JP2005077980A - Manufacturing method of liquid crystal display - Google Patents

Manufacturing method of liquid crystal display Download PDF

Info

Publication number
JP2005077980A
JP2005077980A JP2003311200A JP2003311200A JP2005077980A JP 2005077980 A JP2005077980 A JP 2005077980A JP 2003311200 A JP2003311200 A JP 2003311200A JP 2003311200 A JP2003311200 A JP 2003311200A JP 2005077980 A JP2005077980 A JP 2005077980A
Authority
JP
Japan
Prior art keywords
conductive film
anisotropic conductive
liquid crystal
semiconductor element
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003311200A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueda
上田  宏
Hitoshi Morishita
均 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Display Inc
Original Assignee
Advanced Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Display Inc filed Critical Advanced Display Inc
Priority to JP2003311200A priority Critical patent/JP2005077980A/en
Publication of JP2005077980A publication Critical patent/JP2005077980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a liquid crystal display by which thermal damage in peripheral members is eliminated, infiltration of moisture into an anisotropic conductive film and corrosion of a panel electrode are prevented by efficiently curing the anisotropic conductive film on the periphery of a driving IC to be a semiconductor element and reduction of display quality can be prevented. <P>SOLUTION: In the manufacturing method of the liquid crystal display wherein the semiconductor element is thermocompression-bonded to a plurality of terminal electrodes for connection arranged at a terminal part of a transparent insulation substrate on which pixel electrodes for display are provided via the anisotropic conductive film, when the semiconductor element is thermocompression bonded by using a first heater tool, heating is performed by using a second heater tool from the surface opposite to the semiconductor element compressed surface of the transparent insulation substrate to cure the anisotropic conductive film on the periphery of the semiconductor element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は液晶表示装置の製法に関する。さらに詳しくは、2枚の透明絶縁基板のあいだに液晶が挟まれ、一方の基板上に駆動用ICを直接実装するCOG(chip on glass)実装方式の液晶表示装置の製法に関する。   The present invention relates to a method for manufacturing a liquid crystal display device. More specifically, the present invention relates to a manufacturing method of a COG (chip on glass) mounting type liquid crystal display device in which a liquid crystal is sandwiched between two transparent insulating substrates and a driving IC is directly mounted on one substrate.

液晶表示装置は、薄型、軽量および低消費電力の表示装置としてパソコン用モニターや、携帯端末、テレビなどに広く用いられている。この液晶表示装置は、2枚の透明絶縁性基板(ガラス基板)のあいだに液晶を挟んだものに駆動回路を接続したのち、照明装置の上に重ねて構成されている。たとえば薄膜トランジスタ(以下、単にTFTという)を用いた液晶表示装置では、マトリクス状にTFTが配列されたTFT基板とカラーフィルター(CF)基板の2枚のガラス基板のうち、TFT基板がCF基板よりも外形が張り出した形で互いに重ね合わされている。各TFTには1つずつ画素が形成されており、TFTをON/OFFすることにより画素に送られる画像信号を制御している。各TFTのソース電極から画像信号を入力するためのソース配線がガラス基板の短辺と平行に引き出され、TFT基板の長辺側の端部付近で駆動回路を接続するためのパッドが形成されている。また、各TFTのゲート電極からTFTをON/OFFするためのゲート配線がTFT基板長辺と平行に引き出され、TFT基板の短辺側の端部付近でソース側と同様に駆動回路を接続するためのパッドが形成されている。   Liquid crystal display devices are widely used as monitors for personal computers, portable terminals, televisions and the like as thin, lightweight, and low power consumption display devices. This liquid crystal display device is configured to overlap a lighting device after connecting a drive circuit to a liquid crystal sandwiched between two transparent insulating substrates (glass substrates). For example, in a liquid crystal display device using a thin film transistor (hereinafter simply referred to as a TFT), of two glass substrates, a TFT substrate in which TFTs are arranged in a matrix and a color filter (CF) substrate, the TFT substrate is more than the CF substrate. The outer shapes are stacked on top of each other. One pixel is formed in each TFT, and an image signal sent to the pixel is controlled by turning the TFT on / off. Source wiring for inputting an image signal from the source electrode of each TFT is drawn out in parallel with the short side of the glass substrate, and a pad for connecting a drive circuit is formed near the end on the long side of the TFT substrate. Yes. Also, a gate wiring for turning on / off the TFT is drawn out from the gate electrode of each TFT in parallel with the long side of the TFT substrate, and the drive circuit is connected in the vicinity of the end on the short side of the TFT substrate in the same manner as the source side. A pad is formed for the purpose.

図3〜4に基づいて、COG実装方式で駆動回路を実装する小型のTFT液晶表示装置の構成を説明する。TFT基板101とCF基板102とのあいだに液晶(図示せず)が挟まれている。このTFT基板101上には画素へ信号を供給するための配線(表示用画素電極)103が形成されており、パネル端部のTFT基板101が張り出した部分に配置されたパネル電極103aに異方性導電膜(ACF:Anisotropic Conductive Flilm)104と呼ばれる接着樹脂中に導電性の微細粒子を分散させたものを挟んで熱圧着することにより駆動IC105が直接実装される。異方性導電膜104は一般的にフィルム状の形態であり、パネル電極部にフィルム状の異方性導電膜を貼り付けたのち、駆動IC105をパネル電極103a上に位置決めし、該駆動IC105の上からヒーターツールを押し当てることにより接合している。駆動IC105を制御するための信号は、TFT基板101の駆動IC105周辺部に配置された配線103の端部にパネル電極103aを形成し、そのパネル電極103aに異方性導電膜104を介してフレキシブルプリント基板(FPC)106を接続することにより入力されている。駆動IC105とフレキシブルプリント基板106の接続部周辺は配線3のパネル電極103aの腐食防止のため、防湿樹脂107が塗布されている。なお、図3〜4において、108、109はTFT側偏光板およびCF側偏光板である。   A configuration of a small TFT liquid crystal display device in which a drive circuit is mounted by a COG mounting method will be described with reference to FIGS. A liquid crystal (not shown) is sandwiched between the TFT substrate 101 and the CF substrate 102. A wiring (display pixel electrode) 103 for supplying a signal to the pixel is formed on the TFT substrate 101, and is anisotropic to the panel electrode 103a disposed on the protruding portion of the TFT substrate 101 at the end of the panel. The driving IC 105 is directly mounted by sandwiching a conductive fine particle dispersed in an adhesive resin called an ACF (Anisotropic Conductive Flilm) 104 and thermocompression bonding. The anisotropic conductive film 104 is generally in the form of a film. After the film-like anisotropic conductive film is attached to the panel electrode portion, the drive IC 105 is positioned on the panel electrode 103a, and the drive IC 105 Joining by pressing the heater tool from above. A signal for controlling the driving IC 105 is formed by forming a panel electrode 103a at the end of the wiring 103 arranged around the driving IC 105 of the TFT substrate 101, and flexibly passing through the anisotropic conductive film 104 to the panel electrode 103a. Input is made by connecting a printed circuit board (FPC) 106. A moisture-proof resin 107 is applied to the periphery of the connection portion between the driving IC 105 and the flexible printed circuit board 106 in order to prevent corrosion of the panel electrode 103a of the wiring 3. 3 to 4, reference numerals 108 and 109 denote TFT side polarizing plates and CF side polarizing plates.

ところで異方性導電膜の樹脂として、一般的に熱硬化性のエポキシ樹脂が用いられており、この樹脂は塩素イオンなどの微量の不純物イオンを含んでいる。このエポキシ樹脂の中に水分が浸入すると電圧がかかった場合にパネル電極の材料と反応しパネル電極が電蝕される。また、異方性導電膜の樹脂は硬化反応率によって透湿度が大きく異なり、未硬化の樹脂は硬化した樹脂に比べると3〜10倍程度透湿度が高く、水分を通しやすい状態となっている。COGの実装工法は駆動ICの上からヒーターツールを押し当て、異方性導電膜の樹脂を硬化する方法が一般的であるが、この工法では駆動IC直下の異方性導電膜樹脂は硬化するが、駆動IC周辺の異方性導電膜は硬化されないため、駆動IC周辺部の異方性導電膜は水分を通しやすく、異方性導電膜中の不純物イオンが動きやすい状態となり、駆動IC周辺部でパネル電極の腐食が発生しやすい。この端子腐食を防止するため、従来より、駆動ICおよびフレキシブルプリント基板の接続部周辺には防湿樹脂が塗布されている。防湿樹脂にはシリコーン系樹脂、アクリル系樹脂、ウレタン系樹脂またはフッ素系樹脂などが用いられる。しかしながら、これらの防湿樹脂もある程度の水分を通すため、駆動IC周辺部の異方性導電膜に水分が浸入してしまい端子腐食の対策としては不充分である。また、パネル電極部に貼り付ける異方性導電膜の大きさをできるだけ小さくし、駆動ICの外形よりも外側に存在する異方性導電膜をできるだけ減らし、駆動ICを熱圧着する際に貼り付けられた異方性導電膜の全てを硬化させる試みも行なわれているが、異方性導電膜の外形精度および貼付け精度上、駆動ICよりもある程度大きい異方性導電膜を貼り付ける必要があるため、異方性導電膜の全体を硬化させることは困難であり、未硬化部分が残ってしまうという問題がある。   Incidentally, a thermosetting epoxy resin is generally used as the resin for the anisotropic conductive film, and this resin contains a small amount of impurity ions such as chlorine ions. When moisture enters the epoxy resin, it reacts with the material of the panel electrode when voltage is applied, and the panel electrode is eroded. In addition, the moisture permeability of the anisotropic conductive resin varies greatly depending on the curing reaction rate, and the uncured resin has a moisture permeability that is about 3 to 10 times higher than that of the cured resin, making it easy to pass moisture. . The COG mounting method is generally a method in which a heater tool is pressed over the drive IC to cure the resin of the anisotropic conductive film, but in this method, the anisotropic conductive resin directly under the drive IC is cured. However, since the anisotropic conductive film around the drive IC is not cured, the anisotropic conductive film around the drive IC easily passes moisture, and the impurity ions in the anisotropic conductive film easily move, and the periphery of the drive IC. The panel electrode is likely to corrode in the area. In order to prevent this terminal corrosion, conventionally, a moisture-proof resin is applied to the periphery of the connection portion of the drive IC and the flexible printed circuit board. As the moisture-proof resin, a silicone resin, an acrylic resin, a urethane resin, a fluorine resin, or the like is used. However, since these moisture-proof resins also pass a certain amount of moisture, moisture penetrates into the anisotropic conductive film in the periphery of the drive IC, which is insufficient as a countermeasure against terminal corrosion. In addition, the size of the anisotropic conductive film to be attached to the panel electrode part is made as small as possible, the anisotropic conductive film existing outside the outer shape of the drive IC is reduced as much as possible, and it is attached when the drive IC is thermocompression bonded. Although attempts have been made to cure all of the anisotropic conductive film, it is necessary to paste an anisotropic conductive film that is somewhat larger than the driving IC in terms of the outer shape accuracy and pasting accuracy of the anisotropic conductive film. Therefore, it is difficult to cure the entire anisotropic conductive film, and there is a problem that an uncured portion remains.

そこで、駆動ICを圧着したしたのち、パネル全体をエージング処理することにより異方性導電膜を硬化させる方法が提案されている(たとえば特許文献1参照)。しかしながら、耐熱性の制約のため、偏光板を貼った状態で処理ができず、液晶への熱ダメージがあるという問題がある。また、駆動IC直下の異方性導電膜が熱圧着時に到達する温度は170〜230℃程度であるのに対し、エージング処理では他部材の耐熱性の制約上150℃程度であるため、異方性導電膜の硬化反応率も低く、処理時間が長くなるという問題がある。   Therefore, a method has been proposed in which the anisotropic conductive film is hardened by aging the entire panel after the drive IC is pressure-bonded (see, for example, Patent Document 1). However, due to heat resistance limitations, there is a problem that the treatment cannot be performed with the polarizing plate attached, and there is a thermal damage to the liquid crystal. In addition, the temperature reached by the anisotropic conductive film directly under the driving IC at the time of thermocompression bonding is about 170 to 230 ° C., whereas the aging treatment is about 150 ° C. due to the heat resistance restriction of other members. There is a problem that the curing reaction rate of the conductive film is low and the processing time is long.

特開2003−161956号公報JP 2003-161956 A

本発明は、叙上の事情に鑑み、周辺部材への熱ダメージがなく、効率的に半導体素子である駆動IC周辺部の異方性導電膜を硬化させることにより、該異方性導電膜中への水分の浸入およびパネル電極の腐食を防止するとともに、表示品位の低下を防止することができる液晶表示装置の製法を提供することを目的とする。   In view of the above circumstances, the present invention has no thermal damage to peripheral members, and efficiently cures the anisotropic conductive film in the periphery of the drive IC that is a semiconductor element. An object of the present invention is to provide a method for producing a liquid crystal display device capable of preventing moisture from entering the panel and corroding panel electrodes and preventing deterioration in display quality.

本発明の液晶表示装置の製法は、表示用画素電極が設けられた透明絶縁性基板の端部に配列された複数の接続用端子電極に半導体素子を異方性導電膜を介して熱圧着する液晶表示装置の製法であって、前記半導体素子を第1ヒーターツールで熱圧着時するときに、前記透明絶縁性基板の半導体素子の圧着面とは反対側の面から第2ヒーターツールにより加熱を行ない、前記半導体素子の周辺部の異方性導電膜を硬化することを特徴としている。   According to the method for manufacturing a liquid crystal display device of the present invention, a semiconductor element is thermocompression bonded to a plurality of connection terminal electrodes arranged at an end of a transparent insulating substrate provided with a display pixel electrode through an anisotropic conductive film. A method of manufacturing a liquid crystal display device, wherein when the semiconductor element is subjected to thermocompression bonding with a first heater tool, heating is performed by a second heater tool from a surface opposite to the crimping surface of the semiconductor element of the transparent insulating substrate. The anisotropic conductive film in the peripheral portion of the semiconductor element is cured.

本発明によれば、駆動IC熱圧着時にパネル電極の設けられている基板の裏面から異方性導電膜を第2ヒーターツールにより加熱し、駆動ICの周辺部の異方性導電膜を硬化させることにより、該異方性導電膜中への水分の浸入およびパネル電極の腐食を防止するとともに、表示品位の低下を防止して、液晶表示装置の信頼性を向上させることができる。   According to the present invention, the anisotropic conductive film is heated by the second heater tool from the back surface of the substrate on which the panel electrode is provided during thermocompression bonding of the drive IC, and the anisotropic conductive film in the periphery of the drive IC is cured. As a result, it is possible to improve the reliability of the liquid crystal display device by preventing moisture permeation into the anisotropic conductive film and corrosion of the panel electrode, and preventing deterioration in display quality.

以下、添付図面に基づいて本発明の液晶表示装置の製法を説明する。
図1〜2は本発明の一実施の形態にかかわる液晶表示装置の製法を説明する図であって、図1はパネル電極列の正面側から見た図であり、図2はパネル電極列の側方から見た図である。
Hereinafter, a method for manufacturing a liquid crystal display device according to the present invention will be described with reference to the accompanying drawings.
1 and 2 are diagrams for explaining a method of manufacturing a liquid crystal display device according to an embodiment of the present invention. FIG. 1 is a diagram seen from the front side of a panel electrode array, and FIG. It is the figure seen from the side.

図1〜2に示されるように、透明絶縁性基板であるTFT基板1とカラーフィルター(CF)基板2とが重ね合わされ、両基板のあいだに液晶(図示せず)を封入して液晶パネルを作製する。該TFT基板1上には、配線(表示用画素電極)3が形成されている。また、該配線3の上には、異方性導電膜4が貼り付けられるとともに、半導体素子である駆動IC5が位置決めされている。そして、前記TFT基板1とCF基板2の重なった領域のやや内側には、TFT側偏光板6とCF側偏光板7が貼り付けられている。前記異方性導電膜4としては、たとえば熱硬化性のエポキシ樹脂を用いることができる。   As shown in FIGS. 1 and 2, a TFT substrate 1, which is a transparent insulating substrate, and a color filter (CF) substrate 2 are overlaid, and a liquid crystal panel (not shown) is sealed between the two substrates. Make it. A wiring (display pixel electrode) 3 is formed on the TFT substrate 1. An anisotropic conductive film 4 is attached on the wiring 3 and a driving IC 5 which is a semiconductor element is positioned. A TFT-side polarizing plate 6 and a CF-side polarizing plate 7 are pasted slightly inside the region where the TFT substrate 1 and the CF substrate 2 overlap. As the anisotropic conductive film 4, for example, a thermosetting epoxy resin can be used.

ついで前記TFT基板1の端部に配列された複数の接続用端子電極(パネル電極)3aに配置される駆動IC5の上から、第1ヒーターツールである駆動IC加熱加圧用ヒーターツール8を押し当てて、駆動IC5を加熱加圧する。また、熱圧着時にTFT基板1の張り出した部分の裏面側に配置されるTFT基板裏面加熱用第2ヒーターツール9を押し当てて、前記異方性導電膜4全体を高温に加熱する。この基板裏面側の第2ヒーターツール9は、前記配線3の端部に形成されるパネル電極3aに貼り付けられた異方性導電膜4の外形よりも広い面積のものを用いる。また、加熱する位置は、2枚の基板1、2に液晶が挟まれた領域よりも外側の基板1の領域(張り出した部分)であり、かつ、偏光板6が貼り付けられない領域である。   Next, the heater IC 8 for heating and pressurizing the driving IC, which is the first heater tool, is pressed onto the driving IC 5 arranged on the plurality of connection terminal electrodes (panel electrodes) 3a arranged at the end of the TFT substrate 1. Then, the driving IC 5 is heated and pressurized. Further, the second heater tool 9 for heating the TFT substrate back surface, which is disposed on the back surface side of the protruding portion of the TFT substrate 1 at the time of thermocompression bonding, is pressed to heat the entire anisotropic conductive film 4 to a high temperature. As the second heater tool 9 on the back side of the substrate, one having a larger area than the outer shape of the anisotropic conductive film 4 attached to the panel electrode 3 a formed at the end of the wiring 3 is used. Further, the heating position is a region (projected portion) of the substrate 1 outside the region where the liquid crystal is sandwiched between the two substrates 1 and 2, and is a region where the polarizing plate 6 is not attached. .

つぎに前記パネル電極3aに異方性導電膜5を介してフレキシブルプリント基板(図示せず)を接続する。   Next, a flexible printed circuit board (not shown) is connected to the panel electrode 3a through an anisotropic conductive film 5.

ついで前記駆動IC4とフレキシブルプリント基板の接続部周辺に前記配線3の端部のパネル電極3aの腐食防止のため、異方性導電膜4全体を覆うように防湿樹脂(図示せず)を塗布する。この防湿樹脂としては、たとえばシリコーン系樹脂、アクリル系樹脂、ウレタン系樹脂またはフッ素系樹脂などを用いることができる。   Next, a moisture-proof resin (not shown) is applied around the connection portion between the drive IC 4 and the flexible printed board so as to cover the entire anisotropic conductive film 4 in order to prevent corrosion of the panel electrode 3 a at the end of the wiring 3. . As the moisture-proof resin, for example, a silicone resin, an acrylic resin, a urethane resin, or a fluorine resin can be used.

本実施の形態では、駆動IC5を第1ヒーターツールで熱圧着するときに、第2ヒーターツール9の加熱により駆動IC5と重ならない異方性導電膜4の領域Lを該駆動IC5の直下の異方性導電膜4と同時に硬化させている。このTFT基板1の裏面側の第2ヒーターツール9は、TFT側偏光板6およびCF側偏光板7とは重ならない位置に配置されているので、パネル全体をエージングする場合に比べて偏光板6、7へ熱が伝わりにくく、該偏光板6、7へのダメージを防止することができる。また、前記駆動IC5の周辺部における異方性導電膜4の領域Lの硬化は該駆動IC5の本圧着と同時に行なわれるため、硬化処理工数が増加しない。   In the present embodiment, when the driving IC 5 is thermocompression bonded with the first heater tool, the region L of the anisotropic conductive film 4 that does not overlap with the driving IC 5 due to the heating of the second heater tool 9 is different from the region immediately below the driving IC 5. The isotropic conductive film 4 is cured at the same time. Since the second heater tool 9 on the back surface side of the TFT substrate 1 is disposed at a position that does not overlap the TFT side polarizing plate 6 and the CF side polarizing plate 7, the polarizing plate 6 is compared with the case where the entire panel is aged. , 7 is difficult to transmit heat, and damage to the polarizing plates 6, 7 can be prevented. Further, since the region L of the anisotropic conductive film 4 in the peripheral portion of the drive IC 5 is cured at the same time as the main compression bonding of the drive IC 5, the number of curing processing steps does not increase.

また、加熱は、液晶が封入されている領域から離れた距離であり、液晶へ熱ダメージを及ばさないため、表示品質に影響を与えない。そのため、駆動IC5の周辺部の異方性導電膜4を高温で加熱することが可能である。たとえば駆動IC5の周辺部の異方性導電膜4の温度は駆動IC直下と同程度の170〜200℃まで加熱することができる。これにより、駆動IC5の周辺部の異方性導電膜4は駆動IC直下と同程度まで硬化反応率を高めることができる。   Further, the heating is a distance away from the region in which the liquid crystal is sealed, and does not affect the liquid crystal, so that the display quality is not affected. Therefore, it is possible to heat the anisotropic conductive film 4 around the drive IC 5 at a high temperature. For example, the temperature of the anisotropic conductive film 4 in the periphery of the drive IC 5 can be heated to 170 to 200 ° C., which is about the same as that immediately below the drive IC. Thereby, the anisotropic conductive film 4 in the peripheral portion of the drive IC 5 can increase the curing reaction rate to the same extent as that directly below the drive IC.

また、第2ヒーターツール9の加熱により下地の異方性導電膜4が充分に硬化しており、未硬化の状態と比較して透湿度が非常に小さいため、たとえ防湿樹脂がある程度水分を透過するとしても、異方性導電膜中の不純物イオンによる腐食を防止することができる。   Further, since the underlying anisotropic conductive film 4 is sufficiently cured by the heating of the second heater tool 9 and the moisture permeability is very small as compared with the uncured state, even if the moisture-proof resin transmits moisture to some extent. Even then, corrosion by impurity ions in the anisotropic conductive film can be prevented.

本発明の一実施の形態にかかわる液晶表示装置の製法を説明する図である。It is a figure explaining the manufacturing method of the liquid crystal display device concerning one embodiment of this invention. 本発明の一実施の形態にかかわる液晶表示装置の製法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the liquid crystal display device concerning one embodiment of this invention. 従来の液晶表示装置の一例を示す側面図である。It is a side view which shows an example of the conventional liquid crystal display device. 図3の液晶表示装置の斜視図である。FIG. 4 is a perspective view of the liquid crystal display device of FIG. 3.

符号の説明Explanation of symbols

1 TFT基板
2 カラーフィルター(CF)基板
3 配線
4 異方性導電膜
5 駆動IC
6 TFT側偏光板
7 CF側偏光板
8 駆動IC加熱加圧用ヒーターツール
9 TFT基板裏面加熱用第2ヒーターツール
1 TFT substrate 2 Color filter (CF) substrate 3 Wiring 4 Anisotropic conductive film 5 Drive IC
6 TFT side polarizing plate 7 CF side polarizing plate 8 Heater tool for driving IC heating and pressurization 9 Second heater tool for heating the back surface of the TFT substrate

Claims (1)

表示用画素電極が設けられた透明絶縁性基板の端部に配列された複数の接続用端子電極に半導体素子を異方性導電膜を介して熱圧着する液晶表示装置の製法であって、前記半導体素子を第1ヒーターツールで熱圧着時するときに、前記透明絶縁性基板の半導体素子の圧着面とは反対側の面から第2ヒーターツールにより加熱を行ない、前記半導体素子の周辺部の異方性導電膜を硬化することを特徴とする液晶表示装置の製法。 A method of manufacturing a liquid crystal display device in which a semiconductor element is thermocompression bonded to a plurality of connection terminal electrodes arranged at end portions of a transparent insulating substrate provided with a display pixel electrode through an anisotropic conductive film, When the semiconductor element is subjected to thermocompression bonding with the first heater tool, the second heater tool is used to heat the surface of the transparent insulating substrate opposite to the semiconductor element crimping surface, so that the peripheral portion of the semiconductor element is different. A method for producing a liquid crystal display device, comprising curing a isotropic conductive film.
JP2003311200A 2003-09-03 2003-09-03 Manufacturing method of liquid crystal display Pending JP2005077980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311200A JP2005077980A (en) 2003-09-03 2003-09-03 Manufacturing method of liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311200A JP2005077980A (en) 2003-09-03 2003-09-03 Manufacturing method of liquid crystal display

Publications (1)

Publication Number Publication Date
JP2005077980A true JP2005077980A (en) 2005-03-24

Family

ID=34412823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311200A Pending JP2005077980A (en) 2003-09-03 2003-09-03 Manufacturing method of liquid crystal display

Country Status (1)

Country Link
JP (1) JP2005077980A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804879B1 (en) * 2005-03-15 2008-02-20 가시오게산키 가부시키가이샤 Mounting structure and mounting method of a semictonductor device, and liquid crystal display device
JP2010262295A (en) * 2009-04-30 2010-11-18 Samsung Mobile Display Co Ltd Flat display panel
CN106652877A (en) * 2017-02-09 2017-05-10 京东方科技集团股份有限公司 Display panel and display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804879B1 (en) * 2005-03-15 2008-02-20 가시오게산키 가부시키가이샤 Mounting structure and mounting method of a semictonductor device, and liquid crystal display device
JP2010262295A (en) * 2009-04-30 2010-11-18 Samsung Mobile Display Co Ltd Flat display panel
US8456605B2 (en) 2009-04-30 2013-06-04 Samsung Display Co., Ltd. Flat display panel
CN106652877A (en) * 2017-02-09 2017-05-10 京东方科技集团股份有限公司 Display panel and display device
WO2018145486A1 (en) * 2017-02-09 2018-08-16 京东方科技集团股份有限公司 Display panel and display device
CN106652877B (en) * 2017-02-09 2020-02-14 京东方科技集团股份有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
US7139060B2 (en) Method for mounting a driver IC chip and a FPC board/TCP/COF device using a single anisotropic conductive film
JP2000002882A (en) Liquid crystal display device and its manufacture
JP2001230511A (en) Connection structure, electro-optic device and electronic apparatus
JPH1084002A (en) Connection structure of semiconductor element, liquid crystal indicating device using it, and electronic apparatus using the device
JP3815149B2 (en) Component mounting method and electro-optical device manufacturing method
JP2012227480A (en) Display device and semiconductor integrated circuit device
WO2011111420A1 (en) Liquid crystal display device, and method for producing same
WO2012086771A1 (en) Thermocompression head, mounting device, mounting method, and assembly
JP4675178B2 (en) Crimping method
JP2006066676A (en) Electro-optical device and electronic machine
JP2009069705A (en) Manufacturing method of liquid crystal display device
JP2009272457A (en) Substrate mounting structure, liquid crystal display apparatus, and method of manufacturing the substrate mounting structure
JP2005077980A (en) Manufacturing method of liquid crystal display
US9477123B2 (en) Liquid crystal display device and production method thereof
KR20130011403A (en) Flexible circuit board
JP2000340613A (en) Connecting method for ic chip and manufacture of liquid- crystal device
JP2004165684A (en) Resin coating method for semiconductor device, resin for coating, and liquid crystal display
JP2004029576A (en) Method of manufacturing flat display device, and thermocompression bonding device for sticking anisotropic conductive film used for the same
JP2005241827A (en) Liquid crystal display
JP2002341786A (en) Printed circuit board and method for manufacturing flat display device using the same
JP2005167274A (en) Semiconductor device, method for manufacturing same, and liquid crystal display device
JP4659420B2 (en) Display device
JP2010224115A (en) Liquid crystal display and method of manufacturing the same
JP2005191386A (en) Electrode connecting method and method for manufacturing liquid crystal display element
JP4100315B2 (en) Manufacturing method of electro-optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050513

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A131 Notification of reasons for refusal

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080610

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A02