JP2005079063A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2005079063A
JP2005079063A JP2003311840A JP2003311840A JP2005079063A JP 2005079063 A JP2005079063 A JP 2005079063A JP 2003311840 A JP2003311840 A JP 2003311840A JP 2003311840 A JP2003311840 A JP 2003311840A JP 2005079063 A JP2005079063 A JP 2005079063A
Authority
JP
Japan
Prior art keywords
gas
gas flow
diffusion layer
fuel cell
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003311840A
Other languages
English (en)
Inventor
Atsushi Aoki
敦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003311840A priority Critical patent/JP2005079063A/ja
Publication of JP2005079063A publication Critical patent/JP2005079063A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】生成水の凝縮によって燃料電池の熱効率や出力密度が低下するのを抑制する。
【解決手段】アノード側セパレータ4aに形成されるアノードガス流路8、11と、カソード側セパレータ4bに形成される上流側カソードガス流路16及び下流側カソードガス流路19と、上流側カソードガス流路16と下流側カソードガス流路19の間に形成され、ガス拡散層3に接触して上流側カソードガス流路16と下流側カソードガス流路19との連通を遮断するリブ部20とを備える。そして、アノードガス流路8、11が電解質膜1、触媒層2及びガス拡散層3を挟んでリブ部20の反対側に配置される。これにより、ガス流路間の水の移動が促進されて燃料電池内での水分分布を均一にし、生成水がガス流路に滞留することによる燃料電池の効率、出力密度の低下を防止できる。
【選択図】 図1

Description

本発明は燃料電池に関し、特に、そのガス流路の構成に関する。
水素と酸素の電気化学反応から電気エネルギーを取り出す燃料電池は、排出物が無害な水だけであることと高効率であることから将来の自動車用の動力源としても注目されているが、自動車に適用する場合には、車内の限られた空間に搭載する必要があることから、高効率とともに高出力密度であることが要求される。
特許文献1に記載される燃料電池では、ガス拡散層の上にセパレータを配置し、ガス供給口に連通し櫛状に分岐する入口側ガス流路と、ガス排出口に連通し同じく櫛状に分岐する出口側ガス流路を、入口側の分岐路が出口側の分岐路の間に挟まれるようかつ互いに連通しないようにセパレータに形成している。このような流路構成とすることで、ガス供給口から入口側ガス流路に流入したガスがすべてガス拡散層内を通過してから出口側ガス流路、ガス排出口へと流れるようにし、ガス拡散層でのガス交換と凝縮した生成水のガス拡散層からの排出を促進させ、燃料電池の出力を向上させている。
特開平11−16591号
しかしながら、上記従来技術の流路構成では、ガス流路の総断面積が大きいため、ガス流路内のガスの流速が低く、凝縮した生成水がガス拡散層やガス流路内に滞留しやすくなっている。このため、ガス流量が少ない運転領域では、ガス拡散層やガス流路内に滞留した生成水によりガスの流れが阻害され、熱効率や出力密度が低下してしまうという問題があった。
本発明は、かかる技術的課題を鑑みてなされたものであり、ガス拡散層やガス流路内に滞留した生成水によって熱効率や出力密度が低下するのを抑制することを目的とする。
本発明に係る燃料電池では、第1のセパレータに形成され、第1ガスの供給口あるいは第1ガスの排出口に連通する第1ガス流路と、第2のセパレータに形成され、第2ガスの供給口に連通する上流側第2ガス用流路と、第2のセパレータに形成され、第2ガスの排出口に連通する下流側第2ガス用流路と、上流側第2ガス用流路と下流側第2ガス用流路の間に形成され、ガス拡散層に接触して上流側第2ガス用流路と下流側第2ガス用流路との連通を遮断するリブ部と、を備える。そして、第1ガス用流路が電解質膜、触媒層及びガス拡散層を挟んでリブ部の反対側に配置される。
上流側第2ガス流路に流入した第2ガスは、ガス拡散層のうちリブ部に接する部分を通って下流側第2ガス流路へと流れる。これにより、ガス拡散層内のガスが強制的に排出されてガス拡散層内のガス交換が促進されるとともに、ガス拡散層内の水を強制的に下流側第2ガス流路へと排出させることができる。
さらに、電解質膜、触媒層及びガス拡散層を挟んでリブ部の反対側に第1ガス流路が配置されているので、電解質膜、触媒層及びガス拡散層を介しての第1ガス流路、第2ガス流路間の水の移動が促進されて燃料電池内での水分分布を均一にし、生成水がガス拡散層、ガス流路に滞留することによる燃料電池の効率、出力密度の低下を防止できる。
以下、添付図面を参照しながら本発明の実施の形態について説明する。
図1は本発明に係る燃料電池の単位セルの断面を示しており、燃料電池はこの単位セルを積層して構成される。図2は図1の丸Aで囲んだ部分を拡大したものである。
電解質膜1の両側には薄い触媒層2が配設されており、その両側をガス拡散層3で挟んでいる。さらに、ガス拡散層3の外側をアノード側セパレータ4a、カソード側セパレータ4bで挟んでいる。アノード側セパレータ4aに形成されたガス流路8、11にアノードガス(水素、第1ガス)を供給し、カソード側セパレータ4bに形成された流路16、19にカソードガス(酸素、第2ガス)を供給すると、アノードガス、カソードガスがガス拡散層3内へと流入し、触媒層2で起こる以下の電気化学反応により発電が行なわれる。
アノード反応:H2→2H++2e-
カソード反応:1/2O2+2H++2e-→H2
反応式からも明らかなように、カソード側では反応により水が生成される。
図3はアノード側セパレータ4aをガス拡散層側から見たものである。アノード側セパレータ4aのガス拡散層側の面にはアノードガスを流すための複数の流路8、11が形成されており、各流路はガス拡散層側が開口した凹状の溝として構成される。
アノード側セパレータ4aにはアノードガスを供給するアノードガス供給口6が開口している。これに上流側マニホールド7が接続し、上流側マニホールド7に複数のガス流路(上流側ガス流路)8が接続している。また、アノード側セパレータ4aには発電に使用されたアノードガスを排出するアノードガス排出口9が開口しており、これに下流側マニホールド10が接続し、下流側マニホールド10に複数のガス流路(下流側ガス流路)11が接続している。なお、図ではマニホールド7、10に接続するガス流路8、11はそれぞれ3本づつ形成されているが、ガス流路8、11の数は必要に応じて増減される。
上流側ガス流路8と下流側ガス流路11は交互に配置され、上流側ガス流路8を2つの下流側ガス流路11で、あるいは下流側ガス流路11を2つの上流側ガス流路8で挟む構成となっている。上流側ガス流路8と下流側ガス流路11の間にはリブ部12が形成され、リブ部12はガス拡散層3に接触して上流側ガス流路8と下流側ガス流路11の連通を遮断する。
図4はカソード側セパレータ4bをガス拡散層3から見たものである。カソード側セパレータ4bにも、アノード側セパレータ4aと同様に、カソードガスを供給するカソードガス供給口14、カソードガス供給口14に接続する上流側マニホールド15、上流側マニホールドに接続する複数の上流側ガス流路16、発電に使用されたカソードガスを排出するカソードガス排出口17、カソードガス排出口17に連通する下流側マニホールド18、下流側マニホールド18に接続する複数の下流側ガス流路19、上流側ガス流路16と下流側ガス流路19の間に形成されるとともにガス拡散層3に接触し、上流側ガス流路16、下流側ガス流路19の連通を遮断するリブ部20が形成されている。
このような流路構成により、アノードガス供給口6から供給されたアノードガスは、上流側マニホールド7を経て上流側ガス流路8に流入し、リブ部12に接触するガス拡散層3内を通って下流側ガス流路11に流入し、下流側マニホールド10を経てカソードガス排出口9から排出される。同様に、カソードガス供給口14から供給されたカソードガスは、上流側マニホールド15を経て上流側ガス流路16に流入し、リブ部20に接触するガス拡散層3内を通って下流側ガス流路19に流入し、下流側マニホールド18を経てカソードガス排出口17から排出される。アノードガス、カソードガスが全てガス拡散層3を通ってから排出されるので、ガス拡散層3内のガスが強制的に排出されてガス交換が促進され、カソード側のガス拡散層3では生成水の排出が促進される。
このような構成のもと、本発明に係る燃料電池では、図1に示すように、アノード側セパレータ4aに形成されたガス流路8、11が電解質膜1、触媒層2及びガス拡散層3を挟んでカソード側セパレータ4bに形成されたリブ部20の反対側に位置するように、また、カソード側セパレータ4bに形成されたガス流路16、19が電解質膜1、触媒層2及びガス拡散層3を挟んでアノード側セパレータ4aに形成されたリブ部12の反対側に位置するように構成される。
図5は燃料電池内でのガスの流れを示し、図中中実の矢印はカソードガスの流れを示している。
上流側ガス流路16に流入したカソードガスはリブ部20に隣接するガス拡散層3を通って下流側ガス流路19に流入するが、このとき電気反応により水が生成する。この生成水が多くなってガス拡散層3や下流側ガス流路19に滞留するようになると、ガスの流れを阻害し(フラッディング)、熱効率や出力密度を低下させる原因となる。
しかしながら、本発明に係る燃料電池では、電解質膜1、触媒層2及びガス拡散層3を挟んでリブ部20の反対側にアノード側のガス流路8、11が配置されていて、しかも、アノードガスの水分濃度はカソードガスよりも低いので、カソード側で生成し凝縮した水が図中白抜きの矢印で示すように電解質膜1、触媒層2及びガス拡散層3を介してアノード側のガス流路8、11へと移動する。これにより、カソード側で生成した水を下流側ガス流路19だけでなくアノード側のガス流路8、11にも排出することが可能となり、生成水がガス拡散層3や下流側ガス流路11に滞留することによる燃料電池の熱効率、出力密度の低下(フラッディング)を抑えることができる。
さらに、上流側ガス流路8に流入したアノードガスはリブ部12に隣接するガス拡散層3を通って下流側ガス流路11に流入するが(図中破線)、電解質膜1、触媒層2及びガス拡散層3を挟んでリブ部12の反対側にカソード側のガス流路16、19が配置されていて、しかも、アノードガスの水分濃度が低いことから、ガス拡散層3を通過する際にカソード側流路19で生成された水が吸収される。この作用によっても、カソード側で生成水が多くなるのを防止し、フラッディングが発生するのを防止することができる。
なお、好適には、図1に示すように、ガス流路8、11、16、19の幅Wpをリブ部12、20の幅Wrの0.5倍以下とする。これにより、セパレータ4a、4b(リブ部12、20)と接触するガス拡散層3の面積が相対的に増加し、アノードガス、カソードガスが流れるガス拡散層3の領域、すなわち触媒層2との接触面積が増えることから、燃料電池の効率、出力密度を向上させることができる。ガス流路8、11、16、19の幅が相対的に減少することになるが、触媒層2での反応は主としてリブ部12、20に近いところで起こり、ガス流路8、11、16、19に近いところでの反応は少ないことから、ガス流路8、11、16、19の幅が相対的に減少することによる発電性能の低下はごく僅かである。
また、好適には、図6に示すように、単位セルをその積層方向から見た場合に、アノード側のガス流路8、11を流れるアノードガスの向きが、カソード側のガス流路16、19を流れるカソードガスの向きと逆になるようにする。図ではアノード側のガス流路8、11を実線で示すとともにカソード側のガス流路16、19を破線で示し、図中中実矢印はアノードガスの流れ、破線矢印はカソードガスの流れを示している。
上記の通り、カソード側では触媒層2での反応により水が生成するので、カソード側では下流に行くほどガス流路16、19を流れるカソードガス中の水分が多くなる。逆に、アノード側では上流側ほどガス流路8、11を流れるアノードガス中の水分が少なくなる傾向があるが、このように、アノードガスの向きとカソードガスの向きを逆にすれば、カソード側のガス流路16、19のうち水分が多い下流側からアノード側のガス流路8、11のうち水分の少ない上流側へと水分が移動するようになり、燃料電池内での水分分布を均一にして燃料電池の効率、出力密度を向上させることができる。
次に、本発明の第2の実施形態を図7を参照しながら説明する。
第2の実施形態では、触媒層2の両側に配置されるガス拡散層3のうち、アノード側に配置されるガス拡散層3の厚さD1をカソード側に配置されるガス拡散層3の厚さD2よりも薄くする。
これにより、アノード側のガス拡散層3内を流れるアノードガスの流速が増加し、カソード側で生成した水のアノード側への移動が促進されるので、第1の実施形態の作用効果に加え、生成水過多によるフラディングをより一層防止することができるという作用効果が得られる。
次に、本発明の第3の実施形態を図8を参照しながら説明する。
第3の実施形態では、アノード側のガス流路8、11の幅W1をカソード側ガス流路16、19の幅W2よりも狭くし、アノードガス側のガス流路8、11の断面積(ガスの流れに垂直な面で切った場合の断面積)をカソード側ガス流路6、19の断面積よりも小さくしている。
これにより、アノード側のガス流路8、11を流れるアノードガスの流速が増加し、これによってカソード側で生成した水のアノード側への移動が促進されるので、第1の実施形態の作用効果に加え、生成水過多によるフラディングをより一層防止することができる。なお、触媒層2での反応は主としてリブ部12に近いところで起こり、ガス流路8、11に近いところでの反応は少ないことから、ガス流路8、11の幅を減少させることによる燃料電池の発電性能の低下はごく僅かである。
また、ここではアノード側のガス流路8、11両方の幅をカソード側ガス流路16、19の幅W2よりも狭くしているが、いずれか一方の幅のみをカソード側ガス流路の幅W2よりも狭くしてもよい。アノード側のガス流路8、11を同じ幅にする必要もない。
さらに、ここでは流路の幅を変更することでアノードガス側のガス流路8、11の断面積をカソード側ガス流路6、19の断面積よりも小さくしているが、アノード側のガス流路8、11の高さ(溝の深さ)をカソード側ガス流路16、19よりも低くすることでアノードガス側のガス流路8、11の断面積をカソード側ガス流路16、19の断面積よりも小さくしてもよい。
次に、本発明の第4の実施形態について説明する。
上記実施形態ではガス拡散層3の外側にセパレータ4a、4bを配置しているが、ガス流路8、11、16、19が形成されている部分ではガス拡散層3はガス流路8、11、16、19に露出し、ガス拡散層3を支持するものがなにもない。したがって、ガス流路8、11、16、19の圧力が低下した場合には、ガス拡散層3がガス流路8、11、16、19内に向けて湾曲し、ガス流路8、11、16、19の有効流路断面積を変化させて流れるガスの抵抗を変化させる可能性がある。ガス拡散層3がガス流路8、11、16、19内に向けて湾曲する状態を想定せずにいると、ガスの抵抗が増大した場合に有効流路断面積が減少し、期待した発電性能が得られなくなる可能性がある。
そこで、第4の実施形態では、図9に示すように、リブ部12、20のガス拡散層3と接触する面を凸状に形成し、これによってガス拡散層3に若干の張力が作用するようにする。これにより、ガス流路8、11、16、19内の圧力が低下したとしてもガス拡散層がガス流路8、11、16、19に向けて湾曲するのが抑えられ、ガス抵抗が変化するのを抑えることができる。すなわち、第4の実施形態では、上記実施形態の作用効果に加え、安定した燃料電池の性能を確保することができるという作用効果がある。
なお、リブ部12、19のガス拡散層3と接触する面の形状は、図9に示される尾根状形状に限らず、台形状やなだらかな中高形状としてもよい。また、リブ部12、20の両方についてガス拡散層3と接触する面を凸状に形成する必要はなく、いずれか一方のみについてガス拡散層3と接触する面を凸状に形成するようにしても構わない。
以上、本発明の実施の形態について説明したが、上記実施形態は本発明の適用可能な範囲を上記構成に限定する趣旨ではない。上記実施形態は可能な限り組み合わせて実施することも可能である。
本発明は、自動車用をはじめとして様々な用途の燃料電池に適用することができ、生成水の凝縮によって燃料電池の熱効率や出力密度が低下するのを抑制するのに有用である。
本発明に係る燃料電池の単位セルの断面図である。 図1の丸Aで囲んだ部分の拡大図である。 アノード側セパレータの平面図である。 カソード側セパレータの平面図である。 燃料電池内のガスの流れを示した図である。 アノード側ガス流路を流れるガスとカソード側ガス流路を流れるガスの流れの向きを示した図である。 本発明の第2の実施形態を示し、単位セルの断面図である。 本発明の第3の実施形態を示し、単位セルの断面図である。 本発明の第4の実施形態を示し、リブ部の拡大図である。
符号の説明
1 電解質膜
2 触媒層
3 ガス拡散層
4a アノード側セパレータ
4b カソード側セパレータ
6 アノードガス供給口
8 アノード側の上流側ガス流路(第1ガス流路)
9 アノードガス排出口
11 アノード側の下流側ガス流路(第1ガス流路)
12 リブ部
14 カソードガス供給口
16 カソード側の上流側ガス流路(上流側第2ガス流路)
17 カソードガス排出口
19 カソード側の下流側ガス流路(下流側第2ガス流路)
20 リブ部

Claims (7)

  1. 電解質膜の両側に触媒層を配し、前記触媒層の外側にそれぞれガス拡散層を配し、前記ガス拡散層の外側に第1及び第2のセパレータを配した燃料電池において、
    前記第1のセパレータに形成され、第1ガスの供給口あるいは第1ガスの排出口に連通する第1ガス流路と、
    前記第2のセパレータに形成され、第2ガスの供給口に連通する上流側第2ガス用流路と、
    前記第2のセパレータに形成され、第2ガスの排出口に連通する下流側第2ガス用流路と、
    前記上流側第2ガス用流路と前記下流側第2ガス用流路の間に形成され、前記ガス拡散層に接触して前記上流側第2ガス用流路と前記下流側第2ガス用流路との連通を遮断するリブ部と、
    を備え、
    前記第1ガス用流路が前記電解質膜、触媒層及びガス拡散層を挟んで前記リブ部の反対側に配置されることを特徴とする燃料電池。
  2. 前記第1ガスがアノードガス、前記第2ガスがカソードガスであることを特徴とする請求項1に記載の燃料電池。
  3. 前記第1ガス用流路の幅が前記リブ部の幅の0.5倍以下であることを特徴とする請求項1または2に記載の燃料電池。
  4. 前記電解質膜、触媒層、ガス拡散層及びセパレータの積層方向から見た場合、前記第1ガス用流路を流れる第1ガスの流れの向きが、前記上流側あるいは下流側第2ガス用流路を流れる第2ガスの流れの向きと反対になるように構成されることを特徴とする請求項1から3のいずれかひとつに記載の燃料電池。
  5. 前記第1ガスがアノードガス、前記第2ガスがカソードガスであり、
    前記第1のセパレータに接触するガス拡散層の厚さが前記第2のセパレータに接触するガス拡散層の厚さよりも薄いことを特徴とする請求項1から4のいずれかひとつに記載の燃料電池。
  6. 前記第1ガスがアノードガス、前記第2ガスがカソードガスであり、
    前記第1ガス用流路の断面積が前記上流側あるいは下流側第2ガス用流路の断面積よりも小さいことを特徴とする請求項1から5のいずれかひとつに記載の燃料電池。
  7. 前記ガス拡散層に接触する前記リブ部の面が凸形状になっていることを特徴とする請求項1から6のいずれかひとつに記載の燃料電池。
JP2003311840A 2003-09-03 2003-09-03 燃料電池 Pending JP2005079063A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311840A JP2005079063A (ja) 2003-09-03 2003-09-03 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311840A JP2005079063A (ja) 2003-09-03 2003-09-03 燃料電池

Publications (1)

Publication Number Publication Date
JP2005079063A true JP2005079063A (ja) 2005-03-24

Family

ID=34413296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311840A Pending JP2005079063A (ja) 2003-09-03 2003-09-03 燃料電池

Country Status (1)

Country Link
JP (1) JP2005079063A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324084A (ja) * 2005-05-18 2006-11-30 Hitachi Ltd 燃料電池
WO2010067453A1 (ja) * 2008-12-12 2010-06-17 トヨタ自動車株式会社 燃料電池
CN116096670A (zh) * 2020-09-25 2023-05-09 松下知识产权经营株式会社 电化学式氢泵用阳极隔板和电化学式氢泵

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324084A (ja) * 2005-05-18 2006-11-30 Hitachi Ltd 燃料電池
WO2010067453A1 (ja) * 2008-12-12 2010-06-17 トヨタ自動車株式会社 燃料電池
US8163432B2 (en) 2008-12-12 2012-04-24 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP5093249B2 (ja) * 2008-12-12 2012-12-12 トヨタ自動車株式会社 燃料電池
CN116096670A (zh) * 2020-09-25 2023-05-09 松下知识产权经营株式会社 电化学式氢泵用阳极隔板和电化学式氢泵

Similar Documents

Publication Publication Date Title
RU2262160C2 (ru) Блок топливных элементов на твердом полимерном электролите, батарея топливных элементов и способ эксплуатации блока топливных элементов
JP4753599B2 (ja) 燃料電池
JP5408263B2 (ja) 燃料電池
JP5768882B2 (ja) 燃料電池
JP2017041403A (ja) 燃料電池用ガス流路形成板及び燃料電池スタック
JP2005174648A (ja) 燃料電池
JP2006114387A (ja) 燃料電池
JP2010251068A (ja) 燃料電池スタック
JP2006236612A (ja) 燃料電池
JP5098212B2 (ja) 燃料電池
JP2006012466A (ja) 燃料電池
JP5301406B2 (ja) 燃料電池
JP5082313B2 (ja) 燃料電池のセパレータ構造
JP4228501B2 (ja) 固体高分子型燃料電池の集電板および固体高分子型燃料電池
JP6406170B2 (ja) 燃料電池用ガス流路形成板及び燃料電池スタック
JP2005085626A (ja) 燃料電池
JP5274908B2 (ja) 燃料電池スタック
JP2005079063A (ja) 燃料電池
JP2004158369A (ja) 燃料電池
JP2006221896A (ja) 燃料電池用セパレータ及び燃料電池
JP7192759B2 (ja) 燃料電池用セパレータ
JP2014192151A (ja) 燃料電池
JP2005050566A (ja) 燃料電池用セパレータ
JP5423699B2 (ja) ガス流路形成体および燃料電池セル
JP2006066172A (ja) 燃料電池