JP2005076194A - Tunnel lining inspection apparatus - Google Patents

Tunnel lining inspection apparatus Download PDF

Info

Publication number
JP2005076194A
JP2005076194A JP2003304375A JP2003304375A JP2005076194A JP 2005076194 A JP2005076194 A JP 2005076194A JP 2003304375 A JP2003304375 A JP 2003304375A JP 2003304375 A JP2003304375 A JP 2003304375A JP 2005076194 A JP2005076194 A JP 2005076194A
Authority
JP
Japan
Prior art keywords
tunnel
antenna
inspection
concrete
inspection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003304375A
Other languages
Japanese (ja)
Other versions
JP4318115B2 (en
Inventor
Tatsuo Otaka
達男 尾高
Hiroyuki Morishima
啓行 森島
Haruyuki Obara
治之 小原
Chihiro Kamimuta
千尋 上牟田
Kanji Hara
寛二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
East Japan Railway Co
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, East Japan Railway Co filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003304375A priority Critical patent/JP4318115B2/en
Publication of JP2005076194A publication Critical patent/JP2005076194A/en
Application granted granted Critical
Publication of JP4318115B2 publication Critical patent/JP4318115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tunnel lining inspection apparatus which is fitted for inspection of concrete lining of a tunnel. <P>SOLUTION: According to the structure of the tunnel lining inspection apparatus, a bottom of a box-shaped inspection tool 1 for housing therein a transmitting/receiving antenna, is borne by a bearing member 3 which is borne by a rockable bearing means 19 having a plurality of air cylinders 15a, 15b, 17a, 17b. Then the rockable bearing means is borne by an elevating means 20 having an air cylinder 35, which is then rotatably borne by an arm member 41 which is further borne by a base portion 44 in a manner rotatable in the same rotational plane as that of the elevating means 20. Further a rolling surface of at least three rotary members 5a to 5c arranged across the inspection tool is protruded from an antenna surface, and the position of the inspection tool 1 is controlled by the rockable bearing means 19, followed by elevating/lowering the rockable bearing means by the elevating means 20, to thereby adjust an interval between the inspection tool and a concrete surface. In this manner by holding and controlling the interval between the inspection tool and the concrete surface by the three rotary members to a constant value, inspection of the concrete lining of the tunnel is automatically carried out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、トンネル覆工検査装置に係り、具体的には、トンネルの天井壁や側壁を構成するコンクリートの欠陥を非接触で検査する技術に属する。   The present invention relates to a tunnel lining inspection apparatus, and specifically relates to a technique for inspecting a defect of concrete constituting a ceiling wall or a side wall of a tunnel in a non-contact manner.

コンクリート内部の欠陥を非接触で検査する方法として、送受信アンテナを備えたレーダアンテナ検査器(以下単に検査器と略す。)を検査対象のコンクリートの表面に近接して保持し、送受信アンテナから電波を送信してコンクリート内の鉄筋や内部欠陥からの反射波を送受信アンテナで受信し、その送受信データを処理して内部欠陥等を検出することが知られている。   As a method for non-contact inspection of defects inside concrete, a radar antenna inspection device (hereinafter simply referred to as inspection device) equipped with a transmission / reception antenna is held close to the surface of the concrete to be inspected, and radio waves are transmitted from the transmission / reception antenna. It is known to transmit and receive a reflected wave from a reinforcing bar or internal defect in concrete with a transmission / reception antenna, and process the transmission / reception data to detect an internal defect or the like.

また、送受信アンテナを複数配列したアレイアンテナ型の検査器をコンクリート表面に沿って移動させながら、全面を走査して内部欠陥を検出するとともに、その検査結果を画像化するマルチパス3次元映像化レーダ式の検査器が提案されている(特許文献1)。これによれば、アレイアンテナ型の検査器を検査対象に沿って移動させながら、一定の移動ごとに複数の送受信アンテナから順に電波を発射する一方、各送信に対応する反射波を他の複数の送受信アンテナにより受信し、得られた受信信号を合成して3次元画像を得るようにしている。   A multi-pass 3D imaging radar that scans the entire surface while moving an array antenna type inspection device with a plurality of transmitting and receiving antennas along the concrete surface to detect internal defects and to image the inspection results. An inspector of the type has been proposed (Patent Document 1). According to this, while moving the array antenna type inspection device along the inspection object, radio waves are emitted in order from a plurality of transmission / reception antennas for each fixed movement, while reflected waves corresponding to each transmission are transmitted to other plurality of transmission waves. A three-dimensional image is obtained by synthesizing the received signals received by the transmitting and receiving antennas.

このマルチパス3次元映像化レーダ式の検査器によれば、表面に対して傾いた平面状の内部欠陥や、近傍に障害物(鉄筋など)がある場合の内部欠陥、あるいは検査対象物のコンクリートの厚みが30cm以上であっても、高画質で、高速に内部欠陥を検知できるという利点がある。   According to this multipath three-dimensional imaging radar type inspection device, a planar internal defect inclined with respect to the surface, an internal defect when there is an obstacle (such as a reinforcing bar) in the vicinity, or a concrete to be inspected Even if the thickness is 30 cm or more, there is an advantage that internal defects can be detected at high speed with high image quality.

特開2002−323459号公報JP 2002-323459 A

しかしながら、特許文献1に記載された従来技術は、トンネルの天井壁や側壁を覆って設けられたコンクリート覆工の検査装置を具体化することについては配慮されていない。つまり、コンクリート覆工を検査するには、検査器をコンクリート表面に対して一定の離間距離を保持しながら、コンクリート表面に沿って移動させることになるが、次に述べるような事項については配慮されていない。
(1)トンネルの距離が長い場合は、検査期間短縮のために、検査器の移動速度を高速化するとともに、検査器の検査対象面積をできるだけ大きくすることが要求される。
(2)トンネルのコンクリート表面は、深さが比較的深くかつピッチが大きな凹凸、あるいは深さが比較的浅くかつピッチの小さな凹凸があるが、これらの凹凸に合わせて検査器の姿勢を制御するとともに、コンクリート表面との離間距離を自動的に一定範囲(例えば、1〜2cm)に保持しながら、検査器を移動させることが検査精度の観点から要求される。
(3)トンネルのコンクリート覆工の断面は、一般に変形された円弧状の曲面を有するから、その円弧方向に移動させる際には、検査器の姿勢を制御してアンテナ面をその曲面に速やかに追従させて制御することが要求される。
However, the prior art described in Patent Document 1 does not take into account the concrete concrete inspection apparatus provided to cover the ceiling wall and side walls of the tunnel. In other words, when inspecting concrete lining, the inspection device is moved along the concrete surface while maintaining a certain distance from the concrete surface. Not.
(1) When the distance of the tunnel is long, it is required to increase the moving speed of the inspection device and to increase the inspection object area of the inspection device as much as possible in order to shorten the inspection period.
(2) The concrete surface of the tunnel has irregularities with a relatively deep depth and a large pitch, or irregularities with a relatively shallow depth and a small pitch. The attitude of the inspector is controlled according to these irregularities. At the same time, it is required from the viewpoint of inspection accuracy to move the inspection device while automatically maintaining the separation distance from the concrete surface within a certain range (for example, 1 to 2 cm).
(3) Since the cross section of the concrete lining of the tunnel generally has a deformed arc-shaped curved surface, when moving in the direction of the arc, the attitude of the inspector is controlled to quickly bring the antenna surface to the curved surface. It is required to follow and control.

本発明は、上記の要求を満たし、トンネルのコンクリート覆工の検査に適した検査装置を提供することを課題とする。   An object of the present invention is to provide an inspection apparatus that satisfies the above-described requirements and is suitable for inspection of a concrete lining of a tunnel.

本発明のトンネル覆工検査装置は、上記課題を解決するため、送受信アンテナが収納され上面がアンテナ面とされた箱型の検査器と、該検査器の底部を支持する支持部材と、複数のエアシリンダを有し前記支持部材を直交2軸方向に揺動可能に支持する揺動支持手段と、該揺動支持手段をエアシリンダにより昇降可能に支持する昇降手段と、該昇降手段を回動可能に支持するアーム部材と、該アーム部材を前記昇降手段と同一の回動面内で回動可能に支持する基部と、前記アンテナ面よりも突出させた転動面を有し前記支持部材に支持させて前記検査器を挟んで設けられた少なくとも3つの回転部材とを備えて構成することを特徴とする。   In order to solve the above problems, a tunnel lining inspection apparatus according to the present invention includes a box-shaped inspection device in which a transmission / reception antenna is accommodated and an upper surface serving as an antenna surface, a support member that supports the bottom of the inspection device, A swing support means that has an air cylinder and supports the support member so as to be swingable in two orthogonal axes, a lift means that supports the swing support means to be lifted and lowered by an air cylinder, and pivots the lift means An arm member that supports the arm member; a base portion that supports the arm member so that the arm member can rotate in the same rotation surface as the lifting means; and a rolling surface that protrudes from the antenna surface. And at least three rotating members that are supported and sandwiched by the inspection device.

すなわち、(1)検査器を支持する支持部材を複数のエアシリンダを有し直交2軸方向に揺動可能に支持する揺動支持手段を設けたことから、検査器の姿勢を容易に制御することできる。また、(2)揺動支持手段をエアシリンダにより昇降可能に支持する昇降手段を備えていることから、高速で検査器とコンクリート表面との離間距離を調整して、検査器とコンクリート表面との間隔を一定に保持制御することができる。また、(3)アンテナ面よりも突出させた転動面を有し検査器を挟んで設けられた少なくとも3つの回転部材を備えていることから、揺動支持手段又は昇降手段のエアシリンダにより検査器をコンクリート表面に一定の力で押し付けることにより、アンテナ面がコンクリート表面に当接する前に回転部材の転動面を、常にコンクリート表面に当接させるようにすることができる。つまり、検査器とコンクリート表面との離間距離を自動的に一定範囲(例えば、1〜2cm)に保持することができる。   That is, (1) Since the support member for supporting the tester is provided with swing support means that has a plurality of air cylinders so as to be swingable in two orthogonal axes, the posture of the tester is easily controlled. I can. In addition, (2) since the swinging support means is supported by the air cylinder so that the swinging support means can be moved up and down, the distance between the tester and the concrete surface is adjusted at high speed to The interval can be kept constant. (3) Since it has at least three rotating members provided with a rolling surface protruding from the antenna surface and sandwiching an inspection device, inspection is performed by an air cylinder of swing support means or lifting means. By pressing the vessel against the concrete surface with a certain force, the rolling surface of the rotating member can always be brought into contact with the concrete surface before the antenna surface comes into contact with the concrete surface. That is, the separation distance between the inspection device and the concrete surface can be automatically maintained within a certain range (for example, 1 to 2 cm).

このように、本発明によれば、高速の応答性に優れるエアシリンダを用いて揺動及び昇降させるようにしているから、トンネルのコンクリート表面に深さが比較的深くかつピッチが大きな凹凸があっても、あるいは深さが比較的浅くかつピッチの小さな凹凸があっても、それらの凹凸の変化に高速に追従させて検査器の姿勢、及び検査器とコンクリート表面との離間間隔を一定に保持制御することができる。したがって、本発明によれば、検査器の走査速度を高速化しても、検査器の姿勢及び位置の制御を高速で追従させることができるから、長いトンネルの場合に、例えば、走査速度を高速(例えば、3〜5km/h)にする要求に対応できる。   As described above, according to the present invention, the air cylinder excellent in high-speed response is used for swinging and raising / lowering, so that there are irregularities having a relatively deep depth and a large pitch on the concrete surface of the tunnel. Even if there is unevenness with a relatively shallow depth and a small pitch, the posture of the inspector and the spacing between the inspector and the concrete surface are kept constant by following the changes in the unevenness at high speed. Can be controlled. Therefore, according to the present invention, even if the scanning speed of the inspector is increased, the posture and position of the inspector can be controlled at high speed. For example, it is possible to meet the demand of 3 to 5 km / h).

特に、昇降手段を、アーム部材に回動自在に取り付けられた回動部材に、平行四辺形型リンクの対向する二辺の一方の辺を固定し、他方の辺に前記揺動支持手段を連結し、前記回動部材に前記エアシリンダを回動自在に連結し、該エアシリンダのピストンを前記平行四辺形型リンクの他の対向する二辺に回動自在に連結して構成すれば、エアシリンダのピストンの動きを速やかに昇降方向の動きに転換できる。   In particular, the lifting / lowering means is fixed to one of the two opposite sides of the parallelogram link to a rotating member that is rotatably attached to the arm member, and the swing support means is connected to the other side. If the air cylinder is rotatably connected to the rotating member and the piston of the air cylinder is rotatably connected to the other two opposite sides of the parallelogram link, The movement of the piston of the cylinder can be quickly converted into the movement in the up and down direction.

また、本発明によれば、アーム部材により昇降手段を回動可能に支持していることから、アーム部材を回動させることにより検査器を円弧に沿って移動できる。さらに、そのアーム部材を昇降手段と同一の回動面内で回動可能に基部に支持させているから、大きな円弧に沿って検査器を移動することができる。つまり、トンネルのコンクリート覆工の断面は、一般に変形された円弧状の曲面を有するので、その円弧方向に検査器の位置を移動させる際に、検査器の姿勢を制御しながら、かつその曲面に速やかに追従させて検査器の位置を制御することができる。   Further, according to the present invention, since the lifting means is rotatably supported by the arm member, the inspection device can be moved along the arc by rotating the arm member. Further, since the arm member is supported by the base so as to be rotatable within the same rotation plane as the lifting means, the inspection device can be moved along a large arc. In other words, the cross section of the concrete lining of the tunnel generally has a deformed arc-shaped curved surface. Therefore, when moving the position of the inspection device in the direction of the arc, while controlling the posture of the inspection device, The position of the inspection device can be controlled by promptly following it.

なお、本発明のトンネル覆工検査装置は、トンネル内を走行可能な台車を備え、該台車に前記検査器のアンテナ面をトンネルの壁面に対向させて前記基部を支持させて構成することができる。これによれば、検査器の位置及び姿勢を制御してトンネルの壁面にセットし、その状態で台車をトンネルの長手方向に移動させることにより、コンクリート覆工を長手方向に走査して検査することができる。この走査を、検査器の位置を円弧状の壁面に従ってセットし直して繰返すことにより、トンネル全体のコンクリート覆工を検査することができる。   The tunnel lining inspection apparatus according to the present invention includes a carriage capable of traveling in a tunnel, and the carriage can be configured to support the base portion with an antenna surface of the inspection device facing a wall surface of the tunnel. . According to this, the position and orientation of the inspector are controlled and set on the wall surface of the tunnel, and in that state, the concrete lining is scanned and inspected in the longitudinal direction by moving the carriage in the longitudinal direction of the tunnel. Can do. By repeating this scanning by setting the position of the inspection device according to the arcuate wall surface, the concrete lining of the entire tunnel can be inspected.

本発明によれば、トンネルのコンクリート覆工の検査に適した検査装置を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the inspection apparatus suitable for the inspection of the concrete lining of a tunnel is realizable.

以下、本発明の一実施の形態について、図1〜図4を用いて説明する。図1は、本発明のトンネル覆工検査装置に係る一実施形態の主要部を示す図、図2は図1の線II-IIから見た矢視図、図3は図2の線III-IIIから見た矢視図、図4は本実施形態をトンネル内に設置した状態を示す全体図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 is a diagram showing a main part of one embodiment of the tunnel lining inspection apparatus according to the present invention, FIG. 2 is an arrow view taken along line II-II in FIG. 1, and FIG. 3 is a line III- in FIG. FIG. 4 is an overall view showing a state in which the present embodiment is installed in a tunnel.

図1〜3において、レーダアンテナ1はマルチパス3次元映像化レーダ式の検査器であり、箱型(例えば、縦40cm、横1m、高さ40cm)のケーシング内の長手方向に沿って複数の送受信アンテナ素子を配列して形成されている。なお、レーダアンテナ1の上面は電波を透過させる材料で形成されたアンテナ面であり、1つの送受信アンテナ素子から電波を検査対象に向けて発射し、検査対象から反射される反射波を他の複数の送受信アンテナ素子で受信する操作を、送信する送受信アンテナ素子を順に切り換えながら繰返し、受信された反射波に基づいてコンクリート覆工内部を画像化する。この操作を、レーダアンテナ1を検査対象面2に沿って移動させながら繰返すことにより、コンクリート覆工内部の3次元の画像データを得ることができる。   1 to 3, a radar antenna 1 is a multipath three-dimensional imaging radar type inspection device, and a plurality of radar antennas 1 are arranged along a longitudinal direction in a box-shaped casing (for example, 40 cm long, 1 m wide, 40 cm high). The transmitting / receiving antenna elements are arranged. Note that the upper surface of the radar antenna 1 is an antenna surface formed of a material that transmits radio waves, and the radio waves are emitted from one transmission / reception antenna element toward the inspection target, and the reflected waves reflected from the inspection target are transmitted to other pluralities. The operation of receiving with the transmitting / receiving antenna element is repeated while sequentially switching the transmitting / receiving antenna elements, and the inside of the concrete lining is imaged based on the received reflected wave. By repeating this operation while moving the radar antenna 1 along the inspection target surface 2, three-dimensional image data inside the concrete lining can be obtained.

レーダアンテナ1は、箱型のケーシングの底部を枠型の支持フレーム3に固定して支持されている。支持フレーム3のレーダアンテナ1の走行方向(図示矢印A)の前面に、距離を離して2個のキャスタ支持台4a、4bが張り出して設けられ、それらのキャスタ支持台4a、4bにそれぞれキャスタ5a、5bが取り付けられている。また、支持フレーム3の後面に、キャスタ支持台4a、4bの間に位置させて、1個のキャスタ支持台4cが張り出して設けられ、このキャスタ支持台4cにキャスタ5cが取り付けられている。各キャスタ5(5a、5b、5c)の車輪6は、その転動面がレーダアンテナ1のアンテナ面よりも検査対象面2側に突出す位置に配置されている。この突出し量は、レーダアンテナ1の電波の強度及び感度に関係して決めることができるが、例えば、1〜2cm程度が好ましい。   The radar antenna 1 is supported by fixing the bottom of a box-shaped casing to a frame-shaped support frame 3. Two caster support bases 4a and 4b are provided on the front surface of the support frame 3 in the traveling direction of the radar antenna 1 (arrow A in the figure) at a distance from each other, and casters 5a are provided on the caster support bases 4a and 4b, respectively. 5b is attached. A single caster support 4c is provided on the rear surface of the support frame 3 so as to be positioned between the caster support 4a and 4b, and a caster 5c is attached to the caster support 4c. The wheels 6 of the casters 5 (5a, 5b, 5c) are arranged at positions where the rolling surfaces protrude from the antenna surface of the radar antenna 1 toward the inspection target surface 2 side. The amount of protrusion can be determined in relation to the intensity and sensitivity of the radio wave of the radar antenna 1, but is preferably about 1 to 2 cm, for example.

支持フレーム3は、図2、3に示すように、レーダアンテナ1の長手方向に延在させて設けられた支持ビーム7の両端部の上面に起立して固定されたブラケット8に、ピン9を介して連結されている。また、支持ビーム7は、その中央部を挟んでピン10を介してブラケット11が垂下され、このブラケット11の下部に支持ビーム12が固定されている。そして、支持ビーム12は、L字形(鉤形)に形成されたリンク13の腕部に固定されている。すなわち、支持フレーム3は、リンク13に対してピン9、10の直交する2軸周りに、回動自由に支持されている。   As shown in FIGS. 2 and 3, the support frame 3 has pins 9 attached to brackets 8 erected and fixed on the upper surfaces of both ends of the support beam 7 provided to extend in the longitudinal direction of the radar antenna 1. Are connected through. A bracket 11 is suspended from the support beam 7 via a pin 10 across a central portion thereof, and a support beam 12 is fixed to the lower portion of the bracket 11. And the support beam 12 is being fixed to the arm part of the link 13 formed in the L shape (saddle shape). In other words, the support frame 3 is supported by the link 13 so as to be freely rotatable around two orthogonal axes of the pins 9 and 10.

また、支持ビーム7の両端部に、支持ビーム7を挟んでそれぞれ1対のエアシリンダ15a,15bがブラケット16を介して取り付けられ、それらのピストンロッドの先端が支持フレーム3の下面に当接されている。また、支持ビーム12の両端にエアシリンダ17a、17bが取り付けられ、それらのピストンロッドの先端が支持ビーム7の下面に当接されている。これによって、エアシリンダ15a,15bのピストンロッドを伸縮させることによって、レーダアンテナ1がピン9の軸回りに回動する。また、エアシリンダ17a、17bのピストンロッドを伸縮させることによって、レーダアンテナ1がピン10の軸回りに回動する。したがって、エアシリンダ15a,15bとエアシリンダ17a、17bを伸縮操作することによって、リンク13に対してレーダアンテナ1を直交2軸回りに揺動させることができるようになっている。すなわち、支持ビーム7、ブラケット8、ピン9、ピン10、ブラケット11、支持ビーム12、及びエアシリンダ15a,15b、17a、17bによって、支持フレーム3を介してレーダアンテナ1を直交2軸方向に揺動可能に支持する揺動支持手段19が構成されている。   A pair of air cylinders 15 a and 15 b are attached to both ends of the support beam 7 via the bracket 16 with the support beam 7 interposed therebetween, and the tips of the piston rods are in contact with the lower surface of the support frame 3. ing. Air cylinders 17 a and 17 b are attached to both ends of the support beam 12, and the tips of the piston rods are in contact with the lower surface of the support beam 7. Accordingly, the radar antenna 1 rotates around the axis of the pin 9 by extending and contracting the piston rods of the air cylinders 15a and 15b. Further, the radar antenna 1 rotates about the axis of the pin 10 by extending and contracting the piston rods of the air cylinders 17a and 17b. Therefore, the radar antenna 1 can be swung around the two orthogonal axes with respect to the link 13 by extending and contracting the air cylinders 15a and 15b and the air cylinders 17a and 17b. That is, the radar antenna 1 is shaken in the two orthogonal axes via the support frame 3 by the support beam 7, the bracket 8, the pin 9, the pin 10, the bracket 11, the support beam 12, and the air cylinders 15a, 15b, 17a, and 17b. Oscillating support means 19 that is movably supported is configured.

L字形のリンク3は、平行四辺形型リンク機構のリンクの一辺を担うものである。リンク13の曲り角部と下方に延在する腕部の先端に、2本のロッド21、22が挿通され、このロッド21、22にそれぞれ長辺のリンク23,24が枢支されている。2本のリンク23、24の他端は、固定リンク27に挿通されたロッド25、26に枢支されている。ロッド21、22及びロッド25、26は、それぞれ平行に設けられている。なお、図に表れてはいないが、平行四辺形のリンク13、23、24、27は、図1の紙面に直交する方向にそれぞれ二重に設けられている。このように構成される二重の平行四辺形リンク機構の長辺のリンク23間に渡してロッド30が取り付けられ、このロッド30の中央部に回動自由にブラケット30が連結されている。このブラケット30の下端に、ピストンロッドの先端が連結されたエアシリンダ31が垂下されている。エアシリンダ31の下端は、固定リンク27に固定して設けられたブラケット32にピン33を介して回動可能に支持されている。このように構成されることから、エアシリンダ31のピストンロッドを伸縮することにより、長辺リンク23がロッド25回りに回動し、これによってL字形のリンク13が昇降するようになっている。   The L-shaped link 3 bears one side of the link of the parallelogram type link mechanism. Two rods 21 and 22 are inserted through the corners of the link 13 and the ends of the arms extending downward, and long-side links 23 and 24 are pivotally supported by the rods 21 and 22, respectively. The other ends of the two links 23 and 24 are pivotally supported by rods 25 and 26 inserted through the fixed link 27. The rods 21 and 22 and the rods 25 and 26 are provided in parallel. Although not shown in the figure, the parallelogram links 13, 23, 24, and 27 are provided in double directions in the direction perpendicular to the paper surface of FIG. A rod 30 is attached between the long side links 23 of the double parallelogram link mechanism configured as described above, and a bracket 30 is connected to a central portion of the rod 30 so as to freely rotate. An air cylinder 31 having a piston rod tip connected to the lower end of the bracket 30 is suspended. The lower end of the air cylinder 31 is rotatably supported via a pin 33 on a bracket 32 fixed to the fixed link 27. With this configuration, the long side link 23 is rotated around the rod 25 by extending and contracting the piston rod of the air cylinder 31, whereby the L-shaped link 13 is moved up and down.

固定リンク27は、アーム41の先端部に回動可能に軸支されており、モータ42によって軸43回りに回動かつ固定可能に設けられている。アーム41は、ポール44の先端部に回動可能に軸支されており、モータ45によって軸46回りに回動かつ固定可能に設けられている。また、アーム41の下端にはカウンターウエイト47が取り付けられている。   The fixed link 27 is pivotally supported at the tip of the arm 41 so as to be rotatable and fixed around a shaft 43 by a motor 42. The arm 41 is pivotally supported at the tip of the pole 44 so as to be rotatable and fixed around a shaft 46 by a motor 45. A counterweight 47 is attached to the lower end of the arm 41.

ポール44は、図4に示すように、台車51に起立して設けられている。なお、図示していないが、ポール44は、台車51に対して上下方向に昇降可能に、例えばラックとピニオンギアを組み合わた昇降機構を介して固定されている。また、ポール44は、搬送時の高さを低くするために、途中で折り曲げ可能に形成するのが好ましい。図4に示した例は、鉄道のトンネル内のコンクリート覆工50を検査する例であり、台車51はレール52上を走行可能な車輪3を備えている。また、ポール44を支持する基台54は、図示矢印55方向に移動及び固定可能に設けられている。   As shown in FIG. 4, the pole 44 is provided upright on the carriage 51. In addition, although not shown in figure, the pole 44 is being fixed via the raising / lowering mechanism which combined the rack and the pinion gear, for example so that raising / lowering with respect to the trolley | bogie 51 is possible. The pole 44 is preferably formed so that it can be bent halfway in order to reduce the height during conveyance. The example shown in FIG. 4 is an example of inspecting a concrete lining 50 in a railway tunnel, and a carriage 51 includes wheels 3 that can run on rails 52. The base 54 for supporting the pole 44 is provided so as to be movable and fixed in the direction of the arrow 55 shown in the figure.

このように構成される本実施形態のコンクリート覆工検査装置の動作について次に説明する。まず、ポール44を伸張してレーダアンテナ1をコンクリート覆工50の内壁面に近付ける。そして、モータ45を駆動してアーム41を回動するとともに、モータ42を駆動してレーダアンテナ1のアンテナ面がコンクリート覆工50に概ね平行になるように粗調整する。次いで、揺動支持手段19と昇降手段20のエアシリンダを操作しながらレーダアンテナ1の姿勢を制御し、レーダアンテナ1をコンクリート覆工50に押し付ける。これにより、キャスタ5a〜5cがそれぞれコンクリート覆工50の表面に押し付けられる。このときの押し付け力は、各エアシリンダの空気圧力により検知することができる。このようにして、レーダアンテナ1のアンテナ面とコンクリート覆工50の表面との間隔が一定に保持される。   Next, the operation of the concrete lining inspection apparatus of the present embodiment configured as described above will be described. First, the pole 44 is extended to bring the radar antenna 1 close to the inner wall surface of the concrete lining 50. Then, the motor 45 is driven to rotate the arm 41, and the motor 42 is driven to make rough adjustment so that the antenna surface of the radar antenna 1 is substantially parallel to the concrete lining 50. Next, the attitude of the radar antenna 1 is controlled while operating the air cylinders of the swing support means 19 and the lifting means 20, and the radar antenna 1 is pressed against the concrete lining 50. Thereby, casters 5a-5c are pressed against the surface of concrete lining 50, respectively. The pressing force at this time can be detected by the air pressure of each air cylinder. In this way, the distance between the antenna surface of the radar antenna 1 and the surface of the concrete lining 50 is kept constant.

この状態にて、レーダアンテナ1を操作して送受信アンテナ素子からコンクリート覆工50に向けて電波を発射し、コンクリート覆工50から反射される電波の反射波を受信し、受信波を解析、合成することによってコンクリート覆工50内部の欠陥等の有無を検査する。そして、台車51をトンネルの長手方向に走行させながらレーダアンテナ1から電波を送信するとともに反射波を受信して、トンネルのコンクリート覆工50の長手方向全部にわたって検査を実行する。この走行時、トンネルの内壁に凹凸がある場合は、トンネルの内壁の凹凸に追従するキャスタ5a〜cからの反力により、エアシリンダ15a、b及びエアシリンダ17a、bが伸縮し、支持フレーム3を介してレーダアンテナ1をトンネル内壁の凹凸に合わせて揺動させる。これにより、アンテナ面とトンネル内壁面との間隙を一定に保持して走行される。トンネル内壁の凹凸の深さが大きな場合は、昇降手段20のエアシリンダ31が伸縮して、キャスタ5a〜cを一定圧でトンネル内壁に押圧することにより、アンテナ面をトンネル内壁面の凹凸に追従させて、アンテナ面とトンネル内壁面との間隙を一定に保持する。   In this state, the radar antenna 1 is operated to emit radio waves from the transmitting and receiving antenna elements toward the concrete lining 50, receive the reflected waves of the radio waves reflected from the concrete lining 50, and analyze and synthesize the received waves. By doing this, the presence or absence of defects or the like inside the concrete lining 50 is inspected. Then, while traveling the carriage 51 in the longitudinal direction of the tunnel, radio waves are transmitted from the radar antenna 1 and reflected waves are received, and the inspection is executed over the entire longitudinal direction of the concrete lining 50 of the tunnel. During this travel, if the inner wall of the tunnel is uneven, the air cylinders 15a and 15b and the air cylinders 17a and 17b expand and contract by the reaction force from the casters 5a to 5c following the unevenness of the inner wall of the tunnel. The radar antenna 1 is swung according to the unevenness of the inner wall of the tunnel via Thus, the vehicle travels with the gap between the antenna surface and the tunnel inner wall surface kept constant. When the depth of the unevenness of the tunnel inner wall is large, the air cylinder 31 of the elevating means 20 expands and contracts, and the caster 5a-c is pressed against the tunnel inner wall with a constant pressure, so that the antenna surface follows the unevenness of the tunnel inner wall surface. Thus, the gap between the antenna surface and the inner wall surface of the tunnel is kept constant.

上述したように本実施形態によれば、 応答性が速いエアシリンダ15a、b、17a、bを用いてレーダーアンテナ1を揺動させるとともに、エアシリンダ31を用いてレーダーアンテナ1を昇降させるようにしているから、トンネルのコンクリート表面に深さが比較的深くかつピッチが大きな凹凸があっても、あるいは深さが比較的浅くかつピッチの小さな凹凸があっても、それらの凹凸の変化に高速に追従させてレーダーアンテナ1の姿勢、及びレーダーアンテナ1とコンクリート表面との離間間隔を一定に保持制御することができる。例えば、エアシリンダ15a、b、17a、bのストロークは50mm、エアシリンダ31のストロークは300mm程度とすることができる。したがって、本実施形態によれば、レーダーアンテナ1の走行速度を高速化しても、レーダーアンテナ1の姿勢及び位置の制御を高速で追従させることができる。その結果、長いトンネルの場合に、走行による走査速度を高速(例えば、3〜5km/h)にすることができ、検査期間を短縮できる。   As described above, according to the present embodiment, the radar antenna 1 is swung using the air cylinders 15 a, b, 17 a, and b with quick response, and the radar antenna 1 is moved up and down using the air cylinder 31. Therefore, even if the concrete surface of the tunnel has irregularities with a relatively deep depth and a large pitch, or irregularities with a relatively shallow depth and a small pitch, these irregularities can be changed quickly. The attitude of the radar antenna 1 and the separation distance between the radar antenna 1 and the concrete surface can be held and controlled to follow. For example, the stroke of the air cylinders 15a, b, 17a, b can be 50 mm, and the stroke of the air cylinder 31 can be about 300 mm. Therefore, according to this embodiment, even if the traveling speed of the radar antenna 1 is increased, the attitude and position of the radar antenna 1 can be controlled at high speed. As a result, in the case of a long tunnel, the scanning speed by traveling can be increased (for example, 3 to 5 km / h), and the inspection period can be shortened.

また、昇降手段20を、平行四辺形型のリンク機構で構成し、長辺のリンク23の固定リンク27よりの部分をエアシリンダ35により昇降させているから、エアシリンダ35のピストンの動きが増幅され、エアシリンダ35のピストンの動きを速やかにレーダーアンテナ1の昇降方向の動きに転換できる。   Further, since the elevating means 20 is constituted by a parallelogram type link mechanism and the portion of the long side link 23 from the fixed link 27 is raised and lowered by the air cylinder 35, the movement of the piston of the air cylinder 35 is amplified. Thus, the movement of the piston of the air cylinder 35 can be quickly converted into the movement of the radar antenna 1 in the up-and-down direction.

また、本実施形態によれば、アーム41により昇降手段20を回動可能に支持していることから、アーム41を回動させることによりレーダアンテナ1をトンネルの円弧面に沿う方向に移動できる。また、アーム41を昇降手段20と同一の回動面内で回動可能にポール44に支持させているから、大きな円弧のトンネル内壁に沿ってレーダアンテナ1を移動することができる。その結果、レーダアンテナ1の姿勢を制御しながら、かつトンネル内壁面に速やかに追従させてレーダアンテナ1の位置を制御することができる。   Further, according to the present embodiment, since the lifting / lowering means 20 is rotatably supported by the arm 41, the radar antenna 1 can be moved in the direction along the arc surface of the tunnel by rotating the arm 41. Further, since the arm 41 is supported by the pole 44 so as to be rotatable in the same rotation plane as that of the elevating means 20, the radar antenna 1 can be moved along the tunnel inner wall having a large arc. As a result, the position of the radar antenna 1 can be controlled while promptly following the inner wall surface of the tunnel while controlling the attitude of the radar antenna 1.

さらに、本実施形態によれば、トンネル内を走行可能な台車51にレーダアンテナ1を搭載していることから、台車を走行させても、揺動支持手段19及び昇降手段20によりレーダアンテナ1の位置及び姿勢を制御することにより、レーダアンテナ1のアンテナ面をトンネル壁面に追従させて移動することができる。これにより、コンクリート覆工を長手方向に走査して検査することができる。そして、この走査を、レーダアンテナ1の位置を円弧状の壁面に従ってセットし直して繰返すことにより、トンネル全体のコンクリート覆工を検査することができる。   Furthermore, according to the present embodiment, since the radar antenna 1 is mounted on the cart 51 that can travel in the tunnel, the swinging support means 19 and the lifting / lowering means 20 allow the radar antenna 1 to be By controlling the position and posture, the antenna surface of the radar antenna 1 can be moved following the tunnel wall surface. Thereby, a concrete lining can be scanned and inspected in the longitudinal direction. Then, the concrete lining of the entire tunnel can be inspected by repeating this scan by resetting the position of the radar antenna 1 according to the arcuate wall surface.

なお、図示していないが、トンネルの長手方向には、緩やかな凹凸変化ではなく、例えば、50mm程度の段差部分や覆工面から突き出たボルトなどの検査障害物がある。この場合であっても、キャスタ5の車輪6の径によっては乗り越えることができるが、衝撃を受ける場合があるので、レーダアンテナ1の進行方向前方に障害物センサを張り出して設けることが好ましい。障害物センサとしては、例えば、弾性材からなる棒状の支持部材の先端に軽量な車輪を取り付け、その車輪をバネなどにコンクリート面に押圧するように構成し、そのバネの変位あるいは棒状の支持部材の変位を検出するようにしたものを適用できる。   Although not shown in the figure, in the longitudinal direction of the tunnel, there is not a gradual unevenness change, but there are inspection obstacles such as stepped portions of about 50 mm and bolts protruding from the lining surface, for example. Even in this case, although it can be overcome depending on the diameter of the wheel 6 of the caster 5, it may be subject to an impact. Therefore, it is preferable to provide an obstacle sensor in front of the radar antenna 1 in the traveling direction. As the obstacle sensor, for example, a lightweight wheel is attached to the tip of a rod-shaped support member made of an elastic material, and the wheel is pressed against a concrete surface against a spring or the like, and the displacement of the spring or the rod-shaped support member It is possible to apply one that detects the displacement.

本発明のトンネル覆工検査装置に係る一実施形態の主要部を示す図である。It is a figure which shows the principal part of one Embodiment which concerns on the tunnel lining inspection apparatus of this invention. 図1の線II-IIから見た矢視図である。It is the arrow line view seen from line II-II of FIG. 図2の線III-IIIから見た矢視図である。FIG. 3 is an arrow view seen from line III-III in FIG. 2. 図1の実施形態をトンネル内に設置した状態を示す全体図である。It is a general view which shows the state which installed embodiment of FIG. 1 in the tunnel.

符号の説明Explanation of symbols

1 レーダアンテナ
3 支持フレーム
5a〜5c キャスタ
7 支持ビーム
9 ピン
10 ピン
12 支持ビーム
13 リンク
15a,b エアシリンダ
16 ブラケット
17a、b エアシリンダ
19 揺動支持手段
20 昇降手段
30 ロッド
31 エアシリンダ
41 アーム
42 モータ
44 ポール
45 モータ
DESCRIPTION OF SYMBOLS 1 Radar antenna 3 Support frame 5a-5c Caster 7 Support beam 9 Pin 10 Pin 12 Support beam 13 Link 15a, b Air cylinder 16 Bracket 17a, b Air cylinder 19 Swing support means 20 Lifting means 30 Rod 31 Air cylinder 41 Arm 42 Motor 44 pole 45 motor

Claims (3)

送受信アンテナが収納され上面がアンテナ面とされた箱型の検査器と、該検査器の底部を支持する支持部材と、複数のエアシリンダを有し前記支持部材を直交2軸方向に揺動可能に支持する揺動支持手段と、該揺動支持手段をエアシリンダにより昇降可能に支持する昇降手段と、該昇降手段を回動可能に支持するアーム部材と、該アーム部材を前記昇降手段と同一の回動面内で回動可能に支持する基部と、前記アンテナ面よりも突出させた転動面を有し前記支持部材に支持させて前記検査器を挟んで設けられた少なくとも3つの回転部材とを備えてなるトンネル覆工検査装置。 A box-shaped inspector in which a transmitting / receiving antenna is housed and whose upper surface is an antenna surface, a support member that supports the bottom of the inspector, and a plurality of air cylinders that can swing the support member in two orthogonal axes Oscillating support means for supporting the oscillating support means by an air cylinder, an arm member for pivotally supporting the elevating means, and the arm member being the same as the elevating means And at least three rotating members that are supported by the supporting member and sandwiched by the inspection device, and have a base portion that is rotatably supported in the rotating surface of the antenna and a rolling surface that protrudes from the antenna surface. A tunnel lining inspection device. 前記昇降手段は、前記アーム部材に回動自在に取り付けられた回動部材に、平行四辺形型リンクの対向する二辺の一方の辺を固定し、他方の辺に前記揺動支持手段を連結し、前記回動部材に前記エアシリンダを回動自在に連結し、該エアシリンダのピストンを前記平行四辺形型リンクの他の対向する二辺に回動自在に連結してなることを特徴とする請求項1に記載のトンネル覆工検査装置。 The elevating means fixes one side of two opposite sides of the parallelogram link to a rotating member rotatably attached to the arm member, and connects the swing support means to the other side. The air cylinder is rotatably connected to the rotating member, and the piston of the air cylinder is rotatably connected to the other two opposite sides of the parallelogram link. The tunnel lining inspection apparatus according to claim 1. トンネル内を走行可能な台車を備え、該台車に前記検査器のアンテナ面をトンネルの壁面に対向させて前記基部を支持させてなることを特徴とする請求項1又は2に記載のトンネル覆工検査装置。
The tunnel lining according to claim 1 or 2, further comprising a carriage capable of traveling in a tunnel, wherein the carriage supports the base portion with an antenna surface of the inspection device facing a wall surface of the tunnel. Inspection device.
JP2003304375A 2003-08-28 2003-08-28 Tunnel lining inspection equipment Expired - Lifetime JP4318115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304375A JP4318115B2 (en) 2003-08-28 2003-08-28 Tunnel lining inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304375A JP4318115B2 (en) 2003-08-28 2003-08-28 Tunnel lining inspection equipment

Publications (2)

Publication Number Publication Date
JP2005076194A true JP2005076194A (en) 2005-03-24
JP4318115B2 JP4318115B2 (en) 2009-08-19

Family

ID=34408084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304375A Expired - Lifetime JP4318115B2 (en) 2003-08-28 2003-08-28 Tunnel lining inspection equipment

Country Status (1)

Country Link
JP (1) JP4318115B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044949A (en) * 2005-08-09 2007-02-22 Miyakoshi Printing Machinery Co Ltd Ink-jet recording device
CN101846639A (en) * 2010-05-19 2010-09-29 云南三星机械设备仪器制造有限公司 Movable tunnel detection arm
JP2012117861A (en) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave imaging device
CN102645438A (en) * 2012-05-14 2012-08-22 云南三星机械设备制造股份有限公司 Movable automatic horizontal positioning detection arm for tunnel
CN103175565A (en) * 2013-03-25 2013-06-26 长沙理工大学 Tunnel lining detection support with height and angle capable of being automatically adjusted
CN103941308A (en) * 2014-04-08 2014-07-23 甘肃省交通科学研究院有限公司 Auxiliary inspection car device for secondary lining quality
CN105480907A (en) * 2015-12-30 2016-04-13 中铁第四勘察设计院集团有限公司 Tunnel hole shrinkage anti-clamping vehicle-mounted side wall radar servo lifting device
CN105835055A (en) * 2016-06-04 2016-08-10 无锡市华鹰移动照明有限公司 Extending-and-contracting mechanical arm for tunnel detection
CN105909038A (en) * 2016-06-04 2016-08-31 无锡市华鹰移动照明有限公司 Pneumatic-electric lifting mast
CN106444785A (en) * 2016-11-25 2017-02-22 中国铁道科学研究院 Portable tunnel lining detection apparatus
CN108332027A (en) * 2018-01-31 2018-07-27 华东交通大学 A kind of tunnel roof liner Defect inspection is crouched peaceful with vehicular multiple degrees of freedom
CN108412550A (en) * 2018-05-10 2018-08-17 成都西南交大研究院有限公司 Run the vehicle-mounted Ground Penetrating Radar detection device of high ferro double track tunnel
KR101897100B1 (en) * 2017-11-27 2018-09-10 한국시설안전공단 Detecting attachment for cavity of tunnel
KR20200047897A (en) * 2018-10-26 2020-05-08 한국시설안전공단 Detecting attachment for cavity of tunnel
KR20200097956A (en) * 2019-02-11 2020-08-20 충남대학교산학협력단 A data acquisition measurement device with non-destructive inspection method for estimation of structural safety of a tunnel lining
JP2021041865A (en) * 2019-09-12 2021-03-18 株式会社ドーコン Mobile dolly
KR102339230B1 (en) * 2021-07-01 2021-12-15 주식회사 피오에스이엔씨 An exploration antenna stand in a tunnel containing buffer means
KR20220077458A (en) * 2020-12-02 2022-06-09 국토안전관리원 Measuring device for tunnel of vehicle
CN115387823A (en) * 2022-08-08 2022-11-25 武汉容晟吉美科技有限公司 Full-automatic steel ring piece lifting device and construction method thereof
CN116164797A (en) * 2023-04-20 2023-05-26 河北拓森建筑装饰工程有限公司 Road and bridge tunnel lining detection device
KR102539175B1 (en) * 2023-01-12 2023-06-01 정진이엔씨(주) Apparatus for holding ground penetrating radar (gpr) antenna for tunnel exploration
CN117075104A (en) * 2023-10-16 2023-11-17 山东博工建筑智能化工程有限公司 Tunnel geological radar removes intelligent detection equipment
JP7406296B2 (en) 2020-10-15 2023-12-27 株式会社奥村組 Cleaning equipment and method for cleaning tunnel inner walls
JP7455275B2 (en) 2020-08-13 2024-03-25 プロセク ソシエテ アノニム GPR device with adaptive antenna mount

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749214B (en) * 2012-07-16 2014-12-10 中铁第四勘察设计院集团有限公司 Detecting device for side walls of tunnels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090433A (en) * 1996-09-19 1998-04-10 Fuji Chichiyuu Joho Kk Hollow detecting device and radar-mounted vehicle
JP2001012197A (en) * 1999-07-02 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd Concrete spraying machine
JP2001349876A (en) * 2000-06-09 2001-12-21 Mitsubishi Heavy Ind Ltd Hammering testing device for structure, and hammering testing device for tunnel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090433A (en) * 1996-09-19 1998-04-10 Fuji Chichiyuu Joho Kk Hollow detecting device and radar-mounted vehicle
JP2001012197A (en) * 1999-07-02 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd Concrete spraying machine
JP2001349876A (en) * 2000-06-09 2001-12-21 Mitsubishi Heavy Ind Ltd Hammering testing device for structure, and hammering testing device for tunnel

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044949A (en) * 2005-08-09 2007-02-22 Miyakoshi Printing Machinery Co Ltd Ink-jet recording device
CN101846639A (en) * 2010-05-19 2010-09-29 云南三星机械设备仪器制造有限公司 Movable tunnel detection arm
JP2012117861A (en) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave imaging device
CN102645438A (en) * 2012-05-14 2012-08-22 云南三星机械设备制造股份有限公司 Movable automatic horizontal positioning detection arm for tunnel
CN102645438B (en) * 2012-05-14 2014-01-15 云南三星机械设备制造股份有限公司 Movable automatic horizontal positioning detection arm for tunnel
CN103175565A (en) * 2013-03-25 2013-06-26 长沙理工大学 Tunnel lining detection support with height and angle capable of being automatically adjusted
CN103941308A (en) * 2014-04-08 2014-07-23 甘肃省交通科学研究院有限公司 Auxiliary inspection car device for secondary lining quality
CN105480907A (en) * 2015-12-30 2016-04-13 中铁第四勘察设计院集团有限公司 Tunnel hole shrinkage anti-clamping vehicle-mounted side wall radar servo lifting device
CN105835055A (en) * 2016-06-04 2016-08-10 无锡市华鹰移动照明有限公司 Extending-and-contracting mechanical arm for tunnel detection
CN105909038A (en) * 2016-06-04 2016-08-31 无锡市华鹰移动照明有限公司 Pneumatic-electric lifting mast
CN106444785A (en) * 2016-11-25 2017-02-22 中国铁道科学研究院 Portable tunnel lining detection apparatus
CN106444785B (en) * 2016-11-25 2023-09-15 中国铁道科学研究院集团有限公司 Portable tunnel lining check out test set
KR101897100B1 (en) * 2017-11-27 2018-09-10 한국시설안전공단 Detecting attachment for cavity of tunnel
CN108332027B (en) * 2018-01-31 2023-03-03 华东交通大学 Vehicle-mounted multi-degree-of-freedom horizontal lifting platform for detecting tunnel roof lining defects
CN108332027A (en) * 2018-01-31 2018-07-27 华东交通大学 A kind of tunnel roof liner Defect inspection is crouched peaceful with vehicular multiple degrees of freedom
CN108412550B (en) * 2018-05-10 2023-12-08 成都西南交大研究院有限公司 Vehicle-mounted ground penetrating radar detection device for operating high-speed railway double-track tunnel
CN108412550A (en) * 2018-05-10 2018-08-17 成都西南交大研究院有限公司 Run the vehicle-mounted Ground Penetrating Radar detection device of high ferro double track tunnel
KR102164442B1 (en) * 2018-10-26 2020-10-13 한국시설안전공단 Detecting attachment for cavity of tunnel
KR20200047897A (en) * 2018-10-26 2020-05-08 한국시설안전공단 Detecting attachment for cavity of tunnel
KR20200097956A (en) * 2019-02-11 2020-08-20 충남대학교산학협력단 A data acquisition measurement device with non-destructive inspection method for estimation of structural safety of a tunnel lining
KR102176597B1 (en) 2019-02-11 2020-11-09 충남대학교산학협력단 A data acquisition measurement device with non-destructive inspection method for estimation of structural safety of a tunnel lining
JP7231156B2 (en) 2019-09-12 2023-03-01 株式会社ドーコン trolley for moving
JP2021041865A (en) * 2019-09-12 2021-03-18 株式会社ドーコン Mobile dolly
JP7455275B2 (en) 2020-08-13 2024-03-25 プロセク ソシエテ アノニム GPR device with adaptive antenna mount
JP7406296B2 (en) 2020-10-15 2023-12-27 株式会社奥村組 Cleaning equipment and method for cleaning tunnel inner walls
KR102489254B1 (en) * 2020-12-02 2023-01-17 국토안전관리원 Measuring device for tunnel of vehicle
KR20220077458A (en) * 2020-12-02 2022-06-09 국토안전관리원 Measuring device for tunnel of vehicle
KR102339230B1 (en) * 2021-07-01 2021-12-15 주식회사 피오에스이엔씨 An exploration antenna stand in a tunnel containing buffer means
CN115387823A (en) * 2022-08-08 2022-11-25 武汉容晟吉美科技有限公司 Full-automatic steel ring piece lifting device and construction method thereof
KR102539175B1 (en) * 2023-01-12 2023-06-01 정진이엔씨(주) Apparatus for holding ground penetrating radar (gpr) antenna for tunnel exploration
CN116164797B (en) * 2023-04-20 2023-07-14 河北拓森建筑装饰工程有限公司 Road and bridge tunnel lining detection device
CN116164797A (en) * 2023-04-20 2023-05-26 河北拓森建筑装饰工程有限公司 Road and bridge tunnel lining detection device
CN117075104A (en) * 2023-10-16 2023-11-17 山东博工建筑智能化工程有限公司 Tunnel geological radar removes intelligent detection equipment
CN117075104B (en) * 2023-10-16 2024-01-16 山东博工建筑智能化工程有限公司 Tunnel geological radar removes intelligent detection equipment

Also Published As

Publication number Publication date
JP4318115B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4318115B2 (en) Tunnel lining inspection equipment
JP4734120B2 (en) Aircraft body inspection method and apparatus
JP6522145B2 (en) Deployment mechanism for passive normalization of the probe to the surface
CA2975417C (en) Driving device of all-directional automatic weld seam flaw detection instrument and application thereof
JP5490321B2 (en) Device for optically scanning and measuring the surrounding environment
US8054520B2 (en) Space scanner for autonomous mobile device
KR102010341B1 (en) Rail inspection car for railway
CA2111614C (en) Methods and apparatus for centering a log and for supplying a log to be centered
JP4183978B2 (en) Track maintenance device and method for detecting track position
JP2009173373A (en) Conveyor device having lifting function
KR20160084084A (en) Scanning radar apparatus
KR101447068B1 (en) Apparatus manufacturing curved substrate using laser
JP2017143374A (en) Antenna support device
JP5923358B2 (en) Road surface deflection measuring device and measuring method
CN105353778A (en) Automatic attitude adjusting device used for residual stress test
JP4016773B2 (en) Wheel identification information registration support device
IT201800002718A1 (en) SELF-PROPELLED VEHICLE FOR HANDLING SLAB-HOLDER STANDS
JP2008298509A (en) Mobile radiation inspection device
JP2009128100A (en) Ultrasonic flaw detection apparatus, its probe holder, and ultrasonic flaw detection method
JPH09329433A (en) Non-contact alignment measuring device for vehicle wheel
EP1798550B1 (en) Device for inspecting the interior of a material
JP2010071921A (en) Apparatus for testing vehicle wheel suspension
JPS6333081B2 (en)
JP2001201494A (en) Wall-surface inspecting method and device
JPH11173952A (en) Tire testing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term