JP2005074377A - Method for producing metal oxide catalyst - Google Patents

Method for producing metal oxide catalyst Download PDF

Info

Publication number
JP2005074377A
JP2005074377A JP2003310842A JP2003310842A JP2005074377A JP 2005074377 A JP2005074377 A JP 2005074377A JP 2003310842 A JP2003310842 A JP 2003310842A JP 2003310842 A JP2003310842 A JP 2003310842A JP 2005074377 A JP2005074377 A JP 2005074377A
Authority
JP
Japan
Prior art keywords
metal
catalyst
compound
metal oxide
propane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003310842A
Other languages
Japanese (ja)
Other versions
JP4218471B2 (en
Inventor
Shinrin To
新林 屠
Yuichi Sumita
勇一 住田
Naomasa Furuta
尚正 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2003310842A priority Critical patent/JP4218471B2/en
Publication of JP2005074377A publication Critical patent/JP2005074377A/en
Application granted granted Critical
Publication of JP4218471B2 publication Critical patent/JP4218471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a catalyst which is used in the production reaction of acrylic acid by the air oxidation of propane or in the production reaction of acrylonitrile by the ammoxidation of propane. <P>SOLUTION: In a method for producing a metal oxide, a metal B compound (1), ammonia water (2) containing ammonia in at least 0.4 mole ratio to the metal B, and nitric acid or ammonium nitrate (3) containing nitrate ions in at least 2.0 mole ratio to the metal B are added into an aqueous solution or dispersion obtained by heating a molybdenum compound, a vanadium compound, and a metal A compound in an aqueous medium, and the obtained aqueous liquid, after being dried, is burned. The composition of the metal oxide is shown by the formula: MoViAjBkOy (whrein A is Te or Sb; and B is at least one element selected from Nb, Ta, W, Ti, Zr, rare earth elements, and alkali metal elements). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プロパンの気相接触酸化によるアクリル酸の製造およびプロパンのアンモ酸化によるアクリロニトリルの製造に使用される金属酸化物触媒の製造方法に関する。   The present invention relates to a method for producing a metal oxide catalyst used for producing acrylic acid by vapor phase catalytic oxidation of propane and acrylonitrile by ammoxidation of propane.

一般にアクリル酸は、触媒の存在下にプロピレンと酸素とを接触反応させてアクロレインを製造し、次いで得られたアクロレインを酸素と接触反応させる二段酸化反応により製造されている。しかしながら、近年では、プロパンを出発原料として一段階でアクリル酸を製造する方法が検討されており、その際に使用される触媒に関する提案が多数なされている。その代表例としては、〔Mo、Te、V、Nb〕系(特許文献1)および〔Mo、Sb、V、Nb〕系(特許文献2、3)等の金属酸化物触媒がある。   In general, acrylic acid is produced by a two-stage oxidation reaction in which propylene and oxygen are brought into contact with each other in the presence of a catalyst to produce acrolein, and then the obtained acrolein is brought into contact with oxygen. However, in recent years, a method for producing acrylic acid in one step using propane as a starting material has been studied, and many proposals have been made regarding the catalyst used at that time. Typical examples include metal oxide catalysts such as [Mo, Te, V, Nb] (Patent Document 1) and [Mo, Sb, V, Nb] (Patent Documents 2 and 3).

さらに最近、上記の金属酸化物触媒の改良に関する発明が幾つか特許出願されている。例えば、特許文献4においては、70℃以上の水性媒体中でモリブデン化合物、バナジウム化合物およびアンチモン化合物を反応させて得られる反応水溶液に、ニオブ化合物を混合した後、得られる混合物を蒸発乾固し、高温で焼成する触媒の製造方法が開示されている。   More recently, several patents have been filed for inventions related to the improvement of the metal oxide catalyst. For example, in Patent Document 4, a niobium compound is mixed with a reaction aqueous solution obtained by reacting a molybdenum compound, a vanadium compound and an antimony compound in an aqueous medium at 70 ° C. or higher, and the resulting mixture is evaporated to dryness. A method for producing a catalyst that is calcined at a high temperature is disclosed.

特許文献5には、上記特許文献4に記載の発明において、モリブデン化合物、バナジウム化合物及びアンチモン化合物を反応させて得られる反応水溶液に、ニオブ化合物に加えて硝酸または硝酸アンモニウムも添加するという発明が提案されている。特許文献5で提案されている発明によれば、得られる触媒の耐摩耗性が向上して、流動層反応用にも適する触媒が製造できると記載されている。   Patent Document 5 proposes an invention in which nitric acid or ammonium nitrate is added to a reaction aqueous solution obtained by reacting a molybdenum compound, a vanadium compound, and an antimony compound in the invention described in Patent Document 4, in addition to the niobium compound. ing. According to the invention proposed in Patent Document 5, it is described that the wear resistance of the obtained catalyst is improved and a catalyst suitable for a fluidized bed reaction can be produced.

特開平7−010801号公報(特許請求の範囲)JP-A-7-010801 (Claims) 特開平9−312063号公報(特許請求の範囲)JP-A-9-312063 (Claims) 特開平10−036311号公報(特許請求の範囲)Japanese Patent Laid-Open No. 10-036311 (Claims) 特開平10−137585号公報(特許請求の範囲)JP-A-10-137585 (Claims) 特開2000−254496号公報(特許請求の範囲及び[0004])JP 2000-254496 A (Claims and [0004])

しかしながら、上記特許文献1〜5に記載の触媒では、プロパンの一段酸化反応におけるアクリル酸の収率は満足できる水準に到達していない。本発明が解決しようとする課題は、さらに高い収率でアクリル酸を製造することができる触媒の提供である。   However, in the catalysts described in Patent Documents 1 to 5, the yield of acrylic acid in the one-stage oxidation reaction of propane has not reached a satisfactory level. The problem to be solved by the present invention is to provide a catalyst capable of producing acrylic acid with higher yield.

本発明者らは、触媒の製造における触媒活性相の形成過程において、活性相を含む触媒粒子(一次粒子)同士の凝集が起こることと、かかる凝集により全体としての触媒活性が低下することを見出し、粒子間の凝集を抑制する方法を検討した結果、触媒の製造時に発泡作用のある物質を添加することが有効であることを見出し、本発明を完成するに至った。   The present inventors have found that in the process of forming a catalyst active phase in the production of a catalyst, aggregation of catalyst particles (primary particles) including the active phase occurs, and the overall catalyst activity is reduced due to such aggregation. As a result of investigating a method for suppressing aggregation between particles, it has been found that it is effective to add a substance having a foaming action during the production of the catalyst, and the present invention has been completed.

すなわち、本発明は、水性媒体中でMo化合物、V化合物および金属A化合物を加熱して得られる水溶液または分散液に、
(1)金属B化合物、
(2)金属Bに対してモル比で0.4以上のアンモニアが含まれるアンモニア水、および
(3)金属Bに対してモル比で2.0以上の硝酸イオンが含まれる硝酸または硝酸アンモニウ

を添加し、得られる水性液を乾燥させた後、空気の存在下に250〜380℃の温度で焼成し、得られる触媒の前駆体をさらに高温度で焼成することを特徴とする下記の組成式で表される金属酸化物の製造方法である。
組成式;MoVi Aj Bk Oy
(式中、AはTe又はSbであり、Bは、Nb、Ta、W、Ti、Zr、希土類元素及びアルカリ金属元素から選ばれる少なくとも1種の元素である。iおよびjは、各々0.01〜1.5で、かつj/i=0.3〜1.0であり、kは0.001〜3.0であり、またyは他の元素の酸化状態によって決定される数である。)
さらに本発明は、上記の金属酸化物触媒の存在下に、プロパンを気相接触反応により酸化またはアンモ酸化することを特徴とするアクリル酸またはアクリロニトリルの製造方法である。
That is, the present invention provides an aqueous solution or dispersion obtained by heating Mo compound, V compound and metal A compound in an aqueous medium.
(1) Metal B compound,
(2) Addition of ammonia water containing ammonia in a molar ratio of 0.4 or more with respect to metal B, and (3) nitric acid or ammonium nitrate containing nitrate ions in a molar ratio of 2.0 or more with respect to metal B The resulting aqueous liquid is dried and then calcined at a temperature of 250 to 380 ° C. in the presence of air, and the resulting catalyst precursor is calcined at a higher temperature. It is a manufacturing method of the metal oxide represented.
Composition formula; MoVi Aj Bk Oy
(In the formula, A is Te or Sb, and B is at least one element selected from Nb, Ta, W, Ti, Zr, a rare earth element and an alkali metal element. 01 to 1.5, and j / i = 0.3 to 1.0, k is 0.001 to 3.0, and y is a number determined by the oxidation state of other elements. .)
Furthermore, the present invention is a method for producing acrylic acid or acrylonitrile, characterized in that propane is oxidized or ammoxidized by a gas phase catalytic reaction in the presence of the metal oxide catalyst.

以下、本発明についてさらに詳しく説明する。
まず、水性媒体中で、Mo化合物、V化合物および金属A化合物を加熱する。加熱条件は40℃以上で、好ましくは40〜100℃で1〜10時間、より好ましくは2〜5時間である。加熱中は水分散液を攪拌することが好ましい。
金属Aは、Te又はSbであり、Te化合物としては、金属テルル、二酸化テルル、オルトテルル酸、メタテルル酸、テルル酸アンモニウムが挙げられる。金属テルルは、予め湿式粉砕したものまたは二酸化テルルおよびテルル酸を水性媒体中で還元剤によって還元されて得られるる5.0μm以下の微粒子のものが好ましい。Sb化合物としては、金属アンチモン、三酸化アンチモンが好ましく使える。
Hereinafter, the present invention will be described in more detail.
First, the Mo compound, the V compound, and the metal A compound are heated in an aqueous medium. Heating conditions are 40 degreeC or more, Preferably it is 1 to 10 hours at 40-100 degreeC, More preferably, it is 2 to 5 hours. It is preferable to stir the aqueous dispersion during heating.
The metal A is Te or Sb, and examples of the Te compound include metal tellurium, tellurium dioxide, orthotelluric acid, metatelluric acid, and ammonium tellurate. The metal tellurium is preferably finely pulverized in advance, or fine particles of 5.0 μm or less obtained by reducing tellurium dioxide and telluric acid in an aqueous medium with a reducing agent. As the Sb compound, metal antimony and antimony trioxide are preferably used.

Mo化合物としては、モリブデン酸アンモニウム、酸化モリブデンまたはモリブデン酸等が挙げられる。これら化合物の中でも水溶性である点でモリブデン酸アンモニウムが好ましい。V化合物としては、メタバナジン酸アンモンニウム、五酸化バナジウム等が好ましい。   Examples of the Mo compound include ammonium molybdate, molybdenum oxide, and molybdic acid. Among these compounds, ammonium molybdate is preferable because it is water-soluble. As the V compound, ammonium metavanadate, vanadium pentoxide and the like are preferable.

Mo化合物およびV化合物の仕込みの好ましいタイミングは、水性媒体の加熱の前であるが、一部を加熱前に、残りを加熱された水性媒体中に添加してもよい。かかる分割仕込みにより、触媒の性能が上がる場合がある。その理由は定かでないが、加熱下での過剰な反応を抑えられることにより、活性相がより多く形成されるためと推定される。加熱後の水性媒体に添加するMo化合物及びV化合物の割合は、全体に対して10〜95%、好ましくは50〜90%である。   The preferable timing of charging the Mo compound and the V compound is before the heating of the aqueous medium, but a part thereof may be added to the heated aqueous medium before the heating. Such split charging may improve the performance of the catalyst. The reason is not clear, but it is presumed that more active phases are formed by suppressing the excessive reaction under heating. The ratio of Mo compound and V compound added to the aqueous medium after heating is 10 to 95%, preferably 50 to 90%, based on the whole.

Mo化合物、金属A化合物およびV化合物の添加量は、Moに対するVおよび金属Aの原子比(iおよびj)がそれぞれ0.01〜1.5であり、且つVに対する金属Aの原子比(j/i)が0.3〜1.0となる量である。Mo、V、金属Aの配合割合が上記範囲を外れると、所期の性能の金属酸化物触媒を得ることはできない。   The addition amount of the Mo compound, metal A compound and V compound is such that the atomic ratio (i and j) of V and metal A to Mo is 0.01 to 1.5, respectively, and the atomic ratio of metal A to V (j / I) is an amount such that 0.3 to 1.0. If the mixing ratio of Mo, V, and metal A is out of the above range, a metal oxide catalyst having the desired performance cannot be obtained.

上記の操作によって得られる反応液に、アンモニア水および金属Bを含有する化合物(以下金属B化合物という)を添加する。添加温度は特に制限がなく、通常室温でよい。金属Bは、Nb、Ta、W、Ti、Zr、希土類元素およびアルカリ金属元素から選ばれる少なくとも1種の元素である。
アンモニア水の添加量は、金属Bに対してアンモニアがモル比で0.4以上、好ましくは0.8〜3.0となる量である。アンモニアが金属Bに対するモル比で0.4未満であると効果が得られず、一方3.0を越えて使用しても効果の増加はなく、廃ガスの処理にコストがかかる。
アンモニア水および金属B化合物を添加することにより、反応液中に微細な沈澱が形成される。
本発明において使用できる金属B化合物としては、酸化物、硝酸塩、カルボン酸塩、オキソ酸塩、蓚酸塩等がある。不溶性の金属B化合物は水に分散させて使用しても良いが、この場合蓚酸等を併用することにより水に溶解させることができる。
A compound containing ammonia water and metal B (hereinafter referred to as metal B compound) is added to the reaction solution obtained by the above operation. The addition temperature is not particularly limited, and may usually be room temperature. The metal B is at least one element selected from Nb, Ta, W, Ti, Zr, a rare earth element, and an alkali metal element.
The amount of ammonia water added is such that ammonia with respect to metal B has a molar ratio of 0.4 or more, preferably 0.8 to 3.0. If the molar ratio of ammonia to metal B is less than 0.4, no effect can be obtained. On the other hand, even if it exceeds 3.0, the effect is not increased, and waste gas treatment costs.
By adding ammonia water and metal B compound, a fine precipitate is formed in the reaction solution.
Examples of the metal B compound that can be used in the present invention include oxides, nitrates, carboxylates, oxoacid salts, and oxalates. The insoluble metal B compound may be used after being dispersed in water. In this case, it can be dissolved in water by using oxalic acid or the like in combination.

金属B化合物の添加量としては、得られる金属酸化物触媒中における金属の原子比で、Moを1としたとき、金属Bが0.001〜3.0となる量である。同触媒において、Moを1としたときの金属Bの割合が0.001未満であると、得られる触媒の劣化が起こり易い。一方、3.0を越えると得られる触媒の活性が低くなり、プロパンの転換率が劣る。   The addition amount of the metal B compound is an amount in which the metal B is 0.001 to 3.0 when Mo is 1 in the atomic ratio of the metal in the obtained metal oxide catalyst. In the same catalyst, when the ratio of metal B when Mo is 1 is less than 0.001, deterioration of the obtained catalyst is likely to occur. On the other hand, if it exceeds 3.0, the activity of the resulting catalyst is lowered, and the conversion rate of propane is poor.

アンモニア水および金属B化合物を添加して得られる微細な沈澱の分散液に、硝酸または硝酸アンモニウムを添加する。硝酸または硝酸アンモニウムの添加量は、硝酸イオンが金属Bに対するモル比で2.0〜6.0好ましくは、2.2〜4.0となる量である。硝酸イオンの添加量が2.0未満であると効果が少なく、一方6.0を越えても効果の増加はなく、さらに廃ガスの発生や硝酸アンモニウムによる爆発の危険性等の問題が起こる。   Nitric acid or ammonium nitrate is added to a fine precipitate dispersion obtained by adding aqueous ammonia and metal B compound. The amount of nitric acid or ammonium nitrate added is such that nitrate ions are in a molar ratio to metal B of 2.0 to 6.0, preferably 2.2 to 4.0. If the amount of nitrate ion added is less than 2.0, the effect is small. On the other hand, if it exceeds 6.0, the effect is not increased, and problems such as generation of waste gas and danger of explosion due to ammonium nitrate occur.

得られるスラリーを蒸発乾固し、得られるペーストをさらに乾燥機中で乾固するまで乾燥する。得られた乾固物を酸素の存在下で温度250〜380℃、好ましくは280〜360℃で0.5〜10時間、好ましくは1〜3時間焼成する(以下予備焼成工程という)。
予備焼成工程を経て得られる固形物すなわち触媒の前駆体について、走査型電子顕微鏡による観察または細孔容積の測定をすることにより、該固形物が著しく多孔質であることがわかる。これに対して、アンモニア水と硝酸や硝安とを添加しない場合は、予備焼成を終えた前駆体は多孔質にならない。このような事実から、本発明におけるアンモニア水、硝酸または硝酸アンモニウムが焼成の際に発泡剤として作用していると推測される。
The resulting slurry is evaporated to dryness and the resulting paste is further dried to dryness in a dryer. The obtained dried product is fired in the presence of oxygen at a temperature of 250 to 380 ° C., preferably 280 to 360 ° C. for 0.5 to 10 hours, preferably 1 to 3 hours (hereinafter referred to as a pre-baking step).
By observing with a scanning electron microscope or measuring the pore volume of the solid material obtained through the preliminary calcination step, that is, the catalyst precursor, it is found that the solid material is extremely porous. On the other hand, when ammonia water and nitric acid or ammonium nitrate are not added, the precursor that has been pre-baked does not become porous. From such a fact, it is presumed that the aqueous ammonia, nitric acid or ammonium nitrate in the present invention acts as a foaming agent during firing.

上記前駆体を酸素の不在下で、温度480〜640℃好ましくは570〜620℃で0.5〜6時間、好ましくは1〜3時間焼成する(以下は本焼成という)。
本焼成により、金属酸化物中に触媒活性を有する特定な結晶体が形成される。本発明においては、予備焼成により多孔質固体が得られており、この場合には固形物における活性相を含む一次粒子同士の凝集が抑制される結果、触媒活性を有する結晶体が触媒表面に占める割合が増加する。それによって、本発明で得られる触媒は高い触媒活性を有すると推定される。
The precursor is calcined in the absence of oxygen at a temperature of 480 to 640 ° C, preferably 570 to 620 ° C for 0.5 to 6 hours, preferably 1 to 3 hours (hereinafter referred to as main firing).
By the main calcination, a specific crystal having catalytic activity is formed in the metal oxide. In the present invention, a porous solid is obtained by preliminary calcination, and in this case, aggregation of primary particles including an active phase in the solid is suppressed, and as a result, crystals having catalytic activity occupy the catalyst surface. The rate increases. Thereby, it is presumed that the catalyst obtained in the present invention has high catalytic activity.

前記の二段階の焼成により下記組成式で示される金属酸化物触媒を得られる。
組成式:MoViAjBkOy(式中、A、B、i、j、kおよびyは前記のとおりである。)金属酸化物触媒中の金属含有量の測定は、螢光X線分析等により行うことができる。
上記方法により得られる金属酸化物触媒は、そのままでも使用できる。しかし、適当な粒度に粉砕して触媒の表面積を増大させて使用することが好ましい。粉砕方法としては、乾式粉砕法や湿式粉砕法のいずれの方法も採用できる。
粉砕装置の具体例としては、乳鉢、ボールミル等が挙げられる。湿式粉砕の場合に、粉砕の助剤として使用する溶媒としては、水、アルコール類などが挙げられる。
本触媒を粉砕して使用する場合、その粒度は5μm以下とすることが好ましく、1.0μm以下がより好ましい。
また、金属酸化物触媒は、無担体の状態でも使用できるが、適当な粒度を有するシリカ、アルミナ、シリカアルミナ、シリコンカーバイド等の公知の担体に担持させて使用することもできる。担持量も特に制限が無く、従来の担持量に準ずる。
A metal oxide catalyst represented by the following composition formula can be obtained by the two-stage firing.
Composition formula: MoViAjBkOy (wherein A, B, i, j, k and y are as described above) The measurement of the metal content in the metal oxide catalyst can be carried out by fluorescent X-ray analysis or the like. it can.
The metal oxide catalyst obtained by the above method can be used as it is. However, it is preferable to use by increasing the surface area of the catalyst by crushing to an appropriate particle size. As a pulverization method, any of a dry pulverization method and a wet pulverization method can be employed.
Specific examples of the pulverizer include a mortar and a ball mill. In the case of wet grinding, examples of the solvent used as a grinding aid include water and alcohols.
When the catalyst is used after being pulverized, the particle size is preferably 5 μm or less, more preferably 1.0 μm or less.
In addition, the metal oxide catalyst can be used without a carrier, but can also be used by being supported on a known carrier such as silica, alumina, silica alumina, silicon carbide or the like having an appropriate particle size. The carrying amount is not particularly limited and conforms to the conventional carrying amount.

次に、上記方法により製造した金属酸化物触媒を用いるプロパンの気相接触酸化反応について説明する。
アクリル酸製造原料のプロパンおよび分子状酸素(以下酸素ガスという)を、上記金属酸化物触媒が充填され高温に維持された反応器に導入することにより、アクリル酸が製造される。
プロパンおよび酸素ガスは、別々に反応器に導入され、反応器内で両者が混合されてもよく、また予め両者が混合された状態で反応器に導入されてもよい。反応制御のために、希釈ガスとして、窒素、スチームまたは炭酸ガス等を併用することが好ましい。
原料として、プロパンおよび空気を使用する場合、空気のプロパンに対する使用割合は、容積比率で30倍以下が好ましく、0.2〜20倍がより好ましい。
好ましい反応温度は300〜460℃であり、350〜420℃がより好ましい。原料ガスの空間速度(以下SVという)としては、1000〜8000hr-1が適当である。空間速度が1000hr-1未満の場合は、目的化合物であるアクリル酸の空時収率が低くなり、8000hr-1を超える場合は反応率が低下する。
Next, the gas phase catalytic oxidation reaction of propane using the metal oxide catalyst produced by the above method will be described.
Acrylic acid is produced by introducing propane and molecular oxygen (hereinafter referred to as oxygen gas), which are acrylic acid production raw materials, into a reactor filled with the metal oxide catalyst and maintained at a high temperature.
Propane and oxygen gas may be separately introduced into the reactor, and both may be mixed in the reactor, or may be introduced into the reactor in a state where both are mixed in advance. In order to control the reaction, it is preferable to use nitrogen, steam, carbon dioxide gas, or the like as the diluent gas.
When propane and air are used as raw materials, the use ratio of air to propane is preferably 30 times or less in volume ratio, and more preferably 0.2 to 20 times.
A preferable reaction temperature is 300 to 460 ° C, and 350 to 420 ° C is more preferable. As the space velocity (hereinafter referred to as SV) of the source gas, 1000 to 8000 hr −1 is appropriate. When the space velocity is less than 1000 hr −1, the space time yield of the target compound, acrylic acid, is low, and when it exceeds 8000 hr −1 , the reaction rate decreases.

反応器出口から排出される反応ガス中に含まれる未反応のプロパンや、中間生成物のプロピレンはそのまま燃料とすることもできるが、反応ガス中の他の成分と分離して反応器へ返送して再利用することもできる。
なお、本発明により製造する金属酸化物触媒は、プロパンのアンモ酸化にも適用でき、高収率でアクリロニトリルを合成することができる。アンモ酸化条件は、略上記プロパンの気相接触酸化条件に準じる。
Unreacted propane contained in the reaction gas discharged from the reactor outlet and propylene as an intermediate product can be used as fuel, but they are separated from other components in the reaction gas and returned to the reactor. Can also be reused.
The metal oxide catalyst produced according to the present invention can also be applied to propane ammoxidation, and acrylonitrile can be synthesized in a high yield. The ammoxidation conditions are substantially in accordance with the above-mentioned vapor phase catalytic oxidation conditions for propane.

本発明の製造方法によれば、プロパンからアクリル酸を高収率で製造することができる金属酸化物触媒が容易に得られる。さらに、該金属酸化物触媒は、廃水処理や精製コストの少ない低水蒸気の反応条件でも、アクリル酸生成の選択率を損なわないという優れた性能を有する。また、本金属酸化物触媒は、プロパンのアンモ酸化にも使用できる。   According to the production method of the present invention, a metal oxide catalyst capable of producing acrylic acid in high yield from propane can be easily obtained. Further, the metal oxide catalyst has an excellent performance that does not impair the selectivity of acrylic acid production even under low water vapor reaction conditions with low wastewater treatment and purification costs. The metal oxide catalyst can also be used for ammoxidation of propane.

以下、実施例および比較例を挙げて、本発明をさらに具体的に説明する。
各例においては、Teを含む触媒では、Mo /V/Te/Nb =1.0/0.25/0.13/0.16の割合で金属を含む触媒が得られるように、またSbを含む触媒では、Mo /V/Sb/Nb =1.0/0.30/0.23/0.10の割合で金属を含む触媒が得られるように、各原料を配合した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
In each example, a catalyst containing Te is obtained so that a catalyst containing metal is obtained in the ratio Mo / V / Te / Nb = 1.0 / 0.25 / 0.13 / 0.16. In the catalyst containing, each raw material was mix | blended so that the catalyst containing a metal might be obtained in the ratio of Mo / V / Sb / Nb = 1.0 / 0.30 / 0.23 / 0.10.

各例において製造した触媒1.0g(0.8〜1.0ml)を10mmφの石英製の反応管に充填した。反応温度(触媒層中心部に固定される熱電対によって測定される温度)はTe含む触媒では、380℃、Sbを含む触媒では、400℃に制御した。反応管にプロパン6.4容積%、酸素ガス9.6容積%、窒素ガス36.1容積%および水蒸気47.7容積%の混合ガスを2560/hr-1の空間速度で供給することにより、アクリル酸を製造した。 1.0 g (0.8 to 1.0 ml) of the catalyst produced in each example was packed in a 10 mmφ quartz reaction tube. The reaction temperature (temperature measured by a thermocouple fixed at the center of the catalyst layer) was controlled to 380 ° C. for the catalyst containing Te and 400 ° C. for the catalyst containing Sb. By supplying a mixed gas of 6.4% by volume of propane, 9.6% by volume of oxygen gas, 36.1% by volume of nitrogen gas, and 47.7% by volume of water vapor to the reaction tube at a space velocity of 2560 / hr −1 , Acrylic acid was produced.

反応生成物中の各生成成分の組成分析を行った。組成分析結果を用いて、下式に示すプロパン転化率およびアクリル酸選択率を算出し(いずれもモル基準)、それらの値により使用した触媒の性能を評価した。プロパン転化率(%)=100×(供給プロパン−未反応プロパン)/供給プロパン
アクリル酸選択率(%)=100×生成アクリル酸/(供給プロパン−未反応プロパン)
アクリル酸収率(%)=プロパン転化率×アクリル酸選択率/100
The composition of each product component in the reaction product was analyzed. Using the results of the composition analysis, the propane conversion and acrylic acid selectivity shown in the following formulas were calculated (both on a molar basis), and the performance of the catalyst used was evaluated based on these values. Propane conversion (%) = 100 × (feed propane-unreacted propane) / feed propane acrylic acid selectivity (%) = 100 × produced acrylic acid / (feed propane-unreacted propane)
Acrylic acid yield (%) = propane conversion × acrylic acid selectivity / 100

500mlのガラス製フラスコに、二酸化テルル3.64g、蒸留水60mlを加え、80℃で300回転/分の速度で攪拌しながら、ヒドラジン一水和物(ヒドラジンとして80wt%)2.8gを添加し、この条件で12時間維持する。時間経過によって最初の白色粉末は灰色を経て、最終的に黒色の懸濁物の分散液となった。
得られた分散液を濾紙により黒色の固形物と透明無色の濾液とに分離させる。次に、濾紙の上の固形物を200mlの蒸留水で洗浄した。洗浄液が濾紙を通過した後、濾紙に残っている固形物を蒸留水で洗いながら、サンプル瓶に集め、テルルの水性分散液を得る。分散液を攪拌しながら天秤で2等分に分ける。
その半分は、50℃、2時間で乾燥させた後、X線回折分析、電子顕微鏡観察を行った。X線回折分析の結果、得られた黒色の粉末は、2θで、22.98、27.52、38.24、40.42、43.32、45.88、49.62°の角度に回折線を示し、二酸化テルルの相がなく、純粋な金属テルルの相であると帰属した。
残りの半分のテルル分散液は以下の触媒調製に用いた。
To a 500 ml glass flask, add 3.64 g of tellurium dioxide and 60 ml of distilled water and add 2.8 g of hydrazine monohydrate (80 wt% as hydrazine) while stirring at a rate of 300 rpm at 80 ° C. Maintain for 12 hours under these conditions. Over time, the first white powder went gray and finally became a black suspension dispersion.
The obtained dispersion is separated into a black solid and a transparent colorless filtrate by filter paper. Next, the solid on the filter paper was washed with 200 ml of distilled water. After the washing liquid passes through the filter paper, the solid matter remaining on the filter paper is collected in a sample bottle while washing with distilled water to obtain an aqueous dispersion of tellurium. Divide the dispersion into two equal parts with a balance while stirring.
Half of the sample was dried at 50 ° C. for 2 hours, and then subjected to X-ray diffraction analysis and electron microscope observation. As a result of X-ray diffraction analysis, the obtained black powder was diffracted at 2θ at angles of 22.98, 27.52, 38.24, 40.42, 43.32, 45.88, 49.62 °. A line was shown and assigned no phase of tellurium dioxide and pure metal tellurium.
The other half of the tellurium dispersion was used for the following catalyst preparation.

500mlのガラス製フラスコに、メタバナジン酸アンモニウム2.66g、モリブデン酸アンモニウム3.0g、および蒸留水50mlを加え、水の沸点温度下、攪拌しながら溶解させた。
得られた溶液に前記の半分の金属テルル分散液を加え、1時間の加熱処理を行う。得られた反応液にモリブデン酸アンモニウム12.45gを溶解させ、さらに、30%のアンモニア水1.0g滴下し、攪拌しながら、数分が経つと反応液が60℃になる。一方、蓚酸5.89g、ニオブ酸2.32gを160mlの蒸留水に溶解して常温の水溶液を調製し、この水溶液を前記反応液に加えた。得られた混合液を10分間激しく攪拌した後、この混合液に硝酸アンモニウム2.5gを混合した。その後、加熱濃縮し、さらに120℃の乾燥機にて乾固させた。
To a 500 ml glass flask, 2.66 g of ammonium metavanadate, 3.0 g of ammonium molybdate, and 50 ml of distilled water were added and dissolved with stirring at the boiling point of water.
The above-mentioned half metal tellurium dispersion is added to the resulting solution and heat-treated for 1 hour. 12.45 g of ammonium molybdate is dissolved in the obtained reaction solution, and 1.0 g of 30% ammonia water is further added dropwise, and the reaction solution becomes 60 ° C. after several minutes while stirring. Meanwhile, 5.89 g of oxalic acid and 2.32 g of niobic acid were dissolved in 160 ml of distilled water to prepare an aqueous solution at room temperature, and this aqueous solution was added to the reaction solution. The obtained mixed solution was vigorously stirred for 10 minutes, and then 2.5 g of ammonium nitrate was mixed with this mixed solution. Thereafter, the mixture was concentrated by heating, and further dried with a 120 ° C. dryer.

得られた乾固物を空気中、320℃で1.5時間焼成した。得られた触媒の前駆体を粉砕し、得られた粒子を16〜30メッシュに篩分け、次の方法より細孔容積の測定を行った。
約0.2g程度の前駆体を秤量し、30メッシュの篩の上で載せる。前駆体の上に、スポイトでトルエンを垂らし、細孔に浸透するまで1分程度待つ。次に余分のトルエンを落とし、トルエンを吸い込んだ前駆体粒子を濾紙の上に広げ、振動させ、表面に付着のトルエンを吸い取り、再び秤量を行う。このように吸着されたトルエンの量から換算した細孔容積の値は表1に示す。
The obtained dried product was fired in air at 320 ° C. for 1.5 hours. The obtained catalyst precursor was pulverized, the obtained particles were sieved to 16 to 30 mesh, and the pore volume was measured by the following method.
About 0.2 g of the precursor is weighed and placed on a 30 mesh screen. Drop toluene on the precursor with a dropper and wait about 1 minute until it penetrates into the pores. Next, excess toluene is dropped, the precursor particles into which toluene has been sucked are spread on a filter paper, vibrated, sucked off the toluene adhering to the surface, and weighed again. Table 1 shows the pore volume values converted from the amount of toluene adsorbed in this way.

予備焼成を終えた前駆体の粒子は次に、径12mmのステンレス焼成管に充填し、両端をネジで締め、590℃で1.5時間の条件で本焼成することにより金属酸化物触媒を得た。この触媒の成分の原子比を蛍光X線組成分析した結果は、Mo /V/Te/Nb =1.0/0.25/0.13/0.16(モル比)であった。
触媒は、HORIBA SA6201連続流動式表面積計よりBET比表面積を測定し、結果を表1に示す。
得られた触媒を打錠成形し、さらに16〜30メッシュに粉砕して、アクリル酸の製造反応に使用した。アクリル酸の製造反応の結果も表1に記載のとおりである。なお、表1中、AAはアクリル酸であり、またPはプロパンを示す。
Next, the precursor particles that have been pre-fired are filled into a 12 mm diameter stainless steel fired tube, both ends are tightened with screws, and then fired at 590 ° C. for 1.5 hours to obtain a metal oxide catalyst. It was. The result of X-ray fluorescence composition analysis of the atomic ratio of the components of the catalyst was Mo / V / Te / Nb = 1.0 / 0.25 / 0.13 / 0.16 (molar ratio).
For the catalyst, the BET specific surface area was measured with a HORIBA SA6201 continuous flow type surface area meter, and the results are shown in Table 1.
The obtained catalyst was tableted and further pulverized to 16 to 30 mesh and used for the production reaction of acrylic acid. The results of the production reaction of acrylic acid are also shown in Table 1. In Table 1, AA is acrylic acid, and P is propane.

反応液に滴下する30%アンモニア水の量を1.4g、混合液に添加する硝酸アンモニウムの量を2.5gとする以外は、実施例1と同様に触媒を調製した。この触媒を使用して実施例1と同様の条件でアクリル酸を製造した。結果を表1に示した。   A catalyst was prepared in the same manner as in Example 1, except that the amount of 30% aqueous ammonia added dropwise to the reaction solution was 1.4 g, and the amount of ammonium nitrate added to the mixed solution was 2.5 g. Using this catalyst, acrylic acid was produced under the same conditions as in Example 1. The results are shown in Table 1.

反応液に滴下する30%アンモニア水の量を1.4g、混合液に添加する硝酸アンモニウムの量を3.0gとする以外は、実施例1と同様に触媒を調製した。この触媒を使用して実施例1と同様の条件でアクリル酸を製造した。結果を表1に示した。   A catalyst was prepared in the same manner as in Example 1, except that the amount of 30% aqueous ammonia added dropwise to the reaction solution was 1.4 g, and the amount of ammonium nitrate added to the mixed solution was 3.0 g. Using this catalyst, acrylic acid was produced under the same conditions as in Example 1. The results are shown in Table 1.

反応液に滴下する30%アンモニア水の量を1.4g、混合液に添加する硝酸アンモニウムの量を3.5gとする以外は、実施例1と同様に触媒を調製した。この触媒を使用して実施例1と同様の条件でアクリル酸を製造した。結果を表1に示した。   A catalyst was prepared in the same manner as in Example 1, except that the amount of 30% aqueous ammonia added dropwise to the reaction solution was 1.4 g, and the amount of ammonium nitrate added to the mixed solution was 3.5 g. Using this catalyst, acrylic acid was produced under the same conditions as in Example 1. The results are shown in Table 1.

比較例1
反応液にアンモニア水を滴下しないで、混合液に添加する硝酸アンモニウムの量を2.5gとする以外は、実施例1と同様に触媒を調製した。この触媒を使用して実施例1と同様の条件でアクリル酸を製造した。結果を表1に示した。
Comparative Example 1
A catalyst was prepared in the same manner as in Example 1 except that ammonia water was not added dropwise to the reaction solution and the amount of ammonium nitrate added to the mixture solution was 2.5 g. Using this catalyst, acrylic acid was produced under the same conditions as in Example 1. The results are shown in Table 1.

比較例2
反応液に滴下する30%アンモニア水の量を1.0g、混合液に添加する硝酸アンモニウムの量を2.0gとする以外は、実施例1と同様に触媒を調製した。この触媒を使用して実施例1と同様の条件でアクリル酸を製造した。結果を表1に示した。
Comparative Example 2
A catalyst was prepared in the same manner as in Example 1, except that the amount of 30% aqueous ammonia added dropwise to the reaction solution was 1.0 g, and the amount of ammonium nitrate added to the mixed solution was 2.0 g. Using this catalyst, acrylic acid was produced under the same conditions as in Example 1. The results are shown in Table 1.

表1中、細孔容積は、酸素存在下で320℃で1.5時間焼成して得られた触媒前駆体について測定した値であり、また比表面積は、 酸素不存在下で590℃で1.5時間焼成して得られた触媒について測定したBET比表面積値である。なお、この点は後記した表2も同様である。   In Table 1, the pore volume is a value measured for a catalyst precursor obtained by calcining at 320 ° C. for 1.5 hours in the presence of oxygen, and the specific surface area is 1 at 590 ° C. in the absence of oxygen. .BET specific surface area value measured for a catalyst obtained by calcination for 5 hours. In addition, this point is the same also in Table 2 mentioned later.

500mlのガラス製フラスコにメタバナジン酸アンモニウム6.15g、三酸化アンチモン4.70gおよび蒸留水90mlを加え、水の沸点で、攪拌しながら2時間かけて還流させた。その後、7.7wt%の過酸化水素溶液10.0gを添加(スラリが黄色に変化)した後、加熱を停止した。反応液の温度を自然に下げて、95℃になった時点から、モリブデン酸アンモニウム30.9gを40gの蒸留水に溶解した溶液を8分間にかけて滴下した。モリブデン酸アンモニウムの滴下によって黄色の反応液が次第に橙色に変わった。続いて反応液に3%のアンモニア水10.0gを2分間かけて滴下し、攪拌しながら反応液の温度を55℃まで自然に下げた。
一方、蓚酸11.03g、ニオブ酸2.83gを87mlの蒸留水に溶解して常温の水溶液を調製し、この水溶液を前記反応液に加えた(黄色に変化)。得られた混合液を10分間激しく攪拌した後、この混合液に硝酸アンモニウム6.25gを混合した。続いて、金属アンチモンの粉末0.98gを加え、加熱濃縮し(濃青色に変化)、さらに120℃の乾燥機にて乾固させた。
To a 500 ml glass flask, 6.15 g of ammonium metavanadate, 4.70 g of antimony trioxide and 90 ml of distilled water were added and refluxed at the boiling point of water for 2 hours with stirring. Thereafter, 10.0 g of a 7.7 wt% hydrogen peroxide solution was added (the slurry turned yellow), and then the heating was stopped. The temperature of the reaction solution was naturally lowered, and when the temperature reached 95 ° C., a solution prepared by dissolving 30.9 g of ammonium molybdate in 40 g of distilled water was added dropwise over 8 minutes. The yellow reaction liquid gradually turned orange by the dropwise addition of ammonium molybdate. Subsequently, 10.0 g of 3% aqueous ammonia was dropped into the reaction solution over 2 minutes, and the temperature of the reaction solution was naturally lowered to 55 ° C. while stirring.
Meanwhile, 11.03 g of oxalic acid and 2.83 g of niobic acid were dissolved in 87 ml of distilled water to prepare an aqueous solution at room temperature, and this aqueous solution was added to the reaction solution (changed to yellow). The obtained mixed solution was vigorously stirred for 10 minutes, and then 6.25 g of ammonium nitrate was mixed with this mixed solution. Subsequently, 0.98 g of metal antimony powder was added, and the mixture was heated and concentrated (changed to dark blue), and further dried with a 120 ° C. dryer.

得られた乾固物を空気中、320℃で1.5時間焼成した。その後、内径12mmのステンレス焼成管に充填し、両端をネジで締め、590℃で1.5時間焼成することにより金属酸化物触媒を得た。予備焼成を終えた触媒前駆体の細孔容積および本焼成を終えた触媒のBET比表面積は表2に示す。
この触媒の成分の原子比は、蛍光X線組成分析した結果、Mo/V/Sb/Nb=1.0/0.30/0.23/0.10(モル比)であった。
得られた触媒を打錠成形し、さらに16〜30メッシュに粉砕して、アクリル酸の製造反応に使用した。この触媒を使用して反応温度が400℃に設定する以外は、実施例1と同様の条件でアクリル酸を製造した。結果を表2に示した。
The obtained dried product was baked in air at 320 ° C. for 1.5 hours. Then, it filled in the stainless steel baking pipe | tube with an internal diameter of 12 mm, both ends were screwed, and the metal oxide catalyst was obtained by baking at 590 degreeC for 1.5 hours. Table 2 shows the pore volume of the catalyst precursor after the preliminary calcination and the BET specific surface area of the catalyst after the final calcination.
The atomic ratio of the components of the catalyst was Mo / V / Sb / Nb = 1.0 / 0.30 / 0.23 / 0.10 (molar ratio) as a result of fluorescent X-ray composition analysis.
The obtained catalyst was tableted and further pulverized to 16 to 30 mesh and used for the production reaction of acrylic acid. Acrylic acid was produced under the same conditions as in Example 1 except that the reaction temperature was set to 400 ° C. using this catalyst. The results are shown in Table 2.

比較例3
反応液にアンモニア水を滴下しないで、混合液に添加する硝酸アンモニウムの量を5.0gとする以外は、実施例5と同様に触媒を調製した。この触媒を使用して実施例5と同様の条件でアクリル酸を製造した。結果を表2に示した。
Comparative Example 3
A catalyst was prepared in the same manner as in Example 5 except that ammonia water was not added dropwise to the reaction solution and the amount of ammonium nitrate added to the mixture solution was 5.0 g. Using this catalyst, acrylic acid was produced under the same conditions as in Example 5. The results are shown in Table 2.

本発明により得られる金属酸化物触媒によれば、プロパンと空気を原料にして高い収率でアクリル酸を製造することができ、またプロパンとアンモニアを原料にして高い収率でアクリロニトリルを製造することができる。   According to the metal oxide catalyst obtained by the present invention, acrylic acid can be produced in high yield using propane and air as raw materials, and acrylonitrile can be produced in high yield using propane and ammonia as raw materials. Can do.

実施例4の触媒製造において予備焼成(320℃で1時間)後に得られた前駆体の倍率1万倍の電子顕微鏡写真である。4 is an electron micrograph at a magnification of 10,000 times of a precursor obtained after preliminary calcination (at 320 ° C. for 1 hour) in the catalyst production of Example 4. FIG. 実施例4の触媒製造において本焼成(590℃で1.5時間)後に得られた金属酸化物触媒の倍率3万倍の電子顕微鏡写真である。4 is an electron micrograph at a magnification of 30,000 times of a metal oxide catalyst obtained after main calcination (1.5 hours at 590 ° C.) in the catalyst production of Example 4. FIG. 比較例1の触媒製造において予備焼成(320℃で1時間)後に得られた前駆体の倍率1万倍の電子顕微鏡写真である。4 is an electron micrograph at a magnification of 10,000 times of a precursor obtained after preliminary calcination (at 320 ° C. for 1 hour) in the catalyst production of Comparative Example 1. FIG. 比較例1の触媒製造において本焼成(590℃で1.5時間)後に得られた金属酸化物触媒の倍率3万倍の電子顕微鏡写真である。4 is an electron micrograph at a magnification of 30,000 times of a metal oxide catalyst obtained after the main calcination (1.5 hours at 590 ° C.) in the catalyst production of Comparative Example 1.

Claims (3)

水性媒体中でMo化合物、V化合物および金属A化合物を加熱して得られる水溶液または分散液に、
(1)金属B化合物、
(2)金属Bに対してモル比で0.4以上のアンモニアが含まれるアンモニア水、および

(3)金属Bに対してモル比で2.0以上の硝酸イオンが含まれる硝酸または硝酸アンモ
ニウム
を添加し、得られる水性液を乾燥させた後、空気の存在下に250〜380℃の温度で焼成し、得られる触媒の前駆体をさらに高温度で焼成することを特徴とする下記の組成式で表される金属酸化物の製造方法。
組成式;MoVi Aj Bk Oy
(式中、AはTe又はSbであり、Bは、Nb、Ta、W、Ti、Zr、希土類元素及びアルカリ金属元素から選ばれる少なくとも1種の元素である。iおよびjは、各々0.01〜1.5で、かつj/i=0.3〜1.0であり、kは0.001〜3.0であり、またyは他の元素の酸化状態によって決定される数である。)
In an aqueous solution or dispersion obtained by heating Mo compound, V compound and metal A compound in an aqueous medium,
(1) Metal B compound,
(2) ammonia water containing ammonia in a molar ratio of 0.4 or more with respect to metal B, and

(3) After adding nitric acid or ammonium nitrate containing nitrate ions with a molar ratio of 2.0 or more to metal B, and drying the resulting aqueous liquid, at a temperature of 250 to 380 ° C. in the presence of air. A method for producing a metal oxide represented by the following composition formula, characterized by calcining and calcining the resulting catalyst precursor at a higher temperature.
Composition formula; MoVi Aj Bk Oy
(In the formula, A is Te or Sb, and B is at least one element selected from Nb, Ta, W, Ti, Zr, a rare earth element and an alkali metal element. 01 to 1.5, and j / i = 0.3 to 1.0, k is 0.001 to 3.0, and y is a number determined by the oxidation state of other elements. .)
上記触媒の前駆体に存在する細孔の容積が0.20ml/g以上であることを特徴とする請求項1記載の金属酸化物触媒の製造方法。   The method for producing a metal oxide catalyst according to claim 1, wherein the volume of pores present in the catalyst precursor is 0.20 ml / g or more. 上記触媒の前駆体を酸素不在下に480〜640℃の温度で焼成することを特徴とする請求項1または請求項2記載の金属酸化物触媒の製造方法。


The method for producing a metal oxide catalyst according to claim 1 or 2, wherein the catalyst precursor is calcined at a temperature of 480 to 640 ° C in the absence of oxygen.


JP2003310842A 2003-09-03 2003-09-03 Method for producing metal oxide catalyst Expired - Lifetime JP4218471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310842A JP4218471B2 (en) 2003-09-03 2003-09-03 Method for producing metal oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310842A JP4218471B2 (en) 2003-09-03 2003-09-03 Method for producing metal oxide catalyst

Publications (2)

Publication Number Publication Date
JP2005074377A true JP2005074377A (en) 2005-03-24
JP4218471B2 JP4218471B2 (en) 2009-02-04

Family

ID=34412563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310842A Expired - Lifetime JP4218471B2 (en) 2003-09-03 2003-09-03 Method for producing metal oxide catalyst

Country Status (1)

Country Link
JP (1) JP4218471B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492814B2 (en) 2013-04-08 2016-11-15 Saudi Basic Industries Corporation Catalyst for conversion of propylene to product comprising a carboxylic acid moiety
US9636663B2 (en) 2013-04-24 2017-05-02 Saudi Basic Industries Corporation High productivity catalyst for alkane oxidation to unsaturated carboxylic acids and alkenes
US9856200B2 (en) 2013-04-24 2018-01-02 Saudi Basic Industries Corporation Supported catalyst for production of unsaturated carboxylic acids from alkanes
WO2018016155A1 (en) * 2016-07-20 2018-01-25 東亞合成株式会社 Process for producing metal oxide catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710801A (en) * 1993-06-24 1995-01-13 Mitsubishi Chem Corp Production of alpha, beta-unsaturated carboxylic acid
JPH09312063A (en) * 1996-05-23 1997-12-02 Matsushita Electric Ind Co Ltd Sector sync. detecting circuit
JPH1036311A (en) * 1996-07-25 1998-02-10 Mitsubishi Chem Corp Production of alpha, beta-unsaturated carboxylic acid
JPH10137585A (en) * 1996-11-08 1998-05-26 Toagosei Co Ltd Production of catalyst for producing acrylic acid
JP2000070714A (en) * 1998-08-28 2000-03-07 Asahi Chem Ind Co Ltd Production of catalyst for production of unsaturated nitrile
JP2000254496A (en) * 1999-03-10 2000-09-19 Toagosei Co Ltd Catalyst for production of acrylic acid
JP2000317309A (en) * 1999-05-17 2000-11-21 Toagosei Co Ltd Production of catalyst for producing acrylic acid
JP2001328812A (en) * 2000-05-19 2001-11-27 Mitsubishi Chemicals Corp Method for producing composite oxide
JP2002336708A (en) * 2001-04-12 2002-11-26 Rohm & Haas Co Nitrogen oxides-treated mixed metal oxide catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710801A (en) * 1993-06-24 1995-01-13 Mitsubishi Chem Corp Production of alpha, beta-unsaturated carboxylic acid
JPH09312063A (en) * 1996-05-23 1997-12-02 Matsushita Electric Ind Co Ltd Sector sync. detecting circuit
JPH1036311A (en) * 1996-07-25 1998-02-10 Mitsubishi Chem Corp Production of alpha, beta-unsaturated carboxylic acid
JPH10137585A (en) * 1996-11-08 1998-05-26 Toagosei Co Ltd Production of catalyst for producing acrylic acid
JP2000070714A (en) * 1998-08-28 2000-03-07 Asahi Chem Ind Co Ltd Production of catalyst for production of unsaturated nitrile
JP2000254496A (en) * 1999-03-10 2000-09-19 Toagosei Co Ltd Catalyst for production of acrylic acid
JP2000317309A (en) * 1999-05-17 2000-11-21 Toagosei Co Ltd Production of catalyst for producing acrylic acid
JP2001328812A (en) * 2000-05-19 2001-11-27 Mitsubishi Chemicals Corp Method for producing composite oxide
JP2002336708A (en) * 2001-04-12 2002-11-26 Rohm & Haas Co Nitrogen oxides-treated mixed metal oxide catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492814B2 (en) 2013-04-08 2016-11-15 Saudi Basic Industries Corporation Catalyst for conversion of propylene to product comprising a carboxylic acid moiety
US9636663B2 (en) 2013-04-24 2017-05-02 Saudi Basic Industries Corporation High productivity catalyst for alkane oxidation to unsaturated carboxylic acids and alkenes
US9856200B2 (en) 2013-04-24 2018-01-02 Saudi Basic Industries Corporation Supported catalyst for production of unsaturated carboxylic acids from alkanes
WO2018016155A1 (en) * 2016-07-20 2018-01-25 東亞合成株式会社 Process for producing metal oxide catalyst

Also Published As

Publication number Publication date
JP4218471B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
EP2550098B1 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
EP2550099B1 (en) Process for preparing improved mixed metal oxide ammoxidation catalysts
EP2550100B1 (en) Improved mixed metal oxide ammoxidation catalysts
EP2922633B1 (en) Process for the preparation of mixed metal oxide ammoxidation catalysts
WO2011119203A1 (en) High efficiency ammoxidation process and mixed metal oxide catalysts
US6291393B1 (en) Catalyst for the production of acrylic acid
JP4174852B2 (en) Acrylic acid production method
JP2006527075A (en) Mixed metal oxide catalysts for the oxidation and ammoxidation of propane and isobutane and methods for their preparation
JP4155087B2 (en) Method for producing metal oxide catalyst
EP3233272B1 (en) Improved mixed metal oxide ammoxidation catalysts
US10626082B2 (en) Ammoxidation catalyst with selective co-product HCN production
JP4155034B2 (en) Method for producing metal oxide catalyst
JP4218471B2 (en) Method for producing metal oxide catalyst
JPH11285636A (en) Production of catalyst for production of acrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2004188341A (en) Manufacturing method of metal oxide catalyst
WO2018016155A1 (en) Process for producing metal oxide catalyst
JP3750234B2 (en) Method for producing acrylic acid production catalyst
TWI765269B (en) Oxide catalyst and method for producing unsaturated nitrile
JP2004041880A (en) Method of producing catalyst for acrylic acid production
JP3750229B2 (en) Method for producing acrylic acid production catalyst
KR20230099704A (en) Catalyst for gas-phase catalytic ammoxidation and method for preparing catalyst for gas-phase catalytic ammoxidation
JP2003205237A (en) Oxidation or ammoxidation catalyst and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4218471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term