JP2005079126A - Optical fiber sensor head, its manufacturing process and wafer detector - Google Patents

Optical fiber sensor head, its manufacturing process and wafer detector Download PDF

Info

Publication number
JP2005079126A
JP2005079126A JP2003209773A JP2003209773A JP2005079126A JP 2005079126 A JP2005079126 A JP 2005079126A JP 2003209773 A JP2003209773 A JP 2003209773A JP 2003209773 A JP2003209773 A JP 2003209773A JP 2005079126 A JP2005079126 A JP 2005079126A
Authority
JP
Japan
Prior art keywords
light
optical fiber
sensor head
detection
detection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209773A
Other languages
Japanese (ja)
Inventor
Kazuhiro Otsuka
数博 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2003209773A priority Critical patent/JP2005079126A/en
Publication of JP2005079126A publication Critical patent/JP2005079126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber sensor head, its manufacturing process and a wafer detector capable of detecting an object accurately while reducing the size. <P>SOLUTION: One side face of a body case 31 in the arranging direction of the forward end parts of optical fibers F1 and F2 serves as a detection surface 31A, and a light projecting window 32 and a light receiving window 33 are formed in the detection surface 31A along the inserting direction of the optical fiber. A light projecting reflective member 39 for reflecting light from the light projecting optical fiber F1 and introducing the light to the light projecting window 32 is provided in front of the forward end face of the light projecting optical fiber F1 and a light receiving reflective member 43 for reflecting light passed through the light receiving window 33 and introducing the light into the light receiving optical fiber F2 is provided in front of the forward end face of the light receiving optical fiber F2. The light receiving reflective member 43 is disposed ahead of the light projecting reflective member 39 in the inserting direction of the optical fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバセンサヘッド及びその製造方法並びにウエハ検出装置に関する。
【0002】
【従来の技術】
下記特許文献1などに開示されているように、従来から、サイドビュータイプの光ファイバセンサヘッドがある。これは、例えば図8に示すように、投光用及び受光用の光ファイバ1,2と、それらの各先端部分が挿入されるとともにそれら先端部分の並び方向と平行をなす一側面が検出面3Aとされる本体ケース3とを備えて構成されている。投光用光ファイバ1先端面から出射された光は、その前方に配された反射部(図示せず)にて90度向きを変えられて前記検出面3Aに形成された投光窓4に導かれ、ここから所定の検出領域に向けて照射される。そして例えば対向配置されるリフレクタ6にて反射し、検出面3Aに形成された受光窓5内に入光した光は、受光用光ファイバ2の先端面の前方に配された反射部(図示せず)にてやはり90度向きを変えられて受光用光ファイバ2の先端面に入射するようになっている。つまり、従来の光ファイバセンサは、光ファイバ1,2の挿入方向に対して直交する方向に投光窓4及び受光窓5が並設された構成になっていた。
【0003】
【特許文献1】
特許第3400749号公報
【0004】
【発明が解決しようとする課題】
ところで、この種のサイドビュータイプのセンサは、複数枚が所定間隔を隔てて配された各ウエハ7の検出装置に使用されることがある。具体的には、ウエハ搬送用の二股アーム(図示せず)の一方のアーム先端部分に上述した光ファイバセンサヘッドが検出面3Aを他方のアーム先端部分側に向けて設けられ、その検出面3Aに対向するようにリフレクタ6が他方のアーム先端部分に配置されて構成されている。
【0005】
この場合、二股アームはウエハ搬送の際にウエハ7同士の隙間に進入させる必要がある。従って、光ファイバセンサヘッドは、導出される光ファイバ1,2が邪魔にならないように光ファイバ1,2の挿入方向を二股アームの進入方向(図8で矢印方向)に沿わせるように設ける。つまり、同図に示すように、投光窓4と受光窓5との並び方向がウエハ7に対して直交するよう位置することになる。これでは、ウエハ7が投光窓4及び受光窓5の前方のどこに位置するかによって受光窓5に入光する入光量が比較的大きく変動し、受光用光ファイバ2を通じて送られる光の光量変化に基づいてウエハの検出を正確に行うことができないという問題があった。また、上記光ファイバセンサヘッドではウエハ7の厚み方向に沿って投光窓4及び受光窓5が並ぶ構成なのでその分だけ厚みが必要となり装置の小型化の障害となっていた。
【0006】
本発明は、上記事情に鑑みてなされたもので、その目的は、小型化を図りつつ被検出物体の検出を正確に行うことを可能とするための光ファイバセンサヘッド及びその製造方法並びにウエハ検出装置を提供するところにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明に係る光ファイバセンサヘッドは、投光用光ファイバと、受光用光ファイバと、それらの光ファイバの各先端部分が挿入される本体ケースとを備えて、前記投光用光ファイバの先端面から出射された光を前記本体ケース外部の所定の検出領域に向けて照射する一方で、前記検出領域から前記本体ケース側に戻ってきた光を前記受光用光ファイバの先端面に入射させるよう構成された光ファイバセンサヘッドにおいて、前記本体ケースは、互いに平行に並ぶ1対の貫通孔が形成されるとともに、それら1対の貫通孔の並び方向における一側面が前記検出領域側に向けられる検出面とされ、前記1対の貫通孔には一端側から前記投光用及び受光用の光ファイバの先端部分がそれぞれ挿入され、前記本体ケースには、前記貫通孔に挿入された前記光ファイバの先端部分より前方側において、前記検出面から、前記1対の貫通孔のうち前記検出面に近い方の貫通孔を貫きつつ前記検出面から遠い方の貫通孔に連通する第1光通過路と、その第1光通過路より前記光ファイバの挿入方向における前方の位置において前記光ファイバの挿入方向に沿って前記第1光通過路と並び、かつ前記検出面から前記検出面に近い方の貫通孔に連通する第2光通過路とがそれぞれ形成され、前記検出面から遠い方の貫通孔には、前記光ファイバが挿入される側とは反対側の他端側から挿入され、当該光ファイバから出射された光を前記第1光通過路を通すように反射、また、前記第1光通過路から入光した光を当該光ファイバ先端面側に反射させる第1反射部材が設けられ、前記検出面に近い方の貫通孔には、前記光ファイバが挿入される側とは反対側の他端側から挿入され、当該光ファイバから出射された光を前記第2光通過路を通すように反射、また、前記第2光通過路から入光した光を当該光ファイバ先端面側に反射させる第2反射部材が設けられているところに特徴を有する。
【0008】
請求項2の発明は、請求項1に記載の光ファイバセンサヘッドにおいて、前記検出面に近い方の貫通孔に前記受光用光ファイバが挿入され、前記検出面に遠い方の貫通孔に投光用光ファイバが挿入されるところに特徴を有する。
【0009】
請求項3の発明は、請求項1又は請求項2に記載の光ファイバセンサヘッドにおいて、前記第1及び第2の光通過路は、少なくとも前記検出面側の開口端に光透過性カバーが嵌められて構成されているところに特徴を有する。
【0010】
請求項4の発明に係る光ファイバセンサヘッドの製造方法は、投光用光ファイバと、受光用光ファイバと、それらの光ファイバの各先端部分が挿入される本体ケースとを備えて、前記投光用光ファイバの先端面から出射された光を前記本体ケース外部の所定の検出領域に向けて照射する一方で、前記検出領域から前記本体ケース側に戻ってきた光を前記受光用光ファイバの先端面に入射させるよう構成された光ファイバセンサヘッドの製造方法において、前記光ファイバセンサヘッドは、前記本体ケースは、互いに平行に並ぶ1対の貫通孔が形成されるとともに、それら1対の貫通孔の並び方向における一側面が前記検出領域側に向けられる検出面とされ、前記1対の貫通孔には一端側から前記投光用及び受光用の光ファイバの先端部分がそれぞれ挿入され、前記本体ケースには、前記貫通孔に挿入された前記光ファイバの先端部分より前方側において、前記検出面から、前記1対の貫通孔のうち前記検出面に近い方の貫通孔を貫きつつ前記検出面から遠い方の貫通孔に連通する第1光通過路と、その第1光通過路より前記光ファイバの挿入方向における前方の位置において前記光ファイバの挿入方向に沿って前記第1光通過路と並び、かつ前記検出面から前記検出面に近い方の貫通孔に連通する第2光通過路とがそれぞれ形成され、前記検出面から遠い方の貫通孔には、前記光ファイバが挿入される側とは反対側の他端側から挿入され、当該光ファイバから出射された光を前記第1光通過路を通すように反射、また、前記第1光通過路から入光した光を当該光ファイバ先端面側に反射させる第1反射部材が設けられ、前記検出面に近い方の貫通孔には、前記光ファイバが挿入される側とは反対側の他端側から挿入され、当該光ファイバから出射された光を前記第2光通過路を通すように反射、また、前記第2光通過路から入光した光を当該光ファイバ先端面側に反射させる第2反射部材が設けられて構成され、前記第1及び第2の両反射部材を、前記各貫通孔に対してその貫通孔の軸方向に沿った回動軸を中心に回動可能に設ける工程と、前記投光用光ファイバからの光が前記第1及び第2の光通過路のいずれか一方の光通過路から前記検出領域に向けて照射され、前記検出領域から他方の光通過路を通じて戻ってきた光が受光用光ファイバに入射するよう前記両反射部材を回動調整する工程と、この調整された状態で前記両反射部材を位置決め固定する工程とを含むところに特徴を有する。
【0011】
請求項5の発明に係るウエハ検出装置は、複数のウエハが間隔を隔てて収容されたカセット内の各ウエハの有無を検出するためのウエハ検出装置であって、前記ウエハ同士の間に進入し前記各ウエハを搬送する搬送部に設けられる、請求項1ないし請求項3のいずれかに記載の光ファイバセンサヘッドと、その光ファイバセンサヘッドの検出面に対向するように前記搬送部に配され、前記光ファイバセンサヘッドからの光を反射して再びこの光ファイバセンサヘッド側に戻す反射体と、前記光ファイバセンサヘッドから導出された投光用光ファイバの基端面に光を入射させる投光手段と、前記光ファイバから導出された受光用光ファイバの基端面からの光を受光する受光手段とを備えて、前記光ファイバセンサヘッドと前記反射体とを、前記各ウエハに対してその端面側を挟むように配して、前記光ファイバセンサヘッドと前記反射体との間に存在し得るウエハの有無によって変化する前記受光手段での受光量変化に基づき前記ウエハの検出動作を行うところに特徴を有する。
【0012】
請求項6の発明は、請求項5記載のウエハ検出装置において、前記投光窓からは平行光よりも広がりをもった光が照射されるよう構成され、かつ、前記光ファイバセンサヘッドの前記投光用光ファイバから出射され前記第1及び第2の反射部材のうちの一方の反射部材にて反射しそれに対応する前記第1及び第2の光通過路のうちの一方の光通過路を通過する光の光路上、及び、他方の前記光通過路からそれに対応する他方の反射部材にて反射して前記受光用光ファイバの先端面に導かれる光の光路上の少なくともいずれか一方には、前記投光用光ファイバから前記検出領域に照射された光が検出対象のウエハの上または下に位置する他のウエハ表面にて反射されて受光用光ファイバに入射することを規制する光芒絞り手段が設けられているところに特徴を有する。
【0013】
【発明の作用及び効果】
<請求項1の発明>
本構成によれば、検出領域に向けて光を照射させるとともに検出領域からの光を入光させる投光部及び受光部として機能する、第1及び第2の光通過路が検出面において光ファイバの挿入方向に沿った方向に並設された構成であるから、光ファイバが邪魔になることなく狭い空間に光ファイバセンサヘッドを配置することができる。また、例えば、上述した従来説明のようにウエハを検出する場合でも投光窓及び受光窓の並び方向を、二股アームの進入方向に沿わせた姿勢で配置することができ、光ファイバの挿入方向に直交する方向に投光窓及び受光窓が並設された従来構成に比べて正確なウエハ検出が可能となる。
【0014】
<請求項2の発明>
本構成によれば、検出面に近い方の光ファイバが受光用の光ファイバとされているから、検出面から遠い方の光ファイバを受光用の光ファイバとした構成に比べて受光窓から受光用反射部材までの光路を短くでき、その分だけ受光量低下を抑制できる。
【0015】
<請求項3の発明>
本構成によれば、投光窓及び受光窓が、検出面に形成された開口部に光透過性カバーを嵌めた構成になっているから、埃等が存在する環境下で使用しても、反射部材に埃等が付着して光反射率が低下することを防止できる。
【0016】
<請求項4の発明>
例えば製造段階において、両反射部材を回動させることで、投光及び受光の光軸方向を調整することができる。ここで、本発明とは異なり、例えば、検出面から遠い方の貫通孔に挿入された第1反射部材を、検出面から近い方の貫通孔に挿入された第2反射部材よりも前方に配置し、それらに対応して検出面に連通する光通過路を形成する構成も考えられる。しかしながら、この構成では、例えば検出面に近い方の反射部材の回動調整を行う際に、その作業者の手によって検出面から遠い方の反射部材と検出領域を結ぶ光路が遮られてしまうことがあり光軸調整作業ができないという問題が生じ得る。
【0017】
これに対して、本構成であれば、検出面に近い方の貫通孔に挿入された第2反射部材が、検出面から遠い方の貫通孔に挿入された第1反射部材よりも光ファイバの挿入方向において前方に位置する構成になっている。従って、いずれの反射部材を回動操作する場合であっても投受光の光路を遮るといったことなく光軸調整作業を行うことができる。
【0018】
<請求項5の発明>
上述した従来説明のようにウエハを検出する場合でも投光窓及び受光窓の並び方向を、二股アームの進入方向に沿わせた姿勢で配置することができ、光ファイバの挿入方向に直交する方向に投光窓及び受光窓が並設された従来構成に比べて装置の小型化及び正確なウエハ検出が可能となる。
【0019】
<請求項6の発明>
投光窓からは拡散光が照射されるから、平行光が照射される場合に比べて、例えば三角プリズムを対向配置させる回帰反射型の光ファイバセンサとして使用する場合でも光ファイバセンサヘッドの投光窓から照射され三角プリズムにて反射した光を再び光ファイバセンサヘッドの受光窓に戻すように光ファイバセンサヘッドと三角プリズムとを配置することが容易になる。しかも、光芒絞り手段によって検出対象のウエハ表面での反射による影響を抑えることができ、もってウエハ検出の精度を高めることができる。
【0020】
【発明の実施の形態】
次に本発明の一実施形態について図1から図7を参照して説明する。
1.本実施形態の構成
図1において、符号10はラックであって、側方に開放した筺体状をなし、その対向する一対の内側面11,11には、水平方向に延びる複数の凹溝12が上下方向に所定の間隔を開けて形成されている。そして、複数の円板状のウエハWが、それらの縁部を両内側面11,11の凹溝12に係合させた状態で、両内側面11,11間に差し渡され、これにより、複数のウエハWが上下方向で所定の隙間を開けて収容された状態となっている。
【0021】
このラック10から所望のウエハWを取り出すためのハンド13(搬送部に相当)は、図1に示すように、全体としてU字状をなし、そのU字の両先端部分13A,13Aがラック10への挿入方向に向けられている。このハンド13は、基端側が例えば図示しないロボットアームに取り付けられており、このロボットアームによって、まず、両先端部分13A,13A間にウエハWの前端部分が介在する位置まで移動し、後述するウエハ検出装置によってウエハWが検出されたときには、そのウエハWの下側に移動して当該ウエハWを持ち上げて搬送するよう動作する。
【0022】
<ウエハ検出装置の全体構成>
さて、本実施形態に係るウエハ検出装置は、投受光を行う投光窓32及び受光窓33が形成された本体ケース31から投光用及び受光用の光ファイバF1,F2が導出されてなる光ファイバセンサヘッド(以下、「センサヘッド30」)と、それら投光用及び受光用の光ファイバF1,F2に接続されるコントロール部20とを備えて構成されている。
【0023】
<コントロール部の構成>
コントロール部20内の電気回路部21には、例えば、図2(A)に示すように、コントロール部20の動作を表示する動作表示灯22が設けられると共に、LED(発光ダイオード)からなる投光素子23及び例えばフォトダイオードからなる受光素子24が設けられており、投光素子23に前記投光用光ファイバF1が接続され、受光素子24に受光用光ファイバF2が接続されている。
【0024】
この電気回路部21の電気的構成は図2(B)に示すようである。前記投光素子23は投光素子駆動回路25にて駆動され、例えば所定周期でパルス点灯され、この投光素子23からの光が投光用光ファイバF1を通じてセンサヘッド30の本体ケース31内に導かれその本体ケース31の投光窓32から出射される。そして、所定の検出領域から本体ケース31の受光窓33内に入ってきた光が、受光用光ファイバF2を通ってコントロール部20側に導かれ、受光素子24に入射するようになっている。この受光素子24からの受光信号は検出回路26にて増幅され、受光した光の強度に応じてウエハWの検出動作を行うようになっている。この検出動作は、受光素子24に入射する光の変化に基づき行われるもので、それが所定レベルを下回るようになったときにウエハWが存在するとして検出信号を出力回路27に出力するようになっており、これに基づき出力回路27は前記動作表示灯22を点灯させるとともに、図示しない外部回路(例えば上記ロボットアームの制御部)に信号を出力する。
【0025】
<センサヘッドの構成>
センサヘッド30の構成について図3を参照しつつ説明する。なお、同図では、紙面上方を前方とし、紙面下方を後方として説明する。
センサヘッド30の本体ケース31は、全体として扁平角筒状をなし、対向する2組の側面の領域の狭い組の側面の一方の面(同図で右側の面)が検出領域に向けられる検出面31Aとなっている。この検出面31Aの前端側には、後述するように、受光窓33と投光窓32とがこの順で検出面31Aの前端から本体ケース31の長手方向(前後方向)に沿って並んで形成されている。
【0026】
また、本体ケース31には、その長手方向における全長に亘って延びる1対の貫通孔34,35が上記狭い組の両側面の並び方向(左右方向)に沿って横並びに形成されている。つまり、一方の貫通孔34(以下、「受光側貫通孔34」ということがある)は上記狭い組の側面のうち検出面31A寄りに形成されており、他方の貫通孔35(以下、「投光側貫通孔35」ということがある)は上記狭い組の側面のうち検出面31Aとは異なる側面寄り配置されている。
【0027】
このうち、検出面31Aに遠い方の貫通孔35(投光側貫通孔35)には、後方から投光用光ファイバF1の先端部分が挿入されている。一方、検出面31Aに近い方の貫通孔34(受光側貫通孔34)には、後方から受光用光ファイバF2の先端部分が挿入されている。
【0028】
各光ファイバF1,F2の各先端部分は、外部被膜が剥がされて芯線Sが露出され、この芯線Sは環状のスリーブ36にそれぞれ嵌入されている。このスリーブ36は各貫通孔34,35の内壁面に例えば接着剤によって固着されている。なお、スリーブ36の前端は他の部分より内径が小さくなった径小部36Aとなっており、この径小部36Aの後面に光ファイバF1,F2の芯線Sの先端が係止されている。このような構成により各光ファイバF1,F2の光軸方向が位置決めされている。
【0029】
また、投光側貫通孔35内においてスリーブ36の前方には、このスリーブ36の前端面に接触するように投光レンズ部材37が挿入されている。投光用光ファイバF1から出射された光は、投光レンズ部材37を通過することでその投光レンズ部材37の特性に応じた広がり光に変えられる。つまり、投光レンズ部材37の特性に応じて投光窓32が出射される光の光芒の広がりを調整することができる。
【0030】
同様に、受光側貫通孔34内においてスリーブ36の前方には、このスリーブ36の前端面に接触するように受光レンズ部材38が挿入されている。受光窓33が進入してきた光は、受光レンズ部材38を通過することでその受光レンズ部材38の特性に応じた光量の光が集光されて受光用光ファイバF2内に入射する。つまり、受光レンズ部材38の特性に応じて検出領域から受光窓33に入光し受光用光ファイバF2に入光する受光範囲を調整することができる。
【0031】
次に、投光側貫通孔35の前端部分には、投光レンズ部材37を透過して光を、略直角に反射させて検出面31A側に導く反射面39Aを有する投光用反射部材39が嵌合されている。また、投光側貫通孔35及び受光側貫通孔34に挟まれる壁と、受光側貫通孔34及び検出面31Aに挟まれる壁には、投光用反射部材39の反射面39Aの側方に位置する部分にそれぞれ挿通孔40,41が開口形成されており、投光用反射部材39からの反射光がこれらの挿通孔40,41を通って外部に出射されるようになっている。従って、上記挿通孔41が投光窓32として機能する。以下、この挿通孔41を投光窓32と呼ぶことがある。
【0032】
更に、受光側貫通孔34及び検出面31Aに挟まれる壁には、上記投光窓32より前方の位置にやはり挿通孔42が形成されている。そして、受光側貫通孔34の前端部分には、上記投光用反射部材39よりも前方に配置され、検出領域から挿通孔42に進入してきた光を略直角に反射させて受光レンズ部材38側に導く反射面43Aを有する受光用反射部材43が嵌合されている。従って、上記挿通孔42が受光窓33として機能する。以下、この挿通孔42を受光窓33と呼ぶことがある。
【0033】
各反射部材39,43は、各貫通孔34,35に嵌合される部分が円柱形をなし、それに対応して各貫通孔34,35のうち反射部材39,43が嵌合される部分は断面円形となっている。従って、各反射部材39,43は、各貫通孔34,35の前端部分に嵌合させた状態で、対応する各光ファイバF1、F2の光軸を中心に回動可能に取り付けられる。そして、各反射部材39,43を回動させることで、反射面39A,43Aの向きが変わり投光窓32から出射される光の出射方向(光軸中心方向)と受光窓33に入射される光の受光方向を調整することができるようになっている。なお、調整後、各反射部材39,43は例えば接着剤などで固定される。また、各反射部材39,43のうち反射面39A,43Aとは反対側には他の部分より径大になっている摘み部39B,43Bが設けられている。
【0034】
<センサヘッドの配置とリフレクタ>
センサヘッド30は、図5に示すように、上記ハンド13の一方の先端部分13Aに収容される。具体的には、センサヘッド30は、その検出面31Aをハンド13の他方の先端部分13A側に向けた状態で、本体ケース31に突設された固定部44を介してネジ止めされる。一方、ハンド13の他方の先端部分13Aには、センサヘッド30の検出面31Aと対向するようにリフレクタ50が配されている。このリフレクタ50は、例えば図6(B)に示すように反射面51がコーナーキューブ構造をなし、この反射面51に向けて投光された光を、その投光位置側に戻すことが可能な、いわゆる回帰反射型となっている。なお、反射面51の後方には同図(A)に示すように固定部53が突設されており、この固定部53を介してハンド13にネジ止めされてるようになっている。
【0035】
2.ウエハ検出装置の動作
図5に示すように、コントロール部20の投光素子23からの光は投光用光ファイバF1を通じてその先端面から出射され、投光レンズ部材37によって所定の広さの光芒に絞られる。そして、投光用反射部材39の反射面39Aによって直角に向きを変えられ投光窓32からリフレクタ50に向けて照射される。リフレクタ50での反射光のうち受光窓33に入射した光は、受光用反射部材43の反射面43Aでやはり直角に向きを変えられて受光レンズ部材38にて収束される。そして、この収束された光は、受光用光ファイバF2の先端面に入光し受光用光ファイバF2を通ってコントロール部20の受光素子24にて受光される。ここで、センサヘッド30とリフレクタ50との間にウエハWが介在すると、受光素子24での受光量が低減し、それが所定レベルを下回るためウエハWが存在するとして検出信号が出力回路27に出力され、これに基づき出力回路27は前記動作表示灯22を点灯させるとともに、外部回路に信号を出力する。
【0036】
なお、本実施形態では、図7に示すように、投光窓32から出射された光が検出すべきウエハWを挟む上下のウエハW’に反射して受光窓33に進入し最終的に受光用光ファイバF2先端面に入光しないように投光レンズ部材37及び受光レンズ部材38によって光芒が絞られている(請求項6の構成に相当)。従って、本実施形態では、投光レンズ部材37及び受光レンズ部材38が「光芒絞り手段」に相当する。なお、このような構成は、投光レンズ部材37や受光レンズ部材38の特性を調整する以外に、投光窓32や受光窓33の開口径を調整することによっても実現することができる。
【0037】
3.本実施形態の効果
以上の構成によれば、投光窓32及び受光窓33は光ファイバF1、F2の挿入方向に沿った方向に並設された構成であるから、光ファイバF1、F2が邪魔になることなくハンド13をウエハW間に進入可能な程度に薄型に構成することができる。しかも、センサヘッド1は、投光窓32及び受光窓33の並び方向を、ウエハWの表面に沿わせた姿勢でウエハWの端面に向けて投受光を行うことができ、ウエハWの表面に直交する方向に投光窓及び受光窓が並設された従来構成に比べて正確なウエハ検出が可能となる。
【0038】
しかも、上記従来構成では、各反射部材が投光窓及び受光窓の並び方向に横並びに設けられるため、それら反射部材の幅寸法に応じて、投光窓32から投光される光の光軸と、受光窓に受光される光の光軸とのピッチ間隔が広がってしまう。しかしながら、本実施形態であれば、上記従来構成に比べて各反射部材39,43の幅寸法に制約されることなく投光窓32から投光される光の光軸と、受光窓に受光される光の光軸とのピッチ間隔を極力狭めることができる。
【0039】
また、本実施形態では、検出面31Aに近い方の光ファイバが受光用光ファイバF2とされているから、検出面31Aから遠い方の光ファイバを受光用光ファイバF2とした構成に比べて受光窓から受光用反射部材までの光路を短くでき、その分だけ受光量低下を抑制できる(請求項2の構成に相当)。
【0040】
更に、検出面31Aに近い方の光ファイバF2に対応する受光用反射部材43が、検出面31Aから遠い方の光ファイバF1に対応する投光用反射部材39よりも光ファイバF1、F2の挿入方向において前方に位置する構成になっている。従って、いずれの反射部材39,43を回動操作する場合であっても例えば作業者の手などによって投受光の光路が遮られるといった問題が生じることなく光軸調整作業を行うことができる(請求項4の構成に相当)。
【0041】
また、本実施形態では、製造段階において各反射部材39,43が各貫通孔34,35に回動可能に設けられるから、これらの反射部材39,43を回動させて投光及び受光の各光軸方向を調整した上で、反射部材39,43を位置決め固定することができる。
【0042】
<他の実施形態>
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態とは逆に、検出面31Aに近い方の光ファイバを受光用光ファイバF2とし、検出面31Aから遠い方の光ファイバを投光用光ファイバF1とした構成であってもよい。この構成であれば、投光用反射部材から投光窓までの光路を短くでき、その分だけ投光量低下を抑制できる。
【0043】
(2)ウエハには、ある波長帯の光を吸収する例えば酸化膜や窒化膜等でコーティングされたものがあり、上記実施形態では、このような光反射率が低いウエハを検出するために、リフレクタ50を対向配置させた、ミラー反射型センサとした。しかし、これに限らず、被検出物体の光反射率が高ければ、リフレクタ50を用いず、被検出物体表面での反射光の有無に基づきウエハの検出を行う、いわゆる反射型センサに本発明を適用してもよい。
【0044】
(3)上記実施形態では、投光窓32及び受光窓33は単なる挿通孔41,42とした。これは、ウエハ検出は、通常埃などがほとんどないクリーンルームで行われるためであり、埃等が存在する環境下で使用する場合には、挿通孔41,42を透明カバーで封鎖する構成としてもよい(請求項3の構成に相当)。
【0045】
(4)本発明でいう「反射体」には、コーナーキューブタイプ構造のリフレクタ50の他に、三角プリズムや、単なる反射板であってもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るウエハが収容されたラックとハンドを示した斜視図
【図2】コンロール部の構成図
【図3】センサヘッドの断面図
【図4】センサヘッドの側面図及び上面図
【図5】ハンド内に収容されたセンサヘッドとリフレクタとを示した簡略図
【図6】リフレクタの上面図及び反射面側から見た図
【図7】投光した光の光芒とウエハとの関係を示した模式図
【図8】従来のセンサヘッドを示した斜視図
【符号の説明】
10…ラック
23…投光素子(投光手段)
24…受光素子(受光手段)
30…センサヘッド(光ファイバセンサヘッド)
31…本体ケース
31A…検出面
32…投光窓
33…受光窓
37…投光レンズ部材
38…受光レンズ部材
39…投光用反射部材
43…受光用反射部材
50…リフレクタ(反射体)
F1…投光用光ファイバ
F2…受光用光ファイバ
W…ウエハ(検出対象のウエハ)
W’…ウエハ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber sensor head, a manufacturing method thereof, and a wafer detection apparatus.
[0002]
[Prior art]
As disclosed in the following Patent Document 1 and the like, conventionally, there is a side view type optical fiber sensor head. For example, as shown in FIG. 8, the optical fibers 1 and 2 for projecting and receiving light, and one side surface of each of the tip portions thereof being inserted and parallel to the arrangement direction of the tip portions are detection surfaces. The main body case 3 is 3A. The light emitted from the front end surface of the light projecting optical fiber 1 is turned 90 degrees by a reflecting portion (not shown) disposed in front of the light projecting optical fiber 1 and is projected to the light projecting window 4 formed on the detection surface 3A. It is guided and irradiated from here toward a predetermined detection area. Then, for example, the light reflected by the reflector 6 disposed opposite to the light and entering the light receiving window 5 formed on the detection surface 3A is a reflecting portion (not shown) disposed in front of the front end surface of the light receiving optical fiber 2. )), The direction is changed by 90 degrees and the light is incident on the front end surface of the light receiving optical fiber 2. That is, the conventional optical fiber sensor has a configuration in which the light projection window 4 and the light receiving window 5 are arranged in parallel in a direction orthogonal to the insertion direction of the optical fibers 1 and 2.
[0003]
[Patent Document 1]
Japanese Patent No. 3400749
[0004]
[Problems to be solved by the invention]
By the way, this type of side view type sensor may be used in a detection device for each wafer 7 in which a plurality of sensors are arranged at predetermined intervals. Specifically, the above-described optical fiber sensor head is provided at one arm tip of a bifurcated arm (not shown) for wafer transfer with the detection surface 3A facing the other arm tip, and the detection surface 3A. The reflector 6 is arranged at the tip of the other arm so as to face the head.
[0005]
In this case, the bifurcated arm needs to enter the gap between the wafers 7 when the wafer is transferred. Accordingly, the optical fiber sensor head is provided so that the insertion direction of the optical fibers 1 and 2 is along the approach direction of the bifurcated arm (arrow direction in FIG. 8) so that the derived optical fibers 1 and 2 do not get in the way. That is, as shown in the figure, the arrangement direction of the light projecting window 4 and the light receiving window 5 is positioned so as to be orthogonal to the wafer 7. In this case, the amount of incident light entering the light receiving window 5 varies relatively depending on where the wafer 7 is positioned in front of the light projecting window 4 and the light receiving window 5, and the amount of light transmitted through the light receiving optical fiber 2 varies. There is a problem that the wafer cannot be detected accurately based on the above. Further, since the optical fiber sensor head has a configuration in which the light projection window 4 and the light reception window 5 are arranged along the thickness direction of the wafer 7, the thickness is required correspondingly, which is an obstacle to downsizing of the apparatus.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical fiber sensor head, a manufacturing method thereof, and wafer detection capable of accurately detecting an object to be detected while achieving downsizing. The device is on offer.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an optical fiber sensor head according to a first aspect of the present invention includes a light projecting optical fiber, a light receiving optical fiber, and a main body case into which each end portion of the optical fiber is inserted. Irradiating the light emitted from the distal end surface of the light projecting optical fiber toward a predetermined detection area outside the main body case, while receiving the light returning from the detection area toward the main body case. In the optical fiber sensor head configured to be incident on the distal end surface of the optical fiber for use, the main body case is formed with a pair of through holes arranged in parallel to each other, and one in the direction in which the pair of through holes are arranged. A side surface is a detection surface directed toward the detection region side, and tip portions of the light projecting and light receiving optical fibers are inserted into the pair of through holes from one end side, respectively. The detection surface, while passing through the through hole closer to the detection surface of the pair of through holes, from the detection surface, on the front side of the tip portion of the optical fiber inserted into the through hole A first light passage that communicates with a through hole farther from the first light passage, and the first light passage along the insertion direction of the optical fiber at a position ahead of the first light passage in the insertion direction of the optical fiber. And a second light passage that communicates with the through hole closer to the detection surface from the detection surface, and the optical fiber is inserted into the through hole far from the detection surface. The light that is inserted from the other end opposite to the optical fiber and reflects the light emitted from the optical fiber so as to pass through the first light passage, and the light that enters the first light passage is reflected by the optical fiber. A first reflecting member is provided for reflection on the tip side. And inserted into the through hole closer to the detection surface from the other end side opposite to the side where the optical fiber is inserted, and the light emitted from the optical fiber passes through the second light passage. It is characterized in that a second reflecting member is provided that reflects the light passing through the second light passage and reflects the light incident from the second light passage path toward the front end surface of the optical fiber.
[0008]
According to a second aspect of the present invention, in the optical fiber sensor head according to the first aspect, the light receiving optical fiber is inserted into a through hole closer to the detection surface, and light is projected to a through hole farther from the detection surface. It is characterized in that the optical fiber for use is inserted.
[0009]
According to a third aspect of the present invention, in the optical fiber sensor head according to the first or second aspect, the first and second light passages are fitted with a light transmissive cover at least at an opening end on the detection surface side. It is characterized in that it is configured.
[0010]
According to a fourth aspect of the present invention, there is provided a method of manufacturing an optical fiber sensor head, comprising: a light projecting optical fiber; a light receiving optical fiber; and a body case into which each end portion of the optical fiber is inserted. While irradiating the light emitted from the distal end surface of the optical fiber toward a predetermined detection region outside the main body case, the light returning from the detection region to the main body case side is irradiated with the light of the light receiving optical fiber. In the method of manufacturing an optical fiber sensor head configured to be incident on a distal end surface, the optical fiber sensor head has a pair of through holes formed in the body case, the pair of through holes being arranged in parallel to each other. One side surface in the arrangement direction of the holes is a detection surface directed toward the detection region side, and the end portions of the light projecting and light receiving optical fibers are arranged from one end side to the pair of through holes. Each of the pair of through-holes closer to the detection surface is inserted into the main body case from the detection surface on the front side of the tip portion of the optical fiber inserted into the through-hole. A first optical passage that communicates with the through hole far from the detection surface while penetrating the hole, and along the insertion direction of the optical fiber at a position ahead of the first optical passage in the insertion direction of the optical fiber. A second light passage that is aligned with the first light passage and communicates with the through hole closer to the detection surface from the detection surface is formed, and the through hole far from the detection surface has the The optical fiber is inserted from the other end opposite to the side where the optical fiber is inserted, and the light emitted from the optical fiber is reflected so as to pass through the first optical passage, and enters from the first optical passage. The emitted light is directed to the end face side of the optical fiber. A first reflecting member to be emitted, and is inserted into the through hole closer to the detection surface from the other end side opposite to the side where the optical fiber is inserted, and the light emitted from the optical fiber And a second reflecting member for reflecting the light incident from the second light passing path toward the tip end side of the optical fiber. And a step of providing both the second reflecting members with respect to the respective through holes so as to be rotatable about a rotation axis along the axial direction of the through holes, and the light from the light projecting optical fiber is Light that is irradiated from one of the first and second light passages toward the detection region and returned from the detection region through the other light passage is incident on the light receiving optical fiber. The step of rotating and adjusting both the reflecting members, and the front in this adjusted state And a step of positioning and fixing the reflecting members.
[0011]
A wafer detection apparatus according to a fifth aspect of the present invention is a wafer detection apparatus for detecting the presence or absence of each wafer in a cassette in which a plurality of wafers are accommodated at intervals, and enters between the wafers. 4. The optical fiber sensor head according to claim 1, which is provided in a transport unit that transports each wafer, and is disposed in the transport unit so as to face a detection surface of the optical fiber sensor head. A reflector that reflects the light from the optical fiber sensor head and returns it to the optical fiber sensor head side; and a light projecting device that makes the light incident on the base end face of the light projecting optical fiber derived from the optical fiber sensor head Means and a light receiving means for receiving light from the base end face of the light receiving optical fiber led out from the optical fiber, the optical fiber sensor head and the reflector, Based on a change in the amount of light received by the light receiving means, which changes depending on the presence or absence of a wafer that may be present between the optical fiber sensor head and the reflector. It is characterized in that the detection operation is performed.
[0012]
According to a sixth aspect of the present invention, in the wafer detection apparatus according to the fifth aspect of the present invention, the light projection window is configured to irradiate light having a width wider than parallel light, and the light projection of the optical fiber sensor head. It is emitted from the optical fiber for light, reflected by one of the first and second reflecting members, and passes through one of the first and second light passages corresponding thereto. On the optical path of the light to be reflected, and at least one of the optical path of the light reflected by the other reflecting member corresponding to the other light passing path and guided to the distal end surface of the optical fiber for light reception, A light beam stop means for restricting light irradiated to the detection region from the light projecting optical fiber from being reflected by another wafer surface located above or below the detection target wafer and entering the light receiving optical fiber. Is provided Having the features the time.
[0013]
[Action and effect of the invention]
<Invention of Claim 1>
According to this configuration, the first and second light passages that function as a light projecting unit and a light receiving unit that irradiate light toward the detection region and receive light from the detection region are optical fibers on the detection surface. Therefore, the optical fiber sensor head can be arranged in a narrow space without obstructing the optical fiber. Further, for example, even when a wafer is detected as described above, the alignment direction of the light projection window and the light reception window can be arranged in a posture along the approach direction of the bifurcated arm, and the optical fiber insertion direction As compared with the conventional configuration in which the light projection window and the light reception window are arranged in parallel to each other, the wafer can be detected more accurately.
[0014]
<Invention of Claim 2>
According to this configuration, since the optical fiber closer to the detection surface is the optical fiber for receiving light, the optical fiber farther from the detection surface is received from the light receiving window than the configuration using the optical fiber for receiving light. The optical path to the reflective member can be shortened, and the decrease in the amount of received light can be suppressed accordingly.
[0015]
<Invention of Claim 3>
According to this configuration, the light projecting window and the light receiving window have a configuration in which the light transmissive cover is fitted to the opening formed on the detection surface, so that even when used in an environment where dust or the like exists, It can be prevented that dust or the like adheres to the reflecting member and the light reflectance is lowered.
[0016]
<Invention of Claim 4>
For example, in the manufacturing stage, the optical axis directions of light projection and light reception can be adjusted by rotating both reflection members. Here, unlike the present invention, for example, the first reflecting member inserted into the through hole far from the detection surface is arranged in front of the second reflecting member inserted into the through hole closer to the detection surface. And the structure which forms the optical passageway connected to a detection surface corresponding to them can also be considered. However, in this configuration, for example, when performing the rotation adjustment of the reflection member closer to the detection surface, the optical path connecting the detection member and the reflection member far from the detection surface is blocked by the operator's hand. There is a problem that the optical axis cannot be adjusted.
[0017]
On the other hand, in this configuration, the second reflecting member inserted into the through hole closer to the detection surface is more optical fiber than the first reflecting member inserted into the through hole far from the detection surface. It is the structure located ahead in the insertion direction. Therefore, even when any of the reflecting members is rotated, the optical axis adjustment operation can be performed without blocking the light projecting / receiving light path.
[0018]
<Invention of Claim 5>
Even when a wafer is detected as described above, the direction in which the light projecting window and the light receiving window are arranged can be arranged in a posture along the approach direction of the bifurcated arm, and the direction orthogonal to the optical fiber insertion direction. Compared to the conventional configuration in which the light projection window and the light receiving window are arranged in parallel, the apparatus can be downsized and the wafer can be detected accurately.
[0019]
<Invention of Claim 6>
Since the diffused light is emitted from the light projection window, the light projection of the optical fiber sensor head is possible even when used as, for example, a retroreflective type optical fiber sensor in which a triangular prism is arranged oppositely, compared to the case where parallel light is emitted. It becomes easy to dispose the optical fiber sensor head and the triangular prism so that the light irradiated from the window and reflected by the triangular prism is returned to the light receiving window of the optical fiber sensor head. In addition, the influence of reflection on the surface of the wafer to be detected can be suppressed by the light iris diaphragm means, thereby improving the accuracy of wafer detection.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS.
1. Configuration of this embodiment
In FIG. 1, reference numeral 10 denotes a rack, which has a housing shape that opens to the side, and a plurality of concave grooves 12 that extend in the horizontal direction are formed on a pair of opposed inner side surfaces 11, 11 in the vertical direction. It is formed at intervals. Then, a plurality of disk-shaped wafers W are passed between the inner side surfaces 11 and 11 with their edges engaged with the concave grooves 12 of the inner side surfaces 11 and 11, thereby A plurality of wafers W are accommodated with a predetermined gap in the vertical direction.
[0021]
A hand 13 (corresponding to a transfer unit) for taking out a desired wafer W from the rack 10 has a U-shape as a whole as shown in FIG. 1, and both tip portions 13A, 13A of the U-shape are rack 10. Oriented in the direction of insertion. The hand 13 is attached to a robot arm (not shown) on the base end side, for example, and first moves to a position where the front end portion of the wafer W is interposed between both the tip portions 13A and 13A. When the detection device detects the wafer W, it moves to the lower side of the wafer W and operates to lift and transfer the wafer W.
[0022]
<Overall configuration of wafer detection apparatus>
In the wafer detection apparatus according to the present embodiment, light obtained by projecting and receiving optical fibers F1 and F2 from a main body case 31 in which a light projection window 32 and a light reception window 33 for performing light projection and reception are formed. A fiber sensor head (hereinafter referred to as “sensor head 30”) and a control unit 20 connected to the light projecting and receiving optical fibers F1 and F2 are configured.
[0023]
<Configuration of control unit>
For example, as shown in FIG. 2A, the electric circuit unit 21 in the control unit 20 is provided with an operation indicator lamp 22 for displaying the operation of the control unit 20, and a light projecting unit composed of an LED (light emitting diode). An element 23 and a light receiving element 24 made of, for example, a photodiode are provided. The light projecting optical fiber F 1 is connected to the light projecting element 23, and the light receiving optical fiber F 2 is connected to the light receiving element 24.
[0024]
The electrical configuration of the electrical circuit unit 21 is as shown in FIG. The light projecting element 23 is driven by a light projecting element driving circuit 25 and is lit in a predetermined cycle, for example. Light from the light projecting element 23 enters the body case 31 of the sensor head 30 through the light projecting optical fiber F1. It is guided and emitted from the projection window 32 of the main body case 31. The light that has entered the light receiving window 33 of the main body case 31 from a predetermined detection region is guided to the control unit 20 side through the light receiving optical fiber F <b> 2 and is incident on the light receiving element 24. The light reception signal from the light receiving element 24 is amplified by the detection circuit 26, and the detection operation of the wafer W is performed according to the intensity of the received light. This detection operation is performed based on a change in the light incident on the light receiving element 24, and outputs a detection signal to the output circuit 27 on the assumption that the wafer W exists when it falls below a predetermined level. Based on this, the output circuit 27 turns on the operation indicator lamp 22 and outputs a signal to an external circuit (for example, the controller of the robot arm) (not shown).
[0025]
<Configuration of sensor head>
The configuration of the sensor head 30 will be described with reference to FIG. In the figure, the upper part of the drawing is assumed to be the front and the lower part of the drawing is assumed to be the rear.
The main body case 31 of the sensor head 30 has a flat rectangular tube shape as a whole, and detection is such that one surface (the right surface in the figure) of a narrow set of side surfaces of two opposing side surfaces faces the detection region. It is a surface 31A. On the front end side of the detection surface 31A, as will be described later, a light receiving window 33 and a light projection window 32 are formed in this order from the front end of the detection surface 31A along the longitudinal direction (front-rear direction) of the main body case 31. Has been.
[0026]
The body case 31 is formed with a pair of through-holes 34 and 35 extending along the entire length in the longitudinal direction side by side along the arrangement direction (left-right direction) of both side surfaces of the narrow group. That is, one through-hole 34 (hereinafter, sometimes referred to as “light-receiving side through-hole 34”) is formed near the detection surface 31A in the narrow set of side surfaces, and the other through-hole 35 (hereinafter referred to as “projection”). The light-side through-hole 35 ”may be arranged closer to the side surface different from the detection surface 31A in the narrow set of side surfaces.
[0027]
Among these, the tip portion of the light projecting optical fiber F1 is inserted into the through hole 35 (light projecting side through hole 35) far from the detection surface 31A from the rear. On the other hand, the distal end portion of the light receiving optical fiber F2 is inserted into the through hole 34 (light receiving side through hole 34) closer to the detection surface 31A from the rear.
[0028]
At each tip portion of each of the optical fibers F1, F2, the outer coating is peeled off to expose the core wire S, and the core wire S is fitted into an annular sleeve 36, respectively. The sleeve 36 is fixed to the inner wall surfaces of the through holes 34 and 35 with, for example, an adhesive. The front end of the sleeve 36 is a small-diameter portion 36A whose inner diameter is smaller than that of the other portion, and the tips of the cores S of the optical fibers F1, F2 are locked to the rear surface of the small-diameter portion 36A. With such a configuration, the optical axis directions of the optical fibers F1 and F2 are positioned.
[0029]
A light projecting lens member 37 is inserted in front of the sleeve 36 in the light projecting side through hole 35 so as to be in contact with the front end surface of the sleeve 36. The light emitted from the light projecting optical fiber F <b> 1 passes through the light projecting lens member 37 and is changed to spread light according to the characteristics of the light projecting lens member 37. That is, the spread of the light beam emitted from the projection window 32 can be adjusted according to the characteristics of the projection lens member 37.
[0030]
Similarly, a light receiving lens member 38 is inserted in front of the sleeve 36 in the light receiving side through hole 34 so as to contact the front end surface of the sleeve 36. The light that has entered the light receiving window 33 passes through the light receiving lens member 38, so that light having a light amount corresponding to the characteristics of the light receiving lens member 38 is collected and enters the light receiving optical fiber F <b> 2. That is, it is possible to adjust the light receiving range that enters the light receiving window 33 from the detection region and enters the light receiving optical fiber F2 according to the characteristics of the light receiving lens member 38.
[0031]
Next, at the front end portion of the light projecting side through-hole 35, the light reflecting member 39 having a reflecting surface 39A that transmits the light projecting lens member 37 and reflects light substantially at a right angle and guides it to the detection surface 31A side. Is fitted. Further, a wall sandwiched between the light projecting side through hole 35 and the light receiving side through hole 34 and a wall sandwiched between the light receiving side through hole 34 and the detection surface 31A are lateral to the reflecting surface 39A of the light projecting reflecting member 39. Insertion holes 40 and 41 are formed in the respective positions, and the reflected light from the light projecting reflection member 39 is emitted to the outside through these insertion holes 40 and 41. Therefore, the insertion hole 41 functions as the light projection window 32. Hereinafter, the insertion hole 41 may be referred to as a light projection window 32.
[0032]
Further, an insertion hole 42 is also formed at a position in front of the light projection window 32 on the wall sandwiched between the light receiving side through hole 34 and the detection surface 31A. The light receiving side through-hole 34 is disposed in front of the light projecting reflecting member 39 and reflects light entering the insertion hole 42 from the detection region at a substantially right angle to receive the light receiving lens member 38. A light-receiving reflective member 43 having a reflective surface 43A leading to is fitted. Therefore, the insertion hole 42 functions as the light receiving window 33. Hereinafter, the insertion hole 42 may be referred to as a light receiving window 33.
[0033]
In each of the reflection members 39 and 43, the portion fitted into each of the through holes 34 and 35 has a cylindrical shape, and the portion of each of the through holes 34 and 35 to which the reflection members 39 and 43 are fitted is correspondingly formed. The cross section is circular. Accordingly, the reflecting members 39 and 43 are attached so as to be rotatable about the optical axes of the corresponding optical fibers F1 and F2 in a state of being fitted to the front end portions of the through holes 34 and 35, respectively. Then, by rotating the reflecting members 39 and 43, the directions of the reflecting surfaces 39A and 43A are changed, and the light is emitted from the light projection window 32 in the light emitting direction (optical axis center direction) and incident on the light receiving window 33. The light receiving direction can be adjusted. In addition, after the adjustment, the reflecting members 39 and 43 are fixed with, for example, an adhesive. Further, knobs 39B and 43B having diameters larger than those of the other portions are provided on the opposite side of the reflecting surfaces 39A and 43A among the reflecting members 39 and 43, respectively.
[0034]
<Sensor head arrangement and reflector>
As shown in FIG. 5, the sensor head 30 is accommodated in one tip portion 13 </ b> A of the hand 13. Specifically, the sensor head 30 is screwed via a fixing portion 44 protruding from the main body case 31 with the detection surface 31A facing the other tip portion 13A side of the hand 13. On the other hand, a reflector 50 is disposed on the other tip portion 13 </ b> A of the hand 13 so as to face the detection surface 31 </ b> A of the sensor head 30. In this reflector 50, for example, as shown in FIG. 6B, the reflecting surface 51 has a corner cube structure, and the light projected toward the reflecting surface 51 can be returned to the light projecting position. , So-called regressive reflection type. A fixing portion 53 is provided behind the reflecting surface 51 as shown in FIG. 3A, and is screwed to the hand 13 through the fixing portion 53.
[0035]
2. Operation of wafer detector
As shown in FIG. 5, the light from the light projecting element 23 of the control unit 20 is emitted from the front end surface through the light projecting optical fiber F <b> 1, and is narrowed down to a light beam having a predetermined width by the light projecting lens member 37. Then, the direction is changed at a right angle by the reflecting surface 39 </ b> A of the light reflecting reflection member 39, and the light is irradiated from the light projecting window 32 toward the reflector 50. Of the light reflected by the reflector 50, the light that has entered the light receiving window 33 is also turned at a right angle by the reflecting surface 43 A of the light receiving reflecting member 43 and converged by the light receiving lens member 38. Then, the converged light enters the front end surface of the light receiving optical fiber F2, passes through the light receiving optical fiber F2, and is received by the light receiving element 24 of the control unit 20. Here, if the wafer W is interposed between the sensor head 30 and the reflector 50, the amount of light received by the light receiving element 24 is reduced, and the detection signal is output to the output circuit 27 because the wafer W exists because it is below a predetermined level. Based on this, the output circuit 27 turns on the operation indicator lamp 22 and outputs a signal to an external circuit.
[0036]
In the present embodiment, as shown in FIG. 7, the light emitted from the light projection window 32 is reflected by the upper and lower wafers W ′ sandwiching the wafer W to be detected, enters the light receiving window 33, and finally receives light. The light beam is narrowed by the light projecting lens member 37 and the light receiving lens member 38 so as not to enter the front end surface of the optical fiber F2 (corresponding to the configuration of claim 6). Therefore, in the present embodiment, the light projecting lens member 37 and the light receiving lens member 38 correspond to “light beam diaphragm means”. Such a configuration can be realized not only by adjusting the characteristics of the light projecting lens member 37 and the light receiving lens member 38 but also by adjusting the opening diameters of the light projecting window 32 and the light receiving window 33.
[0037]
3. Effects of this embodiment
According to the above configuration, the light projecting window 32 and the light receiving window 33 are arranged side by side in the direction along the insertion direction of the optical fibers F1 and F2, so that the optical fibers F1 and F2 do not get in the way. 13 can be made thin enough to enter between the wafers W. In addition, the sensor head 1 can perform light projection and reception toward the end surface of the wafer W with the alignment direction of the light projection window 32 and the light reception window 33 aligned with the surface of the wafer W. Compared to the conventional configuration in which the light projecting window and the light receiving window are arranged in the orthogonal direction, the wafer can be detected more accurately.
[0038]
In addition, in the above-described conventional configuration, since each reflecting member is provided side by side in the direction in which the light projecting window and the light receiving window are arranged, the optical axis of the light projected from the light projecting window 32 according to the width dimension of the reflecting member. And the pitch interval with the optical axis of the light received by the light receiving window is widened. However, in the present embodiment, the optical axis of the light projected from the light projection window 32 and the light reception window are received without being limited by the width dimension of each of the reflecting members 39 and 43 as compared with the conventional configuration. The pitch interval with the optical axis of the light can be reduced as much as possible.
[0039]
In the present embodiment, since the optical fiber closer to the detection surface 31A is the light receiving optical fiber F2, the optical fiber farther from the detection surface 31A is received than the configuration in which the optical fiber F2 for light reception is used. The optical path from the window to the light receiving reflection member can be shortened, and a decrease in the amount of received light can be suppressed accordingly (corresponding to the configuration of claim 2).
[0040]
Further, the light receiving reflection member 43 corresponding to the optical fiber F2 closer to the detection surface 31A is inserted into the optical fibers F1 and F2 than the light reflection reflecting member 39 corresponding to the optical fiber F1 farther from the detection surface 31A. It is the structure located ahead in the direction. Accordingly, even when any of the reflecting members 39 and 43 is operated to rotate, the optical axis adjustment work can be performed without causing a problem that the light path of the light projecting / receiving light is blocked by the operator's hand or the like (claim). Corresponding to the configuration of item 4).
[0041]
In the present embodiment, the reflecting members 39 and 43 are rotatably provided in the through-holes 34 and 35 in the manufacturing stage. Therefore, the reflecting members 39 and 43 are rotated to project and receive light. The reflecting members 39 and 43 can be positioned and fixed after adjusting the optical axis direction.
[0042]
<Other embodiments>
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.
(1) Contrary to the above embodiment, the optical fiber closer to the detection surface 31A is the light receiving optical fiber F2, and the optical fiber far from the detection surface 31A is the projecting optical fiber F1. Also good. If it is this structure, the optical path from the reflection member for light projection to a light projection window can be shortened, and the light emission amount fall can be suppressed by that much.
[0043]
(2) Some wafers are coated with, for example, an oxide film or a nitride film that absorbs light in a certain wavelength band. In the above embodiment, in order to detect a wafer having such a low light reflectance, A mirror reflection type sensor in which the reflectors 50 are arranged to face each other is provided. However, the present invention is not limited to this, and the present invention is applied to a so-called reflective sensor that detects a wafer based on the presence or absence of reflected light on the surface of the detected object without using the reflector 50 if the light reflectance of the detected object is high. You may apply.
[0044]
(3) In the above embodiment, the light projection window 32 and the light reception window 33 are simply the insertion holes 41 and 42. This is because wafer detection is normally performed in a clean room that is almost free of dust and the like, and when used in an environment where dust or the like is present, the insertion holes 41 and 42 may be sealed with a transparent cover. (Equivalent to the structure of claim 3).
[0045]
(4) The “reflector” referred to in the present invention may be a triangular prism or a simple reflector in addition to the reflector 50 having the corner cube type structure.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a rack and a hand in which wafers are stored according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of the control unit.
FIG. 3 is a sectional view of a sensor head.
FIG. 4 is a side view and a top view of a sensor head.
FIG. 5 is a simplified diagram showing a sensor head and a reflector housed in the hand.
FIG. 6 is a top view of the reflector and a view seen from the reflecting surface side.
FIG. 7 is a schematic diagram showing the relationship between the light beam of the projected light and the wafer.
FIG. 8 is a perspective view showing a conventional sensor head.
[Explanation of symbols]
10 ... Rack
23 ... Projection element (projection means)
24. Light receiving element (light receiving means)
30 ... Sensor head (optical fiber sensor head)
31 ... Body case
31A: Detection surface
32 ... Floodlight window
33 ... Light receiving window
37 ... Projection lens member
38. Light receiving lens member
39 ... Reflective member for light projection
43 ... Reflective member for light reception
50 ... Reflector (reflector)
F1: Optical fiber for light projection
F2: Optical fiber for receiving light
W ... Wafer (wafer to be detected)
W '... wafer

Claims (6)

投光用光ファイバと、受光用光ファイバと、それらの光ファイバの各先端部分が挿入される本体ケースとを備えて、前記投光用光ファイバの先端面から出射された光を前記本体ケース外部の所定の検出領域に向けて照射する一方で、前記検出領域から前記本体ケース側に戻ってきた光を前記受光用光ファイバの先端面に入射させるよう構成された光ファイバセンサヘッドにおいて、前記本体ケースは、互いに平行に並ぶ1対の貫通孔が形成されるとともに、それら1対の貫通孔の並び方向における一側面が前記検出領域側に向けられる検出面とされ、
前記1対の貫通孔には一端側から前記投光用及び受光用の光ファイバの先端部分がそれぞれ挿入され、
前記本体ケースには、前記貫通孔に挿入された前記光ファイバの先端部分より前方側において、前記検出面から、前記1対の貫通孔のうち前記検出面に近い方の貫通孔を貫きつつ前記検出面から遠い方の貫通孔に連通する第1光通過路と、その第1光通過路より前記光ファイバの挿入方向における前方の位置において前記光ファイバの挿入方向に沿って前記第1光通過路と並び、かつ前記検出面から前記検出面に近い方の貫通孔に連通する第2光通過路とがそれぞれ形成され、
前記検出面から遠い方の貫通孔には、前記光ファイバが挿入される側とは反対側の他端側から挿入され、当該光ファイバから出射された光を前記第1光通過路を通すように反射、また、前記第1光通過路から入光した光を当該光ファイバ先端面側に反射させる第1反射部材が設けられ、
前記検出面に近い方の貫通孔には、前記光ファイバが挿入される側とは反対側の他端側から挿入され、当該光ファイバから出射された光を前記第2光通過路を通すように反射、また、前記第2光通過路から入光した光を当該光ファイバ先端面側に反射させる第2反射部材が設けられていることを特徴とする光ファイバセンサヘッド。
A light projecting optical fiber; a light receiving optical fiber; and a main body case into which each front end portion of the optical fiber is inserted, and the light emitted from the front end surface of the light projecting optical fiber. In the optical fiber sensor head configured to irradiate the light toward the main body case from the detection region while irradiating the external predetermined detection region, the optical fiber sensor head is configured to enter the front end surface of the light receiving optical fiber. The body case is formed with a pair of through-holes arranged in parallel to each other, and one side surface in the direction in which the pair of through-holes are aligned is a detection surface directed toward the detection region side,
The end portions of the light projecting and receiving optical fibers are respectively inserted into the pair of through holes from one end side,
In the main body case, on the front side of the tip portion of the optical fiber inserted into the through-hole, while passing through the through-hole closer to the detection surface of the pair of through-holes, the detection surface A first light passage that communicates with a through-hole far from the detection surface, and the first light passage along the insertion direction of the optical fiber at a position in front of the first light passage in the insertion direction of the optical fiber. A second light passage that is aligned with the path and communicates with the through hole closer to the detection surface from the detection surface, respectively.
The through hole far from the detection surface is inserted from the other end opposite to the side where the optical fiber is inserted, so that the light emitted from the optical fiber passes through the first light passage. And a first reflecting member that reflects the light incident from the first light passage to the tip end side of the optical fiber is provided,
The through hole closer to the detection surface is inserted from the other end side opposite to the side where the optical fiber is inserted, so that light emitted from the optical fiber passes through the second light passage. And an optical fiber sensor head, wherein a second reflecting member is provided for reflecting the light incident on the second light passage path toward the tip end side of the optical fiber.
前記検出面に近い方の貫通孔に前記受光用光ファイバが挿入され、前記検出面に遠い方の貫通孔に投光用光ファイバが挿入されることを特徴とする請求項1記載の光ファイバセンサヘッド。2. The optical fiber according to claim 1, wherein the light receiving optical fiber is inserted into a through hole closer to the detection surface, and a light projecting optical fiber is inserted into a through hole far from the detection surface. The sensor head. 前記第1及び第2の光通過路は、少なくとも前記検出面側の開口端に光透過性カバーが嵌められて構成されていることを特徴とする請求項1または請求項2記載の光ファイバセンサヘッド。3. The optical fiber sensor according to claim 1, wherein the first and second light passage paths are configured by fitting a light-transmitting cover at least at an opening end on the detection surface side. 4. head. 投光用光ファイバと、受光用光ファイバと、それらの光ファイバの各先端部分が挿入される本体ケースとを備えて、前記投光用光ファイバの先端面から出射された光を前記本体ケース外部の所定の検出領域に向けて照射する一方で、前記検出領域から前記本体ケース側に戻ってきた光を前記受光用光ファイバの先端面に入射させるよう構成された光ファイバセンサヘッドの製造方法において、
前記光ファイバセンサヘッドは、
前記本体ケースは、互いに平行に並ぶ1対の貫通孔が形成されるとともに、それら1対の貫通孔の並び方向における一側面が前記検出領域側に向けられる検出面とされ、
前記1対の貫通孔には一端側から前記投光用及び受光用の光ファイバの先端部分がそれぞれ挿入され、
前記本体ケースには、前記貫通孔に挿入された前記光ファイバの先端部分より前方側において、前記検出面から、前記1対の貫通孔のうち前記検出面に近い方の貫通孔を貫きつつ前記検出面から遠い方の貫通孔に連通する第1光通過路と、その第1光通過路より前記光ファイバの挿入方向における前方の位置において前記光ファイバの挿入方向に沿って前記第1光通過路と並び、かつ前記検出面から前記検出面に近い方の貫通孔に連通する第2光通過路とがそれぞれ形成され、
前記検出面から遠い方の貫通孔には、前記光ファイバが挿入される側とは反対側の他端側から挿入され、当該光ファイバから出射された光を前記第1光通過路を通すように反射、また、前記第1光通過路から入光した光を当該光ファイバ先端面側に反射させる第1反射部材が設けられ、
前記検出面に近い方の貫通孔には、前記光ファイバが挿入される側とは反対側の他端側から挿入され、当該光ファイバから出射された光を前記第2光通過路を通すように反射、また、前記第2光通過路から入光した光を当該光ファイバ先端面側に反射させる第2反射部材が設けられて構成され、
前記第1及び第2の両反射部材を、前記各貫通孔に対してその貫通孔の軸方向に沿った回動軸を中心に回動可能に設ける工程と、
前記投光用光ファイバからの光が前記第1及び第2の光通過路のいずれか一方の光通過路から前記検出領域に向けて照射され、前記検出領域から他方の光通過路を通じて戻ってきた光が受光用光ファイバに入射するよう前記両反射部材を回動調整する工程と、
この調整された状態で前記両反射部材を位置決め固定する工程とを含むことを特徴とする光ファイバセンサヘッドの製造方法。
A light projecting optical fiber; a light receiving optical fiber; and a main body case into which each front end portion of the optical fiber is inserted, and the light emitted from the front end surface of the light projecting optical fiber. A method of manufacturing an optical fiber sensor head configured to irradiate a predetermined external detection area while allowing light that has returned from the detection area to the main body case side to be incident on a distal end surface of the light receiving optical fiber. In
The optical fiber sensor head is
The main body case is formed with a pair of through holes arranged in parallel to each other, and one side surface in the direction of arrangement of the pair of through holes is a detection surface directed toward the detection region side,
The end portions of the light projecting and receiving optical fibers are respectively inserted into the pair of through holes from one end side,
In the main body case, on the front side of the tip portion of the optical fiber inserted into the through-hole, while passing through the through-hole closer to the detection surface of the pair of through-holes, the detection surface A first light passage that communicates with a through-hole far from the detection surface, and the first light passage along the insertion direction of the optical fiber at a position in front of the first light passage in the insertion direction of the optical fiber. A second light passage that is aligned with the path and communicates with the through hole closer to the detection surface from the detection surface, respectively.
The through hole far from the detection surface is inserted from the other end opposite to the side where the optical fiber is inserted, so that the light emitted from the optical fiber passes through the first light passage. And a first reflecting member that reflects the light incident from the first light passage to the tip end side of the optical fiber is provided,
The through hole closer to the detection surface is inserted from the other end side opposite to the side where the optical fiber is inserted, so that light emitted from the optical fiber passes through the second light passage. And a second reflecting member that reflects the light incident from the second light passage to the tip end side of the optical fiber is provided.
Providing the first and second reflecting members so as to be rotatable with respect to the respective through-holes around a rotation axis along the axial direction of the through-hole;
Light from the light projecting optical fiber is irradiated from one of the first and second light passages toward the detection region, and returns from the detection region through the other light passage. Rotating both the reflecting members so that the incident light enters the light receiving optical fiber;
And a step of positioning and fixing the reflecting members in the adjusted state.
複数のウエハが間隔を隔てて収容されたカセット内の各ウエハの有無を検出するためのウエハ検出装置であって、
前記ウエハ同士の間に進入し前記各ウエハを搬送する搬送部に設けられる、請求項1ないし請求項3のいずれかに記載の光ファイバセンサヘッドと、
その光ファイバセンサヘッドの検出面に対向するように前記搬送部に配され、前記光ファイバセンサヘッドからの光を反射して再びこの光ファイバセンサヘッド側に戻す反射体と、
前記光ファイバセンサヘッドから導出された投光用光ファイバの基端面に光を入射させる投光手段と、
前記光ファイバから導出された受光用光ファイバの基端面からの光を受光する受光手段とを備えて、
前記光ファイバセンサヘッドと前記反射体とを、前記各ウエハに対してその端面側を挟むように配して、前記光ファイバセンサヘッドと前記反射体との間に存在し得るウエハの有無によって変化する前記受光手段での受光量変化に基づき前記ウエハの検出動作を行うことを特徴とするウエハ検出装置。
A wafer detection device for detecting the presence or absence of each wafer in a cassette in which a plurality of wafers are stored at intervals,
The optical fiber sensor head according to any one of claims 1 to 3, wherein the optical fiber sensor head is provided in a transfer unit that enters between the wafers and transfers the wafers.
A reflector that is disposed in the transport section so as to face the detection surface of the optical fiber sensor head, reflects light from the optical fiber sensor head, and returns the optical fiber sensor head to the optical fiber sensor head side;
A light projecting means for causing light to enter the base end face of the light projecting optical fiber derived from the optical fiber sensor head;
Light receiving means for receiving light from the base end face of the light receiving optical fiber derived from the optical fiber,
The optical fiber sensor head and the reflector are arranged so as to sandwich the end face side of each wafer, and change depending on the presence or absence of a wafer that can exist between the optical fiber sensor head and the reflector. A wafer detection apparatus that performs the wafer detection operation based on a change in the amount of light received by the light receiving means.
前記投光窓からは平行光よりも広がりをもった光が照射されるよう構成され、かつ、前記光ファイバセンサヘッドの前記投光用光ファイバから出射され前記第1及び第2の反射部材のうちの一方の反射部材にて反射しそれに対応する前記第1及び第2の光通過路のうちの一方の光通過路を通過する光の光路上、及び、他方の前記光通過路からそれに対応する他方の反射部材にて反射して前記受光用光ファイバの先端面に導かれる光の光路上の少なくともいずれか一方には、前記投光用光ファイバから前記検出領域に照射された光が検出対象のウエハの上または下に位置する他のウエハ表面にて反射されて受光用光ファイバに入射することを規制する光芒絞り手段が設けられていることを特徴とする請求項5記載のウエハ検出装置。The light projecting window is configured to irradiate light that is wider than parallel light, and is emitted from the light projecting optical fiber of the optical fiber sensor head. Corresponding to the light path of light passing through one of the first and second light paths corresponding to the light reflected by one of the reflecting members and from the other light path. The light irradiated to the detection region from the light projecting optical fiber is detected on at least one of the light paths reflected by the other reflecting member and guided to the tip surface of the light receiving optical fiber. 6. A wafer detection device according to claim 5, further comprising a light aperture stop means for restricting light reflected from another wafer surface above or below the target wafer and entering the light receiving optical fiber. apparatus.
JP2003209773A 2003-08-29 2003-08-29 Optical fiber sensor head, its manufacturing process and wafer detector Pending JP2005079126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209773A JP2005079126A (en) 2003-08-29 2003-08-29 Optical fiber sensor head, its manufacturing process and wafer detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209773A JP2005079126A (en) 2003-08-29 2003-08-29 Optical fiber sensor head, its manufacturing process and wafer detector

Publications (1)

Publication Number Publication Date
JP2005079126A true JP2005079126A (en) 2005-03-24

Family

ID=34402590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209773A Pending JP2005079126A (en) 2003-08-29 2003-08-29 Optical fiber sensor head, its manufacturing process and wafer detector

Country Status (1)

Country Link
JP (1) JP2005079126A (en)

Similar Documents

Publication Publication Date Title
JPH0815413A (en) Distance measuring apparatus
JP2012154806A (en) Laser radar and photoreceiver
JP4028814B2 (en) Mapping device
JP5336029B2 (en) Retroreflective photoelectric switch
US20220357451A1 (en) Lidar transmitter/receiver alignment
JPH11174534A (en) Floodlight device for camera
JP5251641B2 (en) Photoelectric sensor
JP2005079126A (en) Optical fiber sensor head, its manufacturing process and wafer detector
KR100671729B1 (en) Missing die detection
JP2780300B2 (en) Photodetector
JP4277458B2 (en) Wafer detection sensor
JPH0618748A (en) Optical connector device
JP4835701B2 (en) Wafer detection sensor
WO2022201406A1 (en) Optical device and method for controlling optical device
JPS60235027A (en) Narrow wavelength band light emitting and receiving apparatus
CN115097416B (en) Laser receiving module and laser radar
JPH11271215A (en) Surface plasmon resonance angle detector
JPH023188Y2 (en)
JP2546527Y2 (en) Light emitting element of distance measuring device
JP4153815B2 (en) Optical fiber sensor head and limited reflection type wafer detection apparatus
JP2003273197A (en) Detector of wafer run-off
JP2001267625A (en) Limited reflection type photoelectric switch
JP2009037784A (en) Photoelectric sensor
JPH11201729A (en) Optical measuring device
JPH10115549A (en) Apparatus for measuring luminous intensity of retroreflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090312