JP2005116745A - Conductor coating polyimide film and manufacturing method thereof - Google Patents

Conductor coating polyimide film and manufacturing method thereof Download PDF

Info

Publication number
JP2005116745A
JP2005116745A JP2003348388A JP2003348388A JP2005116745A JP 2005116745 A JP2005116745 A JP 2005116745A JP 2003348388 A JP2003348388 A JP 2003348388A JP 2003348388 A JP2003348388 A JP 2003348388A JP 2005116745 A JP2005116745 A JP 2005116745A
Authority
JP
Japan
Prior art keywords
conductor
polyimide film
film
layer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003348388A
Other languages
Japanese (ja)
Inventor
Hitoshi Kimura
均 木村
Teruo Nakagawa
照雄 中川
Masaya Koyama
雅也 小山
Mitsuhide Nagaso
満英 長曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003348388A priority Critical patent/JP2005116745A/en
Publication of JP2005116745A publication Critical patent/JP2005116745A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductor coating polyimide film and the manufacturing method thereof reduced in the number of pin holes in a conductor and capable of being manufactured stably in quality and inexpensively in a working cost, while high in a bonding strength between the conductor layer and a film at normal temperatures after retaining heating as a film for flexible wiring board and reduced in the variety of the quality thereof. <P>SOLUTION: Five processes of a process for dipping one side or both sides of the polyimide film (2) into the 0.05-10 wt.% water solution of water soluble amino silane coupling agent, next, a water washing process of the film surface at least one time or more, a dipping process into palladium-tin colloid catalyst solution, a dipping process into catalyst activating solution to remove tin and change the catalyst solution into metallic palladium, and a forming process of non-electrolytic plating layer (1) by effecting non-electrolytic metal plating, are processed sequentially and continuously to apply non-electrolytic plating so as to obtain the film thickness of the non-electrolytic plating layer (1) of not more than 10&mu;m. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムに関し、さらに詳しくは、耐熱絶縁樹脂であるポリイミドフィルムに無電解銅めっき皮膜導体を形成する方法であり、プリント配線板材料で使用されたり、電磁波シールド材料として使用されるのに有用な導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムに関するものである。   The present invention relates to a method for producing a conductor-coated polyimide film and a conductor-coated polyimide film, and more specifically, a method for forming an electroless copper plating film conductor on a polyimide film that is a heat-resistant insulating resin, and is used in printed wiring board materials. The present invention relates to a method for producing a conductor-coated polyimide film useful as an electromagnetic wave shielding material and a conductor-coated polyimide film.

ポリイミド樹脂は、優れた耐熱性を有し、機械的、電気的そして化学的特性も良好であり、フレキシブルプリント回路基板(FPC)、テープ自動ボンディング(TAB)用基板等の絶縁材料として用いられている。例えば、芳香族ポリイミドフィルムと銅箔とをエポキシ樹脂などの熱硬化性接着剤で貼り合わせてラミネート法によるFPC用やTBA用のフレキシブル基板とすることが行われている。ラミネート法によるフレキシブル基板では、銅箔の接着力が保持できる温度が低いという熱時の接着強度の問題や、エッチング工程で熱硬化性接着剤層に塩素や硫酸イオン等が吸着されて絶縁が劣化する恐れがあるという問題があった。そこで、無接着剤タイプのフレキシブル基板が開発されてきている。無接着剤タイプのフレキシブル基板の製造法としては、ポリイミドフィルム表面にスパッタリング、イオンプレーティング、蒸着等により直接金属層を被着する方法が検討されている。   Polyimide resin has excellent heat resistance and good mechanical, electrical and chemical properties, and is used as an insulating material for flexible printed circuit boards (FPC) and automatic tape bonding (TAB) substrates. Yes. For example, an aromatic polyimide film and a copper foil are bonded together with a thermosetting adhesive such as an epoxy resin to form a flexible substrate for FPC or TBA by a laminating method. In the flexible substrate by the laminate method, the insulation temperature deteriorates due to the problem of adhesive strength during heating that the temperature at which the adhesive strength of the copper foil can be maintained is low and the thermosetting adhesive layer is adsorbed to the thermosetting adhesive layer in the etching process. There was a problem of fear of doing. Therefore, an adhesive-free flexible substrate has been developed. As a method for producing a non-adhesive type flexible substrate, a method of directly depositing a metal layer on a polyimide film surface by sputtering, ion plating, vapor deposition or the like has been studied.

そして、これらフレキスブル基板の用途は、回路形成の基材だけでなく、シールド層を有したカバーレイや電磁波シールド材としても検討されている。また、ポリイミドの前駆体であるポリアミック酸を銅箔上に塗布した後、ポリアミドをイミド化してフレキシブル基板とする方法や、芳香族ポリイミドからなる基体層の片面または両面に、熱圧着性を有するポリイミドを積層したシートを作製し、このシートと銅箔とを重ね合せ加熱圧着して、絶縁層が全てポリイミドからなるフレキシブル基板が検討されている(例えば、特許文献1、特許文献2、特許文献3参照。)。
特開平10−075053号公報(第2頁、第3頁) 特公平7−102649号公報 特許第3152331号公報
And the use of these flexible substrates is examined not only as a base material for circuit formation but also as a coverlay having a shield layer and an electromagnetic wave shielding material. Also, after applying polyamic acid, which is a polyimide precursor, on a copper foil, a method of imidizing polyamide to form a flexible substrate, or a polyimide having thermocompression bonding on one or both sides of a base layer made of aromatic polyimide A flexible substrate in which the insulating layer is entirely made of polyimide has been studied (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). reference.).
Japanese Patent Laid-Open No. 10-075053 (page 2, page 3) Japanese Examined Patent Publication No. 7-102649 Japanese Patent No. 3152331

また、直接金属層を被覆する上述の乾式めっき法に対して湿式めっきの無電解めっきを施す方法として、特許第2622016号公報を代表とするポリイミド表面を化学的に改質し無電解めっきを行い、加熱処理を行う方法も検討されている。そのなかでポリイミド表面にパラジウム触媒を付与し、均一な無電解めっきを行うためにも化学エッチングする方法が必要であり(例えば、特開昭63−259083号公報など)、別な方法として触媒を付着させるために、シランカップリング剤を使った方法も、特許第3277463号公報や特開2002−226972号公報で報告されている。   In addition, as a method of performing electroless plating of wet plating with respect to the above-described dry plating method for directly coating a metal layer, the surface of polyimide represented by Japanese Patent No. 2622016 is chemically modified and electroless plating is performed. A method of performing heat treatment has also been studied. Among them, a method of chemical etching is necessary to give a palladium catalyst to the polyimide surface and perform uniform electroless plating (for example, JP-A-63-259083). A method using a silane coupling agent for adhesion is also reported in Japanese Patent No. 3277463 and Japanese Patent Application Laid-Open No. 2002-226972.

上述したポリイミドフィルム表面にスパッタリング、イオンプレーティング、蒸着等により直接金属層を被着する方法では、金属層を被着した後で銅層を電気めっきで形成できるため、屈曲性を有しファインパターンの形成に適した厚さ9μm未満の導体層を容易に形成でき、かつ導体層とポリイミドフィルムとの接合界面が平坦であるため、ファインパターンの形成に適した方法であるが、導体層の接着強度が不十分であるという問題と、加熱保持時の導体層の接着強度の低下が著しいという問題があった。   In the above-described method of directly depositing a metal layer on the polyimide film surface by sputtering, ion plating, vapor deposition, etc., the copper layer can be formed by electroplating after the metal layer is deposited. A conductor layer with a thickness of less than 9 μm that is suitable for the formation of metal can be easily formed, and the bonding interface between the conductor layer and the polyimide film is flat. There was a problem that the strength was insufficient and a problem that the adhesive strength of the conductor layer during the heating and holding was significantly reduced.

さらに、金属層を被着する際に微小なピンホールが発生し、それを起因とする、金属層上に形成した銅層の欠落の問題が発生していた。   Further, when the metal layer is deposited, a minute pinhole is generated, which causes a problem of lack of the copper layer formed on the metal layer.

一方、ポリイミドの前駆体であるポリアミック酸を銅箔上に塗布した後、ポリアミドをイミド化してフレキシブル基板とする方法や、芳香族ポリイミドからなる基体層の片面または両面に、熱圧着性を有するポリイミドを積層したシートを作製し、このシートと銅箔とを重ね合せ加熱圧着して、絶縁層が全てポリイミドからなるフレキシブル基板とする方法の場合には、銅箔を使用するため、屈曲性を有しファインパターンの形成に適した厚さ10μm未満の導体層を形成することが困難であった。そこで、上記事情の改善策として無電解めっきによる金属を被覆する方法が検討されたが、無電解めっきを安定的にむらなく析出させることが、作業環境や人体に悪影響を及ぼしうる、溶剤、強酸、強アルカリでの表面改質ではなくするのが困難であり、また表面改質膜層のバラツキが大きく導体強度等物性のバラツキが大きいという問題があった。   On the other hand, after applying polyamic acid, which is a polyimide precursor, on a copper foil, a method of imidizing polyamide to form a flexible substrate, or a polyimide having thermocompression bonding on one or both sides of a base layer made of aromatic polyimide In the case of a method in which a sheet is laminated and this sheet and a copper foil are laminated and heat-bonded to form a flexible substrate in which the insulating layer is entirely made of polyimide, the copper foil is used. However, it was difficult to form a conductor layer having a thickness of less than 10 μm suitable for forming a fine pattern. Therefore, as a measure for improving the above circumstances, a method of coating a metal by electroless plating has been studied. However, it is possible to deposit the electroless plating stably and uniformly, which may adversely affect the work environment and the human body. However, there is a problem that it is difficult to eliminate the surface modification with a strong alkali, and the variation of the surface modification film layer is large and the physical properties such as the conductor strength are large.

本発明は、上記の事情に鑑みてなされたものであって、その目的とするところは、芳香族ポリイミドを基体層とするフィルム上に導体層を形成している導体被覆ポリイミドフィルムであって、導体層の厚みを10μm未満に容易に形成でき、導体にピンホールが少なく、作業環境良く人体に悪影響を及ぼさない方法で、品質的に安定で、かつ、安価な加工コストでできるものを提供することにあり、さらに、フレキシブル配線板用としては、導体層とフィルムとの常温時及び加熱保持後の接着強度が高く、バラツキが少ない導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is a conductor-coated polyimide film in which a conductor layer is formed on a film having an aromatic polyimide as a base layer, Provided is a method in which the thickness of the conductor layer can be easily formed to be less than 10 μm, the conductor has few pinholes, the work environment is good and the human body is not adversely affected, the quality is stable and the processing cost is low. In particular, for a flexible wiring board, a method for producing a conductor-coated polyimide film and a conductor-coated polyimide film having a high adhesive strength between a conductor layer and a film at room temperature and after heating and holding with little variation are provided. It is in.

本願発明者は、ポリイミドフィルムへの導体被覆法が、無電解めっきで直接金属層を被覆する方法であって、ポリイミドフィルムを水溶性アミノシランカップリング剤の水溶液に浸漬し十分水洗することで、ポリイミド表面に単層のカップリング剤が付与され、それがPd−Snコロイド溶液の浸漬にてコロイドを捕捉し、パラジウム触媒付与による、均一な無電解めっきが、簡便な連続した湿式処理で且つ作業環境良く人体に悪影響を及ぼさない方法で、形成可能であることを見出した。次いで、この無電解めっきで弱い接合で一体化されるものを、機械的粗化面に無電解めっきを行うことにより、アンカー効果による強度向上があることは公知であるが、加熱保持後の強度低下がほとんどなく一定の強度保持をする事を見出した。更に、このカップリング剤を介した無電解めっき皮膜は、不活性雰囲気で加熱を行うことにより非常に強固にバラツキなく接続されることを見出した。これは従来知られているポリイミドの化学改質による親水変質層の加熱による再イミド耐熱化での接続強化とは異なるものである。しかし、このカップリング剤を介した無電解めっき皮膜の加熱接着強化は、銅の酸化による加熱保持後の強度低下を引き起こすこともわかった。これらの発見を組み合わせると、機械的粗化したポリイミドフィルムに、カップリング剤を介して無電解めっきを行ったものを、不活性雰囲気で加熱したものは接合強度が、初期及び加熱保持後も十分高いことがわかり、本発明に至ったものである。   The inventor of the present application is a method in which the conductor coating method on the polyimide film is a method in which the metal layer is directly coated by electroless plating, and the polyimide film is immersed in an aqueous solution of a water-soluble aminosilane coupling agent and sufficiently washed with water. A single-layer coupling agent is applied to the surface, which captures the colloid by immersion in a Pd-Sn colloidal solution, and uniform electroless plating by applying a palladium catalyst is a simple continuous wet treatment and working environment It was found that it can be formed by a method that does not adversely affect the human body. Next, it is known that there is strength improvement due to the anchor effect by performing electroless plating on the mechanically roughened surface, which is integrated by weak bonding with this electroless plating, but the strength after heating and holding It was found that there was almost no decrease and a certain strength was maintained. Furthermore, it has been found that the electroless plating film via this coupling agent is very firmly connected without variation by heating in an inert atmosphere. This is different from the conventionally known strengthening of connection by heat-improving re-imide by heating of the hydrophilic layer due to chemical modification of polyimide. However, it was also found that strengthening the heat adhesion of the electroless plating film via this coupling agent causes a decrease in strength after heat retention due to copper oxidation. Combining these findings, a mechanically roughened polyimide film that has been electrolessly plated via a coupling agent, heated in an inert atmosphere, has a sufficient bonding strength even after initial and after heating. It has been found that this is high, and the present invention has been achieved.

具体的には、本発明の請求項1に係る導体被覆ポリイミドフィルムの製造方法は、ポリイミドフィルムの片面又は両面を、水溶性アミノシランカップリング剤の0.05〜10重量%水溶液に浸漬する工程と、次いで、そのフィルム面を少なくとも1回以上水洗する工程、パラジウム−スズコロイド触媒溶液に浸漬する工程、スズを除去して金属パラジウムに変化する触媒活性溶液に浸漬する工程、及び、無電解金属めっきを行って無電解めっき層を形成する工程の5工程を順次連続的に処理し、無電解めっき層の膜厚が10μm以下となるように無電解めっきを行うことを特徴としている。   Specifically, the method for producing a conductor-coated polyimide film according to claim 1 of the present invention includes a step of immersing one or both sides of a polyimide film in a 0.05 to 10% by weight aqueous solution of a water-soluble aminosilane coupling agent. Next, a step of washing the film surface with water at least once, a step of immersing in a palladium-tin colloidal catalyst solution, a step of immersing in a catalytically active solution that removes tin and changes to metallic palladium, and electroless metal plating It is characterized by performing the electroless plating so that the film thickness of the electroless plating layer is 10 μm or less by sequentially processing the five steps of forming the electroless plating layer sequentially.

本発明の請求項2に係る導体被覆ポリイミドフィルムの製造方法は、上記水溶性アミノシランカップリング剤を介して無電解めっきを行った後、不活性雰囲気又は真空中で200℃以上に加熱することで、アルカリ溶液等のポリイミド表面化学改質層なしで、常態の導体接合強度を0.5kg/cm以上にすることを特徴としている。   In the method for producing a conductor-coated polyimide film according to claim 2 of the present invention, after electroless plating is performed through the water-soluble aminosilane coupling agent, heating is performed to 200 ° C. or higher in an inert atmosphere or vacuum. The normal conductor bonding strength is 0.5 kg / cm or more without a polyimide surface chemical modification layer such as an alkaline solution.

本発明の請求項3に係る導体被覆ポリイミドフィルムの製造方法は、上記ポリイミドフィルムの片面又は両面が、表面粗さ0.04<Ra<0.50μmにサンドブラストの機械的粗化より形成されたポリイミドフィルムであることを特徴としている。   The method for producing a conductor-coated polyimide film according to claim 3 of the present invention is a polyimide in which one or both sides of the polyimide film are formed by mechanical blasting of sandblast with a surface roughness of 0.04 <Ra <0.50 μm. It is characterized by being a film.

本発明の請求項4に係る導体被覆ポリイミドフィルムの製造方法は、上記無電解めっきを行った後に、更に電気銅めっきを行って所望の厚みまで電解銅めっき層を析出させることを特徴としている。   The method for producing a conductor-coated polyimide film according to claim 4 of the present invention is characterized in that after the electroless plating is performed, electrolytic copper plating is further performed to deposit an electrolytic copper plating layer to a desired thickness.

本発明の請求項5に係る導体被覆ポリイミドフィルムは、請求項1ないし請求項4いずれか記載の導体被覆ポリイミドフィルムの製造方法を用いて製造してなることを特徴としている。   A conductor-coated polyimide film according to a fifth aspect of the present invention is characterized by being manufactured using the method for producing a conductor-coated polyimide film according to any one of the first to fourth aspects.

本発明の請求項1ないし請求項4に係る導体被覆ポリイミドフィルムの製造方法によると、導体層の厚みを10μm未満に容易に形成でき、導体にピンホールが少なく、作業環境良く人体に悪影響を及ぼさない方法で、品質的に安定で、かつ、安価な加工コストでできるものを提供することにあり、さらに、フレキシブル配線板用としては、導体層とフィルムとの常温時及び加熱保持後の接着強度が高く、バラツキが生じないようにできる導体被覆ポリイミドフィルムを製造することができる。   According to the method for producing a conductor-coated polyimide film according to claims 1 to 4 of the present invention, the thickness of the conductor layer can be easily formed to be less than 10 μm, the conductor has few pinholes, and the human environment is adversely affected in a good working environment. It is intended to provide products that are stable in quality and can be manufactured at low processing costs. Furthermore, for flexible wiring boards, the adhesive strength between the conductor layer and the film at room temperature and after being heated is maintained. Therefore, it is possible to produce a conductor-coated polyimide film that is high and can prevent variation.

本発明の請求項5に係る導体被覆ポリイミドフィルムによると、請求項1ないし請求項4いずれか記載の導体被覆ポリイミドフィルムの製造方法を用いて製造してなるものであるので、導体層の厚みを10μm未満に容易に形成でき、導体にピンホールが少なく、作業環境良く人体に悪影響を及ぼさない方法で、品質的に安定で、かつ、安価な加工コストでできるものを提供することにあり、さらに、フレキシブル配線板用としては、導体層とフィルムとの常温時及び加熱保持後の接着強度が高く、バラツキが生じないようにできる導体被覆ポリイミドフィルムとなる。   According to the conductor-coated polyimide film according to claim 5 of the present invention, the conductor-coated polyimide film is manufactured using the method for manufacturing a conductor-coated polyimide film according to any one of claims 1 to 4. The object is to provide a method that can be easily formed to be less than 10 μm, has few pinholes in the conductor, does not adversely affect the human body with a good work environment, is stable in quality, and can be manufactured at low cost. For a flexible wiring board, a conductor-coated polyimide film that has a high adhesive strength between the conductor layer and the film at room temperature and after being heated and can be prevented from varying.

以下に、本発明を実施するための最良の形態について、図面に基づいて詳しく説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は、本発明の一実施形態に係る導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを説明するための断面図である。図2は、本発明の他の一実施形態に係る導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを説明するための断面図である。   FIG. 1 is a cross-sectional view for explaining a conductor-coated polyimide film manufacturing method and a conductor-coated polyimide film according to an embodiment of the present invention. FIG. 2 is a cross-sectional view for explaining a conductor-coated polyimide film manufacturing method and a conductor-coated polyimide film according to another embodiment of the present invention.

本発明の導体被覆ポリイミドフィルムの製造方法では、図1に示すように、ポリイミドフィルム(2)の片面又は両面を、水溶性アミノシランカップリング剤の0.05〜10重量%水溶液に浸漬する工程と、次いで、そのフィルム面を少なくとも1回以上水洗する工程、パラジウム−スズコロイド触媒溶液に浸漬する工程、スズを除去して金属パラジウムに変化する触媒活性溶液に浸漬する工程、及び、無電解金属めっきを行って無電解めっき層(1)を形成する工程の5工程を順次連続的に処理し、無電解めっき層(1)の膜厚が10μm以下となるように無電解めっきを行うものである。   In the method for producing a conductor-coated polyimide film of the present invention, as shown in FIG. 1, a step of immersing one or both sides of a polyimide film (2) in a 0.05 to 10% by weight aqueous solution of a water-soluble aminosilane coupling agent; Next, a step of washing the film surface with water at least once, a step of immersing in a palladium-tin colloidal catalyst solution, a step of immersing in a catalytically active solution that removes tin and changes to metallic palladium, and electroless metal plating The five steps of the step of forming the electroless plating layer (1) are successively and sequentially performed, and the electroless plating is performed so that the film thickness of the electroless plating layer (1) is 10 μm or less.

また、図2に示すごとく、上記無電解めっきを行った後に、更に電気銅めっきを行って所望の厚みまで電解銅めっき層(3)を析出させたものであってもかまわないものである。   Moreover, as shown in FIG. 2, after performing the said electroless-plating, electrolytic copper plating may be further performed and the electrolytic copper plating layer (3) may be deposited to desired thickness.

以下、本発明を詳細に説明していく。   Hereinafter, the present invention will be described in detail.

本発明において使用されるポリイミドフィルムは、芳香族ポリイミドで芳香族テトラカルボン酸又はその誘導体である。芳香族テトラカルボン酸類と芳香族ジアミンとから得られるポリイミドである。この芳香族テトラカルボン酸及び酸類としては、ピロメリット酸、3,3,4,4−ビフェニルテトラカルボン酸、3,3,4,4−ベンゾフェノンテトラカルボン酸の1種または2種の組み合わせ、芳香族ジアミンフェニレンジアミン、4,4−ジアミノジフェニルエーテルの1種または2種の組み合わせなどが挙げられる。   The polyimide film used in the present invention is an aromatic polyimide which is an aromatic tetracarboxylic acid or a derivative thereof. It is a polyimide obtained from aromatic tetracarboxylic acids and aromatic diamines. Examples of the aromatic tetracarboxylic acid and acids include pyromellitic acid, 3,3,4,4-biphenyltetracarboxylic acid, one or two combinations of 3,3,4,4-benzophenonetetracarboxylic acid, aromatic 1 type, or 2 types of combinations of group diamine phenylenediamine and 4, 4- diamino diphenyl ether are mentioned.

特に、芳香族テトラカルボン酸類としてはピロメリット酸二無水物を用い、芳香族ジアミンとしてジアミノジフェニルエーテルを用いた芳香族ポリイミドと、芳香族テトラカルボン酸類として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を用い、芳香族ジアミンとしてフェニレンジアミンを用いた芳香族ポリイミドとが、耐熱性、機械強度、寸法安定性の点から好ましい。   In particular, pyromellitic dianhydride is used as the aromatic tetracarboxylic acid, aromatic polyimide using diaminodiphenyl ether as the aromatic diamine, and 3,3 ′, 4,4′-biphenyltetra as the aromatic tetracarboxylic acid. An aromatic polyimide using a carboxylic dianhydride and using phenylenediamine as an aromatic diamine is preferable from the viewpoint of heat resistance, mechanical strength, and dimensional stability.

また、熱可塑性ポリイミドフィルム、または、上述の芳香族ポリイミドと熱可塑性ポリイミドの積層フィルムであってもかまわない。これらは、加熱により軟化接着性を有するため、より強固な接続が得られる。   Further, it may be a thermoplastic polyimide film or a laminated film of the above-mentioned aromatic polyimide and thermoplastic polyimide. Since these have softening adhesiveness by heating, a stronger connection can be obtained.

熱可塑性ポリイミド樹脂としては、主鎖にイミド構造を有するポリマーであってガラス転移温度が、好ましくは、150〜350℃の範囲内にあり、このガラス転移温度では弾性率が急激に低下するものを言う。例えば、これらポリイミドも芳香族芳香族テトラカルボン酸又はその誘導体である芳香族テトラカルボン酸類と芳香族ジアミンとから得られるポリイミドがある。   As the thermoplastic polyimide resin, a polymer having an imide structure in the main chain and having a glass transition temperature, preferably in a range of 150 to 350 ° C., and at this glass transition temperature, an elastic modulus rapidly decreases. say. For example, these polyimides also include polyimides obtained from aromatic tetracarboxylic acids which are aromatic aromatic tetracarboxylic acids or derivatives thereof and aromatic diamines.

例えば、芳香族テトラカルボン酸成分としてベンゾフェノンテトラカルボン酸2無水物、ピロメリット酸2無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などで、芳香族ジアミン成分としては、ジアミノジフェニルエーテル類、ジ(アミノフェノキシ)ベンゼン類、ビス(アミノフェノキシフェニル)スルホン類、ビス(アミノフェノキシフェニル)プロパン類、ビス(アミノフェノキシ)ベンゼン類などで構成される。   For example, as an aromatic tetracarboxylic acid component, benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4 Examples of aromatic diamine components include diaminodiphenyl ethers, di (aminophenoxy) benzenes, bis (aminophenoxyphenyl) sulfones, bis (aminophenoxyphenyl) propanes, and bis-tetraphenyl dianhydrides. It is composed of (aminophenoxy) benzenes.

特に、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物のビフェニルテトラカルボン酸類と芳香族ジアミンは複数個のベンゼン環を有するものが望ましい。   In particular, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride biphenyltetracarboxylic acids and aromatic diamines include a plurality of Those having a benzene ring are desirable.

熱可塑性樹脂層が芳香族ポリイミドからなる基体層に積層されているシートを作製する方法としては、芳香族ポリイミドからなる基体層に熱可塑性樹脂を塗工、加熱して一体化する方法や、特公平7−102649号公報に示されるような2層以上の押し出し成型用ダイスを有する押出成形機を用いて共押出しして一体化する方法が挙げられる。   As a method for producing a sheet in which a thermoplastic resin layer is laminated on a base layer made of aromatic polyimide, a method of applying a thermoplastic resin to a base layer made of aromatic polyimide and heating and integrating them, Examples thereof include a method of co-extrusion and integration using an extrusion molding machine having two or more layers of extrusion dies as disclosed in Japanese Patent Publication No. 7-102649.

本発明では、それらのポリイミドフィルムを水溶性のアミノシランカップリング剤の水溶液で浸漬する。水溶性のアミノシランカップリング剤としては、一般式NH2−R−Si(OR’)3であらわせられ、例として、γ−アミノプロピルトリメトキシシラン:γ−アミノプロピルトリエトキシシラン:N−β(アミノエチル)γアミノプロピルトリメトキシシランN−β(アミノエチル)γアミノプロピルトリエトキシシシラン:γウレイドプロピルトリエトキシシランなどがある。水溶液の親水性・加水分解性から安定するのはN−β(アミノエチル)γアミノプロピルトリエトキシ(orメトキシ)シランが望ましい。 In the present invention, these polyimide films are immersed in an aqueous solution of a water-soluble aminosilane coupling agent. The water-soluble aminosilane coupling agent is represented by the general formula NH 2 —R—Si (OR ′) 3. For example, γ-aminopropyltrimethoxysilane: γ-aminopropyltriethoxysilane: N-β ( Aminoethyl) γaminopropyltrimethoxysilane N-β (aminoethyl) γaminopropyltriethoxysilane: γ-ureidopropyltriethoxysilane. N-β (aminoethyl) γ aminopropyltriethoxy (or methoxy) silane is desirable to stabilize from the hydrophilicity and hydrolyzability of the aqueous solution.

水溶液の濃度は、ポリイミドフィルム表面にカップリング剤単分子が付着する量が適量であるが、0.05重量%以下では、無電解めっきの無析出部分が生じ、また10重量%をこすと触媒付着量が多すぎ析出むらや絶縁抵抗低下をもたらす。好ましくは0.2〜0.8重量%である。液温度、処理時間は特に限定はないが好ましくは25℃:30秒〜1分程浸漬を行う。フィルムのこの処理の前に油脂分を除去するアルコールや酸の脱脂・洗浄工程をいれてもかまわない。   The concentration of the aqueous solution is such that the amount of the coupling agent single molecule adhering to the surface of the polyimide film is an appropriate amount. An excessive amount of deposition causes uneven deposition and a decrease in insulation resistance. Preferably it is 0.2 to 0.8 weight%. The liquid temperature and treatment time are not particularly limited, but the immersion is preferably performed at 25 ° C. for about 30 seconds to 1 minute. Prior to this treatment of the film, an alcohol or acid degreasing / cleaning step for removing fats and oils may be included.

特に、表面を親水性にするための、プラズマ等の乾式改質処理は前もってする必要はない。カップリング剤処理の後の水洗は必須工程であり、1つはカップリング剤処理ムラをなくすこともあるが、ポリイミドに付与した以外のカップリング剤のパラジウム−スズコロイド溶液への混入は、カップリング剤がコロイドと反応をおこしパラジウム−スズコロイドが凝集沈殿し触媒付着作用がなくなるために、カックリング剤の持ち込みをなくす為の水洗工程である。   In particular, dry reforming treatment such as plasma for making the surface hydrophilic need not be performed in advance. Washing with water after the coupling agent treatment is an indispensable step, and one may eliminate unevenness in the coupling agent treatment, but mixing of the coupling agent other than that applied to the polyimide into the palladium-tin colloidal solution Since the agent reacts with the colloid and the palladium-tin colloid coagulates and precipitates, and the catalyst adhesion action is lost, this is a water washing step for eliminating the carry-in of the cockling agent.

次いで、パラジウム−スズコロイド溶液への浸漬及び水洗・アクセラレーター液への浸漬及び水洗、そして無電解めっき液への浸漬を行う。浴液及び条件は市販されているめっきシステムを用いてかまわない。無電解銅めっき膜厚は10μm以上であると、長時間必要となり現実的な生産にはならないために、10μm以下で施す。好ましくは0.1〜1μmである。   Next, immersion in a palladium-tin colloid solution, washing in water / accelerator solution, washing in water, and immersion in an electroless plating solution are performed. The bath solution and conditions may be a commercially available plating system. When the electroless copper plating film thickness is 10 μm or more, it takes a long time and the production is not practical. Preferably it is 0.1-1 micrometer.

ここで無電解めっきは銅めっきを主とするが、他のpd触媒を作用とする無電解めっきも可能である。この無電解めっきだけでの付着強度は大きくても0.5kg/cmと弱い接合で一体化されるが、用途によってはその強度で十分使用できうる。   Here, the electroless plating is mainly copper plating, but electroless plating using another pd catalyst as an action is also possible. The adhesion strength by this electroless plating alone is integrated with a weak bond of 0.5 kg / cm at most, but the strength can be used sufficiently depending on the application.

フレキシブル配線基板用材料としては、さらに高い接合強度を必要とする為に、次の工程を施す。   As a material for a flexible wiring board, the following process is performed because higher bonding strength is required.

1つがめっきを行うポリイミドフィルムへの機械的加工として、ブラスト加工を行う。ブラストはドライブラスト法やウェットブラスト法を用い、表面粗さとしてRa0.04〜0.50μmの範囲が有効である。Raが0.04μm以下であると粗面化による十分な強度を確保できないものである。また、Raが0.5μm以上であるとブラストのショトする砥粒が大きくなりすぎ粗面の部分的バラツキが大きくなりすぎ安定しないものである。好ましいのは砥粒サイズ#800を使用しRa0.10〜0.30μmに粗化した状態である。   Blasting is performed as a mechanical process on a polyimide film, one of which is plated. The drive blast method or wet blast method is used for blasting, and the range of Ra 0.04 to 0.50 μm is effective as the surface roughness. When Ra is 0.04 μm or less, sufficient strength due to roughening cannot be secured. On the other hand, if Ra is 0.5 μm or more, the abrasive grains shot by the blast become too large, and the partial variation of the rough surface becomes too large to be stable. Preference is given to using a grain size of # 800 and roughening to Ra 0.10 to 0.30 μm.

上述のブラストによる粗面化により、無電解銅をおこない電気銅めっきで銅導体厚み18μmにした導体の接合強度は0.5kg/cm程であり、150℃168hr加熱後の接合強度も0.5kg/cmであり低下がみられなかった。   Due to the roughening by blasting described above, the joint strength of the conductor made by electroless copper and copper conductor thickness of 18 μm by electrolytic copper plating is about 0.5 kg / cm, and the joint strength after heating at 150 ° C. for 168 hours is also 0.5 kg. / Cm and no decrease was observed.

もう1つが、カップリング剤を介して無電解銅めっきを行った銅被覆ポリイミドフィルムを、不活性または真空雰囲気下で200℃以上に加熱することで、接着強度が大幅に増す。   The other is that the adhesive strength is greatly increased by heating the copper-coated polyimide film subjected to electroless copper plating via a coupling agent to 200 ° C. or higher in an inert or vacuum atmosphere.

加熱温度が200℃以下であると、カップリング剤と樹脂及び銅との反応が起きず強度はあがらない。また、加熱上限としては樹脂の熱分解温度以下であればよいが、良好な接着状態は好ましくは450℃以下である。   When the heating temperature is 200 ° C. or lower, the reaction between the coupling agent, the resin, and copper does not occur and the strength does not increase. Further, the upper limit of heating may be not higher than the thermal decomposition temperature of the resin, but a good adhesion state is preferably 450 ° C. or lower.

雰囲気は無電解めっき皮膜の熱劣化を防ぐためには、酸素濃度が100PPm以下である真空中又は窒素ガス、ネオンガス、アルゴンガス等の不活性ガス雰囲気で加熱することが好ましい。加熱時間に付いては特に制限はないが、例えば、5分〜5時間の範囲内で行うことができる。   In order to prevent thermal deterioration of the electroless plating film, the atmosphere is preferably heated in a vacuum having an oxygen concentration of 100 PPm or less or in an inert gas atmosphere such as nitrogen gas, neon gas, argon gas. Although there is no restriction | limiting in particular about heating time, For example, it can carry out within the range of 5 minutes-5 hours.

ブラストで機械的Ra=0.20の粗化し無電解銅めっきを0.3μm行い、不活性雰囲気又は真空下で350℃1時間の加熱処理を行い、次いで、電気銅めっきを行った導体被覆ポリイミドフィルムは、銅層をめっきによって形成するので、導体層の厚みを、容易に薄く形成できる。また、無電解めっきによる緻密な皮膜ではピンホールがほとんど発生せず、導体層とフィルムとの常温時及び加熱保持後の接着強度が高く、バラツキが少ない品質を有し、かつ、作業環境良く人体に悪影響を及ぼさない方法で製造することができる。   Conductor-coated polyimide with mechanical Ra = 0.20 roughened and electroless copper plated 0.3 μm in blast, heat treated at 350 ° C. for 1 hour in an inert atmosphere or vacuum, and then electrolytic copper plated Since the film forms the copper layer by plating, the thickness of the conductor layer can be easily reduced. In addition, a dense film formed by electroless plating hardly generates pinholes, has high adhesion strength between the conductor layer and the film at room temperature and after heating, has little variation, and has a good work environment. It can be produced by a method that does not adversely affect the process.

また、以上のようにして得られる導体被覆ポリイミド基板は、導体層の厚みを10μm未満に容易に形成でき、導体にピンホールが少なく、作業環境良く人体に悪影響を及ぼさない方法で、品質的に安定で、かつ、安価な加工コストでできるものを提供することができ、さらに、フレキシブル配線板用としては、導体層とフィルムとの常温時及び加熱保持後の接着強度が高く、バラツキを少なくすることができるものである。   In addition, the conductor-coated polyimide substrate obtained as described above can be easily formed with a conductor layer thickness of less than 10 μm, has few pinholes in the conductor, has a good work environment, and does not adversely affect the human body. Stable and inexpensive processing costs can be provided, and for flexible wiring boards, the bonding strength between the conductor layer and the film at room temperature and after heating is high, and variations are reduced. It is something that can be done.

以下、本発明を下記に示した実施例1〜4、及び、比較例1〜4により、さらに具体的に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 4 and Comparative Examples 1 to 4 shown below.

(実施例1)
ピロメット酸二無水物とジアミノジフェニルエーテルを用いて得られた芳香族ポリイミドからなるポリイミドフィルム(250mm幅、25μm厚み、東レ・デュポン社製、商品名「カプトン100V型」)を200mm角にして、水溶性アミノシランカップリング剤として、N−β(アミノエチル)γアミノプロピルトリメトキシシラン(チッソ社製、商品名サイラエースS320)を0.5重量%の25℃水溶液に1分間浸漬した。次いで、イオン交換水の水洗漕1次、2次,3次水洗にそれぞれ30秒浸漬させて、25℃の上村工業社製のパラジウム‐スズコロイドタイプのAT−105アクチベーティング液に5分間浸漬触媒付与し水洗い後、上村工業社製のスルカップAL−106アクセレーターを使用して25℃で3分間の促進処理を施し、水洗した後上村工業社製の無電解銅めっき液スルカップPEAに36℃、浴負荷0.4dm/l、析出速度2.0μm/hrで3分間揺動浸漬して、ポリイミドフィルム表面にむらなく均一に光沢の厚さ0.1μmの無電解銅めっき皮膜を得た。このようにして得られた導体被覆ポリイミドフィルムとしては、セロハンテープによる剥離もなく、良好な密着性であった。
(Example 1)
A polyimide film (250 mm width, 25 μm thickness, manufactured by Toray DuPont, trade name “Kapton 100V type”) made of aromatic polyimide obtained by using pyrometic dianhydride and diaminodiphenyl ether is made into 200 mm square, and is water-soluble. As an aminosilane coupling agent, N-β (aminoethyl) γaminopropyltrimethoxysilane (manufactured by Chisso Corporation, trade name: Silaace S320) was immersed in an aqueous solution of 0.5% by weight at 25 ° C. for 1 minute. Next, immerse in ion-washed water primary, secondary, and tertiary water for 30 seconds each and immerse in palladium-tin colloid type AT-105 activating solution manufactured by Uemura Kogyo Co., Ltd. at 25 ° C. for 5 minutes. After applying the catalyst and washing with water, it was subjected to an acceleration treatment for 3 minutes at 25 ° C. using a Sulcup AL-106 accelerator manufactured by Uemura Kogyo Co., Ltd. Then, an electroless copper plating film having a uniform gloss thickness of 0.1 μm was obtained evenly on the polyimide film surface by rocking immersion for 3 minutes at a bath load of 0.4 dm 2 / l and a deposition rate of 2.0 μm / hr. . The conductor-coated polyimide film thus obtained had good adhesion without peeling off with a cellophane tape.

(実施例2)
上述した実施例1で作製した無電解銅めっき皮膜をしたポリイミドフィルムを、熱風循環式加熱炉(光洋サーモシステム社製)を用いて、酸素濃度が100ppm以下の窒素ガス雰囲気中で5℃/分の昇温スピードにて350℃まで加熱し、350℃で1時間保持した後、5℃/分の降温スピードで冷却する熱処理を行った。
(Example 2)
Using the hot air circulating heating furnace (manufactured by Koyo Thermo System Co., Ltd.), the polyimide film having the electroless copper plating film produced in Example 1 described above is 5 ° C./min in a nitrogen gas atmosphere having an oxygen concentration of 100 ppm or less. Was heated to 350 ° C. at a temperature increase rate of 1 ° C., held at 350 ° C. for 1 hour, and then heat-treated by cooling at a temperature decrease rate of 5 ° C./min.

次に、熱処理を終えたシート状フィルムの無電解銅めっき薄膜上に、電気めっきにより厚さ8μmの銅層を形成して導体被覆ポリイミドフィルムを得た。電気めっき条件は、CuSO4・5H2Oを100g/リットル、H2SO4を150g/リットル含むメッキ浴、めっき温度25℃、めっき時間30分とした。 Next, a copper layer having a thickness of 8 μm was formed by electroplating on the electroless copper plating thin film of the sheet-like film after the heat treatment to obtain a conductor-coated polyimide film. The electroplating conditions were a plating bath containing 100 g / liter CuSO 4 .5H 2 O and 150 g / liter H 2 SO 4 , a plating temperature of 25 ° C., and a plating time of 30 minutes.

得られた導体被覆ポリイミドフィルムに幅3mm、長さ100mmの帯状の導体層パターンを形成し、この導体層の端部を導体被覆ポリイミド基板に対して垂直方向に引き剥がして、導体層の引き剥がし強度(接着強度)を測定した。   A strip-shaped conductor layer pattern having a width of 3 mm and a length of 100 mm is formed on the obtained conductor-coated polyimide film, and the end portion of the conductor layer is peeled off in a direction perpendicular to the conductor-coated polyimide substrate to peel off the conductor layer. The strength (adhesive strength) was measured.

常温(25℃)の引き剥がし強度(接着強度)は0.8kgf/cm(7.8N/cm)であり、150℃雰囲気に168時間保持した後の引き剥がし強度(接着強度)は0.2kgf/cm(2.0N/cm)であった。   The peel strength (adhesive strength) at room temperature (25 ° C.) is 0.8 kgf / cm (7.8 N / cm), and the peel strength (adhesive strength) after holding in a 150 ° C. atmosphere for 168 hours is 0.2 kgf. / Cm (2.0 N / cm).

また、得られた導体被覆ポリイミドフィルムの片側導体をエッチングして、125×12cmに切り出し、片面の銅被覆層側から光をあててピンホールの有無を確認したところ、12×12cmの領域内では光の透過はなく、ピンホールの存在を認められなかった。   Moreover, the one side conductor of the obtained conductor covering polyimide film was etched, cut out to 125 × 12 cm, and the presence or absence of a pinhole was confirmed by applying light from one side of the copper coating layer side. There was no light transmission, and no pinholes were observed.

(実施例3)
芳香族ポリイミドからなる基体層に熱可塑性樹脂層が積層されているシートとして、ビフェニルテトラカルボン酸二無水物と芳香族ジアミンとを用いて得られた芳香族ポリイミドからなる基体層の両面に、250℃のガラス転移温度をもち(示差走査熱量計を用いる方法で測定)、厚みが約3μmである熱可塑性ポリイミドの熱可塑性樹脂層が積層されて一体化されている厚み25μmのシート(宇部興産社製、商品名「ユーピレックスVTフィルム」)の200mm角を使用して、片面ずつサンドブラスト装置にて砥粒アルミナ#800を用いて、Ra=0.15になるように圧力・ショット時間を調整して両面を粗化させた。そのフィルムを用いて実施例1と同様に、湿式無電解めっき処理システムを行い、無光沢であるが、厚さ0.1μmの無電解銅めっき皮膜を得た。その無電解銅めっき薄膜上に、電気めっきにより厚さ8μmの銅層を形成して、導体被覆ポリイミドフィルムを得た。電気めっき条件及び導体接着強度の測定方法は、上述した実施例2と同様に行った。
(Example 3)
As a sheet in which a thermoplastic resin layer is laminated on a substrate layer made of aromatic polyimide, 250 sheets are formed on both surfaces of the substrate layer made of aromatic polyimide obtained using biphenyltetracarboxylic dianhydride and aromatic diamine. 25 μm thick sheet with a glass transition temperature of ℃ (measured by a method using a differential scanning calorimeter) and a thermoplastic polyimide layer of about 3 μm thick laminated and integrated (Ube Industries, Ltd.) Using the 200 mm square of the product name “UPILEX VT film”), adjust the pressure and shot time so that Ra = 0.15 using abrasive grain alumina # 800 with a sandblasting device one by one. Both sides were roughened. Using the film, a wet electroless plating treatment system was performed in the same manner as in Example 1 to obtain an electroless copper plating film having a thickness of 0.1 μm, which is matte. On the electroless copper plating thin film, a copper layer having a thickness of 8 μm was formed by electroplating to obtain a conductor-coated polyimide film. The measuring method of electroplating conditions and conductor adhesive strength was performed similarly to Example 2 mentioned above.

常温(25℃)の引き剥がし強度(接着強度)は0.5kgf/cm(4.9N/cm)であり、150℃雰囲気に168時間保持した後の引き剥がし強度(接着強度)は、0.6kgf/cm(5.9N/cm)であった。   The peel strength (adhesive strength) at room temperature (25 ° C.) is 0.5 kgf / cm (4.9 N / cm), and the peel strength (adhesive strength) after holding in a 150 ° C. atmosphere for 168 hours is 0.00. It was 6 kgf / cm (5.9 N / cm).

(実施例4)
上述した実施例3で作製された無電解銅めっきのみの導体被覆ポリイミドフィルムを、同じく上述した実施例2の加熱処理条件・電気めっき条件で導体被覆ポリイミドフィルムを得た。
Example 4
A conductor-coated polyimide film obtained only in the electroless copper plating produced in Example 3 described above was obtained under the same heat treatment conditions and electroplating conditions as in Example 2 described above.

常温(25℃)の引き剥がし強度(接着強度)は、1.8kgf/cm(17.6N/cm)であり、150℃雰囲気に168時間保持した後の引き剥がし強度(接着強度)は1.1.kgf/cm(10.8N/cm)であった。   The peel strength (adhesive strength) at normal temperature (25 ° C.) is 1.8 kgf / cm (17.6 N / cm), and the peel strength (adhesive strength) after holding in a 150 ° C. atmosphere for 168 hours is 1. 1. kgf / cm (10.8 N / cm).

(比較例1)
水溶性アミノシランカップリング剤処理の工程を行わず、上述した実施例1と同様に、触媒付与・活性化・無電解工程を実施したが、無電解銅めっき液で20分間揺動浸漬しても、めっき皮膜は析出しなかった。
(Comparative Example 1)
Although the process of water-soluble aminosilane coupling agent treatment was not carried out and the catalyst application / activation / electroless process was carried out in the same manner as in Example 1 described above, even when immersed for 20 minutes in an electroless copper plating solution The plating film did not precipitate.

(比較例2)
水溶性アミノシランカップリング剤処理の工程の代わりに、表面親水化剤のRO(C24O)n36Si(OR’)3のシランモノマー(日本ユニカー製:商品名NUC SILICONES A−1230)やメルカプトシランカップリング剤のγーメルカプトプロピルトリメトキシシラン(日本ユニカー製:商品名NUC SILICONES A−189)のメタノール・水=50:50混用液イミダゾールシランカップリング剤(ジャパンエナジー社製:品名IA−100A)をそれぞれ0.5重量%で処理して、上述した実施例1と同様にして、触媒付与・活性化・無電解工程を実施した。無電解銅めっき液で5分間揺動浸漬したが、すべてポリイミドフィルム表面の一部しかめっきが析出しなかった。
(Comparative Example 2)
Instead of the water-soluble aminosilane coupling agent treatment step, the surface hydrophilizing agent RO (C 2 H 4 O) n C 3 H 6 Si (OR ′) 3 silane monomer (manufactured by Nihon Unicar: trade name NUC SILICONES A) -1230) and a mercaptosilane coupling agent γ-mercaptopropyltrimethoxysilane (manufactured by Nippon Unicar Co., Ltd .: trade name NUC SILICONES A-189) methanol / water = 50: 50 mixed liquid imidazole silane coupling agent (manufactured by Japan Energy) : Product name IA-100A) was treated with 0.5% by weight, respectively, and the catalyst application, activation, and electroless processes were performed in the same manner as in Example 1 described above. Although it was immersed in an electroless copper plating solution for 5 minutes, plating was deposited only on a part of the polyimide film surface.

(比較例3)
上述した実施例1で作製した無電解銅めっき皮膜をしたポリイミドフィルムを、熱風循環式加熱炉(光洋サーモシステム社製)を用いて、酸素濃度が100ppm以下の窒素ガス雰囲気中で5℃/分の昇温スピードにて180℃まで加熱し、180℃で1時間保持した後、5℃/分の降温スピードで冷却する熱処理を行った。実施例2同様の8μm厚みの電気銅めっきを行ったが、銅皮膜はポリイミドフィルムから簡単に剥れてしまった。
(Comparative Example 3)
Using the hot air circulating heating furnace (manufactured by Koyo Thermo System Co., Ltd.), the polyimide film having the electroless copper plating film produced in Example 1 described above is 5 ° C./min in a nitrogen gas atmosphere having an oxygen concentration of 100 ppm or less. Was heated to 180 ° C. at a temperature increase rate of 1 ° C., held at 180 ° C. for 1 hour, and then heat-treated by cooling at a temperature decrease rate of 5 ° C./min. Similar to Example 2, an electrolytic copper plating with a thickness of 8 μm was performed, but the copper film was easily peeled off from the polyimide film.

(比較例4)
厚さ25μmの高耐熱性ポリイミドフィルム(東レ・デュポン社製 製品名「カプトン100V」)を12×12cmの大きさに切り出し、その片面にニッケルを100Åの厚さにスパッタリング法により成膜し、また銅を0.1μmの厚さに被覆させて第1金属層を形成して、次に、上述した実施例1の電気めっき条件と同じ条件で8μmの厚みの銅層を形成した。
(Comparative Example 4)
A 25 μm-thick high heat-resistant polyimide film (product name “Kapton 100V” manufactured by Toray DuPont) was cut into a size of 12 × 12 cm, and nickel was formed into a thickness of 100 mm on one side by a sputtering method. Copper was coated to a thickness of 0.1 μm to form a first metal layer, and then a copper layer having a thickness of 8 μm was formed under the same conditions as the electroplating conditions of Example 1 described above.

スパッタリング法により接続された銅厚み8μmのフレキシブル配線板の引き剥がし強度は、常態で0.55kgf/cmであり、150℃雰囲気168時間保持後の引き剥がし強度は0.15kgf/cmであった。   The peel strength of a flexible wiring board having a copper thickness of 8 μm connected by sputtering was 0.55 kgf / cm in a normal state, and the peel strength after holding at 150 ° C. for 168 hours was 0.15 kgf / cm.

また、導体8μmのスパッタリング法での銅被覆ポリイミドフィルムを12×12cmに切り出して、片面の銅被覆層側から光をあててピンホールの有無を確認したところ、12×12cmの領域内では光の透過があり、ピンホールの存在を認めた。ピンホールの大きさは、直径が数十〜百数十μmであり、数は2〜3個/2.5cm角あった。   In addition, when a copper-coated polyimide film with a conductor thickness of 8 μm was cut out to 12 × 12 cm and light was applied from one side of the copper coating layer to confirm the presence or absence of pinholes, There was transmission and the presence of pinholes was observed. As for the size of the pinhole, the diameter was several tens to one hundred and several tens of μm, and the number was 2 to 3 pieces / 2.5 cm square.

この銅被覆ポリイミドフィルムを用いて、配線幅が40μm、配線ピッチ100μmのフレキシブル配線板を作製したところ、配線部分にピンホールが原因である欠けや断線などの不良が確認された。   Using this copper-coated polyimide film, a flexible wiring board having a wiring width of 40 μm and a wiring pitch of 100 μm was produced, and defects such as chipping or disconnection due to pinholes were confirmed in the wiring portion.

本発明の一実施形態に係る導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the conductor covering polyimide film which concerns on one Embodiment of this invention, and a conductor covering polyimide film. 本発明の他の一実施形態に係る導体被覆ポリイミドフィルムの製造方法及び導体被覆ポリイミドフィルムを説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the conductor covering polyimide film which concerns on other one Embodiment of this invention, and a conductor covering polyimide film.

符号の説明Explanation of symbols

1 無電解めっき層
2 ポリイミドフィルム
3 電解銅めっき層
1 Electroless plating layer 2 Polyimide film 3 Electrolytic copper plating layer

Claims (5)

ポリイミドフィルムの片面又は両面を、水溶性アミノシランカップリング剤の0.05〜10重量%水溶液に浸漬する工程と、次いで、そのフィルム面を少なくとも1回以上水洗する工程、パラジウム−スズコロイド触媒溶液に浸漬する工程、スズを除去して金属パラジウムに変化する触媒活性溶液に浸漬する工程、及び、無電解金属めっきを行って無電解めっき層を形成する工程の5工程を順次連続的に処理し、無電解めっき層の膜厚が10μm以下となるように無電解めっきを行うことを特徴とする導体被覆ポリイミドフィルムの製造方法。 A step of immersing one or both sides of a polyimide film in a 0.05 to 10% by weight aqueous solution of a water-soluble aminosilane coupling agent, a step of washing the film surface with water at least once, and a step of immersing in a palladium-tin colloid catalyst solution 5 steps of removing the tin, immersing it in a catalytically active solution that changes to metallic palladium, and forming an electroless plating layer by performing electroless metal plating sequentially, A method for producing a conductor-coated polyimide film, wherein electroless plating is performed so that the thickness of the electrolytic plating layer is 10 μm or less. 上記水溶性アミノシランカップリング剤を介して無電解めっきを行った後、不活性雰囲気又は真空中で200℃以上に加熱することで、アルカリ溶液等のポリイミド表面化学改質層なしで、常態の導体接合強度を0.5kg/cm以上にすることを特徴とする請求項1記載の導体被覆ポリイミドフィルムの製造方法。 After conducting electroless plating through the water-soluble aminosilane coupling agent, it is heated to 200 ° C. or higher in an inert atmosphere or vacuum, so that a normal conductor without a polyimide surface chemical modification layer such as an alkaline solution is obtained. 2. The method for producing a conductor-coated polyimide film according to claim 1, wherein the bonding strength is 0.5 kg / cm or more. 上記ポリイミドフィルムの片面又は両面が、表面粗さ0.04<Ra<0.50μmにサンドブラストの機械的粗化より形成されたポリイミドフィルムであることを特徴とする請求項1または請求項2記載の導体被覆ポリイミドフィルムの製造方法。 3. The polyimide film according to claim 1, wherein one or both sides of the polyimide film are polyimide films formed by mechanical blasting of sandblast with a surface roughness of 0.04 <Ra <0.50 μm. A method for producing a conductor-coated polyimide film. 上記無電解めっきを行った後に、更に電気銅めっきを行って所望の厚みまで電解銅めっき層を析出させることを特徴とする請求項1ないし請求項3いずれか記載の導体被覆ポリイミドフィルムの製造方法。 The method for producing a conductor-coated polyimide film according to any one of claims 1 to 3, wherein after the electroless plating is performed, electrolytic copper plating is further performed to deposit an electrolytic copper plating layer to a desired thickness. . 請求項1ないし請求項4いずれか記載の導体被覆ポリイミドフィルムの製造方法を用いて製造してなることを特徴とする導体被覆ポリイミドフィルム。 A conductor-coated polyimide film produced by using the method for producing a conductor-coated polyimide film according to any one of claims 1 to 4.
JP2003348388A 2003-10-07 2003-10-07 Conductor coating polyimide film and manufacturing method thereof Pending JP2005116745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348388A JP2005116745A (en) 2003-10-07 2003-10-07 Conductor coating polyimide film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348388A JP2005116745A (en) 2003-10-07 2003-10-07 Conductor coating polyimide film and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005116745A true JP2005116745A (en) 2005-04-28

Family

ID=34540598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348388A Pending JP2005116745A (en) 2003-10-07 2003-10-07 Conductor coating polyimide film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005116745A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202109A (en) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology Plating film-polyimide stacked body, and method for producing the same
JP2008311463A (en) * 2007-06-15 2008-12-25 Sony Corp Forming method of metal thin film
WO2009066263A1 (en) * 2007-11-21 2009-05-28 Eskom Holdings Ltd Method of surface modification of metallic hydride forming materials
KR100975919B1 (en) 2008-05-06 2010-08-13 삼성전기주식회사 Method for forming external electrode of tantal condenser
JP2012059756A (en) * 2010-09-06 2012-03-22 Nitto Denko Corp Wiring circuit board and method of manufacturing the same
WO2012101992A1 (en) * 2011-01-26 2012-08-02 住友ベークライト株式会社 Method for producing printed wiring board
JP2013184425A (en) * 2012-03-09 2013-09-19 National Institute Of Advanced Industrial Science & Technology Resin/copper plating laminate and method of manufacturing the same
WO2017119330A1 (en) 2016-01-04 2017-07-13 住友精化株式会社 Composition for resin surface roughening
JP2017218604A (en) * 2016-06-02 2017-12-14 株式会社イクシス Method for forming plating film on stereolithographic article
JP2018202308A (en) * 2017-06-01 2018-12-27 東洋紡株式会社 Silane coupling agent treatment method, production method of silane coupling agent treatment base material and production method of laminate
WO2019171990A1 (en) * 2018-03-09 2019-09-12 株式会社有沢製作所 Laminate and method of manufacturing same
WO2020050338A1 (en) * 2018-09-05 2020-03-12 株式会社有沢製作所 Multilayer body
WO2021199916A1 (en) * 2020-03-30 2021-10-07 株式会社 ニフコ Cover member and radar mechanism
KR20230034687A (en) * 2021-09-03 2023-03-10 도레이첨단소재 주식회사 Copper clad laminate film, electronic device including the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202109A (en) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology Plating film-polyimide stacked body, and method for producing the same
US8943963B2 (en) 2007-06-15 2015-02-03 Sony Corporation Method for producing metal thin film
JP2008311463A (en) * 2007-06-15 2008-12-25 Sony Corp Forming method of metal thin film
US8943968B2 (en) 2007-06-15 2015-02-03 Sony Corporation Method for producing metal thin film
WO2009066263A1 (en) * 2007-11-21 2009-05-28 Eskom Holdings Ltd Method of surface modification of metallic hydride forming materials
US8354552B2 (en) 2007-11-21 2013-01-15 Eskom Holdings, Ltd. Method of surface modification of metallic hydride forming materials
KR100975919B1 (en) 2008-05-06 2010-08-13 삼성전기주식회사 Method for forming external electrode of tantal condenser
JP2012059756A (en) * 2010-09-06 2012-03-22 Nitto Denko Corp Wiring circuit board and method of manufacturing the same
US9839137B2 (en) 2010-09-06 2017-12-05 Nitto Denko Corporation Wired circuit board and producing method thereof
US9084359B2 (en) 2010-09-06 2015-07-14 Nitto Denko Corporation Wired circuit board having enhanced contrast between conductive pattern and insulating layer during inspection
JP2012169600A (en) * 2011-01-26 2012-09-06 Sumitomo Bakelite Co Ltd Method for manufacturing printed wiring board
CN103340023A (en) * 2011-01-26 2013-10-02 住友电木株式会社 Method for producing printed wiring board
WO2012101992A1 (en) * 2011-01-26 2012-08-02 住友ベークライト株式会社 Method for producing printed wiring board
JP2013184425A (en) * 2012-03-09 2013-09-19 National Institute Of Advanced Industrial Science & Technology Resin/copper plating laminate and method of manufacturing the same
KR20180100328A (en) 2016-01-04 2018-09-10 스미토모 세이카 가부시키가이샤 Composition for resin surface roughening
US11084915B2 (en) 2016-01-04 2021-08-10 Sumitomo Seika Chemicals Co., Ltd. Composition for resin surface roughening
WO2017119330A1 (en) 2016-01-04 2017-07-13 住友精化株式会社 Composition for resin surface roughening
JP2017218604A (en) * 2016-06-02 2017-12-14 株式会社イクシス Method for forming plating film on stereolithographic article
JP2018202308A (en) * 2017-06-01 2018-12-27 東洋紡株式会社 Silane coupling agent treatment method, production method of silane coupling agent treatment base material and production method of laminate
US11317507B2 (en) 2018-03-09 2022-04-26 Arisawa Mfg. Co., Ltd. Laminate and method for manufacturing the same
CN111819077B (en) * 2018-03-09 2023-07-07 株式会社有泽制作所 Laminate and method for producing same
JPWO2019171990A1 (en) * 2018-03-09 2021-04-08 株式会社有沢製作所 Laminated body and its manufacturing method
CN111819077A (en) * 2018-03-09 2020-10-23 株式会社有泽制作所 Laminate and method for producing same
WO2019171990A1 (en) * 2018-03-09 2019-09-12 株式会社有沢製作所 Laminate and method of manufacturing same
TWI790360B (en) * 2018-03-09 2023-01-21 日商有澤製作所股份有限公司 Laminate and method of manufacturing the same
JP7457645B2 (en) 2018-03-09 2024-03-28 株式会社有沢製作所 Laminate and manufacturing method thereof
CN112437724A (en) * 2018-09-05 2021-03-02 株式会社有泽制作所 Laminated body
WO2020050338A1 (en) * 2018-09-05 2020-03-12 株式会社有沢製作所 Multilayer body
JPWO2020050338A1 (en) * 2018-09-05 2021-08-30 株式会社有沢製作所 Laminate
US11946143B2 (en) 2018-09-05 2024-04-02 Arisawa Mfg. Co., Ltd. Laminate
JP2021161452A (en) * 2020-03-30 2021-10-11 株式会社ニフコ Cover member and radar mechanism
WO2021199916A1 (en) * 2020-03-30 2021-10-07 株式会社 ニフコ Cover member and radar mechanism
KR102548431B1 (en) 2021-09-03 2023-06-27 도레이첨단소재 주식회사 Copper clad laminate film, electronic device including the same
KR20230034687A (en) * 2021-09-03 2023-03-10 도레이첨단소재 주식회사 Copper clad laminate film, electronic device including the same

Similar Documents

Publication Publication Date Title
KR100969185B1 (en) Process for producing polyimide film with copper wiring
KR100742066B1 (en) Thermoplastic polyimide resin film, multilayer body and method for manufacturing printed wiring board composed of same
TWI455671B (en) Printed circuit board manufacturing method
TWI437937B (en) Copper wiring polyimine film manufacturing method and copper wiring polyimide film
US5478462A (en) Process for forming polyimide-metal laminates
JP4029517B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE
JP4804806B2 (en) Copper-clad laminate and manufacturing method thereof
JP5713560B2 (en) Laminated body having peelable properties and method for producing the same
US6824827B2 (en) Method of making a polyimide film having a thin metal layer
JP2005116745A (en) Conductor coating polyimide film and manufacturing method thereof
KR100955552B1 (en) Polyimide film, polyimide metal laminate and process for producing the same
JP4907580B2 (en) Flexible copper clad laminate
KR100969186B1 (en) Process for producing metal wiring board
JP4647954B2 (en) Method for producing laminate for flexible printed wiring board
KR100747627B1 (en) Method for producing 2 layered conductive metal plated polyimide substrate
JP4231511B2 (en) Polyimide film, polyimide metal laminate and method for producing the same
KR100798870B1 (en) Conductive metal plated polyimide substrate including coupling agent and method for producing the same
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP5129111B2 (en) LAMINATE MANUFACTURING METHOD AND CIRCUIT WIRING BOARD MANUFACTURING METHOD
JP2004322578A (en) Method for production of conductor-carrying polyimide substrate, and the conductor-carrying polyimide substrate
JP2005088465A (en) Manufacturing method for conductor-coated polyimide film and conductor-coated polyimide film
US20030012927A1 (en) Process for preparing metal-coated aromatic polyimide film
JP4844008B2 (en) Method for producing metal-coated polyimide substrate
JP2016187893A (en) Method for producing metal foil laminated film and circuit board having metal foil laminated film produced by the same
JPH08157629A (en) Readily bondable polyimide molded article and multi-layer polyimide substrate