JPH11201729A - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPH11201729A
JPH11201729A JP1633398A JP1633398A JPH11201729A JP H11201729 A JPH11201729 A JP H11201729A JP 1633398 A JP1633398 A JP 1633398A JP 1633398 A JP1633398 A JP 1633398A JP H11201729 A JPH11201729 A JP H11201729A
Authority
JP
Japan
Prior art keywords
measuring
light receiving
receiving element
measurement
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1633398A
Other languages
Japanese (ja)
Inventor
Yasuo Murakawa
安夫 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP1633398A priority Critical patent/JPH11201729A/en
Publication of JPH11201729A publication Critical patent/JPH11201729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical measuring device capable of surely preventing the malfunction of measuring optical systems without using an expensive high- speed shutter and having a relatively inexpensive structure. SOLUTION: Multiple measuring optical systems RS1 , RS2 having light sources 1a, 5a and photodetectors 3a, 7a are arranged on the same plane, and multiple positions of a measured object W1 or the length of a straight line is measured by this optical measuring device. The light sources 1a, 5a can emit measuring beams with different wavelengths, and filters 9a, 10a cutting off the light with the wavelength other than the wavelengths of the measuring beams of the corresponding light sources 1a, 5a are arranged directly before at least part of the photodetectors 3a, 7a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学式測定装置に関
し、特に、レーザビーム等の複数の光学系を用いる測定
装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measuring device, and more particularly to an improvement of a measuring device using a plurality of optical systems such as a laser beam.

【0002】[0002]

【背景技術】周知のように、例えば集積回路素子のリー
ドフレームWの厚み測定を行う2位置測定装置において
は、図3に示すように、2つの測定光学系A,Bを用い
てリードフレームWの表面及び裏面の任意の2点の位置
を測定し、水平方向に通過されるリードフレームWの厚
みを測定する場合がある。
2. Description of the Related Art As is well known, in a two-position measuring apparatus for measuring the thickness of a lead frame W of an integrated circuit device, for example, as shown in FIG. In some cases, the positions of arbitrary two points on the front surface and the back surface are measured, and the thickness of the lead frame W passed in the horizontal direction is measured.

【0003】即ち、この2位置測定装置にあっては、第
1レーザ光源R1 からのレーザビームを被測定物である
リードフレームWの表面に標準する第1集光レンズCL
1 及び同表面からの反射ビームを第1受光素子HD1
受光面に入射させる第1受光部レンズRL1 をもつ第1
測定光学系Aと、第2レーザ光源R2 からのレーザビー
ムを前記リードフレームWの裏面に照準する第2集光レ
ンズCL1 及び同裏面からの反射ビームを第2受光素子
HD2 の受光面に入射させる第2受光部レンズRL2
もつ第2測定光学系Bとを備えており、これらの第1測
定光学系A及び第2測定光学系Bは略同じ平面内に位置
されている。
That is, in this two-position measuring device, a first condenser lens CL for standardizing a laser beam from a first laser light source R 1 on the surface of a lead frame W as an object to be measured.
1 and the first with the first light receiving portion lens RL 1 the reflected beam is incident on the first light receiving surface of the light receiving element HD 1 from the surface
A measuring optical system A, the second light receiving surface of the light receiving element HD 2 the reflected beam of the laser beam from the second condenser lens CL 1 and the back surface of sight on the rear surface of the lead frame W from the second laser light source R 2 and a second measuring optical system B having a second light receiving portion lens RL 2 to be incident, these first measuring optical system a and the second measuring optical system B are located substantially in the same plane.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
2つの測定光学系A,Bをもつ2位置測定装置において
は、被測定物からの乱反射等で使用レーザ光が一方の測
定光学系A,Bの受光素子HD1 ,HD2 に入射する
と、同受光素子HD1 ,HD2 が誤って感応し、測定ミ
スの原因となるおそれがある。
In a two-position measuring apparatus having such two measuring optical systems A and B, a laser beam to be used is emitted from one of the measuring optical systems A and B due to irregular reflection from an object to be measured. When the light enters the light receiving elements HD 1 and HD 2 of B, the light receiving elements HD 1 and HD 2 may erroneously sense and cause a measurement error.

【0005】このため、従来では、各測定光学系A,B
の光路中に光学的シャッタを配置し、交互に開閉される
同シャッタにより各測定光学系に用いるレーザビームを
時間的に切り替えて、他方の測定光学系からのレーザビ
ームの誤った受光を防止する対策を行っている。しかし
ながら、このような誤動作防止対策構造では、高速度で
レーザビームを切り換える高価なシャッタの使用で、装
置の製造原価が割高となるばかりでなく、レーザビーム
を時間的に切り換えるため、移動体の測定の場合に、厳
密な意味での2点間の位置の測定はできなくなる問題が
あった。
Therefore, conventionally, each of the measuring optical systems A and B
An optical shutter is arranged in the optical path of the optical system, and the shutters that are alternately opened and closed switch the laser beam used for each measuring optical system with time, thereby preventing erroneous reception of the laser beam from the other measuring optical system. We are taking measures. However, in such a structure for preventing malfunction, the use of an expensive shutter for switching the laser beam at a high speed not only increases the manufacturing cost of the device, but also switches the laser beam over time, so that the measurement of the moving object is not possible. In the case of, there is a problem that the position between two points in a strict sense cannot be measured.

【0006】本発明の目的は、以上に述べたような従来
の光学式測定装置の問題に鑑み、複数の測定光学系を同
一平面内に位置して、被測定物の複数位置または直線の
長さを測定する光学式測定装置であって、高価な高速度
シャッタを用いなく共、測定光学系相互の誤動作を確実
に防止できる、比較的安価な構造の光学式測定装置を得
るにある。
In view of the above-mentioned problems of the conventional optical measuring apparatus, the object of the present invention is to arrange a plurality of measuring optical systems in the same plane and to set a plurality of positions or straight lines of an object to be measured. An object of the present invention is to provide an optical measuring device having a relatively inexpensive structure that can reliably prevent malfunctions of the measuring optical systems without using an expensive high-speed shutter.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明は、光源及び受光素子を有する複数の測定光
学系を同一平面内に位置して、被測定物の複数位置また
は直線の長さを測定する光学式測定装置において、前記
光源は異なった波長の測定光を出射できると共に、対応
する光源の測定光以外の波長の光を遮断するフィルタを
少なくとも一部の受光素子の直前に位置した光学式測定
装置を提案するものである。
In order to achieve the above object, the present invention provides a method for measuring a plurality of measurement optical systems having a light source and a light receiving element in the same plane, and a plurality of measurement optical systems having a plurality of positions or straight lines on an object to be measured. In the optical measuring device for measuring the height, the light source can emit measurement light of different wavelengths, and a filter for blocking light having a wavelength other than the measurement light of the corresponding light source is located immediately before at least some of the light receiving elements. The present invention proposes an optical measuring device.

【0008】後述する本発明の好ましい実施例の説明に
おいては、1)被測定物の一点に照準されるレーザビーム
を出射する光源及び同測定点からの反射レーザビームを
受光する前記受光素子をもつ前記第1測定光学系と、前
記レーザビームが含まれる平面内に略位置されかつ前記
測定点とは異なる前記被測定物の他の点に照準されるレ
ーザビームを出射する光源及び同レーザビームを受光す
る受光素子をもつ前記第2測定光学系とを備える2位置
測定装置、2)被測定物を挟んで対向されて測定用平行走
査ビームを出射するレーザ光源及び受光素子を含んだ第
1測定光学系と、前記被測定物を挟んだ状態で同第1測
定光学系と略同一の平面内におかれて前記レーザ光源と
は別の波長の測定用平行走査ビームを出射するレーザ光
源及びこれを受光する受光素子とを含んだ第2測定光学
系とを備える長さ測定装置が説明される。
In the following description of a preferred embodiment of the present invention, 1) a light source for emitting a laser beam aimed at one point of an object to be measured and the light receiving element for receiving a reflected laser beam from the same measurement point are provided. The first measurement optical system, a light source that emits a laser beam that is positioned substantially in a plane including the laser beam and is aimed at another point of the object to be measured that is different from the measurement point, and the same laser beam. A two-position measuring device including the second measuring optical system having a light receiving element for receiving light; 2) a first measurement including a laser light source which emits a parallel scanning beam for measurement and is opposed to the object to be measured, and a light receiving element An optical system, a laser light source for emitting a parallel scanning beam for measurement having a wavelength different from that of the laser light source, the laser light source being located in substantially the same plane as the first measurement optical system with the object to be measured interposed therebetween; Receive And a second measuring optical system including a light receiving element.

【0009】[0009]

【発明の実施の形態】以下、図1及び図2について本発
明の実施例の詳細を説明する。図1は図3について前述
した集積回路素子のリードフレームの厚み測定を行う2
位置測定装置に施した第1実施例を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 illustrates the measurement of the thickness of the lead frame of the integrated circuit device described with reference to FIG.
1 shows a first embodiment applied to a position measuring device.

【0010】即ち、この2位置測定装置は、異なった被
測定物の位置を検出する2つの測定光学系RS1 ,RS
2 を備えている。つまり、リードフレームW1 の表面の
位置を検出する第1測定光学系RS1 は、第1レーザ光
源1aからのレーザビームを被測定物であるリードフレ
ームW1 の表面に照準する第1集光レンズ2aと、同表
面からの反射ビームを第1受光素子3aの受光面に入射
させる第1受光部レンズ4aとを備えている。また、リ
ードフレームW1 の裏面の位置を検出する第2測定光学
系RS2 は、前記第1レーザ光源1aとは異なった第2
レーザ光源5aからのレーザビームを前記リードフレー
ムW1 の裏面に照準する第2集光レンズ6aと、同裏面
からの反射ビームを第2受光素子7aの受光面に入射さ
せる第2受光部レンズ8aとを備えており、これらの第
1測定光学系RS1 及び第2測定光学系RS2 は略同じ
平面内に位置されている。
That is, the two-position measuring device includes two measuring optical systems RS 1 and RS for detecting the positions of different objects to be measured.
It has two . That is, the first measuring optical system RS 1 for detecting the position of the surface of the lead frame W 1 is first focus for aiming the laser beam from the first laser light source 1a on the surface of the lead frame W 1, which is the object to be measured The lens includes a lens 2a and a first light receiving unit lens 4a for making a reflected beam from the surface incident on the light receiving surface of the first light receiving element 3a. The lead frame W second measuring optical system RS 2 for detecting the position of the rear surface of the 1, second that is different from the first laser source 1a
A second condenser lens 6a for aiming the laser beam from the laser light source 5a to the rear surface of the lead frame W 1, the second light receiving portion lens 8a for entering the reflected beam from the back surface to the light receiving surface of the second light receiving element 7a includes bets, these first measuring optical system RS 1 and the second measuring optical system RS 2 is positioned substantially in the same plane.

【0011】第1実施例の場合、第1レーザ光源1aは
例えば670nmの波長のレーザを、また、第2レーザ光
源5aはこの第1レーザ光源1aとは異なった780nm
の波長のレーザ光をそれぞれ出射できるが、第1受光素
子3aの直前には670nm以外の波長のレーザ光をカッ
トできる第1フィルタ9aが配置される。また、同様の
目的から第2受光素子7aの直前には780nmの波長の
レーザ光をカットできる第2フィルタ10aが位置さ
れ、この第2フィルタ10aによって第1レーザ光源1
aからの過ったレーザ光の第2受光素子7aへの入射が
防止される。
In the case of the first embodiment, the first laser light source 1a is, for example, a laser having a wavelength of 670 nm, and the second laser light source 5a is 780 nm, which is different from the first laser light source 1a.
A first filter 9a capable of cutting laser light having a wavelength other than 670 nm is disposed immediately before the first light receiving element 3a. In addition, for the same purpose, a second filter 10a capable of cutting laser light having a wavelength of 780 nm is located immediately before the second light receiving element 7a.
Excess laser light from a is prevented from entering the second light receiving element 7a.

【0012】第1実施例によるリードフレームW1 の厚
み測定装置は、以上のような構成であるから、第1測定
光学系RS1 の第1受光素子3a及び第2測定光学系R
2の第2受光素子7aへのレーザビームの入射によっ
てリードフレームW1 の表面及び裏面の位置が所謂ナイ
フエッジ法に基づき算定され、この算定結果からリード
フレームW1 の厚みが算出される。この測定の場合、第
1レーザ光源1a及び第2レーザ光源5aの射出レーザ
ビームの波長が相互に異ならせてあり、第1受光素子3
a及び第2受光素子7aの直前には第1フィルタ9a及
び第2フィルタ10aがそれぞれ配置してあるため、乱
反射または乱屈折した他方の測定光学系RS1 ,RS2
のレーザ光の第1受光素子3aまたは第2受光素子7a
への入射により誤動作が生じるのを防止できる。
The apparatus for measuring the thickness of the lead frame W 1 according to the first embodiment has the above-described configuration. Therefore, the first light receiving element 3a of the first measuring optical system RS 1 and the second measuring optical system R
Laser beam surface and the back surface of the position of the lead frame W 1 by the incidence of to the second light receiving element 7a of S 2 is calculated based on the so-called knife-edge method, the thickness of the lead frame W 1 is calculated from the calculation results. In the case of this measurement, the wavelengths of the emission laser beams of the first laser light source 1a and the second laser light source 5a are different from each other.
Since the first filter 9a and the second filter 10a are respectively arranged immediately before a and the second light receiving element 7a, the other measurement optical systems RS 1 and RS 2 that have undergone diffuse reflection or diffuse refraction.
First light receiving element 3a or second light receiving element 7a
A malfunction can be prevented from being caused by the incident light.

【0013】図2は本発明の第2実施例による線径測定
装置を示し、この線径測定装置においては通過される電
線W2 に対して直角な同一平面内で直交される一対の平
行走査ビームが用いられる。即ち、第1測定光学系RS
1 は図示を省略するコリメータレンズを内蔵する第1レ
ーザ光源及び同電線W2 を挟んで第1レーザ光源1bに
対向された第1受光素子3bを備え、前記電線W2 を周
囲を通過した平行走査ビームを収束させる第1集光レン
ズ11aを介して前記第1受光素子3bにレーザ光が入
射される。前記第1レーザ光源1bとは異なった波長の
レーザ発光素子及びコリメータレンズを内蔵する第2測
定光学系RS2 の第2レーザ光源5bは、前記電線W2
を挟んだ状態で、前記第1測定光学系RS1 の光軸に直
角な方向に対向される第2受光素子7bに対向される
が、前記第1受光素子3bと同様に、同第2受光素子7
bに対しては電線W2 の周囲を通過した平行走査ビーム
が第2集光レンズ12aを介して入射される。
[0013] Figure 2 shows a wire diameter measuring device according to a second embodiment of the present invention, a pair of parallel scans are orthogonal in the orthogonal flush against the wire W 2 being passed in this diameter measuring device A beam is used. That is, the first measuring optical system RS
1 comprises a first light receiving element 3b which is opposed to the first laser light source 1b sandwiching the first laser light source and the wire W 2 having a built-in collimator lens not shown, parallel to the electric wire W 2 passes around Laser light is incident on the first light receiving element 3b via the first condenser lens 11a for converging the scanning beam. The second second laser source 5b of the measuring optical system RS 2 having a built-in laser light emitting element and a collimator lens different wavelength from the first laser light source 1b, the wire W 2
While sandwiching, the first second, but is opposed to the light receiving element 7b, which is opposite to a direction perpendicular to the optical axis of the measuring optical system RS 1, similarly to the first light receiving element 3b, the second receiving Element 7
For b the parallel scanning beam passing through the periphery of the wire W 2 are incident through the second condenser lens 12a.

【0014】第2実施例による線径測定装置の場合、前
記第1受光素子3b及び前記第2受光素子7bの直前に
は、第1レーザ光源1bからの波長のレーザ光のみを第
1受光素子3bに入射させる第1フィルタ9b、及び、
第2レーザ光源5bからの波長のレーザ光のみを第2受
光素子7bに入射させる第2フィルタ10bが位置され
ている。
In the case of the wire diameter measuring apparatus according to the second embodiment, just before the first light receiving element 3b and the second light receiving element 7b, only the laser light of the wavelength from the first laser light source 1b is used as the first light receiving element. A first filter 9b for incidence on 3b, and
A second filter 10b that allows only the laser light of the wavelength from the second laser light source 5b to enter the second light receiving element 7b is located.

【0015】したがって、第2実施例による線径測定装
置においては、第1受光素子3b及び第2受光素子7b
の受光量により電線W2 の互いに直角な方向の直径を知
ることができるから、両第1受光素子3b及び第2受光
素子7bの出力信号の分析により電線W2 の外径を測定
できる。
Therefore, in the wire diameter measuring device according to the second embodiment, the first light receiving element 3b and the second light receiving element 7b
Since it is possible to know the mutually perpendicular diameters of the wire W 2 by the light receiving amount, it can measure the outer diameter of the wire W 2 Analysis of the output signals of both the first light receiving element 3b and the second light receiving element 7b.

【0016】なお、前述した本発明の各実施例において
は、同一平面内に複数の測定光学系を位置した測定装置
につき例示したけれども、例えば溝の深さを測定する段
差測定装置等のように、非常に近接した異なった平面内
に複数の測定光学系を配置する装置にも、本発明を適用
できるのは、改めて指摘するまでもない。
In each of the above-described embodiments of the present invention, a measuring apparatus in which a plurality of measuring optical systems are located on the same plane is exemplified. However, for example, a step measuring apparatus for measuring the depth of a groove, etc. It goes without saying that the present invention can be applied to an apparatus in which a plurality of measurement optical systems are arranged in different planes very close to each other.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば、複数の測定光学系の光源の出射波長を異なら
せると共に、各測定光学系の受光素子の少なくとも一部
の直前に、フィルタを位置するだけの安価な構造により
複数の測定光学系の混信による測定ミスをなくすことが
できる。
As is apparent from the above description, according to the present invention, the emission wavelengths of the light sources of the plurality of measurement optical systems are made different, and at least a part of the light receiving element of each measurement optical system is provided immediately before the light-receiving element. With an inexpensive structure in which only the filter is located, measurement errors due to interference of a plurality of measurement optical systems can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例によるリードフレームの厚
み測定装置の光学系の概念図である。
FIG. 1 is a conceptual diagram of an optical system of a lead frame thickness measuring device according to a first embodiment of the present invention.

【図2】本発明の第2実施例による線径測定装置の光学
系の概念図である。
FIG. 2 is a conceptual diagram of an optical system of a wire diameter measuring device according to a second embodiment of the present invention.

【図3】従来のリードフレームの厚み測定装置の光学系
の概念図である。
FIG. 3 is a conceptual diagram of an optical system of a conventional lead frame thickness measuring device.

【符号の説明】[Explanation of symbols]

1 リードフレーム W2 電線 RS1 ,RS2 測定光学系 1a〜1c 第1第1レーザ光源 3a〜3c 第1受光素子 7a〜7c 第2受光素子 9a〜9c 第1フィルタ 10a〜10c 第2フィルタW 1 leadframe W 2 wire RS 1, RS 2 measuring optical system 1a~1c first first laser light source 3a~3c first light receiving element 7a~7c second light receiving element 9a~9c first filter 10a~10c second filter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源及び受光素子を有する複数の測定光
学系を同一平面内に位置して、被測定物の複数位置また
は直線の長さを測定する光学式測定装置において、前記
光源は異なった波長の測定光を出射できると共に、対応
する光源の測定光以外の波長の光を遮断するフィルタを
少なくとも一部の受光素子の直前に位置したことを特徴
とする光学式測定装置。
1. An optical measuring device for measuring a plurality of positions or a straight line length of an object to be measured by locating a plurality of measuring optical systems having a light source and a light receiving element in the same plane, wherein the light sources are different. An optical measuring device, wherein a filter capable of emitting measurement light of a wavelength and blocking light of a wavelength other than the measurement light of the corresponding light source is located immediately before at least some of the light receiving elements.
【請求項2】 被測定物の一点に照準されるレーザビー
ムを出射する光源及び同測定点からの反射レーザビーム
を受光する前記受光素子をもつ第1測定光学系と、前記
レーザビームが含まれる平面内に略位置されかつ前記測
定点とは異なる前記被測定物の他の点に照準されるレー
ザビームを出射する光源及び同レーザビームを受光する
受光素子をもつ第2測定光学系とを備えることを特徴と
する請求項1記載の2位置測定装置。
2. A first measuring optical system having a light source for emitting a laser beam aimed at one point of an object to be measured and the light receiving element for receiving a reflected laser beam from the same measuring point, and the laser beam is included. A second measurement optical system having a light source that emits a laser beam that is positioned substantially in a plane and is aimed at another point of the object to be measured that is different from the measurement point, and a light receiving element that receives the laser beam; The two-position measuring device according to claim 1, wherein:
【請求項3】 被測定物を挟んで対向されて測定用平行
走査ビームを出射するレーザ光源及び受光素子を含んだ
前記第1測定光学系と、前記被測定物を挟んだ状態で同
第1測定光学系と略同一の平面内におかれて前記レーザ
光源とは別の波長の測定用平行走査ビームを出射するレ
ーザ光源及びこれを受光する受光素子とを含んだ前記第
2測定光学系とを備えることを特徴とする請求項1記載
の長さ測定装置。
3. The first measuring optical system including a laser light source and a light receiving element which emits a parallel scanning beam for measurement opposed to each other with an object to be measured interposed therebetween, and the first measurement optical system including the light receiving element with the first object being interposed therebetween. The second measurement optical system including a laser light source that emits a parallel scanning beam for measurement having a wavelength different from that of the laser light source and that is located in substantially the same plane as the measurement optical system, and a light receiving element that receives the laser light source; The length measuring device according to claim 1, further comprising:
JP1633398A 1998-01-12 1998-01-12 Optical measuring device Pending JPH11201729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1633398A JPH11201729A (en) 1998-01-12 1998-01-12 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1633398A JPH11201729A (en) 1998-01-12 1998-01-12 Optical measuring device

Publications (1)

Publication Number Publication Date
JPH11201729A true JPH11201729A (en) 1999-07-30

Family

ID=11913518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1633398A Pending JPH11201729A (en) 1998-01-12 1998-01-12 Optical measuring device

Country Status (1)

Country Link
JP (1) JPH11201729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507089A (en) * 2006-10-18 2010-03-04 バルティオン テクニリーネン トゥトキムスケスクス Determination of surface and thickness
JP2011106896A (en) * 2009-11-16 2011-06-02 Mitsutoyo Corp Non-contact probe and measuring machine
JP2017173148A (en) * 2016-03-24 2017-09-28 住友電気工業株式会社 Optical fiber inspection apparatus and optical fiber manufacturing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507089A (en) * 2006-10-18 2010-03-04 バルティオン テクニリーネン トゥトキムスケスクス Determination of surface and thickness
JP2011106896A (en) * 2009-11-16 2011-06-02 Mitsutoyo Corp Non-contact probe and measuring machine
US8704154B2 (en) 2009-11-16 2014-04-22 Mitutoyo Corporation Non-contact probe with an optical filter and measuring machine including the same
JP2017173148A (en) * 2016-03-24 2017-09-28 住友電気工業株式会社 Optical fiber inspection apparatus and optical fiber manufacturing apparatus
WO2017164402A1 (en) * 2016-03-24 2017-09-28 住友電気工業株式会社 Optical fiber testing device, optical fiber manufacturing device, optical fiber testing method, and optical fiber manufacturing method
CN108885182A (en) * 2016-03-24 2018-11-23 住友电气工业株式会社 The manufacturing method of optical fiber inspection device, fiber fabrication apparatus, the inspection method of optical fiber and optical fiber
US10551307B2 (en) 2016-03-24 2020-02-04 Sumitomo Electric Industries, Ltd. Optical fiber inspecting device, optical fiber manufacturing apparatus, method for inspecting optical fiber, and method for manufacturing optical fiber
US11022549B2 (en) 2016-03-24 2021-06-01 Sumitomo Electric Industries, Ltd. Optical fiber inspecting device, optical fiber manufacturing apparatus, method for inspecting optical fiber, and method for manufacturing optical fiber

Similar Documents

Publication Publication Date Title
JP5856173B2 (en) Smoke detection circuit, smoke detector comprising this smoke detection circuit, and alarm device comprising both this circuit and the detector
US7342662B2 (en) Sample analyzer
US11946873B2 (en) Detection device for detecting contamination
JPH11326515A (en) Light wave distance measuring apparatus
US4522497A (en) Web scanning apparatus
JPH11295233A (en) Particle inspection apparatus
US5416869A (en) Semiconductor laser/optical fiber coupling device
JPH02500696A (en) Code element identification device and identification code means
JP2018151278A (en) Measurement device
JPH11201729A (en) Optical measuring device
US7081957B2 (en) Aperture to reduce sensitivity to sample tilt in small spotsize reflectometers
JPS5925594B2 (en) Tobacco tip filling degree inspection device
US7443518B2 (en) Measuring instrument, in particular for transmission measurement in vacuum system
JP3358121B2 (en) Photoelectric dust sensor
JP4060483B2 (en) Radiation detector
KR100671729B1 (en) Missing die detection
FR2666163A1 (en) Opto-electronic device for detecting smoke or gas in suspension in air
JP4426130B2 (en) Transmission type photoelectric sensor
JP2001272272A (en) Monitor for light
JP4147130B2 (en) Photoelectric switch for wide range detection
JP3256383B2 (en) Surface inspection equipment
JP3297968B2 (en) Limited reflection type photoelectric sensor
JP3189378B2 (en) Device for detecting bubbles in optical fiber resin coating and method for detecting bubbles in optical fiber resin coating
JPH0520237U (en) Optical fiber type photoelectric switch
JP2004198244A (en) Transmissivity measuring instrument and absolute reflectivity measuring instrument