JP2005087861A - アルコール酸化用触媒及びこの触媒を用いたアルデヒド又はケトンの製造方法 - Google Patents

アルコール酸化用触媒及びこの触媒を用いたアルデヒド又はケトンの製造方法 Download PDF

Info

Publication number
JP2005087861A
JP2005087861A JP2003324262A JP2003324262A JP2005087861A JP 2005087861 A JP2005087861 A JP 2005087861A JP 2003324262 A JP2003324262 A JP 2003324262A JP 2003324262 A JP2003324262 A JP 2003324262A JP 2005087861 A JP2005087861 A JP 2005087861A
Authority
JP
Japan
Prior art keywords
alcohol
catalyst
ketone
aldehyde
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003324262A
Other languages
English (en)
Inventor
Kenichi Wakui
顕一 涌井
Kenji Okamoto
賢治 岡本
Hideki Yamane
秀樹 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003324262A priority Critical patent/JP2005087861A/ja
Publication of JP2005087861A publication Critical patent/JP2005087861A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

【課題】 安全で環境への影響の少ない成分からなる固体触媒を用いて、温和な条件でアルコールの酸化反応を行うことにより、アルデヒド又はケトンを高選択的に製造する方法を提供すること。
【解決手段】 アルコールを酸化してアルデヒド又はケトンを製造するにあたり、下記一般式(1)
Rua Cub Fe2-a-b Al1.5 c (1)
(式中、a及びbは0.02〜0.8の数、cは正電荷を補償する任意の値である。)
で表される複合酸化物を触媒として、分子状酸素の存在下でアルコールの酸化反応を行うアルデヒド又はケトンの製造方法である。
【選択図】 なし

Description

本発明は、アルコールの酸化に用いる触媒、及びこの触媒を用いたアルコールの酸化反応により、アルデヒド又はケトンを高選択的に製造する方法に関する。
種々の炭化水素骨格を有するアルデヒドやケトンは、各種化学品や医薬原料として工業的に重要である。アルコールを酸化してアルデヒド又はケトンに誘導する方法としては、従来より、二酸化マンガン、クロム酸、二酸化セレンを酸化剤として用いる方法が知られている(例えば、非特許文献1参照)。しかしながら、これらの方法は酸化剤が多量に必要である上に、マンガン、クロム、セレン等の処理が必要であるため、環境上、経済上不利である。また、RuO4 、RuCl2 (PPh3 3 等のルテニウム化合物を酸化剤や触媒として使用した例も報告されているが、NaIO4 を始めとするハロゲン化合物等の共酸化剤を必要とし、また、酸化剤や触媒が均一液相となるため、Ruの回収分離が困難であるなどの問題があった(例えば、非特許文献1参照)。
これに対し、近年、ルテニウムを活性成分とする固体触媒が開発されている。例えば、Ru−Al−Mg系合成ハイドロタルサイトを用いたアルコールの酸化方法が開示されている(例えば、特許文献1参照)。ハイドロタルサイトは、天然にも存在する層状化合物であり、Ruを固定化することで固体触媒として使用できることが示されている。しかしながら、この触媒が適用されるアルコールは比較的酸化されやすいα,β−不飽和アルコールに限られている。
また、Co、Mn、Fe及びZnから選ばれる少なくとも一種の金属と、Ru又はAlから選ばれる少なくとも一種の金属を含有する合成ハイドロタルサイトを触媒として用いたアルコールの酸化方法が開示されている(例えば、特許文献2参照)。この触媒が適用されるのは主としてα,β−不飽和アルコールであるが、飽和の二級アルコールの酸化も可能であることが示されている。この触媒は、Ru−Al−Mg系ハイドロタルサイトと比較して活性が向上しているが、Co、Mn等の重金属を含み、また、飽和一級アルコールはカルボン酸にまで酸化されてしまうのでアルデヒドが得られないという問題がある。
さらに、Co、Mn、Fe及びZnから選ばれる少なくとも一種の金属と、Ru又はAlから選ばれる少なくとも一種の金属を含有する合成ハイドロタルサイトに、さらにRu金属を固定化した触媒を用いたアルコールの酸化方法が開示されている(例えば、特許文献3参照)。この触媒は、特許文献2に記載のハイドロタルサイトに、さらにRu塩の溶液を混合し、乾燥させて調製したものであるが、やはりα,β−不飽和アルコールが主な基質として用いられている。
さらにまた、遷移金属(Ru)をリン酸配位子(ヒドロキシアパタイト)に固定化した固体触媒を用いたアルコールの酸化方法が開示されている(例えば、特許文献4参照)。この触媒は、α,β−不飽和アルコールだけでなく、飽和の一級及び二級アルコールにも適用でき、それぞれアルデヒド及びケトンに誘導できることが示されているが、触媒活性がやや低い。また、フェライトスピネル(MnFe2 3 )のFeの一部をRu及びCuで置換した触媒を用いたアルコールの酸化方法が報告されているが(例えば、非特許文献2参照)、Mn酸化物は、中枢神経系、呼吸器系の障害リスクがあることが報告されており(例えば、非特許文献3参照)、より安全で環境への影響の少ない成分からなる触媒が望まれる。一方、塩化ルテニウムをアルミナ上に含浸担持し、これをアルカリで処理して得られた触媒を用いたアルコールの酸化方法が報告されている(例えば、非特許文献4参照)。しかしながら、このような含浸による触媒調製方法では、活性成分であるルテニウムが反応溶媒中に溶出するおそれがある。
特開2000−70723号公報 特開2000−86245号公報 特開2002−274852号公報 特開2001−246262号公報 実験化学講座第4版、23巻、日本化学会編、丸善、1991年、p21、38、478、113−137 H−B.Ji,K.Ebitani,T.Mizugaki,K.Kaneda著「Catal.Commun.,Vol.3」2002年、p511 化学物質安全性(ハザード)評価シート(整理番号2001−60)、(財)化学物質評価研究機構、2002年 山口和也、水野哲孝著「触媒、Vol.45」2003年、p157
本発明は、上記事情に鑑みなされたもので、アルコールを酸化してアルデヒド又はケトンを製造するにあたり、安全で環境への影響の少ない成分からなる固体触媒を用いて、温和な条件でアルコールの酸化反応を行うことにより、目的物であるアルデヒド又はケトンを高選択的に製造する方法を提供することを目的とするものである。
本発明者らは、上記従来技術の問題点を解決し、アルデヒド又はケトンを高選択的に効率よく安全に製造するため、鋭意研究を進めた結果、ルテニウムを含み、かつ一定組成の銅、鉄、アルミニウムからなる複合酸化物を触媒として用いることにより、温和な条件でアルコールの酸化を行うことができ、目的物であるアルデヒド又はケトンを高選択的に製造することができることを見出した。本発明はかかる知見に基づいて完成したものである。
すなわち、本発明は、下記組成式(1)
Rua Cub Fe2-a-b Al1.5 c (1)
(式中、a及びbは0.02〜0.8の数、cは正電荷を補償する任意の値である。)
で表される複合酸化物からなるアルコール酸化用触媒を提供するものである。
また、本発明は、アルコールを酸化してアルデヒド又はケトンを製造するにあたり、下記組成式(1)
Rua Cub Fe2-a-b Al1.5 c (1)
(式中、a、b及びcは上記と同様である。)
で表される複合酸化物を触媒として、分子状酸素の存在下でアルコールの酸化反応を行うことを特徴とするアルデヒド又はケトンの製造方法を提供するものである。
本発明のアルコール酸化用触媒は、安全で環境への影響の少ない成分からなる固体触媒である。この触媒を用いると、温和な条件でアルコールの酸化反応を行うことができ、目的物であるアルデヒド又はケトンを高選択的に製造することができる。
本発明のアルコール酸化用触媒は、下記組成式(1)
Rua Cub Fe2-a-b Al1.5 c (1)
(式中、a及びbは0.02〜0.8の数、cは正電荷を補償する任意の値である。)
で表される、ルテニウムを含み、かつ一定組成の銅、鉄、アルミニウムからなる複合酸化物である。
上記組成式(1)において、Ruの組成比が0.02よりも少ない場合、触媒活性が非常に低くなる。また、0.8よりも多い場合は、有効に使われるRuが減少するため、Ru比を0.8より多くしても触媒活性がより向上するものでもない。また、Cuの組成比が0.02よりも少ない場合も触媒活性が低い。Cu量の増加とともに触媒活性は増大するが、Cuの組成比を0.8より多くするとCuの分散性が悪くなるため、触媒活性が低下する。aは好ましくは0.2〜0.6であり、bは好ましくは0.05〜0.3である。
FeとAlは、触媒の物理的構造を維持するために必要であり、Fe及びAlを含まない複合酸化物であると、活性成分であるRuが反応溶媒中に溶出したり、触媒の表面積が低下するため、触媒活性が著しく低くなる。また、Alの組成比は、これらの複合酸化物を形成するために1.5であることを要する。cは正電荷を補償する任意の値であり、ICP発光分光分析等の組成分析によって決定される値である。
上記組成式(1)で表される複合酸化物は種々の方法で容易に調製することができる。例えば、脂肪酸エステルを水素化することにより、アルコールを製造するための触媒である銅−鉄−アルミニウム触媒を調製する方法(特公昭58−50775号公報)により調製することができる。この方法は、各金属の混合水溶液を加熱した後に、アルカリを加えて生成した沈殿を濾過し、回収し、焼成することにより、目的組成の複合酸化物を合成する方法である。このときの仕込みの銅、鉄、アルミニウム化合物の比を、上記組成式(1)に示す組成比となるように調節し、かつ混合水溶液中にルテニウム化合物を同様に仕込むことによって本発明の触媒を調製することができる。
また、「Catal.Commun.,Vol.3、2002年」に記載されている調製方法、すなわち、アルカリ水溶液中に、上記組成式(1)に示す組成に調節した金属塩の混合水溶液を滴下して加熱し、生成した沈殿を濾過し、回収し、焼成することによっても調製することができる。具体的には、以下のようにして調製することができる。すなわち、鉄化合物、銅化合物、アルミニウム化合物及びルテニウム化合物を、蒸留水に溶解させて混合水溶液を得、この混合水溶液を、水酸化ナトリウム等のアルカリ化合物の水溶液中に徐々に滴下し、滴下終了後、50〜120℃程度、好ましくは80〜110℃に加熱し、攪拌し、その後、室温まで冷却し、沈殿物を濾過により回収し、蒸留水で洗浄し、好ましくは濾液のpHが7になるまで洗浄し、50〜200℃程度、好ましくは80〜150℃で乾燥させることにより、得ることができる。
上記複合酸化物の原料として使用する試薬は特に限定されないが、例えば、塩化物、硝酸塩、硫酸塩及びこれらの水和物などを使用することができる。原料の仕込み量は、上記組成式(1)に示す組成比となるように調節することが必要である。
上記組成式(1)で表される複合酸化物は粉末状のものであり、通常はそのまま触媒として使用し、反応終了後に濾過操作により濾別することができる。また、濾過性や触媒活性を改善するために、シリカ、アルミナ、ゼオライト等の各種担体に上記複合酸化物を担持させたり、バインダーを用いて上記複合酸化物を成型し、固定床反応様式で用いることもできる。さらに、上記組成式(1)に示す組成以外の添加物を、本発明の効果を損なわない範囲で添加してもよい。このような添加物としては、例えば、周期律表第4族(Ti,Zr等)類、第13族(B等)類、第14族(C,Si等)類、アルカリ金属類及びアルカリ土類金属類などが挙げられる。
本発明のアルデヒド又はケトンの製造方法では、原料のアルコールとして、一級アルコール又は二級アルコールが好適に使用され、飽和脂肪族、不飽和脂肪族、脂環式、芳香族などの炭素骨格を有するものを用いることができる。また、分岐構造やヘテロ原子を有していてもよい。
飽和脂肪族の一級又は二級アルコールとしては、エタノール、プロパノール類、ブタノール類、ペンタノール類、ヘキサノール類、ヘプタノール類、オクタノール類、ノナノール類、デカノール類、ウンデカノール類、ドデカノール類、トリデカノール類、テトラデカノール類、ペンタデカノール類、ヘプタデカノール類、オクタデカノール類、ノナデカノール類、エイコサノール類等が挙げられる。不飽和脂肪族アルコールや芳香族アルコールとしては、アリルアルコール、シンナムアルコール、2−ヘキセノール、ベンジルアルコール、α−メチルベンジルアルコール等が挙げられる。脂環式アルコールとしては、シクロペンタノール、シクロヘキサノール、ボルネオール、ノルボルネオール、アダマンタノール等が挙げられる。一般に、一級アルコールの酸化によりアルデヒドが得られ、二級アルコールの酸化によりケトンが得られる。
本発明における酸化反応は、原料アルコールを溶解させた有機溶媒中に触媒を懸濁させ、分子状酸素を含むガスの共存下に加熱攪拌することによって行うことができる。酸素は種々のガスで希釈されていてもよく、酸素が希釈された酸素含有ガスとして、例えば空気(酸素濃度約21容量%、窒素濃度約79容量%)を用いることができる。酸素含有ガスは、反応中に吹き込んでもよく、また攪拌により、酸素含有ガスが気相から液相に拡散するようにしてもよい。原料のアルコールが液体の場合は、無溶媒で酸化反応を行うこともできる。溶媒を使用する場合は、原料アルコールが均一に溶解し、かつ酸化に対して安定な、ベンゼン、トルエン、トリフルオロトルエン等の芳香族系溶媒が好ましい。
反応温度は0〜200℃、好ましくは10〜150℃、さらに好ましくは20〜100℃である。反応温度が低すぎると反応に時間がかかりすぎ、また、反応温度が高すぎると、分解や重質化などのような副反応が起こりやすくなる。原料アルコールに対する触媒の量は、所望の反応時間となるように調節すればよいが、好ましくは原料アルコール1質量部に対して、触媒0.05〜1質量部、さらに好ましくは0.1〜0.8質量部である。反応圧力は大気圧とすることができるが、1MPa以下程度にやや加圧してもよい。
アルコールの酸化反応はほとんど定量的に進行するので、反応終了後は濾過操作によって触媒を分離し、蒸留等によって生成物を回収することができる。また、成型した触媒を固定床反応器に充填して反応を行うことで、連続的に酸化反応を行うこともできる。
本発明の触媒を用いると、上述したようにアルコールを温和な条件で酸化することができ、対応するアルデヒド又はケトンを高選択的に効率よく製造することができる。
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
実施例1
塩化鉄(FeCl3 )2.443g、硝酸銅3水和物[Cu(NO3)2 ・3H2 O]0.362g、硝酸アルミニウム9水和物[Al(NO3)3 ・9H2 O]5.627g及び塩化ルテニウム(RuCl3 )0.726gを、蒸留水50ミリリットルに溶解させ、混合水溶液を得た。水酸化ナトリウム6.21gを蒸留水40ミリリットルに溶解させ、内容積100ミリリットルのセパラブルフラスコに入れて、室温で攪拌しながら、上記混合水溶液を徐々に滴下した。
滴下終了後、セパラブルフラスコを油浴で95℃に加熱し、2時間攪拌した。その後、フラスコを室温まで冷却し、沈殿物を濾過により回収した。濾別した黒色沈殿物を濾液のpHが7になるまで蒸留水で洗浄した。洗浄された沈殿を空気雰囲気下、110℃で一晩乾燥させた。乾燥後の沈殿物(黒色粉末)の量は1.97gであり、ICP発光分光分析計で分析したところ、Ru0.35Cu0.15Fe1.5 Al1.5 x の組成であった。
上記で調製したRu含有黒色粉末を触媒として、2−アダマンタノールの酸化反応を行った。内容積100ミリリットルの3つ口フラスコに、触媒0.3g、2−アダマンタノール1.0g、溶媒としてトルエン50ミリリットルを仕込み、空気を10ミリリットル/minで仕込みながら、60℃で3時間反応を行った。反応終了後、孔径0.1μmのメンブレンフィルターを用いて触媒を濾別し、生成液をガスクロマトグラフィーで分析したところ、2−アダマンタノールの転化率は100%であり、2−アダマンタノンが99%の収率で生成していた。また、生成液中の金属分をICP(誘導結合プラズマ)分析器で測定したところ、Ru、Cu、Fe、Alともに検出されず、これらの含有量は1質量ppm以下であることがわかった。
比較例1
塩化鉄(FeCl3 )3.000g、硝酸銅3水和物(Cu(NO3)2 3H2 O)0.362g及び硝酸アルミニウム9水和物[Al(NO3)3 ・9H2 O]5.627gを用い、塩化ルテニウム(RuCl3 )を用いない以外は、実施例1と同様にして、Ruを含まない複合酸化物を調製した(組成:Cu0.15Fe1.85Al1.5 x )。この複合酸化物0.3gと、2−アダマンタノール1.0g及びトルエン50ミリリットルを仕込み、実施例1と同様にして反応を行った。触媒を濾別した後、生成液をガスクロマトグラフィーで分析したところ、2−アダマンタノールは未反応であった。
実施例2〜5
実施例1で調製した触媒(Ru0.35Cu0.15Fe1.5 Al1.5 x )を用い、各種アルコールの酸化反応を行った。触媒0.1g、各種アルコール1ミリモル及びトルエン(溶媒)3ミリリットルを、内容積10ミリリットルのガラス製反応容器に仕込み、空気雰囲気下、反応温度60℃で磁気攪拌子により攪拌して反応を行った。反応後の生成液をガスクロマトグラフィーで分析した。結果を表1に示す。表1に示す結果から、温和な条件で効率よく各種アルコールの酸化が行われ、対応するアルデヒド又はケトンが合成されたことがわかる。
Figure 2005087861

Claims (5)

  1. 下記組成式(1)
    Rua Cub Fe2-a-b Al1.5 c (1)
    (式中、a及びbは0.02〜0.8の数、cは正電荷を補償する任意の値である。)
    で表される複合酸化物からなるアルコール酸化用触媒。
  2. アルコールを酸化してアルデヒド又はケトンを製造するにあたり、下記組成式(1)
    Rua Cub Fe2-a-b Al1.5 c (1)
    (式中、a及びbは0.02〜0.8の数、cは正電荷を補償する任意の値である。)
    で表される複合酸化物を触媒として、分子状酸素の存在下でアルコールの酸化反応を行うことを特徴とするアルデヒド又はケトンの製造方法。
  3. アルコールが、一級アルコール又は二級アルコールである請求項2に記載の製造方法。
  4. アルコールが、脂環式構造を有するものである請求項2又は3に記載の製造方法。
  5. 脂環式構造が、アダマンタン骨格を持つ構造である請求項4に記載の製造方法。
JP2003324262A 2003-09-17 2003-09-17 アルコール酸化用触媒及びこの触媒を用いたアルデヒド又はケトンの製造方法 Pending JP2005087861A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324262A JP2005087861A (ja) 2003-09-17 2003-09-17 アルコール酸化用触媒及びこの触媒を用いたアルデヒド又はケトンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324262A JP2005087861A (ja) 2003-09-17 2003-09-17 アルコール酸化用触媒及びこの触媒を用いたアルデヒド又はケトンの製造方法

Publications (1)

Publication Number Publication Date
JP2005087861A true JP2005087861A (ja) 2005-04-07

Family

ID=34455061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324262A Pending JP2005087861A (ja) 2003-09-17 2003-09-17 アルコール酸化用触媒及びこの触媒を用いたアルデヒド又はケトンの製造方法

Country Status (1)

Country Link
JP (1) JP2005087861A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529077A (ja) * 2007-06-06 2010-08-26 ロデイア・オペラシヨン ヒドロキシ芳香族アルデヒドを調製する方法
JP2014139158A (ja) * 2012-12-18 2014-07-31 Kao Corp アルデヒドの製造方法
JP2020532511A (ja) * 2017-08-26 2020-11-12 シムライズ アーゲー テルペンアルデヒドおよびテルペンケトンの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529077A (ja) * 2007-06-06 2010-08-26 ロデイア・オペラシヨン ヒドロキシ芳香族アルデヒドを調製する方法
JP2014139158A (ja) * 2012-12-18 2014-07-31 Kao Corp アルデヒドの製造方法
JP2020532511A (ja) * 2017-08-26 2020-11-12 シムライズ アーゲー テルペンアルデヒドおよびテルペンケトンの製造方法

Similar Documents

Publication Publication Date Title
CN111108088B (zh) 用于将醛氧化酯化成羧酸酯的催化剂
Chen et al. Direct imine formation by oxidative coupling of alcohols and amines using supported manganese oxides under an air atmosphere
Dhakshinamoorthy et al. Iron (III) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide
JP5837062B2 (ja) 混成マンガンフェライトがコートされた触媒の製造方法及びそれを用いた1,3−ブタジエンの製造方法
US7820128B2 (en) Production of Cu/Zn/A1 catalysts via the formate route
US8410315B2 (en) Method for producing olefinically unsaturated carbonyl compounds by oxidative dehydrogenation of alcohols
US10226760B2 (en) Hydrogenation catalyst and method for producing same
WO2008099961A1 (ja) アルコール製造用触媒
Oliveira et al. Limonene oxidation over V2O5/TiO2 catalysts
Shimura et al. Ceria-supported ruthenium catalysts for the synthesis of indole via dehydrogenative N-heterocyclization
WO2014034879A1 (ja) 銅系触媒前駆体およびその製造方法並びに水素化方法
Tandon et al. Magnetically recyclable silica-coated ferrite magnetite-K 10 montmorillonite nanocatalyst and its applications in O, N, and S-acylation reaction under solvent-free conditions
Ciobanu et al. Heterogeneous amination of bromobenzene over titania-supported gold catalysts
JP2011032241A (ja) 芳香族置換脂肪族ケトン化合物の製造方法
WO2018157817A1 (zh) 选择性加氢催化剂、其制备方法及催化制备2-甲基烯丙醇的评价方法
US8269048B2 (en) Allylic oxidation method for the preparation of fragrances using metal-organic compounds and gold catalysts
JP2005087861A (ja) アルコール酸化用触媒及びこの触媒を用いたアルデヒド又はケトンの製造方法
Oberhauser et al. Aerobic diol lactonization by Au-nanoparticles supported onto an anion-exchange resin
CN108276280B (zh) 一种制备甲酸酯类化合物的方法
CN108658715B (zh) 一种制备n-甲酰化胺类化合物的方法
Duma et al. Gas phase oxidation of benzoic acid to phenol over nickel oxide catalysts
Mishra et al. Selective functionalization of n-hexane with molecular O 2 catalyzed by immobilized Cu/Co, Cu/Fe and Co/V complexes on modified Al 2 O 3
JP2003311155A (ja) C−c結合形成反応に用いることができる、新規な、ジイソプロピルアミドで交換した積層二水酸化物を調製する方法
WO2023074051A1 (ja) 触媒の製造方法、触媒およびメタノール製造方法
JP2011005484A (ja) アルケン製造用触媒、その製造方法及びアルケンの製造方法