JPH09329433A - Non-contact alignment measuring device for vehicle wheel - Google Patents

Non-contact alignment measuring device for vehicle wheel

Info

Publication number
JPH09329433A
JPH09329433A JP8170562A JP17056296A JPH09329433A JP H09329433 A JPH09329433 A JP H09329433A JP 8170562 A JP8170562 A JP 8170562A JP 17056296 A JP17056296 A JP 17056296A JP H09329433 A JPH09329433 A JP H09329433A
Authority
JP
Japan
Prior art keywords
vehicle wheel
measuring device
wheel
center
displacement detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8170562A
Other languages
Japanese (ja)
Inventor
Yutaka Fukuda
豊 福田
Toshihiko Chisaki
敏彦 苣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anzen Motor Car Co Ltd
Original Assignee
Anzen Motor Car Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anzen Motor Car Co Ltd filed Critical Anzen Motor Car Co Ltd
Priority to JP8170562A priority Critical patent/JPH09329433A/en
Publication of JPH09329433A publication Critical patent/JPH09329433A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/22Wheels in a state of motion supported on rollers, rotating platform or other structure substantially capable of only one degree of rotational freedom

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact type measuring device for vehicle wheel alignment. which does not involve secular deterioration, enables maintaining the initial accuracy, and allows solving the complication of the installing surface and in handling, by furnishing a laser or ultrasonic sensing element capable of sliding to the left and right and also plumb sliding on the horizontal surface and a plumb surface perpendicular thereto. SOLUTION: A fore-and-aft sliding frame 18 is installed which slides parallel with the horizontal axis Y of a vehicle wheel passing the wheel center O and perpendicular to the vehicle axis, and an up-and-down sliding frame 15b and a left-right sliding frame 15a in the left-right horizontal direction are installed on movable linear bearings of the frame 18. Horizontal displacement sensors 13, 14 are mounted on movable linear bearings of the left-right frame 15a, and a plumb displacement sensor 12 is mounted on the up-and-down sliding frame 15b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両の車輪アライ
メント測定に係わり、特に四輪車両の車輪アライメント
の測定に際し、物理的接触を伴うことなく、アライメン
ト測定を可能とした車両車輪のアライメント測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle wheel alignment measurement, and more particularly to a vehicle wheel alignment measurement apparatus capable of performing alignment measurement without physical contact when measuring the wheel alignment of a four-wheel vehicle. Regarding

【0002】[0002]

【従来の技術】従来より、車両車輪のアライメント測定
には一般に接触子として検出ローラを用い、該検出ロー
ラを当該車輪のタイヤに接触させ、エンコーダやリニア
スケールを用いて測定していた。これら従来の場合、車
輪のホイール径の大小により個々の検出ローラは人手に
より、その位置調整を行なっており、煩雑且つ熟練を必
要とし、過大な測定時間を必要とする等の問題点があっ
た。
2. Description of the Related Art Conventionally, in order to measure alignment of a vehicle wheel, a detection roller is generally used as a contactor, and the detection roller is brought into contact with the tire of the wheel, and an encoder or a linear scale is used for measurement. In these conventional cases, the position of each detection roller is manually adjusted depending on the size of the wheel diameter, which is troublesome and requires skill, and there is a problem that an excessive measurement time is required. .

【0003】そこで、最近、上記問題点を配慮したアラ
イメント検出ローラ装置に係わる提案が、実開平7ー2
919号に開示されているが、この提案によれば、図5
に示すように、車両の車輪のタイヤ11を載置する載置
用ローラ19と、該車輪に対し設けた進退可能手段の先
端に設けられ、タイヤ11の周辺部に当接する検出ロー
ラからなる車輪アライメント装置において、該進退手段
の先端に設けた傾動自在の支持板51を設け、該支持板
に固設したラック付きレール53と、該ラック付きレー
ルに噛合するピニオン52に噛合し平行移動するラック
付き移動部材53aの先端に鉛直方向の検出ローラ54
と、前記ピニオン52に軸支され上下動及び傾動進退す
る支持アーム55、56を設け、該支持アームの先端に
設けた他の二つの検出ローラ57、58と、より構成し
たものである。使用に際しては、タイヤに鉛直方向に当
接する検出ローラ54を手動により上下に調整すると、
ピニオン52が回転し前記移動量の1/2上下し、支持
アーム55、56も連動して傾動及び進退して他の検出
ローラ57、58もともにタイヤ11に当接するように
し、エンコーダないしリニアスケールでアライメントを
測定するようにしてある。
Therefore, recently, a proposal concerning an alignment detecting roller device in consideration of the above problems has been proposed.
However, according to this proposal, as shown in FIG.
As shown in FIG. 3, a wheel including a mounting roller 19 on which the tire 11 of the vehicle wheel is mounted, and a detection roller provided at the tip of the advancing / retreating means provided for the wheel and abutting on the peripheral portion of the tire 11. In the alignment apparatus, a tiltable support plate 51 provided at the tip of the advancing / retreating means is provided, and a rack 53 fixed to the support plate and a rack 53 that meshes with a pinion 52 that meshes with the rack rail move in parallel. A vertical detection roller 54 is attached to the tip of the attached moving member 53a.
And support arms 55 and 56 which are pivotally supported by the pinion 52 and move up and down and tilt forward and backward, and two other detection rollers 57 and 58 provided at the tip of the support arm. In use, if the detection roller 54 that contacts the tire in the vertical direction is manually adjusted up and down,
The pinion 52 rotates to move up and down by ½ of the moving amount, and the supporting arms 55 and 56 also interlock with each other so that the other detection rollers 57 and 58 come into contact with the tire 11 as well. The alignment is measured by.

【0004】上記検出ローラを当該車輪のタイヤに当接
させアライメントを測定する方法では、下記の問題点が
ある。 a、検出ローラにゴム屑等が堆積し長い間継続使用する
と測定データも不正確になる恐れがある。 b、測定中は車両を動かすことは測定器の破損に繋がる
問題がある。
The method of contacting the detection roller with the tire of the wheel to measure the alignment has the following problems. a. Rubber debris or the like may be accumulated on the detection roller and the measured data may be inaccurate if it is continuously used for a long time. b. Moving the vehicle during measurement causes a problem of damage to the measuring device.

【0005】そのため、非接触方式の車輪アライメント
の出現が強く望まれ、本発明者等は未公知の特願平8ー
113072号に添付した明細書に下記提案をしてい
る。該提案は図6に示すように、前輪のタイヤ11の前
縁の外側上方に投射位置を持つレーザ光源65a、65
bを配設し、前輪の中心を通り車両軸芯に平行な傾斜平
坦レーザビーム面70を形成するスリット光と、鉛直方
向平坦レーザビーム面69を形成するスリット光とより
なるクロススリット光を投射する構成としてある。ま
た、傾斜平坦レーザビーム面70よりなるスリット光に
より、タイヤ11の外側の左右側面に形成された水平方
向輝線パターン70a、70bに直面するCCDカメラ
66、67を設け、また、鉛直平坦レーザビーム面69
よりなるスリット光によりタイヤ62の上部側面に形成
された鉛直方向輝線パターン69aに直面するCCDカ
メラ68を設け、水平/鉛直輝線画像を含む電子画像を
得るようにし、該電子画像の画像分析により車輪アライ
メントを演算するようにしたものである。
Therefore, the advent of non-contact type wheel alignment is strongly desired, and the inventors of the present invention propose the following in the specification attached to Japanese Patent Application No. 8-113072, which is not known. As shown in FIG. 6, the proposal proposes laser light sources 65a, 65 having projection positions outside the front edge of the tire 11 of the front wheels.
The cross slit light is formed by arranging b and slit light forming the inclined flat laser beam surface 70 passing through the center of the front wheel and parallel to the vehicle axis, and slit light forming the vertical flat laser beam surface 69. It is configured to do so. Further, CCD cameras 66 and 67 are provided to face the horizontal bright line patterns 70a and 70b formed on the left and right outer sides of the tire 11 by the slit light formed by the inclined flat laser beam surface 70. 69
The CCD camera 68 is provided to face the vertical bright line pattern 69a formed on the upper side surface of the tire 62 by the slit light, and an electronic image including a horizontal / vertical bright line image is obtained, and the wheel is analyzed by image analysis of the electronic image. Alignment is calculated.

【0006】上記提案においては、3個のCCDカメラ
66、67、68の設定位置及び設定方向の精度確立が
必要で、この場合、車種及び形式、タイヤの状況に応じ
細かくその都度正確に設定することは困難且つ煩雑を伴
う問題点がある。
In the above proposal, it is necessary to establish the accuracy of the setting positions and the setting directions of the three CCD cameras 66, 67 and 68. In this case, the setting is made precisely and precisely according to the vehicle type and model and the tire condition. It is difficult and complicated.

【0007】[0007]

【発明が解決しようとする課題】本発明は、予め、水平
面とそれに直交する鉛直面上に左右摺動及び鉛直摺動可
能ないし、鉛直方向を含む鉛直方向に対し左右対称にラ
ジアル方向に摺動可能のレーザないし超音波検出素子を
設け、上記取付け面の煩雑性を解決するようにしたもの
である。そこで、本発明の請求項1、請求項2記載の発
明は、車輪アライメント検出に必要なタイヤ面に3個の
ラジアル方向に位置するようにした変位検出センサをそ
れぞれラジアル方向に摺動可能に設け、取付け及び取り
扱いの簡単で、且つ正確に処理可能の車両車輪の非接触
アライメント測定装置の提供を目的としたものでる。
DISCLOSURE OF THE INVENTION According to the present invention, it is possible in advance to slide horizontally and vertically on a horizontal plane and a vertical plane orthogonal thereto, or to slide in a radial direction symmetrically with respect to a vertical direction including a vertical direction. A possible laser or ultrasonic detecting element is provided to solve the complexity of the mounting surface. Therefore, according to the first and second aspects of the present invention, three displacement detection sensors, which are positioned in the radial direction on the tire surface necessary for wheel alignment detection, are provided slidably in the radial direction. It is an object of the present invention to provide a vehicle wheel non-contact alignment measuring device that is easy to install and handle and that can be processed accurately.

【0008】また、請求項3記載の発明は、請求項2記
載の発明の目的に加え、左右の変位検出センサの摺動機
構に付きより簡略化を図った、車両車輪の非接触アライ
メント測定装置の提供を目的としたものである。
In addition to the object of the invention as set forth in claim 2, the invention as set forth in claim 3 further simplifies the non-contact alignment measuring device for a vehicle wheel in terms of the sliding mechanism of the left and right displacement detection sensors. The purpose is to provide.

【0009】また、請求項4記載の発明は、請求項1、
請求項2記載の発明の目的に加え、変位検出センサを特
定した、車両車輪の非接触アライメント測定装置の提供
を目的としたものである。
The invention according to claim 4 is the same as claim 1,
In addition to the object of the invention described in claim 2, it is an object of the invention to provide a non-contact alignment measuring device for a vehicle wheel in which a displacement detection sensor is specified.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
車両車輪のアライメント測定装置において、車輪の中心
を過り鉛直方向に摺動可能の第1変位検出センサと、前
記中心を通る鉛直中心線に対称にラジアル方向に摺動可
能の二組の第2変位検出センサと、より構成したことを
特徴としたものである。
According to the first aspect of the present invention,
In a vehicle wheel alignment measuring device, a first displacement detection sensor that is slidable in the vertical direction past the center of the wheel and two pairs of second displacement sensors that are slidable in the radial direction symmetrical to a vertical center line passing through the center. It is characterized by comprising a displacement detection sensor.

【0011】また、請求項2記載の発明は、車両車輪の
アライメント測定装置において、車輪の中心を通り鉛直
方向に摺動可能の第1変位検出センサと、前記中心を通
り水平方向に摺動可能左右二組の第2変位検出センサ
と、より構成したことを特徴としたものである。
According to a second aspect of the present invention, in a vehicle wheel alignment measuring apparatus, a first displacement detection sensor is slidable in the vertical direction through the center of the wheel, and a horizontal displacement is possible through the center. It is characterized by comprising two sets of left and right second displacement detection sensors.

【0012】また、請求項3記載の発明は、請求項2記
載の左右二組の第2変位検出センサを、同一摺動素子を
介して同時に摺動可能にした、ことを特徴としたもので
ある。
The invention according to claim 3 is characterized in that the two left and right second displacement detection sensors according to claim 2 are made slidable at the same time through the same sliding element. is there.

【0013】また、請求項4記載の発明は、請求項1、
請求項2記載の第1及び第2変位検出センサを、レーザ
ないし超音波センサよりなるようにしたことを、特徴と
したものである。
The invention according to claim 4 is the same as claim 1,
It is characterized in that the first and second displacement detection sensors described in claim 2 are constituted by a laser or an ultrasonic sensor.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施例の形態を、
図示例と共に説明する。ただし、この実施例に記載され
ている構成部品の寸法、形状、その相対的位置等は特に
特定的な記載がないかぎりは、この発明の範囲をそれに
限定する趣旨ではなく、単なる説明例にすぎない。図1
は本発明の車両車輪の非接触アライメント測定装置の概
略の構成を示す斜視図で、図2は図1の鉛直変位センサ
素子の作動状況を示す図で、図3は図1の検出素子によ
る検出結果に基づくアライメント算出状況の一例を示す
図で、図4は図1に示す測定装置による効率的な測定状
況を示す模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described.
This will be described together with the illustrated example. However, unless otherwise specified, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent. FIG.
2 is a perspective view showing a schematic configuration of a vehicle wheel non-contact alignment measuring apparatus of the present invention, FIG. 2 is a view showing an operating state of the vertical displacement sensor element of FIG. 1, and FIG. FIG. 4 is a diagram showing an example of the alignment calculation situation based on the result, and FIG. 4 is a schematic diagram showing an efficient measurement situation by the measuring device shown in FIG. 1.

【0015】図1に示すように、本発明の車両車輪の非
接触アライメント装置1は、当該の被測定車輪の中心O
を通り車両軸芯に直角の車輪中心水平軸芯Yに平行に前
後方向のY方向に摺動する前後摺動架台18を設け、該
架台の可動リニアベアリング上に前後方向に直角の左右
水平方向のX方向に作動する左右摺動架台15aと鉛直
方向のZ方向に摺動する上下摺動架台15bとを設ける
構成とする。前記左右摺動架台15aの可動リニアベア
リング上には、前記車輪の中心Oを通る水平面によるタ
イヤ側面に対する切り口11b、11aに前記Y方向に
略平行に投射反射できる水平変位検出センサ(第2変位
検出センサ)13、14を設け、アクチュェータ17を
介して、タイヤ側面の前記切り口11a、11bを左右
に往復走査できるようにしてある。また、前記上下摺動
架台15bの可動リニアベアリング上には、車輪の中心
Oを通る鉛直面によるタイヤ面に対する切り口11cに
前記Y方向に略平行に投射反射できる鉛直変位検出セン
サ(第1変位検出センサ)12を設け、アクチュェータ
16を介して、タイヤ側面の上下の間の11cを往復走
査できるようにしてある。上記第1及び第2変位検出セ
ンサには、レーザ光なし超音波センサを使用するように
し、基準面である各鉛直及び水平変位センサ12、1
3、14の取付け位置よりのY方向に相対応するタイヤ
側面の前記切り口11a、11b、11cの出入りの状
況を測定するようにしてある。上記構成により、キャン
バスキャン検出は変位センサ12をアクチュェータ16
を介して作動させて可能にし、トーイン検出は変位セン
サ13、14をアクチュェータ17を介して作動させて
可能にしたものである。
As shown in FIG. 1, the vehicle wheel non-contact alignment apparatus 1 according to the present invention has a center O of the measured wheel.
A front and rear sliding mount 18 that slides in the Y direction in the front-rear direction is provided parallel to the wheel center horizontal axis Y that is perpendicular to the vehicle axis passing through the vehicle. The left and right sliding mounts 15a that operate in the X direction and the up and down sliding mounts 15b that slide in the vertical Z direction are provided. On the movable linear bearing of the left and right sliding base 15a, a horizontal displacement detection sensor (second displacement detection) capable of projecting and reflecting substantially parallel to the Y direction to the cuts 11b and 11a with respect to the tire side surface by the horizontal plane passing through the center O of the wheel. Sensors 13 and 14 are provided so that the cuts 11a and 11b on the side surface of the tire can be reciprocally scanned left and right via an actuator 17. Further, on the movable linear bearing of the vertical sliding base 15b, a vertical displacement detection sensor (first displacement detection) capable of projecting and reflecting substantially parallel to the Y direction to the cut 11c with respect to the tire surface by the vertical plane passing through the center O of the wheel. A sensor 12 is provided so that reciprocal scanning can be performed through the actuator 16 between the upper and lower sides 11c of the tire side surface. As the first and second displacement detection sensors, ultrasonic sensors without laser light are used, and the vertical and horizontal displacement sensors 12 and 1, which are reference planes, are used.
The condition of the entrances and exits of the cuts 11a, 11b, 11c on the tire side surface corresponding to the Y direction from the mounting positions of 3, 14 is measured. With the above-described configuration, the displacement sensor 12 and the actuator 16 are used for detecting the canvas can.
The toe-in detection is made possible by operating the displacement sensors 13 and 14 via the actuator 17.

【0016】次に、下記に被検出面であるタイヤサイド
ウォールの基準面に対する出入りの状況を示す検出結果
を図2により説明する。即ち、タイヤ11の車輪中心O
を通る車輪中心水平軸芯Yに直角の鉛直面上をY方向に
平行の変位検出用投射線が上下に移動できるように、鉛
直変位センサ12が設けられている上下摺動架台15b
の鉛直摺動面を対応させ、図に示すように上下Z方向に
変位センサを12を摺動させ、タイヤのサイドウォール
の変位を測定する。その検出結果は、図3(A)に示す
ようになり、センサの摺動位置が上部より下降する摺動
位置に対する出力電圧の変化で変位量を表すようにして
ある。つまり、変位センサ12を上より下方へ摺動させ
レーザ光ないし超音波を操作させれば、サイドウォール
の最も出張った凸部を点Pで及び、極大値部を点Qで示
す出力グラフを得ることができる。該グラフで示される
最大値を使用して車輪アライメントを検出する。
Next, the detection results showing the condition of the tire sidewall, which is the surface to be detected, going in and out of the reference surface will be described below with reference to FIG. That is, the wheel center O of the tire 11
A vertical slide base 15b provided with a vertical displacement sensor 12 so that a displacement detection projection line parallel to the Y direction can move up and down on a vertical plane perpendicular to the wheel center horizontal axis Y passing through.
The displacement sensor 12 is slid in the vertical Z direction as shown in FIG. The detection result is as shown in FIG. 3A, and the amount of displacement is represented by the change in the output voltage with respect to the sliding position where the sliding position of the sensor descends from the upper part. That is, when the displacement sensor 12 is slid downward from above and the laser beam or the ultrasonic wave is operated, an output graph showing the most traveled convex portion of the sidewall at the point P and the maximum value portion at the point Q is obtained. be able to. The wheel alignment is detected using the maximum value shown in the graph.

【0017】例えば車輪のトーイン及びキャンバ検出に
は、図1に示す変位センサ12、13、14を使用し、
図3(B)には前記車輪中心水平軸芯Yを持つ水平面に
よるタイヤ裁断切り口11a、11bを含む裁断面より
切り口11aを見る図を示してある。センサ12、1
3、14の投射位置は車輪中心Oを通る車輪中心水平軸
芯Yに直角で中心Oより適当位置に設定した鉛直基準面
上にあり、a、b、cを、e、fを下記値の対応値とす
る。 a、b、e; センサ13、14の走査により得られ
た左右のタイヤ切り口11a、11b、11cのそれぞ
れの最大出っ張り位置の前記基準面に対する距離 c; 前記切り口11a、11bの最大出っ
張り位置のX方向の間隔 f; 基準面に対する前記切り口11a、1
1bの最大出っ張り位置を結ぶ線と前記Y軸との交点と
の間の距離 トーイン角=Arctan(a−b)/c キャンバ角=Arctan(fーe)×2/c を得る。
For example, the displacement sensors 12, 13 and 14 shown in FIG.
FIG. 3B shows a view of the cut 11a from a cut surface including the tire cut cuts 11a and 11b on a horizontal plane having the wheel center horizontal axis Y. Sensors 12, 1
The projection positions of 3 and 14 are on the vertical reference plane set at an appropriate position from the center O at a right angle to the wheel center horizontal axis Y passing through the wheel center O, and a, b and c, e and f are given by the following values. Use the corresponding value. a, b, e; distances of the maximum protruding positions of the left and right tire cutouts 11a, 11b, 11c obtained by scanning of the sensors 13, 14 with respect to the reference plane c; X of the maximum protruding position of the cutouts 11a, 11b Interval f in the direction f; the cuts 11a with respect to the reference plane, 1
The distance between the line connecting the maximum protruding positions of 1b and the intersection of the Y-axis: Toe-in angle = Arctan (ab) / c Camber angle = Arctan (fe) × 2 / c

【0018】上記トーイン検出に見るように、トーイン
検出用センサ13、14による同時検出点の位置は、常
にY軸を通る鉛直面に対称位置にあることが必要であ
り、キャンバ検出用センサ12の走査位置はY軸を通る
鉛直面上にあることが必要で、変位センサ12、13、
14のタイヤサイドウォール上の走査位置は図1に示す
位置に限定され図3(C)に示す(a)、(b)、
(c)場合でも許容される。
As can be seen from the toe-in detection, the positions of the simultaneous detection points by the toe-in detection sensors 13 and 14 need to be always symmetrical with respect to the vertical plane passing through the Y-axis, and the camber detection sensor 12 has a position. The scanning position must be on the vertical plane passing through the Y-axis, and the displacement sensors 12, 13,
The scanning position on the tire sidewall of No. 14 is limited to the position shown in FIG. 1, and is shown in FIG. 3 (C) (a), (b),
Even in case (c), it is acceptable.

【0019】本発明の車両車輪の被接触アライメント測
定装置の使用に際しては、図4(A)に示すように、被
検出タイヤ11を駆動ローラ19上に載置させ、さらに
前記したよう鉛直変位センサ12及び水平変位センサ1
3、14の停止中のタイヤウォール上の走査線位置を太
い実線で示すように設定する。ついで所要適当回転速度
で矢印方向に回転させる。この場合、各センサはタイヤ
サイドウォール面上を(1)〜(12)の2点鎖線に示
す軌跡を走査し、同図(B)に示す検出結果を得、
(1)〜(12)のそれぞれのピーク値をホールドし
て、それの最大出っ張り値の平均値よりアライメント計
算ができるようにしている。
When the contact alignment measuring device for a vehicle wheel according to the present invention is used, as shown in FIG. 4A, the tire 11 to be detected is placed on the driving roller 19 and the vertical displacement sensor as described above. 12 and horizontal displacement sensor 1
The scanning line positions on the stopped tire wall 3 and 14 are set as shown by the thick solid line. Then, it is rotated in the direction of the arrow at the required appropriate rotation speed. In this case, each sensor scans the locus indicated by the two-dot chain line (1) to (12) on the tire sidewall surface to obtain the detection result shown in FIG.
Each of the peak values of (1) to (12) is held, and the alignment can be calculated from the average value of the maximum protrusion values.

【0020】[0020]

【発明の効果】上記構成により、従来の非接触式に比較
して取付けが簡単で設備費も低コストで、使用に際して
は経年劣化が少なく、故障が少なく、初期精度の維持が
可能である等の効果を持つ。
With the above construction, the installation is simpler than the conventional non-contact type, the equipment cost is low, there is little deterioration over time in use, there are few failures, and the initial accuracy can be maintained. Has the effect of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の車両車輪の非接触アライメント測定装
置の概略の構成を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of a vehicle wheel non-contact alignment measuring apparatus of the present invention.

【図2】図1の測定装置により、車軸の平行鉛直面に対
するタイヤサイドウォール面の起伏を検出する検出状況
を示す図である。
FIG. 2 is a diagram showing a detection situation in which undulations of a tire sidewall surface with respect to a parallel vertical plane of an axle are detected by the measuring device of FIG.

【図3】図2の検出操作により得られた測定結果と該結
果によりトーイン及びキャンバを算出する図である。 (A);測定結果を示す出力グラフで、 (B);トーイン及びキャンバ算出図で、 (C);検出センサの検出のためのタイヤサイドウォー
ル面上の走査位置を示す図である。
3A and 3B are diagrams showing a measurement result obtained by the detection operation of FIG. 2 and calculating toe-in and camber based on the measurement result. (A); Output graph showing measurement results; (B); Toe-in and camber calculation diagram; (C); Diagram showing scanning positions on the tire sidewall surface for detection by the detection sensor.

【図4】図1の測定装置を実際に使用する状況を示す図
で、 (A);測定状況を示す図で、 (B);上記測定による測定データを示す図である。
FIG. 4 is a diagram showing a situation in which the measuring apparatus of FIG. 1 is actually used, (A); a diagram showing a measuring situation, and (B); a diagram showing measured data by the above-mentioned measurement.

【図5】従来の接触式アライメント測定装置の概要を示
す正面図である。
FIG. 5 is a front view showing an outline of a conventional contact type alignment measuring device.

【図6】未公知の特願平8ー113072号の明細書記
載の非接触アライメント測定装置の概略の構成を示す図
である。
FIG. 6 is a diagram showing a schematic configuration of a non-contact alignment measuring device described in the specification of Japanese Patent Application No. 8-1132072, which is not known.

【符号の説明】[Explanation of symbols]

1 非接触アライメント装置 10 車輪 11 タイヤ 11a、11b、11c 切り口 12、13、14 変位センサ 15a 左右摺動架台 15b 鉛直摺動架台 18 前後摺動架台 19 駆動ローラ 1 Non-contact Alignment Device 10 Wheels 11 Tires 11a, 11b, 11c Cut Edges 12, 13, 14 Displacement Sensors 15a Left and Right Sliding Mounts 15b Vertical Sliding Mounts 18 Front and Back Sliding Mounts 19 Drive Rollers

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年7月26日[Submission date] July 26, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図5】 [Figure 5]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 FIG. 4

【図6】 FIG. 6

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 車両車輪のアライメント測定装置におい
て、 車輪の中心を通り鉛直方向に摺動可能の第1変位検出セ
ンサと、前記中心を通る鉛直中心線に対称にラジアル方
向に摺動可能の二組の第2変位検出センサと、より構成
したことを特徴とした車両車輪の非接触アライメント測
定装置。
1. An alignment measuring device for a vehicle wheel, comprising: a first displacement detection sensor that is slidable in a vertical direction passing through a center of the wheel, and a first displacement detection sensor that is slidable in a radial direction symmetrical to a vertical centerline passing through the center. A non-contact alignment measuring device for a vehicle wheel, characterized by comprising a pair of second displacement detection sensors.
【請求項2】 車両車輪のアライメント測定装置におい
て、 車輪の中心を通り鉛直方向に摺動可能の第1変位検出セ
ンサと、前記中心を通り水平方向に摺動可能の左右二組
の第2変位検出センサと、より構成したことを特徴とし
た車両車輪の非接触アライメント測定装置。
2. An alignment measuring device for a vehicle wheel, comprising: a first displacement detection sensor slidable in a vertical direction passing through a center of the wheel; and two sets of left and right second displacements slidable in a horizontal direction passing through the center. A non-contact alignment measuring device for a vehicle wheel, characterized by comprising a detection sensor.
【請求項3】 前記左右二組の第2変位検出センサは同
一摺動素子を介して同時に摺動可能にした、ことを特徴
とした請求項2記載の車両車輪の非接触アライメント測
定装置。
3. The non-contact alignment measuring device for a vehicle wheel according to claim 2, wherein the two sets of left and right second displacement detection sensors are made slidable at the same time through the same sliding element.
【請求項4】 前記第1及び第2変位検出センサは、レ
ーザないし超音波センサよりなる、ことを特徴とした請
求項1、請求項2記載の車両車輪の非接触アライメント
測定装置。
4. The non-contact alignment measurement device for a vehicle wheel according to claim 1, wherein the first and second displacement detection sensors are lasers or ultrasonic sensors.
JP8170562A 1996-06-10 1996-06-10 Non-contact alignment measuring device for vehicle wheel Pending JPH09329433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8170562A JPH09329433A (en) 1996-06-10 1996-06-10 Non-contact alignment measuring device for vehicle wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8170562A JPH09329433A (en) 1996-06-10 1996-06-10 Non-contact alignment measuring device for vehicle wheel

Publications (1)

Publication Number Publication Date
JPH09329433A true JPH09329433A (en) 1997-12-22

Family

ID=15907155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8170562A Pending JPH09329433A (en) 1996-06-10 1996-06-10 Non-contact alignment measuring device for vehicle wheel

Country Status (1)

Country Link
JP (1) JPH09329433A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348486A (en) * 1999-02-10 2000-10-04 Anzen Motor Car Non-contact wheel alignment
US6453567B1 (en) 1999-07-16 2002-09-24 Bridgestone Corporation Tire position detecting device and wheel alignment adjusting device
US6460259B1 (en) 1999-07-16 2002-10-08 Bridgestone Corporation Wheel alignment adjusting device
JP2007519937A (en) * 2004-02-03 2007-07-19 ドラッグ タグ ピーティーワイ リミテッド Automobile steering detection device
EP1845337A1 (en) * 2006-04-10 2007-10-17 Snap-on Equipment Srl a unico socio. Apparatus for contactless 3D wheel alignment, system and method therefor
KR100990258B1 (en) * 2008-05-19 2010-10-26 고석진 wheel alignment measuring equipment
JP2016512322A (en) * 2013-03-08 2016-04-25 キース リー Method, system and apparatus for evaluating vehicle wheel condition
JP6381094B1 (en) * 2018-01-30 2018-08-29 株式会社シーパーツ Tire deterioration evaluation system
KR20220165549A (en) * 2021-06-08 2022-12-15 한국자동차연구원 Tire rotation angle measurement device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348486A (en) * 1999-02-10 2000-10-04 Anzen Motor Car Non-contact wheel alignment
GB2348486B (en) * 1999-02-10 2003-10-29 Anzen Motor Car Company Ltd Non-contact wheel alignment measuring method and system
US6453567B1 (en) 1999-07-16 2002-09-24 Bridgestone Corporation Tire position detecting device and wheel alignment adjusting device
US6460259B1 (en) 1999-07-16 2002-10-08 Bridgestone Corporation Wheel alignment adjusting device
JP2007519937A (en) * 2004-02-03 2007-07-19 ドラッグ タグ ピーティーワイ リミテッド Automobile steering detection device
US7746456B2 (en) 2006-04-10 2010-06-29 Snap-On Equipment Srl A Unico Socio Apparatus for contactless 3D wheel alignment, system and method therefor
EP1845337A1 (en) * 2006-04-10 2007-10-17 Snap-on Equipment Srl a unico socio. Apparatus for contactless 3D wheel alignment, system and method therefor
KR100990258B1 (en) * 2008-05-19 2010-10-26 고석진 wheel alignment measuring equipment
JP2016512322A (en) * 2013-03-08 2016-04-25 キース リー Method, system and apparatus for evaluating vehicle wheel condition
JP6381094B1 (en) * 2018-01-30 2018-08-29 株式会社シーパーツ Tire deterioration evaluation system
JP2019132644A (en) * 2018-01-30 2019-08-08 株式会社シーパーツ Tire deterioration evaluation system
WO2019151134A1 (en) * 2018-01-30 2019-08-08 株式会社シーパーツ Tire degradation evaluation system
KR20220165549A (en) * 2021-06-08 2022-12-15 한국자동차연구원 Tire rotation angle measurement device

Similar Documents

Publication Publication Date Title
JP6154001B2 (en) A device for investigating the shape of road surfaces
JPH09329433A (en) Non-contact alignment measuring device for vehicle wheel
JP2006224285A (en) Stage device, gantry-type stage device, and method of controlling stage device
CN102292236A (en) Pantograph height measuring device and calibration method therefor
JP3770505B2 (en) Non-contact alignment measuring device for vehicle wheels
JPH0618224A (en) Method and apparatus for measuring accuracy in assemblage
JPH07208992A (en) Apparatus for measuring alignment and of track of railroad
JPH06229741A (en) Method and apparatus for inspecting transparent planar item
JP2001321832A (en) Bending method and bending system
JP3626888B2 (en) Mask deflection correction mechanism, mask deflection correction method, and pattern formation method in substrate exposure apparatus
JP2680460B2 (en) Angle measuring device for bending machine
JP2624557B2 (en) Angle measuring device for bending machine
JPH08178642A (en) Surveying device for railway
JP4221120B2 (en) Bending angle detection method and plate bending machine
JP3343510B2 (en) Wheel alignment measurement device
KR100891553B1 (en) Display for glass of edge-point detection method using line-scan
JP2682773B2 (en) Inspection device for transparent plate
JP2012098048A (en) Wheel shape calibration tool, calibration method using wheel shape calibration tool
JP2869477B2 (en) Transfer capacity measuring device
JP3703567B2 (en) Angle measuring device and angle measuring method
JPH06246592A (en) Attaching accuracy measuring method
FR2739182A1 (en) Railway track position measuring system using laser beam
JPH07218227A (en) Method and apparatus for measuring sectional shape
RU2037375C1 (en) Device for control of surface defects of hot blank at casting
JPH0633007U (en) Long body ridge line position inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050902