JPH1036311A - Production of alpha, beta-unsaturated carboxylic acid - Google Patents

Production of alpha, beta-unsaturated carboxylic acid

Info

Publication number
JPH1036311A
JPH1036311A JP8196626A JP19662696A JPH1036311A JP H1036311 A JPH1036311 A JP H1036311A JP 8196626 A JP8196626 A JP 8196626A JP 19662696 A JP19662696 A JP 19662696A JP H1036311 A JPH1036311 A JP H1036311A
Authority
JP
Japan
Prior art keywords
unsaturated carboxylic
carboxylic acid
reaction
hydrocarbon
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8196626A
Other languages
Japanese (ja)
Inventor
Takashi Ushikubo
孝 牛窪
Kazunori Oshima
一典 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8196626A priority Critical patent/JPH1036311A/en
Publication of JPH1036311A publication Critical patent/JPH1036311A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject compound useful as a raw material for synthetic resins, coating materials, plasticizers, etc., in high selectivity by vapor phase catalytic oxidation of the corresponding alkane under limitations of its concentration and conversion and the reaction gas composition ratio within respective specified ranges. SOLUTION: (A) A 3-8C aliphatic saturated hydrocarbon is subjected to vapor phase catalytic oxidation in the presence of (B) a multiple metal oxide catalyst under such controlled conditions that the concentration of the component A in the feedstock gases is 4-90vol.% the composition ratio of the reaction gases to be fed into the reaction vessel is 1:(0.1-1.9):0-20, and the conversion of the component A is <=70%. It is preferably that, after (C) the objective α,β-unsaturated carboxylic acid in the stream discharged from the reaction vessel is separated, a gas containing the unreacted component A is fed to the reaction vessel again; thereby improving the yield of the objective unsaturated carboxylic acid C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、α,β−不飽和カ
ルボン酸の製造方法に関する。詳しくは、本発明は、脂
肪族飽和炭化水素(以下、アルカンと略記することがあ
る)の気相接触酸化によるα,β−不飽和カルボン酸の
製造において、特定の反応条件を採用することにより選
択性よくα,β−不飽和カルボン酸を製造する方法に関
する。アクリル酸、メタクリル酸等のα,β−不飽和カ
ルボン酸類は、各種合成樹脂、塗料、可塑剤等の原料と
して工業的に重要である。
The present invention relates to a method for producing an α, β-unsaturated carboxylic acid. More specifically, the present invention employs specific reaction conditions in the production of α, β-unsaturated carboxylic acids by gas phase catalytic oxidation of aliphatic saturated hydrocarbons (hereinafter, may be abbreviated as alkanes). The present invention relates to a method for producing an α, β-unsaturated carboxylic acid with high selectivity. Α, β-unsaturated carboxylic acids such as acrylic acid and methacrylic acid are industrially important as raw materials for various synthetic resins, paints, plasticizers and the like.

【0002】[0002]

【従来の技術】これらα,β−不飽和カルボン酸の製造
法としては、従来、プロピレン、イソブテン等のオレフ
ィンを触媒の存在下で酸素と気相において高温で接触反
応させる方法が最も一般的な方法として知られている。
一方、プロパンとプロピレンとの間の価格差、或いはイ
ソブタンとイソブテンとの間の価格差のために、プロパ
ン、イソブタン等の低級アルカンを出発原料とし、触媒
の存在下で気相接触酸化反応させ、一段でアクリル酸、
メタクリル酸を製造する方法の開発に関心が高まってい
る。
2. Description of the Related Art Conventionally, the most common method for producing these α, β-unsaturated carboxylic acids is a method in which an olefin such as propylene or isobutene is contacted at high temperature in the gas phase with oxygen in the presence of a catalyst. Known as the method.
On the other hand, due to the price difference between propane and propylene, or the price difference between isobutane and isobutene, propane, a lower alkane such as isobutane as a starting material, and a gas phase catalytic oxidation reaction in the presence of a catalyst, Acrylic acid in one step,
There is increasing interest in developing methods for producing methacrylic acid.

【0003】プロパンを気相接触酸化反応させることに
より一段でアクリル酸を製造するための触媒の例とし
て、Mo−Sb−P−O系触媒(欧州特許第00109
02号明細書)、V−P−Te−O系触媒(相ら,Jo
urnal of Catalysis,1986年,
Vol.101,p.389)、Bi−Mo−O触媒
(特開平3−170445号公報)、ピリジンで処理さ
れたモリブドリン酸触媒(上田ら,Chemistry
Letters,1995年,p.541)、Fe−
Cs−H−P−V−Mo−O系触媒(水野ら,Appl
ied Catalysis A:General,1
995年,Vol.128,p.L165)が知られて
おり、一方、イソブタンを気相接触酸化反応させること
により一段でメタクリル酸を製造する触媒として、P−
Mo−V−O触媒(特開平2−42032号公報)及び
関連する触媒(特開平2−42033号公報、特開平4
−59738号公報等)、Cs−Ni−H−P−Mo−
O触媒(水野ら,Journal of Chemic
al Society Chemical Commu
nication,1994年,p.1411)、アン
モニウム及びカリウムを含むモリブドリン酸触媒(F.
Cavaniら,Catalysis Letter
s,1995年,Vol.32,p.215)等が知ら
れている。これらの他、本発明者等もMo−V−Nb−
Te−O系触媒(特開平6−279351号公報、特開
平7−10801号公報)等を報告している。
As an example of a catalyst for producing acrylic acid in a single step by subjecting propane to a gas phase catalytic oxidation reaction, a Mo-Sb-PO catalyst (European Patent No. 000109)
02 specification), a VP-Te-O-based catalyst (Sai et al., Jo
urnal of Catalysis, 1986,
Vol. 101, p. 389), Bi-Mo-O catalyst (JP-A-3-170445), molybdophosphoric acid catalyst treated with pyridine (Ueda et al., Chemistry).
Letters, 1995, p. 541), Fe-
Cs-HPV-Mo-O based catalyst (Mizuno et al., Appl.
ied Catalyst A: General, 1
995, Vol. 128, p. L165) is known. On the other hand, as a catalyst for producing methacrylic acid in a single step by subjecting isobutane to a gas phase catalytic oxidation reaction,
Mo-VO catalyst (JP-A-2-42032) and related catalysts (JP-A-2-42033, JP-A-4-42033)
-59738, etc.), Cs-Ni-HP-Mo-
O catalyst (Mizuno et al., Journal of Chemical
al Society Chemical Commu
nication, 1994, p. 1411), a molybdophosphoric acid catalyst containing ammonium and potassium (F.
Cavani et al., Catalysis Letter.
s, 1995, Vol. 32, p. 215) are known. In addition to these, the present inventors have also considered that Mo-V-Nb-
Te-O-based catalysts (JP-A-6-279351 and JP-A-7-10801) are reported.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の方法はいずれも目的とするα,β−不飽和カルボン酸
への選択性が低く、満足できるものではない。本発明の
課題は、アルカンの気相接触酸化によるα,β−不飽和
カルボン酸の製造において、選択性よく該カルボン酸を
製造する方法を提供することにある。
However, all of these methods are not satisfactory because of low selectivity to the target α, β-unsaturated carboxylic acid. An object of the present invention is to provide a method for producing an α, β-unsaturated carboxylic acid with high selectivity in the production of an α, β-unsaturated carboxylic acid by gas phase catalytic oxidation of an alkane.

【0005】[0005]

【課題を解決するための手段】本発明者等は、プロパ
ン、イソブタン等のアルカンを原料とするα,β−不飽
和カルボン酸の製造方法について、目的生成物への選択
性を高めるために、触媒、並びに本反応の特性を詳細に
研究した結果、供給される反応ガス中のアルカン:酸素
の濃度の比を特定の範囲とし、特に、アルカンの濃度を
所定の値以上とし、更に、供給したアルカンの転化率を
所定の値以下に抑えることにより従来法よりも高い選択
率でα,β−不飽和カルボン酸を生成すること、また、
反応器からの流出物中のα,β−不飽和カルボン酸を分
離した後、未反応のアルカンを含むガスを再度反応器に
供給することにより、実質的に高いアルカンからのα,
β−不飽和カルボン酸の収率を達成させることを見出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have proposed a process for producing an α, β-unsaturated carboxylic acid using an alkane such as propane or isobutane as a raw material, in order to increase the selectivity to an intended product. As a result of studying the characteristics of the catalyst and the reaction in detail, the ratio of the alkane: oxygen concentration in the supplied reaction gas was set to a specific range, particularly, the alkane concentration was set to a predetermined value or more. Producing an α, β-unsaturated carboxylic acid with a higher selectivity than the conventional method by suppressing the conversion of the alkane to a predetermined value or less;
After separation of the α, β-unsaturated carboxylic acid in the effluent from the reactor, the gas containing unreacted alkane is fed back into the reactor, thereby allowing substantially higher α, β from alkane.
The inventors have found that the yield of β-unsaturated carboxylic acid can be achieved, and have completed the present invention.

【0006】即ち、本発明は、炭素数3〜8の脂肪族飽
和炭化水素を複合金属酸化物触媒の存在下、気相接触酸
化反応させて、α,β−不飽和カルボン酸を製造する方
法において、原料ガス中の前記炭化水素の濃度が約4〜
90容量%であること、反応器内に供給される反応ガス
の組成体積比が、
That is, the present invention provides a process for producing an α, β-unsaturated carboxylic acid by subjecting an aliphatic saturated hydrocarbon having 3 to 8 carbon atoms to a gas phase catalytic oxidation reaction in the presence of a composite metal oxide catalyst. In the above, the concentration of the hydrocarbon in the raw material gas is about 4 to
90 volume%, the composition volume ratio of the reaction gas supplied into the reactor is:

【0007】[0007]

【数3】前記炭化水素:酸素:希釈ガス=1:0.1〜
1.9:0〜20
## EQU3 ## The hydrocarbon: oxygen: diluent gas = 1: 0.1-
1.9: 0-20

【0008】であること、且つ供給した前記炭化水素の
転化率を約70%以下とすることを特徴とするα,β−
不飽和カルボン酸の製造方法、にある。以下、本発明を
詳細に説明する。
Wherein the conversion of the supplied hydrocarbon is about 70% or less.
Production method of unsaturated carboxylic acid. Hereinafter, the present invention will be described in detail.

【0009】[0009]

【発明の実施の形態】本発明では反応器に供給される原
料ガスの組成モル分率、特にアルカンの濃度、及び反応
におけるアルカンの転化率を所定の範囲とすることによ
り目的とするα,β−不飽和カルボン酸の選択率が高ま
ることを述べている。その理由の詳細については明らか
ではないが、α,β−不飽和カルボン酸の生成、及び分
解の速度を各種触媒を使用して詳細に解析したところ、
生成したα,β−不飽和カルボン酸の逐次的な分解の速
度がアルカンの転化率が高まると大きくなることが判明
し、α,β−不飽和カルボン酸の逐次的な分解を抑制
し、選択率を高めるために本発明で提案する70%以下
のアルカンの転化率が有効である。また、本発明におい
ては、70%以下のアルカンの転化率で操作されるた
め、反応器に供給される原料ガス中のアルカンの濃度を
高め単流におけるα,β−不飽和カルボン酸の生成量を
高める方が有利である。更に、図1に示すように反応器
からの流出物からα,β−不飽和カルボン酸を分離した
後、未反応のアルカンを含むガス状物質を再度反応器に
供給するか、或いは、図2に示すように反応器を複数設
けて、未反応のアルカンを第2段目の反応器に供給し、
このように複数の反応器を設けることによりα,β−不
飽和カルボン酸に変換されるアルカンの実質的な量が増
大するため有利になる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the target α, β is determined by setting the composition mole fraction of the raw material gas supplied to the reactor, particularly the alkane concentration, and the alkane conversion in the reaction within a predetermined range. States that the selectivity for unsaturated carboxylic acids is increased. Although the details of the reason are not clear, the rate of the formation and decomposition of α, β-unsaturated carboxylic acid was analyzed in detail using various catalysts.
It has been found that the rate of the sequential decomposition of the generated α, β-unsaturated carboxylic acid increases as the conversion of the alkane increases, and the sequential decomposition of the α, β-unsaturated carboxylic acid is suppressed, and In order to increase the conversion, the conversion of alkane of 70% or less proposed in the present invention is effective. In the present invention, since the operation is performed at an alkane conversion rate of 70% or less, the concentration of the alkane in the raw material gas supplied to the reactor is increased to increase the amount of α, β-unsaturated carboxylic acid produced in a single stream. Is more advantageous. Further, after the α, β-unsaturated carboxylic acid is separated from the effluent from the reactor as shown in FIG. 1, an unreacted alkane-containing gaseous substance is supplied to the reactor again, or , A plurality of reactors are provided, and unreacted alkanes are supplied to the second-stage reactor,
Providing a plurality of such reactors is advantageous because it increases the substantial amount of alkanes converted to α, β-unsaturated carboxylic acids.

【0010】前記したように原料ガス中のアルカンの濃
度は約4〜90容量%、好ましくは5〜50容量%であ
り、また、反応器に供給される反応ガスの組成体積比
が、アルカン:酸素:希釈ガス=1:0.1〜1.9:
0〜20、好ましくは、1:0.2〜1.8:0〜15
であり、ここで、希釈ガスとは気相接触酸化反応に実質
的に関与しないガスである、具体的には、窒素、アルゴ
ン、ヘリウム、二酸化炭素、水蒸気等を使用することが
可能である。
As described above, the concentration of the alkane in the raw material gas is about 4 to 90% by volume, preferably 5 to 50% by volume, and the composition volume ratio of the reaction gas supplied to the reactor is alkane: Oxygen: diluent gas = 1: 0.1-1.9:
0-20, preferably 1: 0.2-1.8: 0-15
Here, the diluent gas is a gas that does not substantially participate in the gas phase catalytic oxidation reaction, and specifically, nitrogen, argon, helium, carbon dioxide, water vapor, or the like can be used.

【0011】本発明で使用される反応器は特に制限され
ず、固定床、流動層、移動床等いずれも採用できるが、
発熱反応であるため、流動層方式が反応温度の制御が容
易であり最も一般的に使用される。本反応は通常大気圧
下で実施されるが、低度の加圧下又は減圧下で行うこと
もできる。また、反応温度は、300〜500℃で実施
することができ、特に好ましいのは350〜470℃程
度である。気相反応におけるガス空間速度SVは、通常
100〜10000h-1、好ましくは300〜2000
-1の範囲である。
The reactor used in the present invention is not particularly limited, and any of a fixed bed, a fluidized bed, a moving bed and the like can be employed.
Because of an exothermic reaction, the fluidized bed system is most commonly used because the reaction temperature is easily controlled. This reaction is generally carried out at atmospheric pressure, but can also be carried out under low pressure or reduced pressure. The reaction can be carried out at a reaction temperature of 300 to 500 ° C, and particularly preferably about 350 to 470 ° C. The gas hourly space velocity SV in the gas phase reaction is usually 100 to 10000 h -1 , preferably 300 to 2000 h -1 .
h- 1 .

【0012】反応器からの流出物からα,β−不飽和カ
ルボン酸を分離した後、未反応のアルカンを含むガス状
物質を再度反応器に供給する際に反応で副生したC
2 、CO及び反応器に供給された原料ガス中の非凝縮
性の希釈ガス、具体的には空気を供給した場合の窒素等
を除去すると反応器に再度供給されるアルカンを含むガ
ス中への不活性ガスの蓄積を防止することができる。言
い替えると反応に有効な炭化水素類を選択的に取り出す
分離器を備えると実質的にα,β−不飽和カルボン酸に
変換されるアルカンの量を高めることが可能であり、そ
の選択的分離器としては、例えば、圧力スイング吸着ユ
ニット等が挙げられる。なお、この分離の際に反応で少
量生成したアルケン、具体的にはプロパンを原料とした
場合に生成するプロピレンはプロパンと共に再度反応器
に供給しアクリル酸に転化させることが可能である。
After separating the α, β-unsaturated carboxylic acid from the effluent from the reactor, when the gaseous substance containing unreacted alkane is supplied to the reactor again, C by-produced by the reaction is removed.
When O 2 , CO and non-condensable diluent gas in the raw material gas supplied to the reactor, specifically, nitrogen or the like when air is removed, into the gas containing alkane supplied again to the reactor. Can prevent accumulation of inert gas. In other words, if a separator for selectively removing hydrocarbons effective for the reaction is provided, it is possible to substantially increase the amount of alkane converted to α, β-unsaturated carboxylic acid. Examples thereof include a pressure swing adsorption unit and the like. The alkene produced in a small amount by the reaction during this separation, specifically, propylene produced when propane is used as a raw material, can be supplied again to the reactor together with propane to be converted into acrylic acid.

【0013】また、本発明において使用される触媒は特
に制限されないが、モリブデン、バナジウム、X、Y及
びOからなる複合金属酸化物触媒であって(Xはテルル
及びアンチモンの中の少なくとも一種の元素を表わし、
Yはニオブ、タンタル、タングステン、チタン、アルミ
ニウム、ジルコニウム、クロム、マンガン、鉄、ルテニ
ウム、コバルト、ロジウム、ニッケル、パラジウム、白
金、ビスマス、ホウ素、インジウム、リン、希土類元
素、アルカリ金属及びアルカリ土類金属からなる群から
選ばれた少なくとも一種の元素を表わす)、酸素を除く
上記必須成分の合計モル数に対する各必須成分の存在割
合が、次式
Although the catalyst used in the present invention is not particularly limited, it is a composite metal oxide catalyst comprising molybdenum, vanadium, X, Y and O (X is at least one element selected from tellurium and antimony). Represents
Y is niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, bismuth, boron, indium, phosphorus, rare earth elements, alkali metals and alkaline earth metals Represents at least one element selected from the group consisting of), the proportion of each essential component to the total number of moles of the above essential components excluding oxygen is represented by the following formula:

【0014】[0014]

【数4】0.25<rMo<0.98 0.003<rV <0.5 0.003<rX <0.5 0.003<rY <0.5[Number 4] 0.25 <r Mo <0.98 0.003 < r V <0.5 0.003 <r X <0.5 0.003 <r Y <0.5

【0015】(但し、rMo、rV 、rX 及びrY は酸素
を除く上記必須成分の合計モル数に対するMo、V、X
及びYのモル分率を表わす)を満たす複合金属酸化物で
あることが好ましく、また、YがNb、Ta、Ti又は
Biの少なくとも一種であるときが特に好ましい。この
複合金属酸化物触媒は既に報告されているアルカンから
α,β−不飽和カルボン酸を製造する触媒に比べ、α,
β−不飽和カルボン酸の収率、選択率が優れ、本発明で
提案するような反応方式を採用せず、例えば、アルカン
の転化率を70%以上で実施することも可能であるが、
触媒の性能を向上させるべく反応特性についても注目し
鋭意検討を進めたところ、本発明で提案するような方法
を採用することにより、一層α,β−不飽和カルボン酸
の生産効率が高まることが見出され本発明に至ったもの
である。
(Where r Mo , r V , r X and r Y are Mo, V, X with respect to the total number of moles of the above essential components excluding oxygen)
And a mole fraction of Y) are preferable, and it is particularly preferable that Y is at least one of Nb, Ta, Ti or Bi. This composite metal oxide catalyst has a higher α, β-unsaturated carboxylic acid than previously reported catalysts for producing α, β-unsaturated carboxylic acids.
Although the yield and selectivity of the β-unsaturated carboxylic acid are excellent and the reaction system proposed in the present invention is not used, for example, it is possible to carry out the conversion of the alkane at 70% or more,
Intensive studies have been made with a focus on the reaction characteristics in order to improve the performance of the catalyst. By adopting the method proposed in the present invention, the production efficiency of α, β-unsaturated carboxylic acid can be further increased. It has been found and led to the present invention.

【0016】[0016]

【実施例】以下、本発明を、実施例を挙げて更に詳細に
説明するが、本発明はその要旨を超えない限りこれらの
実施例に限定されるものではない。なお、以下の実施例
における転化率(%)、選択率(%)及び収率(%)
は、各々次式で示される。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist. The conversion (%), selectivity (%) and yield (%) in the following examples
Are represented by the following equations.

【0017】[0017]

【数5】アルカンの転化率(モル%)=(消費アルカン
のモル数/供給アルカンのモル数)×100
## EQU5 ## Conversion of alkane (mol%) = (mol number of alkane consumed / mol number of supplied alkane) × 100

【0018】[0018]

【数6】目的α,β−不飽和カルボン酸の選択率(モル
%)=(生成目的α,β−不飽和カルボン酸のモル数/
消費アルカンのモル数)×100
## EQU6 ## Selectivity (mol%) of target α, β-unsaturated carboxylic acid = (mol number of target α, β-unsaturated carboxylic acid / formation)
Number of moles of alkane consumed) x 100

【0019】[0019]

【数7】目的α,β−不飽和カルボン酸の収率(モル
%)=(生成目的α,β−不飽和カルボン酸のモル数/
供給アルカンのモル数)×100
## EQU7 ## Yield (mol%) of target α, β-unsaturated carboxylic acid = (mol number of target α, β-unsaturated carboxylic acid //
Number of moles of supplied alkane) x 100

【0020】参考例1 複合酸化物触媒(Mo1 0.3
Te0.23Nb0.12n )の調製 実験式Mo1 0.3 Te0.23Nb0.12n を有する複合
金属酸化物を次のように調製した。温水325mlに7
8.9gのパラモリブデン酸アンモニウム塩、15.7
gのメタバナジン酸アンモニウム塩、23.6gのテル
ル酸を溶解し均一な水溶液を調製した。更にニオブの濃
度が0.456mol/kgのシュウ酸ニオブアンモニ
ウム水溶液117.5gを混合し、スラリーを調製し
た。このスラリーを乾燥させ水分を除去した。次いでこ
の乾燥物をアンモニア臭がなくなるまで約300℃で加
熱処理した後、窒素気流中600℃で2時間焼成した。
このようにして得た複合金属酸化物を30gを乳鉢中で
粉砕し、その粉末を100mlの水に分散させ水溶性ス
ラリーを得た。このスラリーを加熱処理することにより
粉末固体を得た。この固体を打錠成型器を用いて5mm
φ×3mmLに成型した後、粉砕し16〜28メッシュ
に篩分けし、窒素気流中600℃で2時間焼成した。
Reference Example 1 Composite oxide catalyst (Mo 1 V 0.3
The composite metal oxide having a Te 0.23 Nb 0.12 O n prepared empirical formula Mo 1 V 0.3 Te 0.23 Nb 0.12 O n ) of was prepared as follows. 7 in 325 ml of hot water
8.9 g ammonium paramolybdate, 15.7
g of ammonium metavanadate and 23.6 g of telluric acid were dissolved to prepare a uniform aqueous solution. Further, 117.5 g of an aqueous solution of ammonium niobium oxalate having a niobium concentration of 0.456 mol / kg was mixed to prepare a slurry. The slurry was dried to remove water. Next, the dried product was heated at about 300 ° C. until the smell of ammonia disappeared, and then calcined at 600 ° C. for 2 hours in a nitrogen stream.
30 g of the composite metal oxide thus obtained was pulverized in a mortar, and the powder was dispersed in 100 ml of water to obtain a water-soluble slurry. This slurry was subjected to a heat treatment to obtain a powder solid. This solid was compressed to 5 mm using a tableting machine.
After molding into φ × 3 mmL, it was pulverized, sieved to 16 to 28 mesh, and fired at 600 ° C. for 2 hours in a nitrogen stream.

【0021】実施例1 固定床流通型反応器に参考例1に記したようにして調製
された複合酸化物触媒Mo1 0.3 Te0.23Nb0.12
n を100mg充填し、温度420℃の下で、プロパ
ン:空気:水蒸気=1:4:12(プロパン濃度:5.
9容量%)、触媒単位重量当りのプロパン供給量が1.
86kg/kg−触媒となるように気相接触酸化反応を
行った。その結果、プロパンの転化率は15.0モル
%、アクリル酸の収率は9.7モル%であり、プロピレ
ンが4.1モル%の収率で生成した。アクリル酸の選択
率は64.7モル%であり、プロピレンの選択率は2
7.3モル%である。ここで反応器から流出した生成物
の中、アクリル酸、及び少量の酢酸を水に吸収させて回
収した後、排出されたガスから大部分のプロパンを分
離、回収して再度反応器に上記した反応ガス組成になる
ように、プロパン、及び空気を添加して気相接触酸化反
応を行ったところ、上記したものとほぼ同様の反応結果
が得られた。
Example 1 A composite oxide catalyst Mo 1 V 0.3 Te 0.23 Nb 0.12 O prepared as described in Reference Example 1 in a fixed bed flow type reactor
100 mg of n and propane: air: water vapor = 1: 4: 12 (propane concentration: 5.
9% by volume), and the amount of propane supplied per unit weight of the catalyst was 1.
The gas phase catalytic oxidation reaction was performed so as to be 86 kg / kg-catalyst. As a result, the conversion of propane was 15.0 mol%, the yield of acrylic acid was 9.7 mol%, and propylene was produced at a yield of 4.1 mol%. The selectivity for acrylic acid is 64.7 mol% and the selectivity for propylene is 2
7.3 mol%. Here, acrylic acid and a small amount of acetic acid were absorbed in water and recovered in the product flowing out of the reactor, and then most of propane was separated and recovered from the discharged gas, and the above-described components were again described in the reactor. When gas phase catalytic oxidation reaction was performed by adding propane and air so as to obtain a reaction gas composition, almost the same reaction results as described above were obtained.

【0022】実施例2〜5 実施例1における反応温度、反応器に供給されるガス組
成を表−1に示すように変化させた下で実施例1と同様
にプロパンの気相接触酸化反応を行った。その結果を表
−1に示す。
Examples 2 to 5 The gas phase catalytic oxidation reaction of propane was carried out in the same manner as in Example 1 except that the reaction temperature and the gas composition supplied to the reactor in Example 1 were changed as shown in Table 1. went. Table 1 shows the results.

【0023】[0023]

【表1】 PPA:プロパン; PPY:プロピレン; AA: アクリル酸[Table 1] PPA: propane; PPY: propylene; AA: acrylic acid

【0024】比較例1〜3 実施例1に記したものと同様の固定床流通型反応器に参
考例1に記したようにして調製された複合酸化物触媒M
1 0.3 Te0.23Nb0.12n を610mg充填し、
温度380℃、400℃、420℃の下で、プロパン:
空気:水蒸気=1:15:14(プロパン濃度:3.3
容量%)、触媒単位重量当りのプロパン供給量が0.1
0kg/kg−触媒となるように気相接触酸化反応を行
った。結果を表−2に示す。
Comparative Examples 1-3 Complex oxide catalyst M prepared as described in Reference Example 1 in a fixed bed flow reactor similar to that described in Example 1
the o 1 V 0.3 Te 0.23 Nb 0.12 O n was charged 610mg,
At temperatures of 380 ° C, 400 ° C, 420 ° C, propane:
Air: water vapor = 1: 15: 14 (propane concentration: 3.3
Volume%), and the propane supply amount per unit weight of the catalyst is 0.1%.
The gas phase catalytic oxidation reaction was performed so as to be 0 kg / kg-catalyst. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】参考例2 複合酸化物触媒(Mo1 0.3
Te0.15Nb0.06n )の調製 実験式Mo1 0.3 Te0.15Nb0.06n を有する複合
金属酸化物を次のように調製した。温水325mlに7
8.9gのパラモリブデン酸アンモニウム塩、15.7
gのメタバナジン酸アンモニウム塩、15.4gのテル
ル酸を溶解し均一な水溶液を調製した。更にニオブの濃
度が0.456mol/kgのシュウ酸ニオブアンモニ
ウム水溶液58.8gを混合し、スラリーを調製した。
このスラリーを乾燥させ水分を除去した。次いでこの乾
燥物を打錠成型器を用いて5mmφ×3mmLに成型し
た後、粉砕し16〜28メッシュに篩分けし、アンモニ
ア臭がなくなるまで約300℃で加熱処理した後、窒素
気流中600℃で2時間焼成した。
Reference Example 2 Complex oxide catalyst (Mo 1 V 0.3
The composite metal oxide having a Te 0.15 Nb 0.06 O n prepared empirical formula Mo 1 V 0.3 Te 0.15 Nb 0.06 O n ) of was prepared as follows. 7 in 325 ml of hot water
8.9 g ammonium paramolybdate, 15.7
g of ammonium metavanadate and 15.4 g of telluric acid were dissolved to prepare a uniform aqueous solution. Further, 58.8 g of an aqueous niobium ammonium oxalate solution having a niobium concentration of 0.456 mol / kg was mixed to prepare a slurry.
The slurry was dried to remove water. Next, this dried product is molded into a size of 5 mmφ × 3 mmL using a tableting machine, crushed and sieved to 16 to 28 mesh, and heat-treated at about 300 ° C. until the smell of ammonia disappears. For 2 hours.

【0027】実施例6〜9 参考例2に記したようにして調製された複合酸化物触媒
(Mo1 0.3 Te0. 15Nb0.06n )を用いて、実施
例1と同様の触媒量、供給反応ガス比の下で、反応温度
を400℃、420℃、430℃、440℃としてプロ
パンの気相接触酸化反応を行った。その結果を表−3に
示す。
[0027] Examples 6-9 with Example 2 in the composite oxide catalyst to be prepared in as noted (Mo 1 V 0.3 Te 0. 15 Nb 0.06 O n), the same amount of catalyst as in Example 1 The gaseous phase catalytic oxidation reaction of propane was performed at a reaction temperature of 400 ° C., 420 ° C., 430 ° C., and 440 ° C. under a supplied reaction gas ratio. Table 3 shows the results.

【0028】実施例10 反応ガス組成比をプロパン:空気:水蒸気=1:4:1
2(プロパン濃度:20容量%)とした以外は実施例7
と同様の触媒、反応条件の下でプロパンの気相接触酸化
反応を行った。その結果を表−3に示す。
Example 10 The reaction gas composition ratio was changed to propane: air: steam = 1: 4: 1.
Example 7 except that the concentration was 2 (propane concentration: 20% by volume)
The gas phase catalytic oxidation reaction of propane was carried out under the same catalyst and reaction conditions as described above. Table 3 shows the results.

【0029】[0029]

【表3】 [Table 3]

【0030】参考例3 複合酸化物触媒(Mo1 0.3
Te0.23Nb0.12Ce0.08n )の調製 実験式Mo1 0.3 Te0.23Nb0.12Ce0.08n を有
する複合金属酸化物を次のように調製した。温水325
mlに78.9gのパラモリブデン酸アンモニウム塩、
15.7gのメタバナジン酸アンモニウム塩、23.6
gのテルル酸を溶解し均一な水溶液を調製した。更にニ
オブの濃度が0.456mol/kgのシュウ酸ニオブ
アンモニウム水溶液117.5g、及び水酸化セリウム
(Ce(OH)4 ・H2 O)8.08gを混合しスラリ
ーを調製した。このスラリーを乾燥させ水分を除去し
た。次いでこの乾燥物を打錠成型器を用いて5mmφ×
3mmLに成型した後、粉砕し16〜28メッシュに篩
分けし、アンモニア臭がなくなるまで約300℃で加熱
処理した後、窒素気流中600℃で2時間焼成した。
Reference Example 3 Composite oxide catalyst (Mo 1 V 0.3
The composite metal oxide having a Te 0.23 Nb 0.12 Ce 0.08 O n prepared empirical formula Mo 1 V 0.3 Te 0.23 in) Nb 0.12 Ce 0.08 O n was prepared as follows. 325 hot water
78.9 g of ammonium paramolybdate in ml,
15.7 g ammonium metavanadate, 23.6
g of telluric acid was dissolved to prepare a uniform aqueous solution. Further, 117.5 g of an aqueous niobium ammonium oxalate solution having a niobium concentration of 0.456 mol / kg and 8.08 g of cerium hydroxide (Ce (OH) 4 .H 2 O) were mixed to prepare a slurry. The slurry was dried to remove water. Next, this dried product was compressed to 5 mmφ × using a tableting machine.
After molding to 3 mmL, the mixture was pulverized, sieved to 16 to 28 mesh, heat-treated at about 300 ° C until the smell of ammonia disappeared, and then calcined at 600 ° C in a nitrogen stream for 2 hours.

【0031】実施例11〜15 参考例3に記したようにして調製された複合酸化物触媒
(Mo1 0.3 Te0. 23Nb0.12Ce0.08n )を用い
て、実施例1と同様の触媒量、供給反応ガス比の下で、
反応温度を410℃、420℃、430℃、440℃、
450℃としてプロパンの気相接触酸化反応を行った。
その結果を表−4に示す。
[0031] Examples 11 to 15 and using Reference Example 3 in the composite oxide catalyst to be prepared in as noted (Mo 1 V 0.3 Te 0. 23 Nb 0.12 Ce 0.08 O n), in the same manner as in Example 1 Under the catalyst amount and feed reaction gas ratio,
The reaction temperature was 410 ° C, 420 ° C, 430 ° C, 440 ° C,
The gas phase catalytic oxidation reaction of propane was performed at 450 ° C.
Table 4 shows the results.

【0032】[0032]

【表4】 [Table 4]

【0033】参考例4 複合酸化物触媒(Mo1 0.3
Sb0.15Nb0.05Ce0.02n /SiO2 10重量%)
の調製 実験式Mo1 0.3 Sb0.15Nb0.05Ce0.02n /S
iO2 10重量%を有する複合金属酸化物を次のように
調製した。温水325mlにメタバナジン酸アンモニウ
ム15.7gを溶解し、これに三酸化アンチモン粉末
9.75gを添加し、6時間スラリーを加熱熟成した
後、パラモリブデン酸アンモニウム78.9gを添加し
冷却し、約15℃の下でNbの濃度が2.23mol/
kgのシュウ酸ニオブアンモニウム水溶液を添加し、更
にシリカの濃度が20重量%のシリカゾルを58.6g
添加した。このスラリーを加熱処理することにより水分
を除去し固体を得た。この固体を空気中400℃で塩分
解した後、打錠成型器を用いて5mmφ×3mmLに成
型した後、粉砕し、16〜28メッシュに篩分けし、窒
素気流中600℃で2時間焼成した。78.9gのパラ
モリブデン酸アンモニウム塩、15.7gのメタバナジ
ン酸アンモニウム塩、23.6gのテルル酸を溶解し均
一な水溶液を調製した。更にニオブの濃度が0.456
mol/kgのシュウ酸ニオブアンモニウム水溶液11
7.5gを混合し、スラリーを調製した。このスラリー
を乾燥させ水分を除去した。次いでこの乾燥物をアンモ
ニア臭がなくなるまで約300℃で加熱処理した後、窒
素気流中600℃で2時間焼成した。このようにして得
た複合金属酸化物を30gを乳鉢中で粉砕し、その粉末
を100mlの水に分散させ水溶性スラリーを得た。こ
のスラリーを加熱処理することにより粉砕固体を得た。
この固体を打錠成型器を用いて5mmφ×3mmLに成
型した後、粉砕し16〜28メッシュに篩分けし窒素気
流中600℃で2時間焼成した。
Reference Example 4 Composite oxide catalyst (Mo 1 V 0.3
Sb 0.15 Nb 0.05 Ce 0.02 O n / SiO 2 10 % by weight)
Preparation empirical formula of Mo 1 V 0.3 Sb 0.15 Nb 0.05 Ce 0.02 O n / S
A composite metal oxide having 10% by weight of iO 2 was prepared as follows. 15.7 g of ammonium metavanadate was dissolved in 325 ml of warm water, 9.75 g of antimony trioxide powder was added thereto, and the slurry was heated and aged for 6 hours. Then, 78.9 g of ammonium paramolybdate was added, and the mixture was cooled to about 15%. The concentration of Nb was 2.23 mol /
kg of an aqueous niobium ammonium oxalate solution, and 58.6 g of a silica sol having a silica concentration of 20% by weight.
Was added. The slurry was subjected to a heat treatment to remove water and obtain a solid. This solid was salt-decomposed in air at 400 ° C., molded into 5 mmφ × 3 mmL using a tableting press, pulverized, sieved to 16 to 28 mesh, and calcined at 600 ° C. for 2 hours in a nitrogen stream. . A homogeneous aqueous solution was prepared by dissolving 78.9 g of ammonium paramolybdate, 15.7 g of ammonium metavanadate, and 23.6 g of telluric acid. Further, the niobium concentration is 0.456.
mol / kg niobium ammonium oxalate aqueous solution 11
The slurry was prepared by mixing 7.5 g. The slurry was dried to remove water. Next, the dried product was heated at about 300 ° C. until the smell of ammonia disappeared, and then calcined at 600 ° C. for 2 hours in a nitrogen stream. 30 g of the composite metal oxide thus obtained was pulverized in a mortar, and the powder was dispersed in 100 ml of water to obtain a water-soluble slurry. This slurry was subjected to a heat treatment to obtain a pulverized solid.
This solid was molded into a size of 5 mmφ × 3 mmL using a tablet molding machine, pulverized, sieved to 16 to 28 mesh, and calcined at 600 ° C. for 2 hours in a nitrogen stream.

【0034】実施例16〜20 固定床流通型反応器に参考例4に記したようにして調製
された複合酸化物触媒Mo1 0.3 Sb0.15Nb0.05
0.02n /SiO2 10重量%を150mg充填し、
温度400℃、410℃、420℃、430℃、440
℃の下で、プロパン:空気:水蒸気=1:4:5(プロ
パン濃度:10容量%)、触媒単位重量当りのプロパン
供給量が1.23kg/kg−触媒となるように気相接
触酸化反応を行った。その結果を表−5に示す。
Examples 16 to 20 The composite oxide catalyst Mo 1 V 0.3 Sb 0.15 Nb 0.05 C prepared in a fixed bed flow reactor as described in Reference Example 4
The e 0.02 O n / SiO 2 10% by weight and 150mg fill,
Temperature 400 ° C, 410 ° C, 420 ° C, 430 ° C, 440
Gas phase catalytic oxidation reaction at a temperature of 0 ° C. so that propane: air: steam = 1: 4: 5 (propane concentration: 10% by volume), and the amount of propane supplied per unit weight of catalyst becomes 1.23 kg / kg-catalyst. Was done. The results are shown in Table-5.

【0035】[0035]

【表5】 [Table 5]

【0036】比較例4〜5 実施例1に記したものと同様の固定床流通型反応器に参
考例4に記したようにして調製された複合酸化物触媒M
1 0.3 Sb0.15Nb0.05Ce0.02n /SiO2
0重量%を550mg充填し、温度420℃、430℃
の下で、プロパン:空気:水蒸気=1:15:14(プ
ロパン濃度:3.3容量%)、触媒単位重量当りのプロ
パン供給量が0.10kg/kg−触媒となるように気
相接触酸化反応を行った。結果を表−6に示す。
COMPARATIVE EXAMPLES 4-5 Composite oxide catalyst M prepared as described in Reference Example 4 in a fixed bed flow reactor similar to that described in Example 1
o 1 V 0.3 Sb 0.15 Nb 0.05 Ce 0.02 O n / SiO 2 1
0 wt% 550mg, temperature 420 ℃, 430 ℃
Under the following conditions, propane: air: steam = 1: 15: 14 (propane concentration: 3.3% by volume), gas phase catalytic oxidation such that the propane supply per unit weight of the catalyst is 0.10 kg / kg-catalyst. The reaction was performed. The results are shown in Table-6.

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【発明の効果】本発明によれば、アルカンの気相接触酸
化によるα,β−不飽和カルボン酸の製造において、選
択性よくα,β−不飽和カルボン酸を製造することがで
き、その生産効率を高めることができる。
According to the present invention, α, β-unsaturated carboxylic acids can be produced with good selectivity in the production of α, β-unsaturated carboxylic acids by gas phase catalytic oxidation of alkanes. Efficiency can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一箇の反応器を用いる本発明の一態様を示すフ
ローシートである。
FIG. 1 is a flow sheet showing one embodiment of the present invention using one reactor.

【図2】複数の反応器を用いる本発明の別の一態様を示
すフローシートである。
FIG. 2 is a flow sheet showing another embodiment of the present invention using a plurality of reactors.

【符号の説明】[Explanation of symbols]

1 気相酸化反応器 2 生成物回収 3 ガス分離 1 gas phase oxidation reactor 2 product recovery 3 gas separation

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/652 B01J 23/88 X 23/88 27/198 X 27/198 27/30 X 27/30 2115−4H C07C 51/215 C07C 51/215 C07B 61/00 300 // C07B 61/00 300 B01J 23/64 103X ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location B01J 23/652 B01J 23/88 X 23/88 27/198 X 27/198 27/30 X 27 / 30 2115-4H C07C 51/215 C07C 51/215 C07B 61/00 300 // C07B 61/00 300 B01J 23/64 103X

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素数3〜8の脂肪族飽和炭化水素を複
合金属酸化物触媒の存在下、気相接触酸化反応させて、
α,β−不飽和カルボン酸を製造する方法において、原
料ガス中の前記炭化水素の濃度が約4〜90容量%であ
ること、反応器内に供給される反応ガスの組成体積比
が、 【数1】前記炭化水素:酸素:希釈ガス=1:0.1〜
1.9:0〜20 であること、且つ供給した前記炭化水素の転化率を約7
0%以下とすることを特徴とするα,β−不飽和カルボ
ン酸の製造方法。
1. A gas phase catalytic oxidation reaction of an aliphatic saturated hydrocarbon having 3 to 8 carbon atoms in the presence of a composite metal oxide catalyst,
In the method for producing an α, β-unsaturated carboxylic acid, the concentration of the hydrocarbon in the raw material gas is about 4 to 90% by volume, and the composition volume ratio of the reaction gas supplied into the reactor is as follows: ## EQU1 ## The hydrocarbon: oxygen: diluent gas = 1: 0.1-
1.9: 0 to 20 and a conversion of the supplied hydrocarbon of about 7
A method for producing an α, β-unsaturated carboxylic acid, wherein the content is 0% or less.
【請求項2】 反応器からの流出物中のα,β−不飽和
カルボン酸等を分離した後、未反応の前記炭化水素を含
むガス状物質を再度反応器に供給する請求項1に記載の
方法。
2. The method according to claim 1, wherein after separating α, β-unsaturated carboxylic acid and the like in the effluent from the reactor, the unreacted gaseous substance containing the hydrocarbon is supplied to the reactor again. the method of.
【請求項3】 複合金属酸化物触媒がモリブデン、バナ
ジウム、X、Y及びO(Xはテルル及びアンチモンのう
ちの少なくとも一種の元素を表わし、Yはニオブ、タン
タル、タングステン、チタン、アルミニウム、ジルコニ
ウム、クロム、マンガン、鉄、ルテニウム、コバルト、
ロジウム、ニッケル、パラジウム、白金、ビスマス、ホ
ウ素、インジウム、リン、希土類元素、アルカリ金属及
びアルカリ土類金属からなる群から選ばれた少なくとも
一種の元素を表わす)を必須成分とし、酸素を除く上記
必須成分の合計モル数に対する各必須成分の存在割合
が、次式 【数2】0.25<rMo<0.98 0.003<rV <0.5 0.003<rX <0.5 0.003<rY <0.5 (但し、rMo、rV 、rX 及びrY は酸素を除く上記必
須成分の合計モル数に対するMo、V、X及びYのモル
分率を表わす)を満たす複合金属酸化物である請求項1
又は2に記載の方法。
3. The composite metal oxide catalyst, wherein molybdenum, vanadium, X, Y and O (X represents at least one element of tellurium and antimony, and Y represents niobium, tantalum, tungsten, titanium, aluminum, zirconium, Chromium, manganese, iron, ruthenium, cobalt,
Rhodium, nickel, palladium, platinum, bismuth, boron, indium, phosphorus, rare earth elements, alkali metals and alkaline earth metals). the proportion of the essential components to the total number of moles of the components, the following equation ## EQU2 ## 0.25 <r Mo <0.98 0.003 < r V <0.5 0.003 <r X <0.5 0.003 <r Y <0.5 (where r Mo , r V , r X and r Y represent the mole fractions of Mo, V, X and Y based on the total moles of the above essential components excluding oxygen) 2. A composite metal oxide that satisfies the following.
Or the method of 2.
【請求項4】 前記炭化水素がプロパンである請求項1
ないし3のいずれか1項に記載の方法。
4. The method of claim 1, wherein said hydrocarbon is propane.
4. The method according to any one of claims 3 to 3.
JP8196626A 1996-07-25 1996-07-25 Production of alpha, beta-unsaturated carboxylic acid Pending JPH1036311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8196626A JPH1036311A (en) 1996-07-25 1996-07-25 Production of alpha, beta-unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8196626A JPH1036311A (en) 1996-07-25 1996-07-25 Production of alpha, beta-unsaturated carboxylic acid

Publications (1)

Publication Number Publication Date
JPH1036311A true JPH1036311A (en) 1998-02-10

Family

ID=16360897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8196626A Pending JPH1036311A (en) 1996-07-25 1996-07-25 Production of alpha, beta-unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JPH1036311A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114418A (en) * 1997-09-30 1999-04-27 Sumitomo Chem Co Ltd Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
WO2002032571A1 (en) 2000-10-17 2002-04-25 Basf Aktiengesellschaft Catalyst comprising a support and a catalytically active oxide material applied to the surface of the substrate
US6867328B2 (en) 2000-07-18 2005-03-15 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
JP2005074377A (en) * 2003-09-03 2005-03-24 Toagosei Co Ltd Method for producing metal oxide catalyst
US7026506B2 (en) 2001-04-17 2006-04-11 Basf Aktiengesellschaft Method for producing acrylic acid by heterogeneously catalyzed gas-phase oxidation of propene with molecular oxygen in a reaction zone
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7321058B2 (en) 2000-06-14 2008-01-22 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid
US7645897B2 (en) 2004-10-15 2010-01-12 Xinlin Tu Process for producing metal oxide catalyst
JP2010248104A (en) * 2009-04-14 2010-11-04 Tokuyama Corp Manufacturing method for 1,1,1,2,3-pentachloropropane
JP2016215187A (en) * 2012-09-27 2016-12-22 旭化成株式会社 Composite oxide catalyst, method for producing the same and method for producing unsaturated nitrile

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114418A (en) * 1997-09-30 1999-04-27 Sumitomo Chem Co Ltd Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
US7321058B2 (en) 2000-06-14 2008-01-22 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid
US6867328B2 (en) 2000-07-18 2005-03-15 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
US7214822B2 (en) 2000-10-17 2007-05-08 Basf Aktiengesellschaft Catalyst comprising a support and a catalytically active oxide material applied to the surface of the substrate
WO2002032571A1 (en) 2000-10-17 2002-04-25 Basf Aktiengesellschaft Catalyst comprising a support and a catalytically active oxide material applied to the surface of the substrate
US7005403B2 (en) 2000-10-17 2006-02-28 Basf Aktiengesellschaft Catalyst comprising a support body and a catalytically active oxide material applied to the surface of the substrate
US7378541B2 (en) 2000-12-13 2008-05-27 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7498463B2 (en) 2000-12-13 2009-03-03 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7026506B2 (en) 2001-04-17 2006-04-11 Basf Aktiengesellschaft Method for producing acrylic acid by heterogeneously catalyzed gas-phase oxidation of propene with molecular oxygen in a reaction zone
JP2005074377A (en) * 2003-09-03 2005-03-24 Toagosei Co Ltd Method for producing metal oxide catalyst
US7645897B2 (en) 2004-10-15 2010-01-12 Xinlin Tu Process for producing metal oxide catalyst
JP2010248104A (en) * 2009-04-14 2010-11-04 Tokuyama Corp Manufacturing method for 1,1,1,2,3-pentachloropropane
JP2016215187A (en) * 2012-09-27 2016-12-22 旭化成株式会社 Composite oxide catalyst, method for producing the same and method for producing unsaturated nitrile

Similar Documents

Publication Publication Date Title
US6194610B1 (en) Process for the selective preparation of acetic acid using a molybdenum and palladium based catalytic oxide
JP4809531B2 (en) Catalytic oxidation of alkanes to the corresponding acids
JP3984017B2 (en) Mixed metal oxide catalyst
KR100823054B1 (en) Recycle process
JP4346822B2 (en) Molybdenum-vanadium catalyst for the low temperature selective oxidation of propylene, its production and use
US7009075B2 (en) Process for the selective conversion of alkanes to unsaturated carboxylic acids
MXPA02003870A (en) Improved catalyst.
EP1276558B1 (en) Process for the oxidation of ethane to acetic acid and ethylene
MXPA02003868A (en) Recalcined catalyst.
US20090287019A1 (en) Process for producing an unsaturated carboxylic acid from an alkane
JPH0753448A (en) Production of acrylic acid
JP2003024787A (en) Mixed metal oxide catalyst
JP3237314B2 (en) Method for producing α, β-unsaturated carboxylic acid
MXPA02003873A (en) High temperature mixing.
US20050137422A1 (en) Process for producing an unsaturated carboxylic acid from an alkane
JPH1036311A (en) Production of alpha, beta-unsaturated carboxylic acid
US6034270A (en) Process for the selective preparation of acetic acid using a molybdenum, palladium, and rhenium catalyst
JPH09316023A (en) Production of (meth)acrylic acid
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
US6620973B2 (en) Catalysts for oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
JPH1157479A (en) Gas phase catalytic oxidation reaction catalyst for hydrocarbon and preparation thereof
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JPH11169716A (en) Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JPH06228073A (en) Production of nitrile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124