JP2005076120A - Vacuum film-forming apparatus and film-forming method - Google Patents

Vacuum film-forming apparatus and film-forming method Download PDF

Info

Publication number
JP2005076120A
JP2005076120A JP2003312271A JP2003312271A JP2005076120A JP 2005076120 A JP2005076120 A JP 2005076120A JP 2003312271 A JP2003312271 A JP 2003312271A JP 2003312271 A JP2003312271 A JP 2003312271A JP 2005076120 A JP2005076120 A JP 2005076120A
Authority
JP
Japan
Prior art keywords
film
metal roll
vacuum
charged particle
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003312271A
Other languages
Japanese (ja)
Inventor
Ryoji Ishii
良治 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003312271A priority Critical patent/JP2005076120A/en
Publication of JP2005076120A publication Critical patent/JP2005076120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum film-forming apparatus which can easily wind a film substrate, on which a film is to be formed, around a metal roll and can stably form a multilayered film on the surface of the film substrate wound around the metal roll. <P>SOLUTION: The vacuum film-forming apparatus is at least equipped with a part for winding off the long film substrate, a pair of nip rollers for sandwiching the film substrate which has been wound off, the metal roll around which the film substrate is wound, a charged particle-emitting part for charging the film substrate and film-forming parts for forming the film on the surface of the film substrate. Here, the metal roll is located right below the nip rollers, the charged particle-emitting part is located obliquely below the nip rollers, close to the upstream surface in regard to the direction of rotation of the metal roll, and the film-forming parts are located below the metal roll. The charged particle-emitting part is made of a material which emits at least one kind of charged particles which are generated via hollow cathode discharge and accelerated by a voltage higher than -5.0 kV. The vacuum film-forming apparatus is used in a film-forming method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属ロールに巻きつけられたフィルム基材表面に薄膜を形成する為の真空成膜装置及びそれを用いた薄膜の成膜方法に関するものである。   The present invention relates to a vacuum film forming apparatus for forming a thin film on the surface of a film substrate wound around a metal roll, and a thin film forming method using the same.

近年、プラスチック等の基材の表面に薄膜を形成し、各種の機能を持たせた機能性フィルムの開発が盛んに行われている。一般的に真空下で高機能性及び高品質な薄膜を得る方法はよく知られている。その応用分野は幅広く、パッケージ分野ではガスバリア性を付与する薄膜、ディスプレイ分野ではディスプレイ部材などに各種機能性を付与する薄膜などがある。近年、薄膜の多層化や成膜速度の高速化などが盛んに研究開発されてきている。多層膜を得るには単膜に対して成膜ユニット1つに対応させる方式と成膜ユニットの部分に基材を往復させることで得る方式の二通りがある。前者は、基材の動きは最小限であるが、目的の膜数だけの成膜ユニットが必要である。後者は、基材の動きは複雑になるが成膜ユニットは膜の種類分だけ用意し、その部分へ基材を往復させることで成膜ユニットを通過する回数分積層された多層膜が得られ、温度もしくは放電電力を上げると熱負荷が多くなって基材の変形を誘発する恐れがあるが、基材を何度も通過することによって熱負荷を分散することができる。基材を何度も成膜ユニットに通過させるひとつの手段としては、金属ロールに基材を巻きつけて、回転させる方式があり、大がかりな基材の搬送系が不必要で、簡単な装置で多層膜を成膜することができる。しかし、この方式の場合、フィルム基材を金属ロールに張力を維持したまま巻きつけるため、大気中において手作業で粘着テープを用いて固定を行う必要があるなどの欠点を有していた。前記の問題点を改善するべく、薄膜形成時にフィルム基材が冷却ロールから浮き上がらないように、前もって帯電させた後に冷却ロールに巻き付けて強く密着させ、そのフィルム基材上に薄膜を形成させる方法及びその装置が提案されている(例えば、特許文献1参照。)。
特開2002−358633号公報
In recent years, functional films having various functions by forming a thin film on the surface of a substrate such as plastic have been actively developed. In general, a method for obtaining a thin film having high functionality and high quality under vacuum is well known. The field of application is wide. In the package field, there are thin films that impart gas barrier properties, and in the display field, there are thin films that impart various functions to display members. In recent years, research and development has been actively conducted on multilayering of thin films and an increase in film forming speed. There are two methods for obtaining a multilayer film: a method in which a single film corresponds to one film forming unit, and a method in which a base material is reciprocated in a part of the film forming unit. In the former, the movement of the substrate is minimal, but the film forming units corresponding to the target number of films are necessary. In the latter case, the movement of the base material becomes complicated, but the film formation unit is prepared for each type of film, and by reciprocating the base material to that part, a multilayer film laminated as many times as it passes through the film formation unit is obtained. If the temperature or the discharge power is increased, the thermal load increases and the base material may be deformed. However, the thermal load can be dispersed by passing the base material many times. One way to pass the substrate through the film formation unit many times is to wrap the substrate around a metal roll and rotate it, eliminating the need for a large substrate transport system and using a simple device. A multilayer film can be formed. However, in the case of this method, since the film base material is wound around the metal roll while maintaining the tension, there is a disadvantage that it is necessary to fix the film base material manually using an adhesive tape in the atmosphere. In order to improve the above-mentioned problems, a method of forming a thin film on the film base material by winding it around the cooling roll after being charged in advance so that the film base material does not float from the cooling roll during thin film formation, and Such an apparatus has been proposed (see, for example, Patent Document 1).
JP 2002-358633 A

本発明の課題は、薄膜を形成させるフィルム基材を容易に金属ロールに巻き付けることができ、金属ロールに巻き付けたフィルム基材の表面に安定して多層薄膜を形成できる真空成膜装置及びその成膜方法を提供することにある。   An object of the present invention is to provide a vacuum film forming apparatus capable of easily winding a film base material on which a thin film is formed around a metal roll, and capable of forming a multilayer thin film stably on the surface of the film base material wound around the metal roll, and its formation. It is to provide a membrane method.

本発明の請求項1に係る発明は、フィルム基材に薄膜を形成させる真空成膜装置において、長尺状のフィルム基材の巻き出し部と、巻き出されたフィルム基材を両側から挟み込む為の一対のニープロールと、前記ニップロールの真下にフィルム基材を巻き付ける為の金属ロールと、前記ニップロールの斜め下で、金属ロールの回転方向の上流側表面に近接する位置にフィルム基材を帯電させる為の荷電粒子照射部と、前記金属ロールの下にフィルム基材の表面に薄膜を形成させる為の複数の成膜室を備えており、さらに、前記ニップロールと荷電粒子照射部の間にフィルム基材を切断する為のカッターを備えていることを特徴とする真空成膜装置である。   The invention according to claim 1 of the present invention is a vacuum film forming apparatus for forming a thin film on a film substrate, in order to sandwich the unwinding part of the long film substrate and the unwound film substrate from both sides. A pair of kneading rolls, a metal roll for winding a film base directly under the nip roll, and a film base at a position close to the upstream surface in the rotation direction of the metal roll under the nip roll. And a plurality of film forming chambers for forming a thin film on the surface of the film substrate under the metal roll, and the film substrate between the nip roll and the charged particle irradiation unit. It is a vacuum film-forming apparatus provided with the cutter for cutting.

本発明の請求項2に係る発明は、上記請求項1に係る発明において、前記荷電粒子照射部がホローカソード放電によって発生され、−5.0kVより高い電圧で加速された一種類以上の荷電粒子群を照射するものからなることを特徴とする真空成膜装置である。   The invention according to claim 2 of the present invention is the invention according to claim 1, wherein the charged particle irradiation part is generated by hollow cathode discharge and accelerated at a voltage higher than −5.0 kV. It is a vacuum film forming apparatus characterized by comprising a device for irradiating a group.

本発明の請求項3に係る発明は、上記請求項1又は請求項2記載の真空成膜装置を用いて、荷電粒子照射部で帯電させ、金属ロールに巻きつけたフィルム基材の表面に薄膜を形成後、大気に開放させてから薄膜を形成させたフィルムを金属ロールから引き剥がすことを特徴とする成膜方法である。   According to a third aspect of the present invention, a thin film is formed on the surface of a film substrate that is charged by a charged particle irradiation unit and wound around a metal roll using the vacuum film forming apparatus according to the first or second aspect. After the film is formed, the film on which the thin film is formed is peeled off from the metal roll after being opened to the atmosphere.

本発明の真空成膜装置は、真空成膜装置が長尺状のフィルム基材の巻き出し部と、巻き出されたフィルム基材を両側から挟み込む為の一対のニープロールと、前記ニップロールの真下にフィルム基材を巻き付ける為の金属ロールと、前記ニップロールの斜め下で、金属ロールの回転方向の上流側表面に近接する位置にフィルム基材を帯電させる為の荷電粒子照射部と、前記金属ロールの下にフィルム基材の表面に薄膜を形成させる為の複数の成膜部を備えており、さらに、前記ニップロールと荷電粒子照射部の間にフィルム基材を切断する為の切断カッターを備えており、前記荷電粒子照射部がホローカソード放電によって発生され、−5.0kVより高い電圧で加速された一種類以上の荷電粒子群を照射するものからなっており、その真空成膜装置を用いて、荷電粒子照射部で帯電させ、金属ロールに巻きつけたフィルム基材の表面に薄膜を形成後、大気に開放させてから薄膜を形成させたフィルムを金属ロールから引き剥がす方法で成膜するので、フィルム基材と金属ロールの密着が良好で、フィルム基材の表面に安定して薄膜を形成でき、薄膜を形成させたフィルムを容易に金属ロールから引き剥がせる。また、成膜室を複数個設けることにより、フィルム基材への多層薄膜の形成が容易に、かつ、安定して出来る。包装分野、デイスプレイ分野などの各種の機能が求められる分野で広く利用できる。   The vacuum film-forming apparatus of the present invention is a vacuum film-forming apparatus having a long film base unwinding portion, a pair of knee rolls for sandwiching the unwound film base from both sides, and a nip roll just below the nip roll. A metal roll for winding the film base, a charged particle irradiation unit for charging the film base at a position close to the upstream surface in the rotation direction of the metal roll under the nip roll, and the metal roll A plurality of film forming sections for forming a thin film on the surface of the film base are provided below, and a cutting cutter for cutting the film base is provided between the nip roll and the charged particle irradiation section. The charged particle irradiator is formed by irradiating one or more charged particle groups generated by hollow cathode discharge and accelerated at a voltage higher than −5.0 kV, and the vacuum Using a membrane device, a method in which a thin film is formed on the surface of a film substrate that is charged by a charged particle irradiation unit and wound around a metal roll, and then released from the atmosphere and then the film on which the thin film has been formed is peeled off from the metal roll. Therefore, the film base material and the metal roll have good adhesion, a thin film can be stably formed on the surface of the film base material, and the film on which the thin film has been formed can be easily peeled off from the metal roll. Further, by providing a plurality of film forming chambers, it is possible to easily and stably form a multilayer thin film on the film base material. It can be widely used in fields that require various functions such as packaging and display.

本発明の真空成膜装置及びそれを用いた成膜方法を実施の形態に沿って以下に詳細に説明する。図1は本発明の真空成膜装置の概略説明図であり、真空槽(10)内に、長尺状のフィルム基材(11)の巻き出し部(12)、複数のガイドロール(13)、フィルム基材(11)を両側から挟み込む為の一対のニップロール(14a、14b)、前記ニップロール(14a、14b)の真下にフィルム基材(11)を巻き付ける為の金属ロール(15)、前記ニップロール(14a、14b)の斜め下で、金属ロール(15)の回転方向の上流側表面に近接する位置に、巻き出されたフィルム基材(11)を帯電させる為の荷電粒子照射部(16)、前記金属ロール(15)の下にフィルム基材(11)の表面に薄膜を形成させる為の複数の成膜室(17a、17b)を備えており、さらに、前記ニップロール(14a)と荷電粒子照射部(16)の間にフィルム基材(11)を切断する為のカッター(19)を備えている。なお、前記成膜室(17a、17b)にはそれぞれ開閉シャッター(18a、18b)を有している。   A vacuum film forming apparatus and a film forming method using the same according to the present invention will be described in detail below according to embodiments. FIG. 1 is a schematic explanatory view of a vacuum film forming apparatus according to the present invention. In a vacuum chamber (10), an unwinding part (12) of a long film substrate (11) and a plurality of guide rolls (13) A pair of nip rolls (14a, 14b) for sandwiching the film base material (11) from both sides, a metal roll (15) for winding the film base material (11) directly under the nip rolls (14a, 14b), and the nip roll A charged particle irradiation unit (16) for charging the unwound film substrate (11) at a position close to the upstream surface in the rotation direction of the metal roll (15), obliquely below (14a, 14b). A plurality of film forming chambers (17a, 17b) for forming a thin film on the surface of the film base (11) under the metal roll (15), and further, the nip roll (14a) and charged particles Irradiation And a cutter (19) for cutting the film substrate (11) between (16). The film formation chambers (17a, 17b) have opening / closing shutters (18a, 18b), respectively.

前記フィルム基材(11)は、特に限定しないが、例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリエステル系(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド系(ナイロンー6、ナイロンー66等)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネイト、ポリエーテルスルホン、アクリル、セルロース系(トリアセチルセルロース、ジアセチルセルロース等)などのフィルムが使用でき、フィルムの厚みは25〜200μmが好ましい。   The film substrate (11) is not particularly limited, and examples thereof include polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene, Films such as ethylene vinyl alcohol, polyvinyl chloride, polyimide, polyvinyl alcohol, polycarbonate, polyether sulfone, acrylic, and cellulose (triacetyl cellulose, diacetyl cellulose, etc.) can be used, and the thickness of the film is preferably 25 to 200 μm.

前記ニップロール(14a、14b)の表面はウレタンゴムなどの絶縁性材料からなっている。   The surface of the nip roll (14a, 14b) is made of an insulating material such as urethane rubber.

前記金属ロール(15)は、真空成膜装置の構成上アース電位となる場合が多く、荷電粒子をフィルム基材(11)に照射するとフィルム基材(11)は帯電し、アース電位上の金属ロール(15)と密着する。荷電粒子照射部(16)での荷電粒子の発生方法は特
に限定はされないが、フィルム基材(11)の全幅へ均等に帯電させることで金属ロール(15)に巻きつける際のシワ防止になるため、フィルム基材(11)の全幅に照射できるような荷電粒子の発生方法が望ましい。その一例として、電子ビームを用いて広範囲に帯電させる方式に関して説明すると、単独に存在する原子や分子から電子を切り離してプラズマを作り、そこから電子の放出を行う方法と、金属のような固体表面からの電子の発生方法がある。前者の方法はプラズマ空間から電子を引き出すため、その空間の引き出す範囲でビームが形成できる利点があるので、比較的大面積に向けての電子ビームを使用する時は有用な方法である。
The metal roll (15) often has a ground potential due to the structure of the vacuum film-forming apparatus. When the charged particles are irradiated onto the film substrate (11), the film substrate (11) is charged, and the metal on the ground potential. Adheres closely to the roll (15). Although the method for generating charged particles in the charged particle irradiation unit (16) is not particularly limited, it is possible to prevent wrinkling at the time of winding around the metal roll (15) by uniformly charging the entire width of the film base (11). Therefore, a method for generating charged particles that can irradiate the entire width of the film substrate (11) is desirable. As an example, a method for charging a wide range using an electron beam will be described. A method of generating plasma by separating electrons from atoms and molecules that exist alone and emitting electrons from them, and a solid surface such as metal There is a method of generating electrons from. Since the former method draws electrons from the plasma space, it has an advantage that a beam can be formed within the drawing range of the space. Therefore, the former method is useful when an electron beam directed to a relatively large area is used.

なお、前記金属ロール(15)に密着したフィルム基材(11)を剥がすときは、圧力を適正にすることで容易に行える。圧力を適正化することはパッシェンの法則V=f(p×d)(Vは放電開始電圧[ボルト]、fは圧力p[Pa]と放電間距離d[m]で決まる関数)の放電開始電圧Vを低下することができる。この放電開始電圧Vは圧力pと放電間距離dの積で最小値を取る法則であるので、放電間距離dが一定であると仮定するなら、圧力pだけで放電開始電圧Vが決定される。この放電開始電圧を低下することで放電が容易に発生し、フィルム基材(11)に帯電した静電気エネルギーを放出することができる。また、大気にさらすことで空気中の水分等の影響で帯電していた静電エネルギーを放出することができる。   In addition, when peeling the film base material (11) closely_contact | adhered to the said metal roll (15), it can carry out easily by making a pressure appropriate. To optimize the pressure, Paschen's law V = f (p × d) (V is the discharge start voltage [volt], f is a function determined by the pressure p [Pa] and the inter-discharge distance d [m]). The voltage V can be reduced. Since the discharge start voltage V is a law that takes a minimum value as a product of the pressure p and the inter-discharge distance d, the discharge start voltage V is determined only by the pressure p if it is assumed that the inter-discharge distance d is constant. . By reducing this discharge start voltage, discharge is easily generated, and electrostatic energy charged in the film base (11) can be released. Moreover, the electrostatic energy which was charged by the influence of the water | moisture content in air etc. can be discharge | released by exposing to air | atmosphere.

図2(a)は荷電粒子照射部の一実施例の斜視図であり、金属箱(20)の側面に荷電粒子群を照射する為のスリット(21)を有し、箱の中に電極(22)を有しており、(b)は(a)の荷電粒子照射部の断面説明図であり、ステンレス(SUS316)製の金属箱(20)の中にステンレス(SUS316)からなる電極(22)を有しており、その電極(22)に対向した面にスリット(21)が設けられている。前記スリット(21)の隙間は1.5mmが好ましい。前記構造にすることにより、大きな面積での電子ビームを得ることができる。金属箱(20)内に放電ガスとしてアルゴンなどの放電しやすい気体を導入し、電極(22)に直流電源(23)から高電圧を加えることで金属箱(20)内にプラズマを発生させる。プラズマを発生させる電極(22)は金属箱(20)内を均一なプラズマ状態とするのが好ましいため、金属箱(20)側面の大きさに近似することが好ましい。また、この電極(22)が中空状になって、ホローカソード放電を行えるようにすると、比較的容易に高密度のプラズマが得られ、より好ましい。スリット(21)から荷電粒子を取り出してフィルム基材に照射し、帯電させることができる。荷電粒子は質量の軽い電子と重いイオンとに大別でき、電圧加速で荷電粒子を引き出すときには質量の軽い電子の方が比較的取り扱いやすい。電子をビームとして引き出したいなら、電極に負の電位が加わるような直流電圧をかければよい。スリット(21)から運動量をもった電子を放出するには高い電圧による加速が必要となるので、電圧は−5.0kv以上のものが好ましい。金属箱(20)はアースと同電位なので、電子は電極(22)から金属箱(20)の方向に加速し、その面にスリット(21)があるなら、そのスリット(21)の隙間から加速された電子を引き出すことができる。金属箱、電極、スリットで構成された荷電粒子照射部で、電子照射できる面積がほぼ決まる。目的とするフィルム基材(11)の面幅と同じ大きさの電極(22)およびスリット(21)が具備されていることが好ましい。電極(22)、金属箱(20)はステンレス製に限定されるものではなく、真空中の使用に耐えられる金属、例えばチタン、アルミニウムなども用いることができる。   FIG. 2A is a perspective view of an embodiment of the charged particle irradiation unit, which has a slit (21) for irradiating a charged particle group on the side surface of the metal box (20), and an electrode ( (B) is a cross-sectional explanatory view of the charged particle irradiation part of (a), and an electrode (22) made of stainless steel (SUS316) in a metal box (20) made of stainless steel (SUS316). ), And a slit (21) is provided on the surface facing the electrode (22). The gap of the slit (21) is preferably 1.5 mm. With this structure, an electron beam with a large area can be obtained. A gas that is easily discharged, such as argon, is introduced into the metal box (20) as a discharge gas, and plasma is generated in the metal box (20) by applying a high voltage from the DC power source (23) to the electrode (22). Since it is preferable that the electrode (22) for generating plasma has a uniform plasma state in the metal box (20), it is preferable to approximate the size of the side surface of the metal box (20). In addition, it is more preferable that the electrode (22) is hollow so that hollow cathode discharge can be performed, because high-density plasma can be obtained relatively easily. Charged particles can be taken out from the slit (21) and irradiated onto the film substrate to be charged. Charged particles can be broadly classified into electrons with a light mass and heavy ions, and electrons with a light mass are relatively easy to handle when extracting charged particles by voltage acceleration. If it is desired to extract electrons as a beam, a DC voltage that applies a negative potential to the electrode may be applied. In order to emit electrons having momentum from the slit (21), acceleration by a high voltage is required, so that the voltage is preferably −5.0 kv or more. Since the metal box (20) has the same potential as the ground, the electrons are accelerated from the electrode (22) to the metal box (20), and if there is a slit (21) on the surface, the electrons are accelerated from the gap of the slit (21). The extracted electrons can be extracted. An area where electrons can be irradiated is substantially determined by a charged particle irradiation unit including a metal box, an electrode, and a slit. It is preferable that the electrode (22) and the slit (21) having the same size as the surface width of the target film substrate (11) are provided. The electrodes (22) and the metal box (20) are not limited to stainless steel, and metals that can withstand use in vacuum, such as titanium and aluminum, can also be used.

前記成膜室(17a、17b)は、一般的に知られている真空蒸着法、スパッタリング法、CVD法等の真空成膜プロセスが実施できるようになっている。例えば、真空蒸着法は金属や無機化合物、有機化合物等を蒸気化し成膜する方法で、加熱方式によって抵抗加熱方式、電子ビーム加熱方式、誘導加熱方式に大まかに分けられ、真空環境内でのプロセスに関して、反応性蒸着、プラズマアシスト蒸着、イオンビームアシスト蒸着、イオンプレーティングなどが挙げられるが、いかなる方式でも構わない。これらを組み合わせるこ
とで無機酸化物の薄膜などが比較的容易に成膜することができる。
The film forming chambers (17a, 17b) can perform generally known vacuum film forming processes such as vacuum deposition, sputtering, and CVD. For example, the vacuum deposition method is a method of vaporizing a metal, an inorganic compound, an organic compound, etc., and is roughly divided into a resistance heating method, an electron beam heating method, and an induction heating method depending on the heating method, and a process in a vacuum environment. In this regard, reactive vapor deposition, plasma assisted vapor deposition, ion beam assisted vapor deposition, ion plating and the like can be mentioned, but any method may be used. By combining these, an inorganic oxide thin film or the like can be formed relatively easily.

また、スパッタリング法はプラズマの発生方法により、直流放電方式、高周波放電方式、パルス放電方式、ターゲットの電極に磁石を配置したマグネトロン電極方式など挙げられる。   Sputtering methods include a DC discharge method, a high frequency discharge method, a pulse discharge method, and a magnetron electrode method in which a magnet is disposed on a target electrode, depending on the plasma generation method.

また、CVD法(Chemical Vapor Deposition法)も熱CVD法、プラズマCVD法などがあるがこれらの方式に限らず、いかなる方式でも構わない。   Further, the CVD method (Chemical Vapor Deposition method) includes a thermal CVD method and a plasma CVD method, but is not limited to these methods, and any method may be used.

前記各種の真空成膜法では、成膜条件であるガス圧力、ガス導入量、ガス導入位置、イオンビームパワー、プラズマ電力、ガス種などの変化によって膜の物性が大きく変化するため、方式の異なる成膜を同一の真空槽内で行う場合には、1つの成膜プロセスに対し区分けされた真空室を各々設けて、真空排気をそれぞれ独立して行うことが好ましい。なぜなら、例えば、真空蒸着法での最適な圧力とスパッタリング法での最適な圧力が異なることが多いため、成膜条件の最適化が同時に行うためには必要になると考えられるからである。   In the various vacuum film forming methods, the physical properties of the film greatly change depending on changes in film pressure, such as gas pressure, gas introduction amount, gas introduction position, ion beam power, plasma power, and gas type. In the case where film formation is performed in the same vacuum chamber, it is preferable to provide vacuum chambers divided for one film formation process and perform vacuum evacuation independently. This is because, for example, the optimum pressure in the vacuum deposition method and the optimum pressure in the sputtering method are often different, so that it is considered necessary to optimize the film forming conditions at the same time.

本発明の真空成膜装置を用いて、薄膜を形成させる成膜方法について、以下に実施例に沿って説明する。   A film forming method for forming a thin film using the vacuum film forming apparatus of the present invention will be described below with reference to examples.

図1に示す真空成膜装置を用いて、真空槽(10)内を真空ポンプ(図示せず)によって圧力5.0×10-2Pa以下にする。フィルム基材(11)として幅500mm、厚さ25μmのPET(ポリエチレンテレフタレート)フィルムを使用し、加速電圧10kvで8kwの直流電源(23)を用いて荷電粒子照射部(16)から電子ビームを発生させ、前記PETフィルムを直径750mmの金属ロール(15)上を2m/minで走行させながら、電子ビームを照射し一周以上巻いた時点で、ニップロール(14a、14b)によりPETフィルムを固定した後にカッター(19)を用いてPETフィルムを切断した。この状態で成膜有効幅400mmである銅のマグネトロンスパッタ成膜ユニットを有する成膜室(17a)にアルゴンガスを導入し、圧力2.0Pa、電極面積450mm×100mmの銅ターゲットに2.0kwの直流電源でプラズマを発生させ、プレスパッタ終了後に開閉シャッター(18a)を開けて成膜を開始した。同様に、プラズマCVD成膜ユニットを有する成膜室(17b)にアルゴン(Ar)ガスと酸素(O2)ガスを(Ar)/(O2)=4/1の割合で混合したガスとヒドロメチルジシロキサンを80℃のヒーターによって加熱したモノマーガスを導入して、圧力が3.5Paになるように設定した。使用した電極はステンレス製(SUS316)で400×100mmのもので、この電極には高周波電源を接続し、周波数13.56MHz、電力1.5kwに設定した。成膜室(17b)の高周波電源の電力供給を開始し、PETフィルムに形成された銅膜上にSiO2 膜をCVD法で成膜し、積層した。引き続き、成膜開始から半周した時点で成膜室(17b)の高周波電力の供給を停止して、銅膜だけが形成されているフィルムを作成した。その後、真空槽内(10)を大気開放して薄膜を形成させたフィルムを取り出し、銅膜上にSiO2 膜が積層されたフィルムと銅膜だけが形成されたフィルムを得た。 Using the vacuum film-forming apparatus shown in FIG. 1, the pressure in the vacuum chamber (10) is reduced to 5.0 × 10 −2 Pa or less by a vacuum pump (not shown). Using a PET (polyethylene terephthalate) film having a width of 500 mm and a thickness of 25 μm as the film substrate (11), an electron beam is generated from the charged particle irradiation unit (16) using an 8 kw DC power source (23) at an acceleration voltage of 10 kv. When the PET film was run on a metal roll (15) having a diameter of 750 mm at 2 m / min and wound with an electron beam for more than one turn, the PET film was fixed by a nip roll (14a, 14b) and then a cutter. The PET film was cut using (19). In this state, argon gas was introduced into a film formation chamber (17a) having a copper magnetron sputtering film formation unit having a film formation effective width of 400 mm, and a pressure of 2.0 kW was applied to a copper target having a pressure of 2.0 Pa and an electrode area of 450 mm × 100 mm. Plasma was generated by a direct current power source, and after pre-sputtering, the opening / closing shutter (18a) was opened to start film formation. Similarly, a gas mixed with argon (Ar) gas and oxygen (O 2 ) gas in a ratio of (Ar) / (O 2 ) = 4/1 in a film forming chamber (17b) having a plasma CVD film forming unit and hydro A monomer gas obtained by heating methyldisiloxane with a heater at 80 ° C. was introduced, and the pressure was set to 3.5 Pa. The electrode used was made of stainless steel (SUS316) and 400 × 100 mm. A high frequency power source was connected to this electrode, and the frequency was set to 13.56 MHz and the power was set to 1.5 kw. The power supply of the high-frequency power source in the film formation chamber (17b) was started, and a SiO 2 film was formed on the copper film formed on the PET film by the CVD method and laminated. Subsequently, the supply of high-frequency power in the film formation chamber (17b) was stopped at a point of half a circle from the start of film formation, and a film in which only a copper film was formed was produced. Thereafter, the inside of the vacuum chamber (10) was opened to the atmosphere to take out a film on which a thin film was formed, and a film in which only a copper film and a film in which a SiO 2 film was laminated on a copper film was obtained.

上記実施例1で得た銅膜上にSiO2膜が積層されているフィルムの電気抵抗値を測定した結果、その測定値は2MΩ/cm2以上であった。銅膜のみが形成されたフィルムの電気抵抗値は15Ω/cm2以下であるので、上記電気抵抗の測定結果からフィルム基材に銅膜とSiO2膜が良好に積層されていることが判明した。 As a result of measuring the electric resistance value of the film in which the SiO 2 film was laminated on the copper film obtained in Example 1, the measured value was 2 MΩ / cm 2 or more. Since the electric resistance value of the film on which only the copper film is formed is 15 Ω / cm 2 or less, it was found from the measurement result of the electric resistance that the copper film and the SiO 2 film were satisfactorily laminated on the film substrate. .

本発明の真空成膜装置の一実施例の概要説明図である。1 is a schematic explanatory diagram of an embodiment of a vacuum film forming apparatus of the present invention. (a)は荷電粒子照射部の一実施例の斜視図であり、(b)は(a)の荷電粒子照射部の断面説明図である。(A) is a perspective view of one Example of a charged particle irradiation part, (b) is sectional explanatory drawing of the charged particle irradiation part of (a).

符号の説明Explanation of symbols

10…真空槽
11…フィルム基材
12…巻き出し部
13…ガイドロール
14a,14b…ニップロール
15…金属ロール
16…荷電粒子照射部
17a,17b…成膜室
18a,18b…開閉シャッター
19…カッター
20…金属箱
21…スリット
22…電極
23…直流電源
DESCRIPTION OF SYMBOLS 10 ... Vacuum tank 11 ... Film base material 12 ... Unwinding part 13 ... Guide roll 14a, 14b ... Nip roll 15 ... Metal roll 16 ... Charged particle irradiation part 17a, 17b ... Deposition chamber 18a, 18b ... Opening / closing shutter 19 ... Cutter 20 ... Metal box 21 ... Slit 22 ... Electrode 23 ... DC power supply

Claims (3)

フィルム基材に薄膜を形成させる真空成膜装置において、長尺状のフィルム基材の巻き出し部と、巻き出されたフィルム基材を両側から挟み込む為の一対のニープロールと、前記ニップロールの真下にフィルム基材を巻き付ける為の金属ロールと、前記ニップロールの斜め下で、金属ロールの回転方向の上流側表面に近接する位置にフィルム基材を帯電させる為の荷電粒子照射部と、前記金属ロールの下にフィルム基材の表面に薄膜を形成させる為の複数の成膜室を備えており、さらに、前記ニップロールと荷電粒子照射部の間にフィルム基材を切断する為のカッターを備えていることを特徴とする真空成膜装置。   In a vacuum film forming apparatus for forming a thin film on a film substrate, a long film substrate unwinding portion, a pair of knee rolls for sandwiching the unwound film substrate from both sides, and a position immediately below the nip roll A metal roll for winding the film base, a charged particle irradiation unit for charging the film base at a position close to the upstream surface in the rotation direction of the metal roll under the nip roll, and the metal roll A plurality of film forming chambers for forming a thin film on the surface of the film base material are provided below, and a cutter for cutting the film base material is provided between the nip roll and the charged particle irradiation unit. A vacuum film forming apparatus characterized by 前記荷電粒子照射部がホローカソード放電によって発生され、−5.0kVより高い電圧で加速された一種類以上の荷電粒子群を照射するものからなることを特徴とする請求項1記載の真空成膜装置。   2. The vacuum film formation according to claim 1, wherein the charged particle irradiation unit is formed by irradiating one or more kinds of charged particle groups generated by hollow cathode discharge and accelerated at a voltage higher than −5.0 kV. apparatus. 請求項1又は請求項2記載の真空成膜装置を用いて、荷電粒子照射部で帯電させた後に金属ロールに巻きつけたフィルム基材の表面に薄膜を形成後、大気に開放させてから薄膜を形成させたフィルムを金属ロールから引き剥がすことを特徴とする成膜方法。   A thin film is formed on the surface of a film substrate wound around a metal roll after being charged by a charged particle irradiation unit using the vacuum film forming apparatus according to claim 1 or 2, and then opened to the atmosphere before being thinned. The film-forming method characterized by peeling the film which formed this from the metal roll.
JP2003312271A 2003-09-04 2003-09-04 Vacuum film-forming apparatus and film-forming method Pending JP2005076120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312271A JP2005076120A (en) 2003-09-04 2003-09-04 Vacuum film-forming apparatus and film-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312271A JP2005076120A (en) 2003-09-04 2003-09-04 Vacuum film-forming apparatus and film-forming method

Publications (1)

Publication Number Publication Date
JP2005076120A true JP2005076120A (en) 2005-03-24

Family

ID=34413571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312271A Pending JP2005076120A (en) 2003-09-04 2003-09-04 Vacuum film-forming apparatus and film-forming method

Country Status (1)

Country Link
JP (1) JP2005076120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248266A (en) * 2007-03-29 2008-10-16 Toray Ind Inc Apparatus for depositing thin film on sheet, and manufacturing method of sheet with thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248266A (en) * 2007-03-29 2008-10-16 Toray Ind Inc Apparatus for depositing thin film on sheet, and manufacturing method of sheet with thin film

Similar Documents

Publication Publication Date Title
US11680322B2 (en) Method for forming a laminated film on a substrate
WO2014050951A1 (en) Transparent vapor-deposited film
JP4516304B2 (en) Winding type vacuum deposition method and winding type vacuum deposition apparatus
JP3795518B2 (en) Winding type vacuum deposition apparatus and winding type vacuum deposition method
JP5317162B2 (en) Plasma apparatus, plasma processing apparatus and plasma processing method
CN106893134B (en) Method for processing flexible substrate
JP5056114B2 (en) Sheet thin film forming apparatus and method for manufacturing sheet with thin film
JP2002532828A (en) Array of hollow cathodes for plasma generation
JPH07109571A (en) Electron-beam continuous vapor deposition device
JP6413832B2 (en) Sheet thin film forming apparatus and method for manufacturing sheet with thin film
JP2768369B2 (en) Evaporated film
KR100646613B1 (en) Multilayer film and method of manufacturing the same
JP2005076120A (en) Vacuum film-forming apparatus and film-forming method
JP2007297712A (en) Metallization through thin seed layer deposited using plasma
JP2021513004A (en) Deposition device, method of coating flexible substrate, and flexible substrate with coating
JP2022132500A (en) Film deposition apparatus and film deposition method
JP2008075164A (en) Coiling type vacuum vapor deposition method and system
KR20040031719A (en) Continuous surface-treating apparatus for film shape polymer and continuous surface-treating method thereof
JP2017160465A (en) Device for charging and closely contacting sheet, vacuum apparatus for depositing film on sheet, and method for manufacturing sheet having thin film
JP4161607B2 (en) Retractable electron beam vacuum evaporation system
JP2013237897A (en) Vacuum film deposition system, gas barrier film, and laminate with gas barrier property
TW200304498A (en) Method and apparatus for manufacturing thin film
JP3413857B2 (en) Method for producing metal oxide deposited film
JP2015028196A (en) Method of producing laminate
JP2004002961A (en) Thin film deposition method and thin film deposition system by plasma cvd method