酸類と芳香族ジアミンとから得られるポリイミドがある。例えば、芳香族テトラカルボン酸成分としてベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などで、芳香族ジアミン成分としては、ジアミノジフェニルエーテル類、ジ(アミノフェノキシ)ベンゼン類、ビス(アミノフェノキシフェニル)スルホン類、ビス(アミノフェノキシフェニル)プロパン類、ビス(アミノフェノキシ)ベンゼン類などで構成される。   The thermoplastic resin that forms the thermoplastic resin layer to be laminated with the base layer is a resin that softens by heating, is integrated with an electroless plating thin film (described later), and exhibits strong adhesion after cooling. That is, the thermoplastic resin used in the present invention is a thermoplastic resin having heat adhesiveness in which adhesiveness is generated by heating. The thermoplastic polyimide resin is a polymer having an imide structure in the main chain and has a glass transition temperature preferably in the range of 150 to 350 ° C., and the elastic modulus rapidly decreases at this glass transition temperature. For example, these polyimides also include polyimides obtained from aromatic tetracarboxylic acids which are aromatic aromatic tetracarboxylic acids or derivatives thereof and aromatic diamines. For example, as an aromatic tetracarboxylic acid component, benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4 Examples of aromatic diamine components include diaminodiphenyl ethers, di (aminophenoxy) benzenes, bis (aminophenoxyphenyl) sulfones, bis (aminophenoxyphenyl) propanes, and bis-tetraphenyl dianhydrides. It is composed of (aminophenoxy) benzenes.

特に、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物のビフェニルテトラカルボン酸類と芳香族ジアミンは複数個のベンゼン環を有するものが望ましい。熱可塑性樹脂層が芳香族ポリイミドからなる基体層に積層されているシートを作製する方法としては、芳香族ポリイミドからなる基体層に熱可塑性樹脂を塗工、加熱して一体化する方法や、特公平7−102649号公報に示されるような2層以上の押し出し成型用ダイスを有する押出成形機を用いて共押出しして一体化する方法が挙げられる。   In particular, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride biphenyltetracarboxylic acids and aromatic diamines include a plurality of Those having a benzene ring are desirable. As a method for producing a sheet in which a thermoplastic resin layer is laminated on a base layer made of aromatic polyimide, a method of applying a thermoplastic resin to a base layer made of aromatic polyimide and heating and integrating them, Examples thereof include a method of co-extrusion and integration using an extrusion molding machine having two or more layers of extrusion dies as disclosed in Japanese Patent Publication No. 7-102649.

本発明では、上述したシートの熱可塑性樹脂層上に、厚さ1μm以下の銅、ニッケル、コバルト又はそれらの合金の無電解めっき薄膜を形成する。無電解めっき薄膜を銅、ニッケル、コバルト又はそれらの合金で形成する理由は、その後に銅層を形成して得られる導体被覆ポリイミド基板の導体層に回路形成を行う場合に、銅層を含む導体層のエッチング工程で、他の金属では銅と共にエッチングすることが困難であり、かつ、銅、ニッケル、コバルト又はそれらの合金で無電解めっき薄膜を形成していると、電気的特性の良好な導体層を形成することが可能だからである。   In the present invention, an electroless plated thin film of copper, nickel, cobalt, or an alloy thereof having a thickness of 1 μm or less is formed on the thermoplastic resin layer of the sheet described above. The reason why the electroless plating thin film is formed of copper, nickel, cobalt, or an alloy thereof is that a conductor including a copper layer is formed when a circuit is formed on a conductor layer of a conductor-coated polyimide substrate obtained by subsequently forming a copper layer. It is difficult to etch with other metals together with copper in the layer etching process, and when an electroless plating thin film is formed of copper, nickel, cobalt or an alloy thereof, a conductor having good electrical characteristics This is because a layer can be formed.

そして、本発明では、上述したシートの熱可塑性樹脂層上に、厚さ5μm以下の無電解めっきを施す。無電解めっきは金、銀、白金属のめっきでものよいが、プリント配線板では銅、ニッケル、コバルト又はそれらの合金の無電解めっき薄膜を形成する。無電解めっき薄膜を銅、ニッケル、コバルト又はそれらの合金で形成する理由は、その後に銅層を形成して得られる導体被覆ポリイミド基板の導体層に回路形成を行う場合に、銅層を含む導体層のエッチング工程で、他の金属では銅と共にエッチングすることが困難であり、かつ、銅、ニッケル、コバルト又はそれらの合金で無電解めっき薄膜を形成していると、電気的特性の良好な導体層を形成することが可能だからである。   In the present invention, electroless plating with a thickness of 5 μm or less is applied on the thermoplastic resin layer of the sheet described above. The electroless plating may be gold, silver, or white metal plating, but the printed wiring board forms an electroless plating thin film of copper, nickel, cobalt, or an alloy thereof. The reason why the electroless plating thin film is formed of copper, nickel, cobalt, or an alloy thereof is that a conductor including a copper layer is formed when a circuit is formed on a conductor layer of a conductor-coated polyimide substrate obtained by subsequently forming a copper layer. It is difficult to etch with other metals together with copper in the layer etching process, and when an electroless plating thin film is formed of copper, nickel, cobalt or an alloy thereof, a conductor having good electrical characteristics This is because a layer can be formed.

そして、無電解めっき薄膜の厚さを5μm以下と制限するのは、ポリイミドを表面処理したとしても無電解めっきと樹脂層との密着は低く、5μmより大きいと部分的に無電解めっき時にめっき膨れ、剥れを生じるためである
無電解のめっき薄膜の形成に当っては、パラジウム触媒の付着のための準備として、シートに対してプラズマ処理や、コロナ放電処理や、酸、アルカリ又は還元の溶液浸漬処理を行って、純水との接触角を10°以下におさえた樹脂表面改質を施すことが好ましい。その後に、塩化第IIすずのセンシタイザー・塩化パラジウムのアクチベーター法や、パラジウム−すずコロイドのキャタリスト−アクセレーター法等によるパラジウム触媒の付着を行う。また、シートの熱接着性を利用して貴金属微粒子、銅微粒子を加熱したシートに付着させ、貴金属族はそのまま又は銅であれば還元液で還元した銅微粒子を核に無電解めっきを行うことができる。
The thickness of the electroless plating thin film is limited to 5 μm or less even if the polyimide is surface-treated, the adhesion between the electroless plating and the resin layer is low. In order to form an electroless plating thin film, as a preparation for adhesion of the palladium catalyst, plasma treatment, corona discharge treatment, acid, alkali or reduction solution is applied to the sheet. It is preferable to modify the resin surface by performing an immersion treatment so that the contact angle with pure water is 10 ° or less. Thereafter, a palladium catalyst is attached by a sensitizer of tin II tin / palladium chloride activator method, a palladium-tin colloid catalyst-accelerator method, or the like. Also, the precious metal fine particles and copper fine particles are attached to the heated sheet by utilizing the thermal adhesiveness of the sheet, and if the noble metal group is as it is or copper, electroless plating is performed using the copper fine particles reduced with a reducing solution as a core. it can.

次に、銅、ニッケル、コバルト又はそれらの合金のめっき液浴に、パラジウム触媒を付着させたシートを浸漬して、めっき皮膜を全面に析出させて、無電解めっき薄膜をシート表面に形成する。なお、めっき液浴にシートを浸漬する前に、シートにあらかじめ耐めっき液性のフォトレジストを使用してシート表面の一部をマスクし、めっき皮膜を部分的に析出させることも可能である。このように、めっき皮膜を部分的に析出させた場合には、後述の無電解めっき又は電解めっきの銅層は、この部分的に析出させた無電解めっき薄膜上に形成するので、全面被覆ではなく、必要部分だけを部分的に導体で被覆した導体被覆ポリイミド基板とすることができる。   Next, the sheet on which the palladium catalyst is adhered is immersed in a plating solution bath of copper, nickel, cobalt, or an alloy thereof to deposit a plating film on the entire surface, thereby forming an electroless plating thin film on the sheet surface. In addition, before immersing a sheet | seat in a plating solution bath, it is also possible to mask a part of sheet | seat surface beforehand using a plating solution-resistant photoresist, and to deposit a plating film partially. Thus, when the plating film is partially deposited, the later-described electroless plating or electrolytic plating copper layer is formed on the partially deposited electroless plating thin film. Instead, a conductor-coated polyimide substrate in which only necessary portions are partially covered with a conductor can be obtained.

シートの熱可塑性樹脂層を形成している熱可塑性樹脂が、熱可塑性ポリイミドである場合には、銅で無電解めっき薄膜を形成すると、熱可塑性ポリイミドの種類によっては銅の熱可塑性樹脂層への拡散と、シートを通過した酸素による拡散銅の酸化が起こることがある。導体被覆ポリイミド基板を高温環境に長時間放置して、このような拡散銅の酸化が起こると、導体層と熱可塑性樹脂層の界面の密着不良が発生することがあるので、熱可塑性ポリイミドの種類によっては銅以外の金属で無電解めっき層を形成することを考慮する必要がある。   When the thermoplastic resin forming the thermoplastic resin layer of the sheet is a thermoplastic polyimide, forming an electroless plating thin film with copper, depending on the type of thermoplastic polyimide, Diffusion and oxidation of the diffused copper by oxygen that has passed through the sheet may occur. If the conductive copper-coated polyimide substrate is left in a high-temperature environment for a long time and oxidation of such diffusion copper occurs, poor adhesion at the interface between the conductor layer and the thermoplastic resin layer may occur. In some cases, it is necessary to consider forming the electroless plating layer with a metal other than copper.

次いで、その無電解めっきによって導通性を得た層に電解銅めっきを施し、導体を得る。このとき電解銅めっきとしたのはプリント配線板に向いた電気抵抗の少なく且つサブトラクティブ加工がしやすい導体として銅が用いられている為である。フィルム組成や表面処理によっては、無電解めっき後電解銅めっき時に剥離なく、また無電解めっき及び電解銅めっきをした複合導体は加熱工程までに入る搬送工程、巻き工程などの応力には剥れなく密着している0.02〜0.8kg/cmのピール強度を得られる。ポリイミドフィルム表面のカップリング剤・界面活性剤での表面処理では密着力が低いため、電解銅めっきの厚みが少なくとも10μmより大きいと、電解銅めっき応力で電解銅めっき時やその加熱工程までにはがれたりするために、無電解めっきの後電解銅めっきが大きくても10μm以内にし、加熱接着させた後、再度電解銅めっきを行うこともありうるものである。   Next, electrolytic copper plating is applied to the layer obtained by the electroless plating to obtain a conductor. The reason why the electrolytic copper plating was used at this time is that copper is used as a conductor that has a small electrical resistance and that is easy to perform subtractive processing. Depending on the film composition and surface treatment, there is no peeling after electroless plating, and the composite conductor that has undergone electroless plating and electrolytic copper plating does not peel off due to stress in the transport process, winding process, etc. A peel strength of 0.02 to 0.8 kg / cm can be obtained. The surface treatment with a coupling agent / surfactant on the surface of the polyimide film has low adhesion. Therefore, if the thickness of the electrolytic copper plating is at least 10 μm, the electrolytic copper plating stress causes peeling during the electrolytic copper plating or until the heating process. Therefore, after electroless plating, the electrolytic copper plating may be within 10 μm at most, and after heat-bonding, electrolytic copper plating may be performed again.

本発明では、熱可塑性樹脂層上に、厚さ5μm以下の無電解めっき及び電解銅めっきを施し加熱して複合導体層を熱可塑性ポリイミド樹脂層を接着する。この加熱温度については、熱可塑性樹脂層と無電解めっき薄膜とが接着し、導体被覆ポリイミド基板としたときの導体層の常温時及び加熱保持後の接着強度が優れたものとなる温度とすればよいが、半田耐熱性の確保に必要な260℃以上とすることが好ましく、より好ましくは300℃以上である。なお、この加熱温度の上限については、シートを構成する樹脂(芳香族ポリイミド及び熱可塑性樹脂)の熱分解開始温度以下であればよいが、熱可塑性樹脂層と無電解めっき薄膜との良好な接着状態を達成するには、好ましくは550℃以下、より好ましくは450℃以下である。また、無電解めっき薄膜の熱劣化を防止するためには、酸素濃度が100ppm以下である窒素ガス、ネオンガス、アルゴンガス等の不活性ガス雰囲気で加熱することが好ましい。加熱時間については特に制限はないが、例えば0.5秒〜30分間の範囲内で行うことができる。   In the present invention, electroless plating and electrolytic copper plating with a thickness of 5 μm or less are applied on the thermoplastic resin layer and heated to bond the composite conductor layer to the thermoplastic polyimide resin layer. About this heating temperature, if the thermoplastic resin layer and the electroless plating thin film are bonded, and the conductor layer is a polyimide substrate, the conductor layer is at a temperature that is excellent in the adhesive strength at normal temperature and after heating and holding. Although it is good, it is preferable to set it as 260 degreeC or more required for ensuring solder heat resistance, More preferably, it is 300 degreeC or more. In addition, about the upper limit of this heating temperature, what is necessary is just below the thermal decomposition start temperature of resin (aromatic polyimide and thermoplastic resin) which comprises a sheet | seat, but favorable adhesion | attachment of a thermoplastic resin layer and an electroless-plating thin film In order to achieve the state, the temperature is preferably 550 ° C. or lower, more preferably 450 ° C. or lower. Moreover, in order to prevent thermal degradation of the electroless plating thin film, it is preferable to heat in an inert gas atmosphere such as nitrogen gas, neon gas, or argon gas having an oxygen concentration of 100 ppm or less. Although there is no restriction | limiting in particular about heating time, For example, it can carry out within the range of 0.5 second-30 minutes.

このようにして熱可塑性樹脂層と無電解めっき薄膜とを接着した後、無電解めっき薄膜上に無電解めっき又は電解めっきの銅層を形成して、本発明の導体被覆ポリイミド基板を製造する。本発明では、銅層をめっき(無電解めっき又は電解めっき)によって形成するので、無電解めっき薄膜と銅層で形成される導体層の厚みを、容易に薄く(10μm未満)形成できる。   After bonding the thermoplastic resin layer and the electroless plating thin film in this manner, an electroless plating or electrolytic plating copper layer is formed on the electroless plating thin film to produce the conductor-coated polyimide substrate of the present invention. In the present invention, since the copper layer is formed by plating (electroless plating or electrolytic plating), the thickness of the conductor layer formed by the electroless plating thin film and the copper layer can be easily reduced (less than 10 μm).

以上のようにして得られる導体被覆ポリイミド基板は、導体層の厚みを10μm未満に容易に形成でき、導体層とシートとの常温時及び加熱保持時の接着強度が高く、かつ、導体層とシートとの接合界面が平坦であって、導体層にファインパターンを形成したときに、導体層とシートとの接合界面の凹凸に起因するパターン幅のバラツキが生じないようにできるものである。   The conductor-coated polyimide substrate obtained as described above can easily form the thickness of the conductor layer to less than 10 μm, has high adhesive strength between the conductor layer and the sheet at room temperature and when heated, and the conductor layer and the sheet. When the fine pattern is formed on the conductor layer, the variation in the pattern width due to the unevenness of the junction interface between the conductor layer and the sheet can be prevented.

以下、本発明を実施例、比較例により、さらに説明する。   Hereinafter, the present invention will be further described with reference to examples and comparative examples.

(実施例1)
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンをN,N’−ジメチルアセトアミド中で重合してモノマー濃度18重量部溶液粘度4500ポイズの第1の芳香族ポリアミック酸溶液を調整した。
(Example 1)
A first aromatic polyamic polymer obtained by polymerizing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine in N, N′-dimethylacetamide and having a monomer concentration of 18 parts by weight and a solution viscosity of 4500 poise. An acid solution was prepared.

一方、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物と1,4−ビス(4−アミノフェノキシ)ベンゼンをN,N’−ジメチルアセトアミド中で重合してポリマー濃度18%溶液粘度3500ポイズの第2の芳香族ポリアミック酸溶液を調整した。   On the other hand, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride and 1,4-bis (4-aminophenoxy) benzene are polymerized in N, N′-dimethylacetamide to obtain a polymer concentration 18% solution. A second aromatic polyamic acid solution having a viscosity of 3500 poise was prepared.

前記の第1及び第2の芳香族ポリアミック酸溶液を使用して、2層押出しダイスから、平滑な金属支持体の上面に押出して流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成し、その固化フィルムを支持体から剥離した後、加熱炉で220℃から550℃まで徐々に昇温して溶媒を除去すると共に、ポリマーのイミド化を行い2層の押出しポリイミドフィルムを得た。   Using the first and second aromatic polyamic acid solutions described above, a two-layer extrusion die was extruded and cast onto the upper surface of a smooth metal support, and continuously dried with hot air at 140 ° C. and solidified. After the film is formed and the solidified film is peeled off from the support, the temperature is gradually raised from 220 ° C. to 550 ° C. in a heating furnace to remove the solvent, and the polymer is imidized to form a two-layer extruded polyimide film. Obtained.

前記のポリイミドは高耐熱性の2次転移温度がない芳香族ポリイミドからなる基体層が20μmであり、熱接着性の2次転移温度が245℃である芳香族ポリイミドからなる薄層が高耐熱性の芳香族ポリイミドの両側に3μmずつ、1体に形成され、フィルム厚みは26μmであった。このフィルムに2重量%の酸化第二銅で平均粒径50nmのナノ粒含有溶液をスピンコートして、大気中200℃、10分加熱後で350℃で10分焼き付けを行った。そのフィルムを60℃のジメチルアミンボラン0.03molの水溶液に5分浸漬して、酸化銅を還元させ銅粒子の付いたフィルムを得た。   The polyimide has a substrate layer made of an aromatic polyimide having a high heat resistance and no secondary transition temperature of 20 μm, and a thin layer made of an aromatic polyimide having a thermal adhesive secondary transition temperature of 245 ° C. has a high heat resistance. 3 μm on one side of each of the aromatic polyimides, and a film thickness of 26 μm. This film was spin-coated with a 2% by weight cupric oxide nanoparticle-containing solution having an average particle diameter of 50 nm, and baked at 350 ° C. for 10 minutes after heating in the atmosphere at 200 ° C. for 10 minutes. The film was immersed in an aqueous solution of 0.03 mol of dimethylamine borane at 60 ° C. for 5 minutes to reduce the copper oxide to obtain a film with copper particles.

次いで、水洗した後、無電解銅めっき液(上村工業社製、商品名「スルカップPEA」)に36℃、浴負荷0.4dm2/リットル、析出速度2.0μm/hrで6分間揺動浸漬し、厚さ0.2μmの無電解銅めっき皮膜を得た。さらに、無電解銅めっき皮膜上に、電気めっきにより厚さ5μmの銅層を形成して導体被覆ポリイミド基板を得た。電気めっき条件は、CuSO4・5H2Oを100g/リットル、H2SO4を150g/リットル含むメッキ浴、めっき温度25℃、めっき時間15分とした。次に、無電解銅めっき皮膜を形成したシ−トを、熱風循環式加熱炉(光洋サーモシステム社製)を用いて、酸素濃度が100ppm以下の窒素ガス雰囲気中で5℃/分の昇温スピードにて340℃まで加熱し、340℃で3時間保持した後、2℃/分の降温スピードで冷却して熱処理を行った。 Next, after rinsing with water, it is immersed in an electroless copper plating solution (trade name “Sulcup PEA” manufactured by Uemura Kogyo Co., Ltd.) at 36 ° C., a bath load of 0.4 dm 2 / liter, and a deposition rate of 2.0 μm / hr for 6 minutes. Thus, an electroless copper plating film having a thickness of 0.2 μm was obtained. Further, a copper layer having a thickness of 5 μm was formed on the electroless copper plating film by electroplating to obtain a conductor-coated polyimide substrate. The electroplating conditions were a plating bath containing 100 g / liter of CuSO 4 .5H 2 O and 150 g / liter of H 2 SO 4 , a plating temperature of 25 ° C., and a plating time of 15 minutes. Next, the sheet on which the electroless copper plating film is formed is heated at 5 ° C./min in a nitrogen gas atmosphere having an oxygen concentration of 100 ppm or less using a hot-air circulating heating furnace (manufactured by Koyo Thermo System Co., Ltd.). After heating to 340 ° C. at a speed and holding at 340 ° C. for 3 hours, heat treatment was performed by cooling at a cooling rate of 2 ° C./min.

そして、熱処理を終えたシートの無電解銅めっき皮膜上に、同様に電気めっきにより厚さフィルムの両面18μmの銅層を形成して導体被覆ポリイミド基板を得た。電気めっき条件は、CuSO4・5H2Oを100g/リットル、H2SO4を150g/リットル含むメッキ浴、めっき温度25℃、めっき時間40分とした。 And on the electroless copper plating film | membrane of the sheet | seat which finished heat processing, the copper layer of 18 micrometers of both sides of a thickness film was similarly formed by electroplating, and the conductor coating polyimide substrate was obtained. The electroplating conditions were a plating bath containing 100 g / liter of CuSO 4 .5H 2 O and 150 g / liter of H 2 SO 4 , a plating temperature of 25 ° C., and a plating time of 40 minutes.

得られた導体被覆ポリイミド基板(導体被覆フレキシブル基板)に幅3mm、長さ100mmの帯状の導体層パターンを形成して、この導体層の端部を導体被覆ポリイミド基板に対して垂直方向に引き剥がして、導体層の引き剥がし強度(接着強度)を測定した。常温(25℃)の引き剥がし強度(接着強度)は1.2kgf/cm(11.8N/cm)であり、150℃雰囲気に168時間保持した後の引き剥がし強度(接着強度)は0.9kgf/cm(8.8N/cm)であった。同じように、加熱前の導体被覆ポリイミドフィルムの導体引き剥がし強度を測定すると0.1kgf/cmであり、加熱接着後の5μm導体厚みの強度は1.3kgf/cmであり、150℃雰囲気に168時間保持した後の引き剥がし強度は0.8kgf/cmであった。   A strip-shaped conductor layer pattern having a width of 3 mm and a length of 100 mm is formed on the obtained conductor-coated polyimide substrate (conductor-coated flexible substrate), and the ends of the conductor layer are peeled off in a direction perpendicular to the conductor-coated polyimide substrate. Then, the peel strength (adhesive strength) of the conductor layer was measured. The peel strength (adhesive strength) at room temperature (25 ° C.) is 1.2 kgf / cm (11.8 N / cm), and the peel strength (adhesive strength) after holding in a 150 ° C. atmosphere for 168 hours is 0.9 kgf. / Cm (8.8 N / cm). Similarly, when the conductor peeling strength of the conductor-coated polyimide film before heating is measured, it is 0.1 kgf / cm, the strength of the 5 μm conductor thickness after heat bonding is 1.3 kgf / cm, and it is 168 in an atmosphere of 150 ° C. The peel strength after holding for a period of time was 0.8 kgf / cm.

また、導体5μmの加熱後の導体被覆ポリイミドフィルムを12×12cmに切り出し、片面の銅体をエッチングし残った銅被覆層側から光をあててピンホールの有無を確認したところ、12×12cmの領域内では光の透過は見とめられず、ピンホールは無いと判断できた。この導体被覆ポリイミドフィルムを用いて、配線幅が40μm、配線ピッチ100μmのフレキシブル配線板を作製したところ配線部分にピンホールが原因である欠けや断線などは無かった。   In addition, when the conductor-coated polyimide film having a conductor thickness of 5 μm was cut out to 12 × 12 cm, the copper body on one side was etched, and light was applied from the remaining copper coating layer side to confirm the presence or absence of pinholes. The transmission of light was not observed in the area, and it was judged that there was no pinhole. Using this conductor-coated polyimide film, a flexible wiring board having a wiring width of 40 μm and a wiring pitch of 100 μm was produced. There was no chipping or disconnection due to pinholes in the wiring portion.

(比較例1)
厚さ25μmの高耐熱性ポリイミドフィルム(東レ・デュポン社製、製品名「カプトン100V」)を12×12cmの大きさに切り出し、その片面にニッケルを80Åの厚さにスパッタリング法により成膜し、また銅を0.1μmの厚さに被覆させて第1金属層を形成して、次に、実施例1の電気めっき条件と同じ条件で5μmの厚みの銅層を形成した。
(Comparative Example 1)
A high heat-resistant polyimide film (product name “Kapton 100V”, manufactured by Toray DuPont, Inc.) having a thickness of 25 μm is cut into a size of 12 × 12 cm, and nickel is formed into a thickness of 80 mm on one side by a sputtering method. Further, copper was coated to a thickness of 0.1 μm to form a first metal layer, and then a copper layer having a thickness of 5 μm was formed under the same conditions as the electroplating conditions of Example 1.

また、引き続き電気めっきを継続し55分めっきを行い、18μm厚みの銅層品も形成した。スパッタリング法により接続された銅厚み18μmのフレキシブル配線板の引き剥がし強度は、常態で0.85kgf/cmであり、150℃雰囲気168時間保持後の引き剥がし強度は0.30kgf/cmであった。   Further, electroplating was continued and plating was performed for 55 minutes to form a copper layer product having a thickness of 18 μm. The peel strength of the flexible wiring board with a copper thickness of 18 μm connected by the sputtering method was 0.85 kgf / cm in a normal state, and the peel strength after holding at 150 ° C. for 168 hours was 0.30 kgf / cm.

また、導体5μmのスパッタリング法での導体被覆ポリイミドフィルムを12×12cmに切り出して、片面の銅被覆層側から光をあててピンホールの有無を確認したところ、12×12cmの領域内では光の透過があり、ピンホールの存在を認めた。ピンホールの大きさは直径が数十〜百数十μmであり、数は20〜30個/12cm角であった。   In addition, when a conductor-coated polyimide film with a conductor thickness of 5 μm was cut out to 12 × 12 cm and light was applied from one side of the copper coating layer side to confirm the presence or absence of pinholes, There was transmission and the presence of pinholes was observed. As for the size of the pinhole, the diameter was several tens to one hundred and several tens of micrometers, and the number was 20 to 30/12 cm square.

この導体被覆ポリイミドフィルムを用いて、配線幅が40μm、配線ピッチ100μmのフレキシブル配線板を作製したところ、配線部分にピンホールが原因である欠けや断線などの不良が確認されて、配線ピッチが狭い配線板には適していないことがわかった。   Using this conductor-coated polyimide film, a flexible wiring board having a wiring width of 40 μm and a wiring pitch of 100 μm was produced. As a result, defects such as chipping or disconnection due to pinholes were confirmed in the wiring portion, and the wiring pitch was narrow. It turned out that it is not suitable for a wiring board.

本発明の導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the conductor covering polyimide film of this invention, and a conductor covering polyimide film. 本発明の導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムにおいて得られる導体被覆ポリイミドフィルムを示した断面図である。It is sectional drawing which showed the conductor covering polyimide film obtained in the manufacturing method of the conductor covering polyimide film of this invention, and a conductor covering polyimide film. 本発明の導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを説明するための図1におけるポリイミドフィルムの部分のみを示した断面図である。It is sectional drawing which showed only the part of the polyimide film in FIG. 1 for demonstrating the manufacturing method of the conductor covering polyimide film of this invention, and a conductor covering polyimide film.

符号の説明Explanation of symbols

1 熱可塑性ポリイミド樹脂層
2 フィルム
3 ポリイミドフィルム
1 Thermoplastic polyimide resin layer 2 Film 3 Polyimide film

Claims (6)

ガラス転移温度が150℃以上の熱可塑性ポリイミド樹脂層が高耐熱性の芳香族ポリイミドからなるフィルムの少なくとも片側に一体に積層されているポリイミドフィルムに、5μm以下の無電解めっきを行う工程と、次いで、電気銅めっきを所望の厚みまで析出させる工程と、得られた導体被覆ポリイミドの一体化した導体層とポリイミド樹脂層を260℃〜550℃の温度で真空又は不活性雰囲気で加熱し接着強化することを特徴とする導体被覆ポリイミドフィルムの製造方法。 A step of performing electroless plating of 5 μm or less on a polyimide film in which a thermoplastic polyimide resin layer having a glass transition temperature of 150 ° C. or higher is integrally laminated on at least one side of a film made of highly heat-resistant aromatic polyimide; The step of precipitating electrolytic copper plating to a desired thickness, and the conductor layer and the polyimide resin layer integrated with the obtained conductor-coated polyimide are heated at 260 ° C. to 550 ° C. in a vacuum or in an inert atmosphere to strengthen the adhesion. A method for producing a conductor-coated polyimide film. 厚み10μm以下の電気銅めっきをし加熱したものに、さらに電気銅めっきを施すことを特徴とする請求項1記載の導体被覆ポリイミドフィルムの製造方法。 The method for producing a conductor-coated polyimide film according to claim 1, wherein the copper electroplating with a thickness of 10 μm or less is further performed, and the copper electroplating is further performed. ガラス転移温度が150℃以上の熱可塑性ポリイミド樹脂層が芳香族テトラカルボン酸類と複数個のベンゼン環を有する芳香族ジアミンとから得られた熱可塑性の芳香族ポリイミドからなり高耐熱性の芳香族ポリイミドが、ビフェニルテトラカルボン酸類とフェニレンジアミンとから得られた芳香族ポリイミド、または、ピロメット酸二無水物と芳香族ジアミンから得られたものであることを特徴とする請求項1記載の導体被覆ポリイミドフィルムの製造方法。 A thermoplastic polyimide resin layer having a glass transition temperature of 150 ° C. or higher is composed of a thermoplastic aromatic polyimide obtained from an aromatic tetracarboxylic acid and an aromatic diamine having a plurality of benzene rings. 2. The conductor-coated polyimide film according to claim 1, wherein the polyimide film is an aromatic polyimide obtained from biphenyltetracarboxylic acid and phenylenediamine, or one obtained from pyrometic dianhydride and aromatic diamine. Manufacturing method. 5μm以下の無電解めっきが銅、または、ニッケル、または、コバルトの導体、または、それら合金であることを特徴とする請求項1記載の導体被覆ポリイミドフィルムの製造方法。 2. The method for producing a conductor-coated polyimide film according to claim 1, wherein the electroless plating of 5 [mu] m or less is a conductor of copper, nickel, cobalt, or an alloy thereof. ポリイミドへの無電解めっきが熱可塑樹脂に加熱接着した貴金属微粒子または還元された銅微粒子を核として無電解めっきを行うことを特徴とする請求項1記載の導体被覆ポリイミドフィルムの製造方法。 2. The method for producing a conductor-coated polyimide film according to claim 1, wherein the electroless plating on the polyimide is performed by using the noble metal fine particles or the reduced copper fine particles heat-bonded to the thermoplastic resin as a nucleus. 請求項1ないし請求項5いずれか記載の導体被覆ポリイミドフィルムの製造方法を用いて製造してなることを特徴とする導体被覆ポリイミドフィルム。 A conductor-coated polyimide film produced by the method for producing a conductor-coated polyimide film according to any one of claims 1 to 5.
JP2003327183A 2003-09-19 2003-09-19 Manufacturing method for conductor-coated polyimide film and conductor-coated polyimide film Pending JP2005088465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327183A JP2005088465A (en) 2003-09-19 2003-09-19 Manufacturing method for conductor-coated polyimide film and conductor-coated polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327183A JP2005088465A (en) 2003-09-19 2003-09-19 Manufacturing method for conductor-coated polyimide film and conductor-coated polyimide film

Publications (1)

Publication Number Publication Date
JP2005088465A true JP2005088465A (en) 2005-04-07

Family

ID=34457114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327183A Pending JP2005088465A (en) 2003-09-19 2003-09-19 Manufacturing method for conductor-coated polyimide film and conductor-coated polyimide film

Country Status (1)

Country Link
JP (1) JP2005088465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130710A (en) * 2004-11-04 2006-05-25 Pi R & D Co Ltd Metal composite film
JP2007031622A (en) * 2005-07-28 2007-02-08 Tomoegawa Paper Co Ltd Polyimide resin and film with conductor using the same
EP2034055A4 (en) * 2006-05-17 2012-05-02 Pi R & D Co Ltd Metal composite film and process for producing the same
CN112490023A (en) * 2019-09-12 2021-03-12 广州汽车集团股份有限公司 Preparation method of gel electrolyte and preparation method of super capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130710A (en) * 2004-11-04 2006-05-25 Pi R & D Co Ltd Metal composite film
JP4704011B2 (en) * 2004-11-04 2011-06-15 株式会社ピーアイ技術研究所 Metal composite film
JP2007031622A (en) * 2005-07-28 2007-02-08 Tomoegawa Paper Co Ltd Polyimide resin and film with conductor using the same
EP2034055A4 (en) * 2006-05-17 2012-05-02 Pi R & D Co Ltd Metal composite film and process for producing the same
US8771496B2 (en) 2006-05-17 2014-07-08 Pi R&D Co., Ltd. Process for producing metal composite film
CN112490023A (en) * 2019-09-12 2021-03-12 广州汽车集团股份有限公司 Preparation method of gel electrolyte and preparation method of super capacitor

Similar Documents

Publication Publication Date Title
KR100969185B1 (en) Process for producing polyimide film with copper wiring
TWI455671B (en) Printed circuit board manufacturing method
TWI437937B (en) Copper wiring polyimine film manufacturing method and copper wiring polyimide film
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
US8313831B2 (en) Thermoplastic polyimide resin film, multilayer body and method for manufacturing printed wiring board composed of same
JP4029517B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE
US20090246554A1 (en) Laminate having peelability and production method therefor
JP4907580B2 (en) Flexible copper clad laminate
JP2002293965A (en) Method for treating surface and polyimide film having metal thin film
KR100969186B1 (en) Process for producing metal wiring board
JP2005116745A (en) Conductor coating polyimide film and manufacturing method thereof
JP2009176768A (en) Method for manufacturing copper wiring insulation film using semi-additive method, and copper wiring insulation film manufactured from the same
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP2005088465A (en) Manufacturing method for conductor-coated polyimide film and conductor-coated polyimide film
JP7145403B2 (en) SUPPORT AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE MOUNTING BOARD USING THE SAME
JP4564336B2 (en) Copper-clad laminate for COF and carrier tape for COF
JP2004009357A (en) Metal vapor-deposited/metal plated laminated film and electronic part using the same
JP2004322578A (en) Method for production of conductor-carrying polyimide substrate, and the conductor-carrying polyimide substrate
JP2003283123A (en) Laminated substrate and method of manufacturing the same
JP4911296B2 (en) Manufacturing method of metal wiring heat-resistant resin substrate
JP2905331B2 (en) Double-sided board
JP2003198122A (en) Method of manufacturing printed wiring board
JP2016187893A (en) Method for producing metal foil laminated film and circuit board having metal foil laminated film produced by the same
JPS60160683A (en) Bendable circuit board and method of producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421