JP2005080722A - Pulse pressure measuring device - Google Patents

Pulse pressure measuring device Download PDF

Info

Publication number
JP2005080722A
JP2005080722A JP2003313406A JP2003313406A JP2005080722A JP 2005080722 A JP2005080722 A JP 2005080722A JP 2003313406 A JP2003313406 A JP 2003313406A JP 2003313406 A JP2003313406 A JP 2003313406A JP 2005080722 A JP2005080722 A JP 2005080722A
Authority
JP
Japan
Prior art keywords
pressure
air chamber
pulse
pulse pressure
pressure air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003313406A
Other languages
Japanese (ja)
Other versions
JP3716326B2 (en
Inventor
Masaru Takahashi
勝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOSEI DENSHI KK
Sousei Electronics Corp
Original Assignee
SOSEI DENSHI KK
Sousei Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOSEI DENSHI KK, Sousei Electronics Corp filed Critical SOSEI DENSHI KK
Priority to JP2003313406A priority Critical patent/JP3716326B2/en
Publication of JP2005080722A publication Critical patent/JP2005080722A/en
Application granted granted Critical
Publication of JP3716326B2 publication Critical patent/JP3716326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a variation of a background component in the output signal of a pressure sensor in a pulse pressure measurement. <P>SOLUTION: A pulse pressure measuring device main body 22 is constituted in such a manner that a contact section 30 which comes into contact with a measuring area, and a sensor section 50 in which the pressure sensor 54 is arranged are superposed. The pressure sensor 54 outputs a pulse pressure detecting signal in response to a pressure difference between a measuring pressure air chamber 38 and a back pressure air chamber 58. By a thin and long communication passage 70 which communicates with the back pressure air chamber 58, an internal pressure difference between the measuring pressure air chamber 38 and the back pressure air chamber 58 is softened by a sufficiently longer softening time than the pulse pressure cycle. Thus, even when the body is moved after the pulse pressure measuring device main body 22 is attached, the background component which appears in the pulse pressure detecting signal varies with a favorable reproductivity conforming to a specified softening time characteristic, and the variation can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は脈圧測定装置に係り、特に、圧力センサを用いて動脈の脈圧を測定する脈圧測定装置に関する。   The present invention relates to a pulse pressure measuring device, and more particularly to a pulse pressure measuring device that measures a pulse pressure of an artery using a pressure sensor.

血圧を非侵襲で測定する方法として、カフにより測定部位を加圧し、その後次第に減圧してゆく過程で動脈の脈圧変動に伴って生ずるコロトコフ音を聴診して最高血圧や最低血圧を測定することが医療の現場等で広く用いられている。この方法は、聴診を用いること、圧力を水銀柱または水柱の高さで測定すること、測定部位を固定して行うため被測定者が自分で測定するには不便であること等から、圧力センサを用いて利便性を向上させる電子血圧計がさまざまな形で提案されている。例えば、特許文献1には、カフ内の圧力及び脈波を圧力センサで検出し、圧力センサの出力データを演算して血圧測定をすることが開示されている。   As a non-invasive method of measuring blood pressure, the measurement site is measured by auscultating Korotkoff sounds that accompany arterial pulse pressure fluctuations in the process of pressurizing the measurement site with a cuff and then gradually reducing the pressure. Is widely used in medical settings. This method uses auscultation, measures the pressure at the height of the mercury column or water column, and because the measurement site is fixed, it is inconvenient for the person to measure. There have been proposed various types of electronic sphygmomanometers that improve convenience by using them. For example, Patent Document 1 discloses that a pressure and a pulse wave in a cuff are detected by a pressure sensor, and blood pressure is measured by calculating output data of the pressure sensor.

特開2001−198093号公報JP 2001-198093 A

圧力センサにより動脈の脈圧成分を取り出すには、例えば3Vレンジの信号変化の中で数10−100mV程度の脈動成分を拾い出す必要がある。すなわち、圧力センサの出力から小さな動脈の脈圧成分を取り出すには、信号のバックグランド成分を除去する必要がある。ところが、圧力センサを測定部位に取り付けて脈圧を検出しようとする際に、身体を動かすとバックグランド成分が大きくシフトしてしまう。その例を図1に示す。ここでは、圧力センサを手首撓骨動脈の近傍に適当な取り付け方法で固定し、圧力センサの検出信号の時間変化について、横軸に時間、縦軸に検出電圧を取って示した。図1に示されるように、圧力センサの検出信号には動脈の脈圧を示す小さな脈動成分10が含まれている。ここで僅かに手首を動かすとき12に検出信号波形全体が大きく変動し、測定レンジを振り切ってしまう。そして手首の動きが止むとともに、検出信号波形の変動は元に戻ろうとするが、完全に元には戻らず、またその戻り方も再現性がない。すなわち破線で示すバックグランド成分14が、手首を動かす度に再現性なく変化することになる。   In order to extract the pulse pressure component of the artery with the pressure sensor, for example, it is necessary to pick up a pulsation component of about several tens to 100 mV in a signal change in the 3V range. That is, in order to extract the pulse pressure component of a small artery from the output of the pressure sensor, it is necessary to remove the background component of the signal. However, when the pressure sensor is attached to the measurement site and the pulse pressure is to be detected, the background component is greatly shifted if the body is moved. An example is shown in FIG. Here, the pressure sensor is fixed in the vicinity of the wrist radial artery by an appropriate attachment method, and the time change of the detection signal of the pressure sensor is shown with time on the horizontal axis and detection voltage on the vertical axis. As shown in FIG. 1, the detection signal of the pressure sensor includes a small pulsation component 10 indicating the pulse pressure of the artery. Here, when the wrist is slightly moved, the entire detection signal waveform greatly fluctuates at 12 and the measurement range is swung away. As the wrist stops moving, the fluctuation of the detection signal waveform tries to return to the original state, but it does not return completely, and the return method is not reproducible. That is, the background component 14 indicated by a broken line changes without reproducibility each time the wrist is moved.

圧力センサの検出信号からバックグランド成分を除去するには、例えばハイパスフィルタを設け、あるいは最小二乗法等の演算によりバックグランド成分曲線を求めてこれを減算処理する等が考えられるが、上記のように、僅かな動きでもバックグランド成分が大きく変化し、また、変化の仕方に再現性がないので、複雑な電子回路の構成となり、あるいは複雑な演算処理を要する。   In order to remove the background component from the detection signal of the pressure sensor, for example, a high-pass filter is provided, or a background component curve is obtained by calculation such as a least square method, and this is subtracted. In addition, the background component changes greatly even with a slight movement, and the method of change is not reproducible, resulting in a complicated electronic circuit configuration or complicated arithmetic processing.

本発明の目的は、かかる従来技術の課題を解決し、圧力センサの出力信号におけるバックグランド成分の変動を抑制できる脈圧測定装置を提供することである。   An object of the present invention is to provide a pulse pressure measuring device that can solve the problems of the prior art and suppress the fluctuation of the background component in the output signal of the pressure sensor.

上記目的を達成するため、本発明に係る脈圧測定装置は、血圧を測定する部位へ押し当てて脈圧を検出する脈圧測定装置であって、測定部位に押し当てる面に弾性板を有し内部に所定の与圧を有する空気を含む筐体と、筐体の内部を弾性板側の測定圧空気室と背圧空気室とに仕切る可撓性薄膜と、測定部位からの脈圧に応じて変化する測定圧空気室の内圧と背圧空気室の内圧との圧力差を可撓性薄膜の変形により検出する圧力センサと、測定圧空気室と背圧空気室とを連通し脈圧の周期より長い緩和時間で測定圧空気室と背圧空気室との間の内圧差を緩和する細長い連通路と、を備えることを特徴とする。   In order to achieve the above object, a pulse pressure measurement device according to the present invention is a pulse pressure measurement device that detects a pulse pressure by pressing against a site where blood pressure is measured, and has an elastic plate on the surface pressed against the measurement site. A housing containing air having a predetermined pressure inside, a flexible thin film that divides the inside of the housing into a measurement pressure air chamber and a back pressure air chamber on the elastic plate side, and a pulse pressure from the measurement site. A pressure sensor that detects the pressure difference between the internal pressure of the measurement pressure air chamber and the back pressure air chamber, which changes according to the pressure, by the deformation of the flexible thin film, and the measurement pressure air chamber and the back pressure air chamber communicate with each other. And an elongate communication path that relaxes the internal pressure difference between the measured pressure air chamber and the back pressure air chamber with a relaxation time longer than the period.

また、連通路は径が5μm以上50μm以下であることが好ましい。また、連通路は長さが0.5mm以上1.5mm以下であることが好ましい。また、所定の与圧は、90ミリバール以上150ミリバールであることが好ましい。また弾性板は、金属製のスクリーンメッシュ薄板と、プラスチック製の薄板とを重ねて構成されることが好ましい。   The communication path preferably has a diameter of 5 μm or more and 50 μm or less. Moreover, it is preferable that the length of a communicating path is 0.5 mm or more and 1.5 mm or less. The predetermined pressure is preferably 90 mbar or more and 150 mbar. The elastic plate is preferably formed by stacking a metal screen mesh thin plate and a plastic thin plate.

また、本発明に係る脈圧測定装置において、圧力センサの出力を無線送信する送信部を備えることが好ましい。   Moreover, it is preferable that the pulse pressure measuring device according to the present invention further includes a transmission unit that wirelessly transmits the output of the pressure sensor.

上記構成により、筐体の内部を、弾性板側の測定圧空気室と、背圧空気室とに可撓性薄膜で仕切り、測定圧空気室と背圧空気室との間を、細長い連通路で連通する。ここで可撓性薄膜は、その変形により薄膜両側の圧力差を検出できる圧力センサとなる。脈圧成分の周波数帯域に比べバックグランド成分の周波数成分はより低周波側にある。測定圧空気室と背圧空気室との間の細長い連通路は、可撓性薄膜の両側の圧力差に対し、バイパス的なフィルタの役割を果たす。したがって、連通路の径によってバイパス的フィルタの周波数帯域を調整でき、それにより圧力センサの出力信号におけるバックグランド成分の変動を抑制できる。細長い連通路の寸法は、測定圧空気室と背圧空気室とを連通し脈圧の周期より長い緩和時間で測定圧空気室と背圧空気室との間の内圧差を緩和するように設定される。径が5μm以上50μm以下という条件は、バックグランド成分の変動を抑制できる範囲として実験的に求められた値である。この場合、小型の可撓性薄膜型圧力センサを用い、連通路の長さを0.5−1.5mm程度とした。   With the above configuration, the inside of the housing is partitioned into a measurement pressure air chamber on the elastic plate side and a back pressure air chamber by a flexible thin film, and an elongated communication path is provided between the measurement pressure air chamber and the back pressure air chamber. Communicate with Here, the flexible thin film becomes a pressure sensor that can detect a pressure difference between both sides of the thin film by deformation. The frequency component of the background component is on the lower frequency side than the frequency band of the pulse pressure component. The elongated communication path between the measurement pressure air chamber and the back pressure air chamber serves as a bypass filter for the pressure difference between both sides of the flexible thin film. Therefore, the frequency band of the bypass filter can be adjusted according to the diameter of the communication path, thereby suppressing the fluctuation of the background component in the output signal of the pressure sensor. The length of the elongated communication passage is set so that the measured pressure air chamber and the back pressure air chamber communicate with each other and the internal pressure difference between the measured pressure air chamber and the back pressure air chamber is relaxed in a relaxation time longer than the cycle of the pulse pressure. Is done. The condition that the diameter is 5 μm or more and 50 μm or less is a value obtained experimentally as a range in which the fluctuation of the background component can be suppressed. In this case, a small flexible thin film type pressure sensor was used, and the length of the communication path was set to about 0.5 to 1.5 mm.

また、所定の与圧は、血圧の値に近い値の90ミリバール以上150ミリバールに設定される。このように、測定圧空気室の与圧と脈圧とをほぼバランスさせることで、弾性板が脈圧変動を測定圧空気室に伝達しやすくなる。また、弾性板を金属製のスクリーンメッシュ薄板とプラスチック製の薄板を重ねた構成とする。金属製のスクリーンメッシュ薄板は弾性範囲でしか伸縮せず、その周囲は筐体に保持されているので、脈圧変動に応じてその表面形状が全体として凹凸の変化を行い、脈圧変動を測定圧空気室に一様に伝達することができる。なお、プラスチック製薄膜は、スクリーンメッシュ薄膜のメッシュ部分から空気が漏れるのを防ぐ役割を果たす。   The predetermined pressurization is set to 90 mbar or more and 150 mbar, which is a value close to the blood pressure value. In this way, the elastic plate can easily transmit the fluctuation of the pulse pressure to the measurement pressure air chamber by substantially balancing the pressurization pressure and the pulse pressure of the measurement pressure air chamber. In addition, the elastic plate is configured by stacking a metal screen mesh thin plate and a plastic thin plate. The metal screen mesh thin plate expands and contracts only within the elastic range, and its periphery is held by the housing, so the surface shape changes as a whole according to the pulse pressure fluctuation, and the pulse pressure fluctuation is measured Uniform transmission to the compressed air chamber is possible. The plastic thin film serves to prevent air from leaking from the mesh portion of the screen mesh thin film.

また、圧力センサの出力を無線送信することができるので、脈圧測定装置から外部への信号線をなくし、取り扱いが便利となる。   Further, since the output of the pressure sensor can be transmitted wirelessly, the signal line from the pulse pressure measuring device to the outside is eliminated, and handling becomes convenient.

以上のように、本発明に係る脈圧測定装置によれば、圧力センサの出力信号におけるバックグランド成分の変動を抑制することができる。   As described above, according to the pulse pressure measuring device of the present invention, the fluctuation of the background component in the output signal of the pressure sensor can be suppressed.

以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。図2は本発明に係る実施の形態の脈圧測定装置20を測定部位18に押し当て又は取り付ける様子を示す図である。動脈の脈圧を検出しやすい場所としては、手首内側の手首撓骨動脈付近の測定部位18を用いることができる。脈圧測定装置20は、片手の数本の指で保持できる大きさのもので、内部に脈圧を検出する圧力センサを備え、その出力信号を外部に取り出す外部信号線を備えている。外部信号線は適当な波形モニタや血圧算出器に接続される。脈圧を検出するには、脈圧測定装置20を片手で保持して測定部位18に押し当て、あるいは適当な接着テープ等の固定具を用いて脈圧測定装置20を測定部位18に取り付ける。そして波形モニタ上に圧力センサの出力波形を表示させて脈圧の変動等を観察でき、あるいは血圧算出器を用いて脈圧に基づいた血圧値を算出することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 is a diagram showing a state in which the pulse pressure measuring device 20 according to the embodiment of the present invention is pressed against or attached to the measurement site 18. As a place where the arterial pulse pressure can be easily detected, the measurement site 18 near the wrist radial artery inside the wrist can be used. The pulse pressure measuring device 20 is of a size that can be held by several fingers in one hand, and includes a pressure sensor that detects the pulse pressure inside, and an external signal line that extracts the output signal to the outside. The external signal line is connected to an appropriate waveform monitor or blood pressure calculator. In order to detect the pulse pressure, the pulse pressure measurement device 20 is held with one hand and pressed against the measurement site 18 or the pulse pressure measurement device 20 is attached to the measurement site 18 using a fixture such as an appropriate adhesive tape. Then, the output waveform of the pressure sensor can be displayed on the waveform monitor to observe fluctuations in pulse pressure or the like, or a blood pressure value based on the pulse pressure can be calculated using a blood pressure calculator.

図3は、脈圧測定装置20から外部信号線を除いた脈圧測定装置本体22の断面図である。脈圧測定装置本体22は、測定部位に接触するやや外形の大きい接触部30と、接触部30よりやや小ぶりで内部に圧力センサ54が配置されるセンサ部50とが重ねあわされた形状を有している。その大きさは、一例として接触部30の外径を約15−20mm、センサ部50の外径を約10−15mm、全体の高さを約2−3mm程度のものとすることができる。   FIG. 3 is a cross-sectional view of the pulse pressure measuring device main body 22 with the external signal line removed from the pulse pressure measuring device 20. The pulse pressure measuring device main body 22 has a shape in which a contact portion 30 having a slightly larger outer shape that comes into contact with a measurement site and a sensor portion 50 in which the pressure sensor 54 is disposed inside is slightly smaller than the contact portion 30. doing. As an example, the outer diameter of the contact portion 30 is about 15-20 mm, the outer diameter of the sensor portion 50 is about 10-15 mm, and the overall height is about 2-3 mm.

接触部30は、広口の開口を有する下部筐体32と、下部筐体の広口開口に取り付けられた弾性板34と、下部筐体32と弾性板34とで囲まれた内部空間の測定圧空気室38とから構成される。   The contact portion 30 includes a lower housing 32 having a wide opening, an elastic plate 34 attached to the wide opening of the lower housing, and measured compressed air in an internal space surrounded by the lower housing 32 and the elastic plate 34. Chamber 38.

下部筐体32は、広口開口部における弾性板34の部分を除き測定圧空気室38の変形を防止する機能を有する平型カップ状の部材で、その周壁及び天井壁は剛性のある材料、例えば硬質プラスチックで構成される。下部筐体32は、図3に示すように、硬質プラスチック製の環状周壁部材と天井円板とを気密に組立てて得ることもでき、あるいは一体成形により得ることもできる。剛性のある材料としてセラミックあるいは必要なところを絶縁処理した金属等を用いてもよい。下部筐体の天井壁には、共通穴40aと連通穴60aとが設けられるが、その詳細は後述する。   The lower housing 32 is a flat cup-shaped member having a function of preventing the deformation of the measurement pressure air chamber 38 except for the elastic plate 34 at the wide opening, and the peripheral wall and ceiling wall thereof are made of a rigid material, for example, Consists of hard plastic. As shown in FIG. 3, the lower housing 32 can be obtained by assembling a rigid plastic annular peripheral wall member and a ceiling disk in an airtight manner, or by integral molding. As the rigid material, ceramic or metal having a necessary insulation treatment may be used. A common hole 40a and a communication hole 60a are provided in the ceiling wall of the lower housing, and details thereof will be described later.

弾性板34は、測定部位の脈圧変動に応じて全体が凹凸型に変形する機能を有し、全体の厚みが例えば約40−50μm前後の薄板部材である。具体的には、ごくわずかな弾性範囲を除いて伸び縮みしない金属製のスクリーンメッシュ35と、大きな範囲で伸び縮み可能なプラスチックゴム36の2重構造で構成することができる。あるいは、一枚のポリイミド薄板で構成してもよい。   The elastic plate 34 is a thin plate member having a function of deforming into a concave-convex shape as a whole according to fluctuations in pulse pressure at the measurement site, and having an overall thickness of, for example, about 40-50 μm. Specifically, it can be constituted by a double structure of a metal screen mesh 35 that does not expand and contract except a very small elastic range and a plastic rubber 36 that can expand and contract in a large range. Alternatively, it may be composed of a single polyimide thin plate.

センサ部50は、底部に共通穴40bが貫通するくぼみを有するセンサ筐体52と、共通穴40bを覆ってセンサ筐体52のくぼみに取り付けられる圧力センサ54と、センサ筐体52のくぼみを覆う蓋56と、センサ筐体52と圧力センサ54と蓋56とで囲まれた内部空間である背圧空気室58とから構成される。   The sensor unit 50 includes a sensor housing 52 having a recess through which the common hole 40b passes, a pressure sensor 54 that covers the common hole 40b and is attached to the recess of the sensor housing 52, and covers the recess of the sensor housing 52. The lid 56 includes a back pressure air chamber 58 that is an internal space surrounded by the sensor casing 52, the pressure sensor 54, and the lid 56.

センサ筐体52は、概略円筒状の形状をなし、外周部から中心部に向かって掘り下げるように数段の段差を有してくぼみが形成され、そのくぼみの中心に共通穴40bが貫通して設けられる部材である。数段の段差は、少なくとも2段あり、共通穴40bに最も近く、最も掘り下げられた第1段差は、圧力センサ54の周囲を保持する。第1段差より外周側で、掘り下げ量が第1段差より少ない第2段差には電極パターンが設けられ、この電極パターンと圧力センサ54上の電極パッドとの間が金属ワイヤで接続される。電極パターンは、脈圧測定装置本体22の外部に引き出される外部信号線と接続される。第2段差の掘り下げ量は、金属ワイヤのループが蓋56に接触しないように十分な深さに設定される。図3に示すように、背圧空気室58の容積を確保するために、金属ワイヤが接続される第2段差のさらに外周側に掘り下げ量の少ない第3段差を設けてもよい。また、圧力センサの形状等にあわせ、図3に示す以外の形状を取ることもできる。かかるセンサ筐体52は、例えばセラミック又は硬質プラスチックを所定の形状に成形し、必要な個所に電極パターン等を厚膜印刷等の技術で配線して得ることができる。なお、センサ筐体52には、底部から背圧空気室に向かって連通穴60bが設けられるが、その詳細は後述する。   The sensor housing 52 has a substantially cylindrical shape, and is formed with a step having several steps so as to be dug from the outer peripheral portion toward the center portion, and a common hole 40b passes through the center of the recess. It is a member provided. There are at least two steps, and the first step that is closest to the common hole 40b and is dug down holds the periphery of the pressure sensor 54. An electrode pattern is provided on the second step that is less on the outer periphery side than the first step and less than the first step, and the electrode pattern and the electrode pad on the pressure sensor 54 are connected by a metal wire. The electrode pattern is connected to an external signal line drawn out of the pulse pressure measuring device main body 22. The depth of the second step is set to a sufficient depth so that the metal wire loop does not contact the lid 56. As shown in FIG. 3, in order to secure the volume of the back pressure air chamber 58, a third step with a small amount of digging may be provided further on the outer peripheral side of the second step to which the metal wire is connected. In addition, shapes other than those shown in FIG. 3 can be taken according to the shape of the pressure sensor. Such a sensor housing 52 can be obtained by, for example, molding ceramic or hard plastic into a predetermined shape, and wiring an electrode pattern or the like at a required location by a technique such as thick film printing. In addition, although the communication hole 60b is provided in the sensor housing | casing 52 toward a back pressure air chamber from the bottom part, the detail is mentioned later.

蓋56は、センサ筐体52の外径と同じ外径を有する円板状の部材で、センサ筐体52のくぼみを覆って、背圧空気室58を外部から隔離する機能を有する。具体的には、蓋56の周辺部が、センサ筐体52におけるくぼみの最上部の縁に気密に固定される。かかる蓋56は、センサ筐体52に用いられた材質と同じもので形成してもよく、異なる材料であってもよい。センサ筐体52との固定は、接着あるいはハーメチックシール等を用いることができる。   The lid 56 is a disk-like member having the same outer diameter as the outer diameter of the sensor housing 52 and has a function of covering the recess of the sensor housing 52 and isolating the back pressure air chamber 58 from the outside. Specifically, the peripheral portion of the lid 56 is airtightly fixed to the uppermost edge of the recess in the sensor housing 52. The lid 56 may be formed of the same material as that used for the sensor housing 52, or may be a different material. For fixing to the sensor casing 52, adhesion or a hermetic seal can be used.

圧力センサ54は、可撓性薄膜部分を有する素子で、例えば、所定の面方位を有するシリコンを選択エッチングにより、共通穴40bより広い面積で局所的にエッチングし、その部分を可撓性薄膜部分とし、エッチングされない肉厚の厚い周辺部分をセンサ筐体52に取り付ける取り付け部分とすることができる。この可撓性薄膜部分に半導体素子形成技術を用いて、抵抗素子を作りこむことで圧力センサとすることができる。すなわち、可撓性薄膜部分の一方側の面は共通穴40bに面し、他方側の面は背圧空気室58に面するので、共通穴40b側の空気圧と背圧空気室58の空気圧の差である差圧に応じ、可撓性薄膜部分が上凸または下凸にたわむ。可撓性薄膜部分のたわみに応じて抵抗素子は応力を受け、ひずみを生ずるので抵抗値が変化する。したがって、抵抗値の変化により、差圧の大きさを検出できる。   The pressure sensor 54 is an element having a flexible thin film portion. For example, silicon having a predetermined plane orientation is locally etched in a larger area than the common hole 40b by selective etching, and the portion is flexible film portion. And a thick peripheral portion that is not etched can be used as an attachment portion to be attached to the sensor housing 52. A pressure sensor can be obtained by forming a resistance element in the flexible thin film portion using a semiconductor element forming technique. That is, since one surface of the flexible thin film portion faces the common hole 40b and the other surface faces the back pressure air chamber 58, the air pressure of the common hole 40b side and the air pressure of the back pressure air chamber 58 are Depending on the differential pressure, which is the difference, the flexible thin film portion bends upward or downward. The resistance element is subjected to stress according to the deflection of the flexible thin film portion and causes distortion, so that the resistance value changes. Therefore, the magnitude of the differential pressure can be detected from the change in resistance value.

図4は、圧力検出の回路部80を示す図である。抵抗ブリッジ82は、圧力センサ54の可撓性薄膜部分に設けられる4個の抵抗についてブリッジ回路を形成するように結線したものである。このように抵抗ブリッジ回路を用いることで、抵抗値の変化を電圧値とし、また1つの抵抗素子を用いるのに比べ、その変化量を拡大して検出でき、その出力を安定させることができる。増幅器84は、抵抗ブリッジ82における検出信号を増幅する機能を有する回路である。出力I/F86は、増幅後の信号を、外部信号線を介して出力するためのレベル調整等の変換回路である。出力I/F86からは、バックグランド成分に動脈の脈動成分を含む脈圧検出信号が出力される。脈圧検出信号の一例としては、3Vレンジで数10−100mV程度の脈動成分を含んで出力することができる。   FIG. 4 is a diagram showing a circuit unit 80 for pressure detection. The resistance bridge 82 is formed by connecting four resistors provided in the flexible thin film portion of the pressure sensor 54 so as to form a bridge circuit. By using the resistance bridge circuit in this manner, the change in resistance value is set as a voltage value, and the change amount can be detected in an enlarged manner compared to the case of using one resistance element, and the output can be stabilized. The amplifier 84 is a circuit having a function of amplifying the detection signal in the resistance bridge 82. The output I / F 86 is a conversion circuit such as level adjustment for outputting the amplified signal via an external signal line. From the output I / F 86, a pulse pressure detection signal including a pulsation component of an artery as a background component is output. As an example of the pulse pressure detection signal, a pulsation component of about several tens to 100 mV can be output in the 3V range.

出力I/F86は外部信号線を介して適当な波形モニタや血圧算出器に接続される。また、外部信号線を用いずに、無線信号により脈圧検出信号を外部の波形モニタや血圧算出器に送信するものとしてもよい。この場合には、増幅器84により増幅された後、出力I/F86において、送信信号への変換が行われる。増幅器84及び出力I/F86は、独立の回路部品等で構成することもでき、圧力センサ54の肉厚の厚い部分のシリコンに半導体集積回路技術を用いて作りこむこともできる。   The output I / F 86 is connected to an appropriate waveform monitor or blood pressure calculator via an external signal line. Moreover, it is good also as what transmits a pulse pressure detection signal to an external waveform monitor and a blood pressure calculator by a radio signal, without using an external signal line. In this case, after being amplified by the amplifier 84, conversion to a transmission signal is performed at the output I / F 86. The amplifier 84 and the output I / F 86 can be configured by independent circuit components or the like, and can be formed by using a semiconductor integrated circuit technique in the thick silicon of the pressure sensor 54.

接触部30とセンサ部50とは、接触部30の下部筐体32における天井壁と、センサ部50のセンサ筐体52における底部とが位置決めされて固定され、全体として脈圧測定装置本体22となる。位置決めは、下部筐体32の天井壁に設けられた共通穴40a及び連通穴60aの位置と、センサ筐体52の底部に設けられた共通穴40b及び連通穴60bの位置とをそれぞれ合わせて行われる。位置決めを容易にするため、一方側の穴径を他方側の穴径より大きくしてもよい。位置決めがされた後の固定は、接着あるいは小型ビス等の固定手段を用いることができる。   The contact part 30 and the sensor part 50 are fixed by positioning and fixing the ceiling wall of the lower housing 32 of the contact part 30 and the bottom part of the sensor housing 52 of the sensor part 50, as a whole. Become. The positioning is performed by matching the positions of the common hole 40a and the communication hole 60a provided in the ceiling wall of the lower housing 32 with the positions of the common hole 40b and the communication hole 60b provided in the bottom of the sensor housing 52. Is called. In order to facilitate positioning, the hole diameter on one side may be larger than the hole diameter on the other side. For fixing after positioning, fixing means such as adhesion or a small screw can be used.

このようにして組み立てられた脈圧測定装置本体22は、図3に示されるように、下部筐体32とセンサ筐体52と蓋56とで全体の筐体の機能を有する。また、共通穴40a,40bが位置決めされることで、圧力センサ54は、弾性板側の測定圧空気室38と背圧空気室58とを仕切る機能を有する。そして、位置決めされた連通穴60a,60bは、測定圧空気室38と背圧空気室58とを細い連通路70で連通する機能を有する。   As shown in FIG. 3, the pulse pressure measuring device main body 22 assembled in this way has the function of the entire housing with the lower housing 32, the sensor housing 52, and the lid 56. Further, the pressure sensor 54 has a function of partitioning the measured pressure air chamber 38 and the back pressure air chamber 58 on the elastic plate side by positioning the common holes 40a and 40b. The positioned communication holes 60 a and 60 b have a function of communicating the measured pressure air chamber 38 and the back pressure air chamber 58 with a narrow communication passage 70.

測定圧空気室38と背圧空気室58とは、下部筐体32とセンサ筐体52と蓋56と弾性板34によって外部から遮断されており、細い連通路70により連通されている。この連通している測定圧空気室38と背圧空気室58には、血圧に近い圧力の与圧を有する空気が予め封入される。封入は、脈圧測定装置本体22の組み立てにおいて最後の工程を弾性板34の取り付け又は蓋56の取り付けとし、その際に行うことができる。あるいは下部筐体32等の適当なところに別途空気送り込み穴を設け、その穴から空気を内部に供給し、所定の与圧になったところでその穴をふさぐ等により空気の出入りを止めることでもよい。与圧は、例えば90ミリバール以上150ミリバールとすることができる。好ましくは120ミリバール前後とすることがよい。なお、封入される空気は、一般大気を用いることができるが、好ましくは封入時の温度及び湿度を所定の範囲に管理することが好ましい。また、空気に代えて、乾燥窒素ガス等を封入してもよい。空気と成分がかなり異なる気体を封入することもできるが、その場合は、与圧を血圧に近くなるよう、標準空気に換算して用いることが必要である。   The measured pressure air chamber 38 and the back pressure air chamber 58 are shut off from the outside by the lower housing 32, the sensor housing 52, the lid 56, and the elastic plate 34, and communicated by a narrow communication passage 70. The measurement pressure air chamber 38 and the back pressure air chamber 58 that are communicated with each other are preliminarily filled with air having a pressure close to that of blood pressure. Encapsulation can be performed at the time of assembly of the pulse pressure measuring device main body 22 by attaching the elastic plate 34 or attaching the lid 56 as the last step. Alternatively, a separate air feed hole may be provided at an appropriate place such as the lower housing 32, air may be supplied from the hole to the inside, and the air may be stopped by closing the hole when a predetermined pressure is reached. . The pressurization can be, for example, 90 mbar or more and 150 mbar. Preferably it is around 120 mbar. In addition, although general air can be used for the air enclosed, it is preferable to manage the temperature and humidity at the time of enclosure in a predetermined range. Further, dry nitrogen gas or the like may be enclosed instead of air. Although it is possible to enclose a gas whose component is significantly different from that of air, in that case, it is necessary to convert the pressure into standard air so that the pressure is close to the blood pressure.

細長い連通路70は、測定圧空気室38と背圧空気室58との間の内圧差があるときに、その内圧差を緩和する機能を有し、その緩和時間が、脈圧の周期、すなわち脈拍周期より十分長くなるように連通路70の寸法が設定される。例えば、脈拍周期の数−10倍程度の緩和時間となるように連通路70の径と長さを設定する。具体的には、測定圧空気室38と背圧空気室58の大きさ及び圧力センサ54の性能等に基づいて連通路70の径と長さを設定することができる。一例として、上記のように、接触部30の外径を約15−20mm、センサ部50の外径を約10−15mm、全体の高さを約2−3mm、測定圧空気室38及び背圧空気室58の容積をそれぞれ約0.1−0.6ml程度のものとし、脈圧検出信号を3Vレンジで数10−100mV程度とすると、連通路70の長さがおよそ0.5mm以上1.5mm以下程度にとることができる。連通路70の長さをこの範囲として、連通路の直径を5μm以上50μm以下とすることができる。好ましくは8−10μm程度とすることがよい。連通路70の断面は円形でなくてもよい。その場合には、断面積を等しくするようにして上記直径の条件を任意断面に換算すればよい。   The elongated communication passage 70 has a function of relaxing the internal pressure difference when there is an internal pressure difference between the measurement pressure air chamber 38 and the back pressure air chamber 58, and the relaxation time is a period of the pulse pressure, that is, The dimension of the communication path 70 is set so as to be sufficiently longer than the pulse period. For example, the diameter and length of the communication path 70 are set so that the relaxation time is about several times the pulse period minus 10 times. Specifically, the diameter and length of the communication path 70 can be set based on the size of the measured pressure air chamber 38 and the back pressure air chamber 58, the performance of the pressure sensor 54, and the like. As an example, as described above, the outer diameter of the contact part 30 is about 15-20 mm, the outer diameter of the sensor part 50 is about 10-15 mm, the overall height is about 2-3 mm, the measured pressure air chamber 38 and the back pressure. When the volume of the air chamber 58 is about 0.1-0.6 ml, and the pulse pressure detection signal is about several tens to 100 mV in the 3V range, the length of the communication path 70 is about 0.5 mm or more. It can be set to about 5 mm or less. With the length of the communication path 70 in this range, the diameter of the communication path can be set to 5 μm or more and 50 μm or less. Preferably, the thickness is about 8-10 μm. The cross section of the communication path 70 may not be circular. In that case, the diameter condition may be converted to an arbitrary cross section so that the cross-sectional areas are equal.

上記構成の作用につき説明する。測定圧空気室38と背圧空気室58に所定の与圧が封入された脈圧測定装置20を測定部位に押し付けあるいは取り付けると、測定部位の動脈の脈圧変動を弾性板34が受け止め、測定圧空気室38の内圧を変化させる。連通路70は細長くその緩和時間は脈圧周期より十分長いので、脈圧による内圧変化はすぐには背圧空気室58には伝わらない。したがって、圧力センサ54における可撓性薄膜の両側の圧力差である差圧に応じて出力I/F84から脈圧検出信号が出力されるが、このときバックグランド成分には殆ど変化が生じない。以上が通常の場合における脈圧測定装置20の作用である。   The operation of the above configuration will be described. When the pulse pressure measuring device 20 in which a predetermined pressure is sealed in the measurement pressure air chamber 38 and the back pressure air chamber 58 is pressed or attached to the measurement site, the elastic plate 34 receives fluctuations in the pulse pressure of the artery at the measurement site, and the measurement is performed. The internal pressure of the compressed air chamber 38 is changed. Since the communication path 70 is elongated and its relaxation time is sufficiently longer than the pulse pressure cycle, the internal pressure change due to the pulse pressure is not immediately transmitted to the back pressure air chamber 58. Therefore, the pulse pressure detection signal is output from the output I / F 84 in accordance with the differential pressure that is the pressure difference between both sides of the flexible thin film in the pressure sensor 54, but at this time, the background component hardly changes. The above is the operation of the pulse pressure measuring device 20 in a normal case.

ここで、身体を動かすと、脈圧測定装置20が測定部位に対し押し付けあるいは取り付けられている状態が微妙に変化し、測定圧空気室38の内圧が大きく変化し、動脈の脈動成分による内圧変化におけるバックグランド成分を大きく変化させてしまう。この内圧の大きな変化は、連通路70の緩和時間によってゆっくり背圧空気室58に伝えられる。緩和時間は、連通路70の寸法等で予め設定できるので、測定圧空気室38と背圧空気室58との間の圧力差のバックグランド成分は、この緩和時間の特性に従って一定の変化となる。すなわち、身体を動かしたときの脈圧検出信号に現れるバックグランド成分は、一定の緩和時間特性に従って変化し、再現性をもたせることができる。   Here, when the body is moved, the state in which the pulse pressure measuring device 20 is pressed against or attached to the measurement site slightly changes, the internal pressure of the measurement pressure air chamber 38 changes greatly, and the internal pressure changes due to the pulsation component of the artery. Greatly changes the background component. This large change in internal pressure is slowly transmitted to the back pressure air chamber 58 by the relaxation time of the communication passage 70. Since the relaxation time can be set in advance by the dimensions of the communication passage 70, etc., the background component of the pressure difference between the measured pressure air chamber 38 and the back pressure air chamber 58 becomes a constant change according to the characteristics of the relaxation time. . That is, the background component appearing in the pulse pressure detection signal when the body is moved changes according to a certain relaxation time characteristic, and can have reproducibility.

図5は、その様子を圧力センサ54の検出信号の変化で示した図である。図1に示す従来例の場合と横軸及び縦軸を同じにとってある。図5に示すように、手首を動かすとき12に検出信号波形全体が大きく変動し、測定レンジを振り切ってしまうが、その後、連通路70の緩和時間特性に従って、緩やかに元に戻る。その戻り方は、手首を動かすとき12を繰り返しても、同じ緩和時間特性に従う、すなわち、破線で示すバックグランド成分114は、再現性よく同じ特性で変化する。したがって、圧力センサ54の検出信号からバックグランド成分の変動を再現よく抑制でき、バックグランド成分の除去が容易になる。   FIG. 5 is a diagram showing this state by a change in the detection signal of the pressure sensor 54. The horizontal axis and the vertical axis are the same as in the case of the conventional example shown in FIG. As shown in FIG. 5, when the wrist is moved, the entire detection signal waveform greatly fluctuates and the measurement range is swung away, but then gradually returns according to the relaxation time characteristic of the communication path 70. The return method follows the same relaxation time characteristic even when the wrist is moved 12, that is, the background component 114 indicated by a broken line changes with the same characteristic with good reproducibility. Therefore, the fluctuation of the background component can be suppressed with good reproducibility from the detection signal of the pressure sensor 54, and the background component can be easily removed.

圧力センサを用いた脈圧測定装置に用いることができる。また、電子血圧計における脈圧測定部として用いることができる。   It can be used for a pulse pressure measuring device using a pressure sensor. Moreover, it can be used as a pulse pressure measuring unit in an electronic blood pressure monitor.

従来技術において、身体を動かしたときにおける圧力センサの検出信号の大きな変化を説明する図である。In a prior art, it is a figure explaining the big change of the detection signal of a pressure sensor when a body is moved. 本発明に係る実施の形態の脈圧測定装置を測定部位に押し当て又は取り付ける様子を示す図である。It is a figure which shows a mode that the pulse-pressure measuring apparatus of embodiment which concerns on this invention is pressed or attached to a measurement site | part. 本発明に係る実施の形態における脈圧測定装置本体の断面図である。It is sectional drawing of the pulse pressure measuring device main body in embodiment which concerns on this invention. 本発明に係る実施の形態における圧力検出の回路部を示す図である。It is a figure which shows the circuit part of the pressure detection in embodiment which concerns on this invention. 本発明に係る実施の形態における脈圧測定装置を用い、身体を動かしたときにおける圧力センサの検出信号の変化を説明する図である。It is a figure explaining the change of the detection signal of a pressure sensor when the body is moved using the pulse pressure measuring apparatus in embodiment which concerns on this invention.

符号の説明Explanation of symbols

10 脈動成分、14,114 バックグランド成分、18 測定部位、20 脈圧測定装置、22 脈圧測定装置本体、30 接触部、32 下部筐体、34 弾性板、35 スクリーンメッシュ、36 プラスチックゴム、38 測定圧空気室、50 センサ部、52 センサ筐体、54 圧力センサ、58 背圧空気室、70 連通路。   10 Pulsating component, 14, 114 Background component, 18 Measurement site, 20 Pulse pressure measuring device, 22 Pulse pressure measuring device body, 30 Contact part, 32 Lower housing, 34 Elastic plate, 35 Screen mesh, 36 Plastic rubber, 38 Measurement pressure air chamber, 50 sensor section, 52 sensor housing, 54 pressure sensor, 58 back pressure air chamber, 70 communication path.

Claims (6)

血圧を測定する部位へ押し当てて脈圧を検出する脈圧測定装置であって、測定部位に押し当てる面に弾性板を有し内部に所定の与圧を有する空気を含む筐体と、筐体の内部を弾性板側の測定圧空気室と背圧空気室とに仕切る可撓性薄膜と、測定部位からの脈圧に応じて変化する測定圧空気室の内圧と背圧空気室の内圧との圧力差を可撓性薄膜の変形により検出する圧力センサと、測定圧空気室と背圧空気室とを連通し脈圧の周期より長い緩和時間で測定圧空気室と背圧空気室との間の内圧差を緩和する細長い連通路と、を備えることを特徴とする脈圧測定装置。   A pulse pressure measuring device that detects a pulse pressure by pressing against a site where blood pressure is measured, and includes a housing including air having an elastic plate on a surface pressed against the measurement site and having a predetermined pressure inside. A flexible thin film that divides the inside of the body into a measurement pressure air chamber and a back pressure air chamber on the elastic plate side, and the internal pressure of the measurement pressure air chamber and the internal pressure of the back pressure air chamber that change according to the pulse pressure from the measurement site A pressure sensor for detecting a pressure difference by deformation of a flexible thin film, and a measurement pressure air chamber and a back pressure air chamber with a relaxation time longer than a cycle of pulse pressure by communicating the measurement pressure air chamber and the back pressure air chamber. And a long and narrow communication passage that relieves the internal pressure difference between the two. 請求項1に記載の脈圧測定装置において、連通路は径が、5μm以上50μm以下であることを特徴とする脈圧測定装置。   2. The pulse pressure measuring device according to claim 1, wherein the communication path has a diameter of 5 μm or more and 50 μm or less. 請求項1に記載の脈圧測定装置において、連通路は長さが0.5mm以上1.5mm以下であることを特徴とする脈圧測定装置。   2. The pulse pressure measuring apparatus according to claim 1, wherein the communication path has a length of not less than 0.5 mm and not more than 1.5 mm. 請求項1に記載の脈圧測定装置において、所定の与圧は、90ミリバール以上150ミリバールであることを特徴とする脈圧測定装置。   The pulse pressure measuring device according to claim 1, wherein the predetermined pressure is 90 mbar or more and 150 mbar. 請求項1に記載の脈圧測定装置において、弾性板は、金属製のスクリーンメッシュ薄板と、プラスチック製の薄板とを重ねて構成されることを特徴とする脈圧測定装置。   2. The pulse pressure measuring device according to claim 1, wherein the elastic plate is formed by stacking a metal screen mesh thin plate and a plastic thin plate. 請求項1に記載の脈圧測定装置において、圧力センサの出力を無線送信する送信部を備えることを特徴とする脈圧測定装置。

2. The pulse pressure measuring apparatus according to claim 1, further comprising a transmitter that wirelessly transmits the output of the pressure sensor.

JP2003313406A 2003-09-05 2003-09-05 Pulse pressure measuring device Expired - Fee Related JP3716326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313406A JP3716326B2 (en) 2003-09-05 2003-09-05 Pulse pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313406A JP3716326B2 (en) 2003-09-05 2003-09-05 Pulse pressure measuring device

Publications (2)

Publication Number Publication Date
JP2005080722A true JP2005080722A (en) 2005-03-31
JP3716326B2 JP3716326B2 (en) 2005-11-16

Family

ID=34414337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313406A Expired - Fee Related JP3716326B2 (en) 2003-09-05 2003-09-05 Pulse pressure measuring device

Country Status (1)

Country Link
JP (1) JP3716326B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543513A (en) * 2005-06-27 2008-12-04 センス エー/エス Blood pressure determination method and apparatus
WO2014021335A1 (en) * 2012-07-30 2014-02-06 株式会社三菱ケミカルホールディングス Subject information detection unit, subject information processing device, electric toothbrush device, electric shaver device, subject information detection device, aging degree evaluation method, and aging degree evaluation device
JP2016119981A (en) * 2014-12-24 2016-07-07 セイコーインスツル株式会社 Pulse wave measurement apparatus and pulse wave measurement method
JP2016189807A (en) * 2015-03-30 2016-11-10 セイコーインスツル株式会社 Sphygmograph
JP2017086551A (en) * 2015-11-11 2017-05-25 セイコーインスツル株式会社 Pulse wave measurement device and pulse wave measurement method
JP2019141117A (en) * 2018-02-15 2019-08-29 国立大学法人 東京大学 Pulse wave sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543513A (en) * 2005-06-27 2008-12-04 センス エー/エス Blood pressure determination method and apparatus
WO2014021335A1 (en) * 2012-07-30 2014-02-06 株式会社三菱ケミカルホールディングス Subject information detection unit, subject information processing device, electric toothbrush device, electric shaver device, subject information detection device, aging degree evaluation method, and aging degree evaluation device
JP2016119981A (en) * 2014-12-24 2016-07-07 セイコーインスツル株式会社 Pulse wave measurement apparatus and pulse wave measurement method
JP2016189807A (en) * 2015-03-30 2016-11-10 セイコーインスツル株式会社 Sphygmograph
JP2017086551A (en) * 2015-11-11 2017-05-25 セイコーインスツル株式会社 Pulse wave measurement device and pulse wave measurement method
JP2019141117A (en) * 2018-02-15 2019-08-29 国立大学法人 東京大学 Pulse wave sensor
JP7113487B2 (en) 2018-02-15 2022-08-05 国立大学法人 東京大学 pulse wave sensor

Also Published As

Publication number Publication date
JP3716326B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
CA1326968C (en) Disposable pressure transducer and disposable pressure transducer apparatus
US20170340210A1 (en) Pumpless wearable sphygmomanometer
US11278242B2 (en) Wearable health monitoring device
US3239696A (en) Piezoelectric pressure transducer
JP6107045B2 (en) Portable information terminal
US10549982B2 (en) Pressure sensor encapsulated in elastomeric material, and system including the pressure sensor
EP3551984B1 (en) Pressure sensor
CA2210324A1 (en) Method of positioning a sensor for determining blood pressure
CA2803885A1 (en) Non-invasive blood pressure sensor
JP2017209434A (en) Sensor assembly
JP3716326B2 (en) Pulse pressure measuring device
WO2002033371A2 (en) Pressure sensor
JP2001033332A (en) Relative pressure sensor
US20190000392A1 (en) Electronic Blood Pressure Monitor, Blood Pressure Measuring Method, and Electronic Stethoscope
WO2021031299A1 (en) Method for sensing vibration by vibration sensing device and vibration sensing device
CN114754918A (en) Pressure sensor with multiple pressure sensing elements
JP6584297B2 (en) Pulse wave measuring device and pulse wave measuring method
JPH0992670A (en) Constitution of sensor device and mounting method for realizing its constitution
EP2842482A1 (en) Blood pressure gauge with micro-electro-mechanical system (mems) microphone
JPH09330132A (en) Semiconductor pressure sensor module with valve, pressure controller using the same, and standard pressure generating device and sphygmomanometer using the same pressure controller
CN113331863B (en) High-sensitivity MEMS heart sound and electrocardio integrated detection sensor based on beat type bionic cilia
US20240081660A1 (en) Sensorized earphone device for out-of-ear measurements
JPS6244638A (en) Detecting device for fluctuation of pressure
WO2024089976A1 (en) Sphygmomanometer, blood pressure measurement method, and korotkoff sound detection device
JPS5918052B2 (en) Pulse wave meter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees