JPH11114418A - Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst - Google Patents

Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst

Info

Publication number
JPH11114418A
JPH11114418A JP9266903A JP26690397A JPH11114418A JP H11114418 A JPH11114418 A JP H11114418A JP 9266903 A JP9266903 A JP 9266903A JP 26690397 A JP26690397 A JP 26690397A JP H11114418 A JPH11114418 A JP H11114418A
Authority
JP
Japan
Prior art keywords
catalyst
oxygen
value
isobutane
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9266903A
Other languages
Japanese (ja)
Other versions
JP4182237B2 (en
Inventor
Akinori Okusako
顕仙 奥迫
Toshiaki Ui
利明 宇井
Koichi Nagai
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP26690397A priority Critical patent/JP4182237B2/en
Publication of JPH11114418A publication Critical patent/JPH11114418A/en
Application granted granted Critical
Publication of JP4182237B2 publication Critical patent/JP4182237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance heat resistance, degree of conversion and selectivity by using a catalyst composed of a composite oxide represented by a specific formula after its baking. SOLUTION: This catalyst is composed of a composite oxide represented by the formula: NbaMobSbcXdYeOf (wherein, Nb is niobium; Mo is molybdenum; Sb is antimony; O is oxygen;X is one or more kinds of element selected from the group of phosphor, arsenic, boron, silicon and germanium; Y is one or more kinds of element selected from the group of potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron or the like; subscripts a, b, c, d and e represent the atomic ratio of each of elements; a is a value of at most 7 not including O, c is a value of at most 20 not including O and d and e are a value of at most 6 including O, when b=12; and f is a value to be determined depending upon the atomic value and the atomic ratio of each of elements). Alkene such as isobutylene and an oxygen-containing compound are manufactured using this catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イソブタンの気相
接触酸化反応用触媒の提供並びにこれを用いてなるイソ
ブタンからのイソブチレン、酢酸、アクリル酸、メタク
ロレイン及び、メタクリル酸等のアルケンおよび含酸素
化合物の製造方法に関する。
The present invention relates to a catalyst for the gas phase catalytic oxidation reaction of isobutane, and an alkene such as isobutylene, acetic acid, acrylic acid, methacrolein and methacrylic acid, and an alkane and oxygen containing isobutane obtained by using the catalyst. The present invention relates to a method for producing a compound.

【0002】[0002]

【従来の技術】イソブチレンまたはターシャリーブタノ
ールからメタクロレインを経由し、二段階酸化によりメ
タクリル酸を製造する方法はよく知られており、既に工
業化が実施されている。他方、近年イソブチレンまたは
ターシャリーブタノールに比べると著しく反応性は乏し
いものの、これらと同じ炭素骨格を有し且つ安価である
イソブタンを原料としたメタクロレインおよび/または
メタクリル酸を製造する方法が提案されている。
2. Description of the Related Art A method for producing methacrylic acid from isobutylene or tertiary butanol via methacrolein by two-step oxidation is well known and has already been industrialized. On the other hand, in recent years, there has been proposed a method for producing methacrolein and / or methacrylic acid from isobutane which has the same carbon skeleton and is inexpensive, although the reactivity is remarkably poor as compared with isobutylene or tertiary butanol. I have.

【0003】例えば、特開昭62−132832号公報
には「リンまたはヒ素を中心元素として、モリブデンを
含むヘテロポリ酸を含有する触媒にイソブタンと酸素を
交互に接触させ、メタクロレインおよび/またはメタク
リル酸を得る方法」、特開平2−42034号公報には
「リンおよび/またはヒ素を中心元素として、モリブデ
ンを含むヘテロポリ酸および/またはその塩でAg、Z
n、Cd、Ti、Zr、Nb、Ta、Cr、W、Mn、
Fe、Co、Ni、Rh、Sn、BiおよびTeからな
る群から選ばれた少なくとも1種を触媒構成元素として
含有する触媒に、イソブタンを分子状酸素を含む混合ガ
スを気相で接触させ、メタクロレインおよび/またはメ
タクリル酸を得る方法」等が知られている。特開平5−
178774号公報および特開平5−331085号公
報には、イソブタンを触媒存在下に気相接触酸化して、
メタクロレインおよび/またはメタクリル酸を製造する
に際し、ピロリン酸ジバナジルを主成分とし、これに他
の金属元素を添加し活性、選択性を改良した複合酸化物
系触媒を用いることを特徴とする方法が開示されてい
る。
For example, Japanese Patent Application Laid-Open No. 62-132832 discloses that “isobutane and oxygen are alternately contacted with a catalyst containing a heteropolyacid containing molybdenum with phosphorus or arsenic as a central element, and methacrolein and / or methacrylic acid And Japanese Unexamined Patent Publication (Kokai) No. 2-42034 disclose "Ag, Z with heteropolyacid containing molybdenum and / or its salt with phosphorus and / or arsenic as the central element.
n, Cd, Ti, Zr, Nb, Ta, Cr, W, Mn,
Isobutane is contacted in the gas phase with a catalyst containing at least one selected from the group consisting of Fe, Co, Ni, Rh, Sn, Bi and Te as a catalyst constituent element, And a method for obtaining rhein and / or methacrylic acid. Japanese Patent Laid-Open No. 5-
178774 and JP-A-5-331085 disclose gas-phase catalytic oxidation of isobutane in the presence of a catalyst,
In producing methacrolein and / or methacrylic acid, a method characterized by using a composite oxide catalyst containing divanadyl pyrophosphate as a main component, and adding an additional metal element thereto to improve activity and selectivity, is used. It has been disclosed.

【0004】しかしながら、イソブタンはイソブチレン
やターシャリーブタノールに比べ反応性が乏しいため、
イソブチレンやターシャリーブタノールの酸化条件では
イソブタンの転化率は低い。そこで、酸化反応温度を上
げ、転化率を高める方法が考えられるが、リン−モリブ
デン系ケギン型ヘテロポリ酸系触媒は耐熱性に問題があ
り、反応温度を上げる方法は採用し難い。他方、ピロリ
ン酸ジバナジルを主成分とする複合酸化物系触媒を用い
る場合、必ずしも満足する選択性の改良効果が得られな
い。また、ピロリン酸ジバナジル系触媒を調製する際、
バナジウム原料として五酸化バナジウムを用いるのが一
般的であるが、五酸化バナジウムは毒性が強いため、こ
れを使用することは衛生上好ましくないとの問題を有す
る。
However, isobutane is less reactive than isobutylene and tertiary butanol,
Under the oxidation conditions of isobutylene and tertiary butanol, the conversion of isobutane is low. Therefore, a method of raising the oxidation reaction temperature to increase the conversion rate can be considered. However, the phosphorus-molybdenum-based Keggin-type heteropolyacid catalyst has a problem in heat resistance, and it is difficult to adopt a method of increasing the reaction temperature. On the other hand, when a composite oxide catalyst containing divanadyl pyrophosphate as a main component is used, a satisfactory selectivity improvement effect cannot always be obtained. Also, when preparing divanadyl pyrophosphate-based catalyst,
Generally, vanadium pentoxide is used as a vanadium raw material. However, vanadium pentoxide has a problem that it is not preferable in terms of hygiene because vanadium pentoxide is highly toxic.

【0005】[0005]

【発明が解決しようとする課題】かかる状況下におい
て、本発明者らは、イソブタンを複合酸化物系触媒存在
下、分子状酸素を用いて、気相接触酸化させることによ
り、工業的に有用であるイソブチレン、酢酸、アクリル
酸、メタクロレイン及び、メタクリル酸等のアルケンお
よび/または含酸素化合物を製造することを目的とし
て、鋭意検討した結果、気相接触酸化反応に用いる触媒
として、ニオブ−モリブデン−アンチモンを必須成分と
する複合酸化物系触媒を用いる場合には、触媒として耐
熱性に優れ、且つ転化率、選択性共に優れることを見い
出し、本発明を完成するに至った。
Under such circumstances, the present inventors have found that industrially useful isobutane is industrially useful by subjecting isobutane to gas-phase catalytic oxidation using molecular oxygen in the presence of a composite oxide catalyst. For the purpose of producing alkenes and / or oxygen-containing compounds such as isobutylene, acetic acid, acrylic acid, methacrolein, and methacrylic acid, as a result of diligent studies, niobium-molybdenum has been used as a catalyst for the gas phase catalytic oxidation reaction. When a composite oxide catalyst containing antimony as an essential component is used, it has been found that the catalyst has excellent heat resistance and is excellent in both conversion and selectivity, and has completed the present invention.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、焼成
後、一般式 NbaMobSbcXdYeOf(式中の
Nbはニオブ、Moはモリブデン、Sbはアンチモン、
Oは酸素を表し、Xはリン、ヒ素、ホウ素、珪素、ゲル
マニウムからなる群より選ばれた少なくとも1種の元
素、Yはカリウム、セシウム、ルビジウム、カルシウ
ム、マグネシウム、タリウム、クロム、マンガン、鉄、
コバルト、ニッケル、銅、銀、鉛、ビスマス、アルミニ
ウム、ガリウム、インジウム、スズ、亜鉛、ランタン、
セリウム、イットリウム、タングステン、タンタル、ル
テニウム、ロジウム、パラジウム、白金、イリジウム、
オスミウム、レニウム、ハフニウムからなる群より選ば
れた少なくとも1種の元素を表し、また添字a、b、
c、d及びeは各元素の原子比を表し、b=12とした
とき、aは0を含まない7以下の値、cは0を含まない
20以下の値、dおよびeは0を含む6以下の値を表
し、fは各元素の原子価および原子比によって決まる値
を表す)で示される複合酸化物よりなるイソブタンの気
相接触酸化反応用触媒を提供するにある。
That is, according to the present invention, after calcination, a general formula NbaMobSbcXdYeOf (where Nb is niobium, Mo is molybdenum, Sb is antimony,
O represents oxygen, X is at least one element selected from the group consisting of phosphorus, arsenic, boron, silicon, and germanium; Y is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron,
Cobalt, nickel, copper, silver, lead, bismuth, aluminum, gallium, indium, tin, zinc, lanthanum,
Cerium, yttrium, tungsten, tantalum, ruthenium, rhodium, palladium, platinum, iridium,
Osmium, rhenium, represents at least one element selected from the group consisting of hafnium, and subscripts a, b,
c, d and e represent the atomic ratio of each element, and when b = 12, a is a value of 7 or less not including 0, c is a value of 20 or less not including 0, and d and e include 0 6 represents a value of 6 or less, and f represents a value determined by the valence and atomic ratio of each element).

【0007】さらに本発明は、イソブタンを触媒存在下
に分子状酸素を用いて気相接触酸化させることによりア
ルケンおよび/または含酸素化合物を製造する方法に於
いて、触媒として一般式 NbaMobSbcXdYe
Of(式中Nbはニオブ、Moはモリブデン、Sbはア
ンチモン、Oは酸素を表し、Xはリン、ヒ素、ホウ素、
珪素、ゲルマニウム、からなる群より選ばれた少なくと
も1種の元素、Yはカリウム、セシウム、ルビジウム、
カルシウム、マグネシウム、タリウム、クロム、マンガ
ン、鉄、コバルト、ニッケル、銅、銀、鉛、ビスマス、
アルミニウム、ガリウム、インジウム、スズ、亜鉛、ラ
ンタン、セリウム、イットリウム、タングステン、タン
タル、ルテニウム、ロジウム、パラジウム、白金、イリ
ジウム、オスミウム、レニウム、ハフニウムからなる群
より選ばれた少なくとも1種の元素を表し、また添字
a、b、c、d及びeは各元素の原子比を表し、b=1
2としたとき、aは0を含まない7以下の値、cは0を
含まない20以下の値、dおよびeは0を含む6以下の
値を表し、fは各元素の原子価および原子比によって決
まる値を表す。)で示される複合酸化物系触媒であるこ
とを特徴とするアルケンおよび/または含酸素化合物の
製造方法を提供するにある。
Further, the present invention relates to a process for producing an alkene and / or an oxygen-containing compound by subjecting isobutane to gas-phase catalytic oxidation using molecular oxygen in the presence of a catalyst, wherein the catalyst has the general formula NbaMobSbcXdYe as a catalyst.
Of (where Nb is niobium, Mo is molybdenum, Sb is antimony, O is oxygen, X is phosphorus, arsenic, boron,
At least one element selected from the group consisting of silicon, germanium, and Y is potassium, cesium, rubidium,
Calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, lead, bismuth,
Aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, tantalum, ruthenium, rhodium, palladium, platinum, iridium, osmium, rhenium, represents at least one element selected from the group consisting of hafnium, The subscripts a, b, c, d and e represent the atomic ratio of each element, and b = 1
When a is 2, a is a value of 7 or less not including 0, c is a value of 20 or less not including 0, d and e are values of 6 or less including 0, and f is a valence and an atom of each element. Indicates a value determined by the ratio. It is another object of the present invention to provide a method for producing an alkene and / or an oxygen-containing compound, which is a composite oxide catalyst represented by the formula (1).

【0008】[0008]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明の特徴は、イソブタンを分子状酸素を用い
て気相接触酸化させ、イソブチレン、メタクロレイン、
メタクリル酸等のアルケンおよび/または含酸素化合物
を製造するに際し、適用触媒として一般式 NbaMo
bSbcXdYeOf(式中の記号は前記と同じ)で示
されるNb−Mo−Sbを必須成分とする、即ちb=1
2のとき、aは0<a≦7、好ましくは0<a≦5、c
は0<c≦20、好ましくは0<c≦12の原子比より
なる複合酸化物を提供するにある。本発明においては、
これらの触媒組成のいずれの成分が欠如しても満足しう
る触媒効果、主として選択率の改善効果が得られない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The feature of the present invention is that gaseous catalytic oxidation of isobutane using molecular oxygen, isobutylene, methacrolein,
In producing an alkene and / or an oxygen-containing compound such as methacrylic acid, a general formula NbaMo is used as an applied catalyst.
Nb-Mo-Sb represented by bSbcXdYeOf (the symbols in the formula are the same as above) is an essential component, that is, b = 1
When 2, a is 0 <a ≦ 7, preferably 0 <a ≦ 5, c
Is to provide a composite oxide having an atomic ratio of 0 <c ≦ 20, preferably 0 <c ≦ 12. In the present invention,
The lack of any of these catalyst compositions does not provide a satisfactory catalytic effect, mainly an improvement in selectivity.

【0009】本発明に用いる触媒調製法に関しては特に
制限はない。触媒は公知の種々の方法により調製でき
る。例えば、モリブデン、ニオブ、アンチモンからなる
複合酸化物系触媒は、パラモリブデン酸アンモニウム水
溶液に五酸化ニオブと三酸化アンチモンを添加し、蒸発
乾固の後、焼成することにより所定の触媒を得ることが
できる。モリブデン原料としては、三酸化モリブデン、
モリブデン酸、パラモリブデン酸アンモニウム、モリブ
デン酸ナトリウム等を用いることができる。また、ニオ
ブ、アンチモンおよび上記一般式中X、Yで表した元素
をも含め、本発明の触媒構成物質は、触媒調製過程で酸
化物に分解され得る化合物、例えば、酸化物、水酸化
物、硝酸塩、アンモニウム塩、炭酸塩、塩化物、有機酸
塩、アルコキサイド、金属酸アンモニウム塩等として添
加使用される。より具体的には、ニオブ原料としては、
シュウ酸水素ニオブ、五酸化ニオブ、五塩化ニオブ、ニ
オブエトキシド等、アンチモン原料としては、三酸化ア
ンチモン、四酸化アンチモン、五酸化アンチモン、酢酸
アンチモン、硫酸アンチモン、アンチモンエトキシド
等、X成分としては、リン酸、ピロリン酸、ポリリン
酸、ヒ酸、ホウ酸、ホウ酸アンモニウム、二酸化珪素、
二酸化ゲルマニウム等、Y成分としては、硝酸カリウ
ム、塩化カリウム、硫酸カリウム、硝酸セシウム、塩化
セシウム、硫酸セシウム、水酸化セシウム、硝酸ルビジ
ウム、硫酸ルビジウム、硝酸カルシウム、塩化カルシウ
ム、硫酸カルシウム、酸化カルシウム、硝酸マグネシウ
ム、塩化マグネシウム、硫酸マグネシウム、酸化マグネ
シウム、水酸化マグネシウム、硝酸タリウム、硝酸クロ
ム、酢酸クロム、硫酸クロム、塩化クロム、乳酸マンガ
ン、硝酸マンガン、シュウ酸マンガン、硫酸マンガン、
硝酸鉄、硫酸鉄、シュウ酸鉄アンモニウム、シュウ酸
鉄、酢酸コバルト、塩化コバルト、硝酸コバルト、硫酸
コバルト、水酸化コバルト、硝酸銅、塩化銅、硫酸銅、
安息香酸銀、硝酸銀、炭酸銀、塩化銀、酸化銀、酢酸ビ
スマス、硝酸ビスマス、酸化ビスマス、酸化アルミニウ
ム、硫酸アルミニウム、硝酸アルミニウム、塩化ガリウ
ム、水酸化ガリウム、硝酸ガリウム、酸化ガリウム、塩
化インジウム、硝酸インジウム、酢酸錫、安息香酸錫、
塩化錫、蟻酸錫、水酸化錫、硫酸錫、シュウ酸錫、硝酸
亜鉛、塩化亜鉛、シュウ酸亜鉛、酸化亜鉛、炭酸ランタ
ン、塩化ランタン、シュウ酸ランタン、硝酸ランタン、
硫酸ランタン、酸化セリウム、酢酸セリウム、硝酸セリ
ウム、硝酸イットリウム、蟻酸イットリウム、炭酸イッ
トリウム、硫酸イットリウム、酸化タングステン、タン
グステン酸、パラタングステン酸アンモニウム、タンタ
ルエトキシド、水酸化タンタル、五酸化タンタル、塩化
ルテニウム、酸化ルテニウム、硫酸ルテニウム、塩化ロ
ジウム、酸化ロジウム、硫酸ロジウム、塩化パラジウ
ム、水酸化パラジウム、硝酸パラジウム、塩化白金、塩
化イリジウム、酸化イリジウム、塩化オスミウム、酸化
オスミウム、塩化レニウム、酸化レニウム、塩化ハフニ
ウム、酸化ハフニウム等が挙げられる。上記一般式中
X、Yで表した元素は必須成分ではないが、砒素、ホウ
素、ゲルマニウム、鉛、亜鉛、ガリウム等の添加は選択
性の向上が、タリウム、クロム、鉄、コバルト、ニッケ
ル、銅、銀、ビスマス、スズ、ランタン、イットリウ
ム、パラジウム、白金、オスミウム、レニウム、ハフニ
ウム等は活性の向上に寄与し得る。
The method for preparing the catalyst used in the present invention is not particularly limited. The catalyst can be prepared by various known methods. For example, a composite oxide catalyst composed of molybdenum, niobium, and antimony can be obtained by adding niobium pentoxide and antimony trioxide to an aqueous solution of ammonium paramolybdate, evaporating to dryness, and calcining to obtain a predetermined catalyst. it can. As a molybdenum raw material, molybdenum trioxide,
Molybdic acid, ammonium paramolybdate, sodium molybdate and the like can be used. Further, the catalyst constituting material of the present invention, including niobium, antimony and the elements represented by X and Y in the above general formula, is a compound which can be decomposed into an oxide in the course of preparing the catalyst, for example, an oxide, a hydroxide, It is used as a nitrate, ammonium salt, carbonate, chloride, organic acid salt, alkoxide, ammonium metal salt or the like. More specifically, as a niobium raw material,
As an antimony raw material such as niobium hydrogen oxalate, niobium pentoxide, niobium pentachloride, niobium ethoxide, etc., the X component is as antimony trioxide, antimony tetroxide, antimony pentoxide, antimony acetate, antimony sulfate, antimony ethoxide, etc. , Phosphoric acid, pyrophosphoric acid, polyphosphoric acid, arsenic acid, boric acid, ammonium borate, silicon dioxide,
As the Y component such as germanium dioxide, potassium nitrate, potassium chloride, potassium sulfate, cesium nitrate, cesium chloride, cesium sulfate, cesium hydroxide, rubidium nitrate, rubidium sulfate, calcium nitrate, calcium chloride, calcium sulfate, calcium oxide, magnesium nitrate , Magnesium chloride, magnesium sulfate, magnesium oxide, magnesium hydroxide, thallium nitrate, chromium nitrate, chromium acetate, chromium sulfate, chromium chloride, manganese lactate, manganese nitrate, manganese oxalate, manganese sulfate,
Iron nitrate, iron sulfate, iron ammonium oxalate, iron oxalate, cobalt acetate, cobalt chloride, cobalt nitrate, cobalt sulfate, cobalt hydroxide, copper nitrate, copper chloride, copper sulfate,
Silver benzoate, silver nitrate, silver carbonate, silver chloride, silver oxide, bismuth acetate, bismuth nitrate, bismuth oxide, aluminum oxide, aluminum sulfate, aluminum nitrate, gallium chloride, gallium hydroxide, gallium nitrate, gallium oxide, indium chloride, nitric acid Indium, tin acetate, tin benzoate,
Tin chloride, tin formate, tin hydroxide, tin sulfate, tin oxalate, zinc nitrate, zinc chloride, zinc oxalate, zinc oxide, lanthanum carbonate, lanthanum chloride, lanthanum oxalate, lanthanum nitrate,
Lanthanum sulfate, cerium oxide, cerium acetate, cerium nitrate, yttrium nitrate, yttrium formate, yttrium carbonate, yttrium sulfate, tungsten oxide, tungstic acid, ammonium paratungstate, tantalum ethoxide, tantalum hydroxide, tantalum pentoxide, ruthenium chloride, Ruthenium oxide, ruthenium sulfate, rhodium chloride, rhodium oxide, rhodium sulfate, palladium chloride, palladium hydroxide, palladium nitrate, platinum chloride, iridium chloride, iridium oxide, osmium chloride, osmium oxide, rhenium chloride, rhenium oxide, hafnium chloride, oxidation Hafnium and the like. The elements represented by X and Y in the above general formula are not essential components, but the addition of arsenic, boron, germanium, lead, zinc, gallium, etc. improves selectivity, but does not include thallium, chromium, iron, cobalt, nickel, copper. , Silver, bismuth, tin, lanthanum, yttrium, palladium, platinum, osmium, rhenium, hafnium and the like can contribute to the improvement of the activity.

【0010】触媒は担体に担持および/または希釈混合
した形で用いることができる。担体および/または希釈
剤としては、例えばシリカ、アルミナ、シリカ−アルミ
ナ、マグネシア、チタニア、ゼオライト、ジルコニア、
シリコン−カーバイト等が挙げられ、担持量や希釈剤と
触媒との希釈混合比に制限はない。また、触媒の形状は
タブレット、リング、球、押し出し品等限定はない。成
型法は圧縮成形、押し出し成形、噴霧乾燥造粒等公知の
方法で行うことができる。
[0010] The catalyst can be used in a form supported and / or diluted and mixed on a carrier. As the carrier and / or diluent, for example, silica, alumina, silica-alumina, magnesia, titania, zeolite, zirconia,
Silicon-carbide and the like are mentioned, and there is no limitation on the amount of the carrier and the dilution mixture ratio of the diluent and the catalyst. The shape of the catalyst is not limited to tablets, rings, spheres, extruded products, and the like. The molding method can be performed by a known method such as compression molding, extrusion molding, spray drying granulation and the like.

【0011】反応に供する原料ガス中のイソブタン濃度
は、約1モル%〜85モル%、好ましくは3モル%〜7
0モル%である。
The concentration of isobutane in the raw material gas used for the reaction is about 1 mol% to 85 mol%, preferably 3 mol% to 7 mol%.
0 mol%.

【0012】分子状酸素のイソブタンに対するモル比は
0.05〜4.0、好ましくは0.1〜3.5が適当で
ある。分子状酸素の供給源としては、空気、純酸素、酸
素富化空気などが用いられる。
The molar ratio of molecular oxygen to isobutane is suitably from 0.05 to 4.0, preferably from 0.1 to 3.5. As a supply source of molecular oxygen, air, pure oxygen, oxygen-enriched air, or the like is used.

【0013】反応原料ガス中に水蒸気を含有させてもよ
いが、水蒸気は必ずしも必要としない。
Although steam may be contained in the reaction raw material gas, steam is not always required.

【0014】原料ガス中には、貴ガス、窒素、一酸化炭
素、二酸化炭素等が含まれていてもよい。また、イソブ
チレンが原料に含まれていても、イソブチレンはイソブ
タン同様メタクロレインやメタクリル酸に転換される。
The source gas may contain a noble gas, nitrogen, carbon monoxide, carbon dioxide or the like. Further, even if isobutylene is contained in the raw material, isobutylene is converted to methacrolein or methacrylic acid as in isobutane.

【0015】未反応のイソブタンは、燃料として使用す
ることもできるが、回収し再循環することもできる。イ
ソブチレンやメタクロレインも回収、再循環することに
より、メタクリル酸に転換できる。また、純酸素或いは
酸素富化空気を用いた場合には、未反応の酸素も回収し
再利用することが好ましい。
Unreacted isobutane can be used as fuel, but can also be recovered and recycled. Isobutylene and methacrolein can also be converted to methacrylic acid by collecting and recycling. When pure oxygen or oxygen-enriched air is used, it is preferable that unreacted oxygen is also collected and reused.

【0016】反応温度は250〜550℃の範囲で選択
できるが、好ましくは300〜500℃である。反応圧
力は減圧から加圧まで幅広く選べるが通常100〜40
0kPa、好ましくは100〜200kPaの範囲であ
る。
The reaction temperature can be selected within the range of 250 to 550 ° C., preferably 300 to 500 ° C. The reaction pressure can be selected from a wide range from reduced pressure to increased pressure.
0 kPa, preferably in the range of 100 to 200 kPa.

【0017】本発明の方法は、固定床、移動床、流動床
等いずれの反応形式でも実施できる。固定床方式で使用
する場合、空間速度に特に制限はないが、空間速度が小
さすぎると生産性が低下するため工業的に不利である。
また逆に空間速度が大きすぎると、反応活性が低下する
ため反応温度を高くしなければならない。そこで、通常
は400〜5000h-1、好ましくは、600〜200
-1の範囲である。
The method of the present invention can be carried out in any reaction mode such as a fixed bed, a moving bed, a fluidized bed and the like. When using the fixed bed method, there is no particular limitation on the space velocity, but if the space velocity is too low, productivity is reduced, which is industrially disadvantageous.
Conversely, if the space velocity is too high, the reaction activity will decrease, so the reaction temperature must be increased. Therefore, usually 400 to 5000 h -1 , preferably 600 to 200 h -1
0 is in the range of -1.

【0018】生成したアルケン及び各種含酸素化合物は
抽出、蒸留等の操作により、各々の生成物に分離精製す
ることができる。
The produced alkenes and various oxygen-containing compounds can be separated and purified into respective products by operations such as extraction and distillation.

【0019】[0019]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらに限定されるものではない。転
化率(%)および選択率(%)はそれぞれ次式で表す。 イソブタン転化率(%)=(反応したイソブタンのモル
数)÷(供給したイソブタンのモル数)×100 イソブチレン選択率(%)=(生成したイソブチレンの
モル数)÷(反応したイソブタンのモル数)×100 メタクロレイン選択率(%)=(生成したメタクロレイ
ンのモル数)÷(反応したイソブタンのモル数)×10
0 メタクリル酸選択率(%)=(生成したメタクリル酸の
モル数)÷(反応したイソブタンのモル数)×100 有効成分の選択率(%)=(生成したイソブチレンのモ
ル数+生成したメタクロレインのモル数+生成したメタ
クリル酸のモル数)÷(反応したイソブタンのモル数)
×100 また、反応生成物はガスクロマトグラフィーを用いて分
析した。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The conversion (%) and the selectivity (%) are represented by the following equations, respectively. Isobutane conversion (%) = (moles of reacted isobutane) ÷ (moles of supplied isobutane) × 100 Isobutylene selectivity (%) = (moles of generated isobutylene) ÷ (moles of reacted isobutane) × 100 methacrolein selectivity (%) = (mol number of generated methacrolein) ÷ (mol number of reacted isobutane) × 10
0 Selectivity of methacrylic acid (%) = (mol number of methacrylic acid generated) / (mol number of reacted isobutane) × 100 Selectivity of active ingredient (%) = (mol number of generated isobutylene + methacryloline generated) Number of moles of methacrylic acid generated) / (number of moles of reacted isobutane)
× 100 The reaction product was analyzed using gas chromatography.

【0020】実施例1 イオン交換水600mlにシュウ酸水素ニオブ{Nb
(HC2 4 5 ・nH 2 O}102.37gを溶解
し、均一な溶液とした(A液)。次いで、イオン交換水
75mlにモリブデン酸アンモニウム{(NH4 6
7 24 ・4H2O}53.10gを添加し撹拌溶解
した(B液)後、B液をA液に全量注入し、さらに三酸
化アンチモン{Sb2 3 }32.85gを撹拌しなが
ら添加した。この混合液を1リットルオートクレーブに
移し、120℃で17時間熟成した後、得られたスラリ
ー溶液を25%アンモニア水を用いpHをほぼ中性に調
整した。このようにして得られたスラリー溶液を加熱撹
拌しつつ濃縮乾固し、さらに120℃にて6時間乾燥
し、粉砕、篩別し4〜8メッシュの粒子を得、これを窒
素気流中600℃で2時間焼成してMo12Nb4.5 Sb
9 Oxの組成を有する触媒を得た。このようにして得た
触媒6gを直径15mmのパイレックスガラス製反応管
に充填し、これにイソブタン/酸素/窒素/水蒸気の割
合(モル%)が40/20/40/0からなる原料ガス
を供給し、反応圧力152kPa、空間速度1000/
hrの条件で酸化反応を検討したところ、反応温度42
1℃においてイソブタン転化率は2.7%、イソブチレ
ン、メタクロレイン及びメタクリル酸への選択率はそれ
ぞれ43.7%、13.8%、1.9%であった。反応
温度(反応器壁温度)400℃〜450℃の間を詳細に
検討した結果、イソブタン転化率5%時の有効成分への
選択率は50.6%であった。
Example 1 Niobium hydrogen oxalate @ Nb was added to 600 ml of ion-exchanged water.
(HCTwoOFour)Five・ NH TwoDissolve 102.37g of O
Then, a uniform solution was obtained (Solution A). Then, ion-exchanged water
Ammonium molybdate {(NHFour)6M
o7Otwenty four ・ 4HTwoAdd O} 53.10g and dissolve with stirring
After performing (solution B), the entire amount of solution B was poured into solution A, and triacid was further added.
Antimony hydride SbTwoOThreeWhile stirring 32.85g
Was added. Put this mixture in a 1 liter autoclave
After transfer and aging at 120 ° C for 17 hours, the resulting slurry
-Adjust the pH of the solution to approximately neutral using 25% aqueous ammonia.
It was adjusted. The slurry solution thus obtained is heated and stirred.
Concentrate to dryness with stirring, then dry at 120 ° C for 6 hours
And crushed and sieved to obtain 4 to 8 mesh particles.
Mo is fired at 600 ° C for 2 hours in a stream of air.12Nb4.5Sb
9A catalyst having a composition of Ox was obtained. Obtained in this way
Pyrex glass reaction tube 15 mm in diameter with 6 g of catalyst
And then add isobutane / oxygen / nitrogen / steam
Source gas consisting of 40/20/40/0 (mol%)
At a reaction pressure of 152 kPa and a space velocity of 1000 /
When the oxidation reaction was examined under the conditions of hr, a reaction temperature of 42
At 1 ° C, the isobutane conversion was 2.7%.
Selectivity for methacrylic acid, methacrolein and methacrylic acid
They were 43.7%, 13.8% and 1.9%, respectively. reaction
Temperature (reactor wall temperature) between 400 ° C and 450 ° C in detail
As a result of the study, it was found that the
The selectivity was 50.6%.

【0021】実施例2 イオン交換水1200mlにシュウ酸水素ニオブ{Nb
(HC2 4 )5・nH2 O}204.7gを溶解し、
均一な溶液とした(A液)。次いで、イオン交換水15
0mlにパラモリブデン酸アンモニウム{(NH4 6
Mo7 24 ・4H2 O}105.84gを添加し撹拌
溶解した(B液)後、B液をA液に全量注入し、さらに
三酸化アンチモン{Sb2 3 }65.61gを撹拌し
ながら添加した。この混合液に25%アンモニア水入れ
pHをほぼ中性に調整した。このようにして得られたス
ラリー溶液を加熱撹拌しつつ濃縮乾固し、さらに120
℃にて3時間乾燥し、粉砕、篩別し4〜8メッシュの粒
子を得、これを窒素気流中600℃で2時間焼成してM
12Nb4.5 Sb9 Oxの組成を有する触媒を得た。こ
の触媒を用い実施例1と同じ条件で酸化反応を行った。
その結果、反応温度423℃においてイソブタン転化率
は2.7%、イソブチレン、メタクロレイン及びメタク
リル酸への選択率はそれぞれ35.3%、18.9%、
0.4%であった。反応温度(反応器壁温度)400℃
〜450℃の間を詳細に検討した結果、イソブタン転化
率5%時の有効成分への選択率は46.5%であった。
Example 2 Niobium hydrogen oxalate @ Nb was added to 1200 ml of ion-exchanged water.
(HC 2 O 4 ) 5 · nH 2 O} 204.7 g is dissolved,
A uniform solution was obtained (Solution A). Next, ion-exchanged water 15
Ammonium paramolybdate デ ン (NH 4 ) 6
After Mo 7 O 24 · 4H 2 O } was added 105.84g was dissolved with stirring (B liquid), and the total amount injected solution B to solution A, and stirred for an additional antimony trioxide {Sb 2 O 3} 65.61g While adding. The pH of the mixture was adjusted to about neutral by adding 25% aqueous ammonia. The slurry solution thus obtained was concentrated to dryness while heating and stirring, and further concentrated for 120 minutes.
C. for 3 hours, pulverized and sieved to obtain 4 to 8 mesh particles.
A catalyst having a composition of o 12 Nb 4.5 Sb 9 Ox was obtained. An oxidation reaction was carried out using this catalyst under the same conditions as in Example 1.
As a result, at a reaction temperature of 423 ° C., the isobutane conversion was 2.7%, and the selectivities to isobutylene, methacrolein and methacrylic acid were 35.3% and 18.9%, respectively.
0.4%. Reaction temperature (reactor wall temperature) 400 ° C
As a result of a detailed examination between -450 ° C, the selectivity to the active ingredient when the isobutane conversion was 5% was 46.5%.

【0022】実施例3 実施例2の方法において、シュウ酸水素ニオブ{Nb
(HC2 4 5 ・nH 2 O}の添加量を変えた他は実
施例2と同一方法によりMo12Nb4 Sb9 Oxの組成
を有する触媒を得た。この触媒を用い実施例1と同一条
件で酸化反応を行った。その結果、反応温度424℃に
おいてイソブタン転化率は4.0%、イソブチレン、メ
タクロレイン及びメタクリル酸への選択率はそれぞれ2
5.4%、17.2%、1.9%であった。反応温度
(反応器壁温度)400℃〜450℃の間を詳細に検討
した結果、イソブタン転化率5%時の有効成分への選択
率は42.5%であった。
Example 3 In the method of Example 2, niobium hydrogen oxalate @ Nb
(HCTwoOFour)Five・ NH TwoOther than changing the amount of O
In the same manner as in Example 2, Mo12NbFourSb9Ox composition
Was obtained. Using the same catalyst as in Example 1 using this catalyst
Oxidation reaction was carried out. As a result, the reaction temperature reached 424 ° C.
The isobutane conversion was 4.0%, isobutylene,
The selectivity to tacrolein and methacrylic acid was 2
5.4%, 17.2%, 1.9%. Reaction temperature
(Reactor wall temperature) Examine in detail between 400 ° C and 450 ° C
As a result, selection of active ingredient at isobutane conversion rate 5%
The rate was 42.5%.

【0023】実施例4 実施例2の方法において、シュウ酸水素ニオブ{Nb
(HC2 4 )5・nH 2 O}の添加量を変えた他は実
施例2と同一方法により、Mo12Nb3 Sb9 Oxの組
成を有する触媒を得た。この触媒を用い実施例1と同一
条件で酸化反応を行った。その結果、反応温度429℃
においてイソブタン転化率は3.9%、イソブチレン、
メタクロレイン及びメタクリル酸への選択率はそれぞれ
19.7%、16.2%、0.9%であった。反応温度
(反応器壁温度)400℃〜450℃の間を詳細に検討
した結果、イソブタン転化率5%時の有効成分への選択
率は34.7%であった。
Example 4 In the method of Example 2, niobium hydrogen oxalate @ Nb
(HCTwoOFour) 5 · nH TwoOther than changing the amount of O
In the same manner as in Example 2, Mo12NbThreeSb9Ox group
A catalyst having the following characteristics was obtained. Same as Example 1 using this catalyst
The oxidation reaction was performed under the conditions. As a result, the reaction temperature was 429 ° C.
3.9% isobutane conversion, isobutylene,
Selectivities for methacrolein and methacrylic acid are respectively
19.7%, 16.2% and 0.9%. Reaction temperature
(Reactor wall temperature) Examine in detail between 400 ° C and 450 ° C
As a result, selection of active ingredient at isobutane conversion rate 5%
The rate was 34.7%.

【0024】実施例5 実施例2において得られたスラリー乾燥品を空気中60
0℃で2時間焼成してた。この触媒を用い実施例1と同
じ条件で酸化反応を行ったところ、反応温度406℃に
おいてイソブタン転化率は4.4%、イソブチレン、メ
タクロレイン及びメタクリル酸への選択率はそれぞれ1
4.4%、18.2%、3.4%であった。反応温度
(反応器壁温度)350℃〜425℃の間を詳細に検討
した結果、イソブタン転化率5%時の有効成分への選択
率は34.5%であった。
Example 5 The dried slurry obtained in Example 2 was treated with 60
It was baked at 0 ° C. for 2 hours. Using this catalyst, an oxidation reaction was carried out under the same conditions as in Example 1. At a reaction temperature of 406 ° C., the isobutane conversion was 4.4%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 1 each.
4.4%, 18.2% and 3.4%. As a result of detailed examination of the reaction temperature (reactor wall temperature) between 350 ° C. and 425 ° C., the selectivity to the active ingredient when the isobutane conversion was 5% was 34.5%.

【0025】実施例6 実施例2の方法において、三酸化アンチモン{Sb2
3 }の添加量を変えた他は実施例2と同一方法によりM
12Nb4.5 Sb6 Oxの組成を有する触媒を得た。こ
の触媒を用い実施例1と同一条件で酸化反応を行った。
その結果、反応温度429℃においてイソブタン転化率
は3.6%、イソブチレン、メタクロレイン及びメタク
リル酸への選択率はそれぞれ28.2%、15.1%、
0.8%であった。反応温度(反応器壁温度)400℃
〜450℃の間を詳細に検討した結果、イソブタン転化
率5%時の有効成分への選択率は38.1%であった。
Example 6 In the method of Example 2, antimony trioxide @ Sb 2 O
Except that the amount of 3 % was changed, M
A catalyst having a composition of o 12 Nb 4.5 Sb 6 Ox was obtained. An oxidation reaction was performed using this catalyst under the same conditions as in Example 1.
As a result, at a reaction temperature of 429 ° C., the isobutane conversion was 3.6%, and the selectivities to isobutylene, methacrolein and methacrylic acid were 28.2% and 15.1%, respectively.
0.8%. Reaction temperature (reactor wall temperature) 400 ° C
As a result of a detailed examination between -450 ° C., the selectivity to the active ingredient at a conversion of isobutane of 5% was 38.1%.

【0026】比較例1 イオン交換水400mlにシュウ酸水素ニオブ{Nb
(HC2 4 5 ・nH 2 O}68.33gを加え撹拌
溶解後、バナジウム濃度が2mol/lであるシュウ酸
バナジル水溶液75mlを添加し均一な溶液とした(A
液)。イオン交換水150mlにパラモリブデン酸アン
モニウム{(NH4 6 Mo7 24・4H 2 O}10
5.95gを添加し撹拌溶解した(B液)後、A液をB
液に全量注入し、スラリー溶液を得た。他方、イオン交
換水100mlに70%硝酸{HNO 3 }67.59
g、酢酸スズ{Sn(CH3 CO2 2 }35.55g
を添加し、均一な水溶液を調製した(C液)。C液を撹
拌しながら上記スラリー溶液に全量注入した。得られた
スラリー溶液に25%アンモニア水を添加し、pHをほ
ぼ中性に調整した。このようにして得られたスラリー溶
液を加熱撹拌しつつ濃縮乾固後、粉砕、篩別し4〜8メ
ッシュの粒子を得、これを窒素気流中600℃で2時間
焼成しMo 12Nb1.5 3 Sn3 Oxの組成を有する触
媒を得た。この触媒を用い実施例1と同一条件で酸化反
応を行った。その結果、反応温度322℃においてイソ
ブタン転化率は7.3%、イソブチレン、メタクロレイ
ン及びメタクリル酸への選択率はそれぞれ1.6%、
3.9%、1.6%であった。反応温度(反応器壁温
度)290℃〜350℃の間を詳細に検討した結果、イ
ソブタン転化率5%時の有効成分への選択率は8.4%
であった。
Comparative Example 1 Niobium hydrogen oxalate Nb in 400 ml of ion-exchanged water
(HCTwoOFour)Five・ NH TwoAdd O} 68.33g and stir
After dissolution, oxalic acid with a vanadium concentration of 2 mol / l
75 ml of vanadyl aqueous solution was added to make a uniform solution (A
liquid). Anion of paramolybdate in 150 ml of ion-exchanged water
Monium {(NHFour)6Mo7Otwenty four・ 4H TwoO $ 10
After adding 5.95 g and dissolving with stirring (solution B), solution A was added to solution B
The whole amount was poured into the liquid to obtain a slurry solution. On the other hand, ion exchange
70% nitric acid / HNO in 100 ml of water Three$ 67.59
g, tin acetate @ Sn (CHThreeCOTwo)Two$ 35.55g
Was added to prepare a uniform aqueous solution (Solution C). Stir liquid C
The whole amount was poured into the slurry solution with stirring. Got
Add 25% aqueous ammonia to the slurry solution and adjust the pH to about
Adjusted to neutral. The slurry solution thus obtained is
The solution was concentrated to dryness while heating and stirring, and then pulverized and sieved to obtain 4 to 8
And obtained at 600 ° C. for 2 hours in a nitrogen stream.
Baked Mo 12Nb1.5VThreeSnThreeContact having composition of Ox
A medium was obtained. Using this catalyst, oxidation reaction was performed under the same conditions as in Example 1.
Responded. As a result, at a reaction temperature of 322 ° C.,
Butane conversion is 7.3%, isobutylene, methacrolein
Selectivity to methacrylic acid and 1.6%, respectively.
3.9% and 1.6%. Reaction temperature (reactor wall temperature
Degree) As a result of a detailed examination between 290 ° C and 350 ° C,
8.4% selectivity to active ingredients at 5% sobutane conversion
Met.

【0027】比較例2 イオン交換水1200mlにパラモリブデン酸アンモニ
ウム{((NH4 6Mo7 24・4H2 O)}21
1.9gを添加し、撹拌溶解させたこの溶液に、バナジ
ウム濃度が1mol/lであるシュウ酸バナジル水溶液
300mlを添加した。この混合液に25%アンモニア
水を添加しpHをほぼ中性に調整した。その後、120
℃の乾燥機中で水分を蒸発させた。これを窒素気流中6
00℃で3時間焼成しMo123 Oxの組成を有する触
媒を得た。この触媒を用い、イソブタン/酸素/窒素/
水蒸気の割合(モル%)が25/12/33/30から
なる原料ガスを供給し、反応圧力152kPa、空間速
度1000/hrの条件で酸化反応を検討したところ、
反応温度353℃においてイソブタン転化率は5.0
%、イソブチレン、メタクロレイン及びメタクリル酸へ
の選択率はそれぞれ6.7%、3.1%、0.7%であ
った。反応器壁温310〜350℃の間を詳細に検討し
た結果、イソブタンの転化率5%のときの有効成分への
選択率は10.5%であった。
[0027] Comparative Example 2 Ion-exchanged water 1200ml to ammonium paramolybdate {((NH 4) 6 Mo 7 O 24 · 4H 2 O)} 21
1.9 g was added thereto, and 300 ml of an aqueous vanadyl oxalate solution having a vanadium concentration of 1 mol / l was added to the solution obtained by stirring and dissolving. 25% aqueous ammonia was added to the mixture to adjust the pH to almost neutral. Then 120
The water was evaporated in a dryer at ℃. This is placed in a nitrogen stream 6
It was calcined at 00 ° C. for 3 hours to obtain a catalyst having a composition of Mo 12 V 3 Ox. Using this catalyst, isobutane / oxygen / nitrogen /
A raw material gas having a water vapor ratio (mol%) of 25/12/33/30 was supplied, and the oxidation reaction was examined under the conditions of a reaction pressure of 152 kPa and a space velocity of 1000 / hr.
At a reaction temperature of 353 ° C, the isobutane conversion was 5.0.
%, Selectivity to isobutylene, methacrolein and methacrylic acid were 6.7%, 3.1% and 0.7%, respectively. As a result of detailed examination of the reactor wall temperature between 310 and 350 ° C., the selectivity to the active ingredient when the conversion of isobutane was 5% was 10.5%.

【0028】比較例3 比較例2において得られたスラリー乾燥品を空気中、3
50℃で6時間焼成した。この触媒を用い比較例1と同
じ条件で酸化反応を行った。その結果、反応温度291
℃においてイソブタン転化率は4.2%、イソブチレ
ン、メタクロレイン及びメタクリル酸への選択率はそれ
ぞれ2.6%、2.4%、0.4%であった。反応器壁
温290〜350℃の間を詳細に検討した結果、イソブ
タンの転化率5%のときの有効成分への選択率は5.3
%であった。
Comparative Example 3 The slurry dried product obtained in Comparative Example 2 was
It was baked at 50 ° C. for 6 hours. An oxidation reaction was performed using this catalyst under the same conditions as in Comparative Example 1. As a result, the reaction temperature 291
At ° C., the isobutane conversion was 4.2% and the selectivities to isobutylene, methacrolein and methacrylic acid were 2.6%, 2.4% and 0.4%, respectively. As a result of a detailed study between 290 and 350 ° C. of the reactor wall temperature, the selectivity to the active ingredient was 5.3 when the conversion of isobutane was 5%.
%Met.

【0029】比較例4 イオン交換水300mlにシュウ酸水素ニオブ{ Nb
(HC2 4 5 ・nH2 O}58.87gを溶解し、
均一な溶液とした(A液)。他方、イオン交換水326
mlにメタバナジン酸アンモニウム{NH4 VO3}1
5.71g、パラモリブデン酸アンモニウム{((NH
4 6 Mo7 24・4H2 O)}78.90g、テルル
酸{H6 TeO6 }23.61gを加え55℃に保持し
て撹拌溶解し、均一な溶液とした(B液)。A液にB液
を全量注入し沈殿を生成させスラリー溶液とした。この
スラリー溶液に25%アンモニア水入れpHをほぼ中性
に調整した。このようにして得られたスラリー溶液を加
熱撹拌しつつ濃縮乾固し、さらに120℃にて18時間
乾燥し、粉砕、篩別し4〜8メッシュの粒子を得、これ
を窒素気流中600℃で2時間焼成しMo12Nb1.4
3.6 Te2.8 Oxの組成を有する触媒を得た。この触媒
を用い、比較例1と同一条件で酸化反応を行った。その
結果、反応温度354℃のとき、イソブタン転化率は
4.9%、イソブチレン、メタクロレイン及びメタクリ
ル酸の選択率はそれぞれ4.3%、13.9%及び1
1.8%であった。反応器壁温330〜400℃の間を
詳細に検討した結果、イソブタンの転化率5%のときの
有効成分への選択率は30.0%であった。
Comparative Example 4 Niobium hydrogen oxalate Nb in 300 ml of ion-exchanged water
(HC 2 O 4 ) 5 · nH 2 O} 58.87 g is dissolved,
A uniform solution was obtained (Solution A). On the other hand, ion-exchanged water 326
Ammonium metavanadate {NH 4 VO 3 ml1 ml
5.71 g, ammonium paramolybdate {((NH
4) 6 Mo 7 O 24 · 4H 2 O)} 78.90g, dissolved by stirring and held at 55 ° C. was added telluric acid {H 6 TeO 6} 23.61g, was a uniform solution (B solution). The whole amount of the solution B was injected into the solution A to form a precipitate, thereby obtaining a slurry solution. The pH of the slurry solution was adjusted to approximately neutral by adding 25% aqueous ammonia. The slurry solution thus obtained was concentrated to dryness while being heated and stirred, and further dried at 120 ° C. for 18 hours, pulverized and sieved to obtain 4 to 8 mesh particles, which were placed in a nitrogen stream at 600 ° C. Baked for 2 hours at Mo 12 Nb 1.4 V
A catalyst having a composition of 3.6 Te 2.8 Ox was obtained. Using this catalyst, an oxidation reaction was performed under the same conditions as in Comparative Example 1. As a result, at a reaction temperature of 354 ° C., the conversion of isobutane was 4.9%, and the selectivities of isobutylene, methacrolein and methacrylic acid were 4.3%, 13.9% and 1%, respectively.
1.8%. As a result of a detailed study of the reactor wall temperature between 330 and 400 ° C., the selectivity to the active ingredient when the conversion of isobutane was 5% was 30.0%.

【0030】比較例5 イオン交換水400mlにヒドロキシルアミン塩酸塩
{NH2 OH・HCl}27.8g、80%リン酸{H
3 PO4 }58.8gを溶解し、均一な溶液とした後、
ホットスターラーにて80℃まで加熱した。この溶液に
五酸化バナジウム{V2 5 }36.4gを徐々に添加
した。五酸化バナジウム添加終了から約6時間撹拌を続
け、120℃の乾燥機中で15時間乾燥させ、水分を蒸
発させた。得られた乾固物を空気中500℃で15時間
焼成して(VO)2 2 7 の組成を有する触媒を得
た。上記の方法により得た触媒9gを直径15mmのパ
イレックスガラス製反応管に充填し、これにイソブタン
/酸素/窒素/水蒸気の割合(モル%)が47/36/
17/0からなる原料ガスを供給し、反応圧力152k
Pa、空間速度1000/hrの条件で酸化反応を行っ
たところ、反応温度367℃においてイソブタン転化率
は2.1%、イソブチレン、メタクロレイン及びメタク
リル酸への選択率はそれぞれ1.7%、2.6%、8.
9%であった。
Comparative Example 5 In 400 ml of ion-exchanged water, 27.8 g of hydroxylamine hydrochloride {NH 2 OH.HCl}, 80% phosphoric acid @ H
After dissolving 58.8 g of 3 PO 4 to form a uniform solution,
Heated to 80 ° C. with a hot stirrer. Was slowly added vanadium pentoxide {V 2 O 5} 36.4g to this solution. Stirring was continued for about 6 hours after the completion of the addition of vanadium pentoxide, and dried in a dryer at 120 ° C. for 15 hours to evaporate water. The obtained dried product was calcined in air at 500 ° C. for 15 hours to obtain a catalyst having a composition of (VO) 2 P 2 O 7 . 9 g of the catalyst obtained by the above method was charged into a 15 mm diameter Pyrex glass reaction tube, and the ratio (mol%) of isobutane / oxygen / nitrogen / water vapor was 47/36 /
The raw material gas consisting of 17/0 is supplied and the reaction pressure is 152 k.
When the oxidation reaction was performed under the conditions of Pa and a space velocity of 1000 / hr, at a reaction temperature of 367 ° C., the conversion of isobutane was 2.1%, and the selectivity to isobutylene, methacrolein and methacrylic acid was 1.7%, respectively. 6.%, 8.
9%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 45/33 C07C 45/33 47/22 47/22 H 57/05 57/05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 45/33 C07C 45/33 47/22 47/22 H 57/05 57/05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼成後、一般式 NbaMobSbcX
dYeOf(式中のNbはニオブ、Moはモリブデン、
Sbはアンチモン、Oは酸素を表し、Xはリン、ヒ素、
ホウ素、珪素、ゲルマニウム、からなる群より選ばれた
少なくとも1種の元素、Yはカリウム、セシウム、ルビ
ジウム、カルシウム、マグネシウム、タリウム、クロ
ム、マンガン、鉄、コバルト、ニッケル、銅、銀、鉛、
ビスマス、アルミニウム、ガリウム、インジウム、ス
ズ、亜鉛、ランタン、セリウム、イットリウム、タング
ステン、タンタル、ルテニウム、ロジウム、パラジウ
ム、白金、イリジウム、オスミウム、レニウム、ハフニ
ウムからなる群より選ばれた少なくとも1種の元素を表
し、また添字a、b、c、d及びeは各元素の原子比を
表し、b=12としたとき、aは0を含まない7以下の
値、cは0を含まない20以下の値、dおよびeは0を
含む6以下の値を表し、fは各元素の原子価および原子
比によって決まる値を表す)で示される複合酸化物より
なるイソブタンの気相接触酸化反応用触媒。
1. After firing, the general formula NbaMobSbcX
dYeOf (where Nb is niobium, Mo is molybdenum,
Sb represents antimony, O represents oxygen, X represents phosphorus, arsenic,
At least one element selected from the group consisting of boron, silicon, germanium, and Y is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, lead,
Bismuth, aluminum, gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, tantalum, ruthenium, rhodium, palladium, platinum, iridium, osmium, rhenium, at least one element selected from the group consisting of hafnium And the subscripts a, b, c, d, and e represent the atomic ratio of each element. When b = 12, a is a value of 7 or less not including 0, and c is a value of 20 or less not including 0. , D and e each represent a value of 6 or less including 0, and f represents a value determined by the valence and atomic ratio of each element).
【請求項2】 イソブタンを触媒存在下に分子状酸素を
用いて気相接触酸化させることによりアルケンおよび/
または含酸素化合物を製造する方法に於いて、触媒とし
て一般式 NbaMobSbcXdYeOf(式中Nb
はニオブ、Moはモリブデン、Sbはアンチモン、Oは
酸素を表し、Xはリン、ヒ素、ホウ素、珪素、ゲルマニ
ウム、からなる群より選ばれた少なくとも1種の元素、
Yはカリウム、セシウム、ルビジウム、カルシウム、マ
グネシウム、タリウム、クロム、マンガン、鉄、コバル
ト、ニッケル、銅、銀、鉛、ビスマス、アルミニウム、
ガリウム、インジウム、スズ、亜鉛、ランタン、セリウ
ム、イットリウム、タングステン、タンタル、ルテニウ
ム、ロジウム、パラジウム、白金、イリジウム、オスミ
ウム、レニウム、ハフニウムからなる群より選ばれた少
なくとも1種の元素を表し、また添字a、b、c、d及
びeは各元素の原子比を表し、b=12としたとき、a
は0を含まない7以下の値、cは0を含まない20以下
の値、dおよびeは0を含む6以下の値を表し、fは各
元素の原子価および原子比によって決まる値を表す。)
で示される複合酸化物系触媒であることを特徴とするア
ルケンおよび/または含酸素化合物の製造方法。
2. An alkene and / or an isobutane is subjected to gas-phase catalytic oxidation using molecular oxygen in the presence of a catalyst.
Alternatively, in a method for producing an oxygen-containing compound, a catalyst represented by the general formula NbaMobSbcXdYeOf (where Nb
Is niobium, Mo is molybdenum, Sb is antimony, O is oxygen, X is at least one element selected from the group consisting of phosphorus, arsenic, boron, silicon, and germanium;
Y is potassium, cesium, rubidium, calcium, magnesium, thallium, chromium, manganese, iron, cobalt, nickel, copper, silver, lead, bismuth, aluminum,
Represents at least one element selected from the group consisting of gallium, indium, tin, zinc, lanthanum, cerium, yttrium, tungsten, tantalum, ruthenium, rhodium, palladium, platinum, iridium, osmium, rhenium, hafnium, and a subscript a, b, c, d and e represent the atomic ratio of each element, and when b = 12, a
Is a value of 7 or less not including 0, c is a value of 20 or less not including 0, d and e are values of 6 or less including 0, and f is a value determined by the valence and atomic ratio of each element. . )
A method for producing an alkene and / or an oxygen-containing compound, which is a composite oxide catalyst represented by the following formula:
JP26690397A 1997-09-30 1997-09-30 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same Expired - Fee Related JP4182237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26690397A JP4182237B2 (en) 1997-09-30 1997-09-30 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26690397A JP4182237B2 (en) 1997-09-30 1997-09-30 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same

Publications (2)

Publication Number Publication Date
JPH11114418A true JPH11114418A (en) 1999-04-27
JP4182237B2 JP4182237B2 (en) 2008-11-19

Family

ID=17437269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26690397A Expired - Fee Related JP4182237B2 (en) 1997-09-30 1997-09-30 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same

Country Status (1)

Country Link
JP (1) JP4182237B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021307A1 (en) * 1999-09-17 2001-03-29 Nippon Kayaku Kabushiki Kaisha Catalyst
JP2002191974A (en) * 2000-12-27 2002-07-10 Asahi Kasei Corp Catalyst and method for producing unsaturated nitrile compound using catalyst
JP2004161753A (en) * 2002-10-18 2004-06-10 Rohm & Haas Co Preparation of unsaturated carboxylic acid and unsaturated carboxylic ester from alkane and/or alkene
US6762148B2 (en) 1999-09-17 2004-07-13 Nippon Kayaku Kabushiki Kaisha Catalyst process of making
US6919472B2 (en) 2001-12-21 2005-07-19 Saudi Basic Industries Corporation Catalyst compositions for the selective conversion of alkanes to unsaturated carboxylic acids, methods of making and methods of using thereof
JP2005279488A (en) * 2004-03-30 2005-10-13 Sumitomo Chemical Co Ltd Production method of catalyst for producing methacrylic acid and production method of methacrylic acid
JP2005279487A (en) * 2004-03-30 2005-10-13 Sumitomo Chemical Co Ltd Production method of catalyst for producing methacrylic acid and production method of methacrylic acid
JP2006306731A (en) * 2005-04-26 2006-11-09 Asahi Kasei Chemicals Corp Method for continuously producing unsaturated carboxylic ester using alkane as raw material
US7229946B2 (en) 2003-03-24 2007-06-12 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
WO2014046118A1 (en) * 2012-09-18 2014-03-27 国立大学法人北海道大学 Catalyst for producing isobutylene, and method for producing isobutylene using same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516647B1 (en) * 1969-11-25 1976-03-01
JPS63145249A (en) * 1986-12-06 1988-06-17 Asahi Chem Ind Co Ltd Production of methacrylic acid and/or methacrolein
JPH0242032A (en) * 1988-04-05 1990-02-13 Asahi Chem Ind Co Ltd Production of methacrylic acid and/or methacrolein
JPH05177141A (en) * 1991-12-27 1993-07-20 Tosoh Corp Preparation of methacrylic acid
JPH0710782A (en) * 1993-06-22 1995-01-13 Sumitomo Chem Co Ltd Production of isobutylene and methacrolein
JPH0789726A (en) * 1993-09-04 1995-04-04 Basf Ag Composite metal oxide material, its production and production of methacrylic acid
JPH07267647A (en) * 1994-02-22 1995-10-17 Basf Ag Compound metal oxide material,its preparation and method of preparing acrylic acid by vapor phase catalytic oxidation
WO1996033151A1 (en) * 1995-04-17 1996-10-24 Mobil Oil Corporation Process for the catalytic dehydrogenation of alkanes to alkenes with simultaneous combustion of hydrogen
JPH09278680A (en) * 1996-04-10 1997-10-28 Sumitomo Chem Co Ltd Production of alkene and/or oxygen-containing compound
JPH09299802A (en) * 1996-05-10 1997-11-25 Mitsubishi Chem Corp Manufacture of oxidation catalyst and preparation of methacrylic acid
JPH1036311A (en) * 1996-07-25 1998-02-10 Mitsubishi Chem Corp Production of alpha, beta-unsaturated carboxylic acid
WO1998012167A1 (en) * 1996-09-19 1998-03-26 Basf Aktiengesellschaft Process for producing a catalytically active multimetal oxide material
JPH10128112A (en) * 1996-10-31 1998-05-19 Sumitomo Chem Co Ltd Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JPH10310539A (en) * 1997-05-09 1998-11-24 Mitsubishi Chem Corp Vapor-phase, catalytic oxidation of hydrocarbon
JPH1133403A (en) * 1997-07-22 1999-02-09 Mitsubishi Rayon Co Ltd Production of catalyst for synthesis of methacrylic acid and production of methacrylic acid
JPH1142434A (en) * 1997-05-28 1999-02-16 Mitsubishi Chem Corp Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same
JPH1147598A (en) * 1997-08-05 1999-02-23 Asahi Chem Ind Co Ltd Preparation of catalyst
WO1999008788A1 (en) * 1997-08-20 1999-02-25 Basf Aktiengesellschaft Method for producing multi-metal oxide masses containing mo, v and cu

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516647B1 (en) * 1969-11-25 1976-03-01
JPS63145249A (en) * 1986-12-06 1988-06-17 Asahi Chem Ind Co Ltd Production of methacrylic acid and/or methacrolein
JPH0242032A (en) * 1988-04-05 1990-02-13 Asahi Chem Ind Co Ltd Production of methacrylic acid and/or methacrolein
JPH05177141A (en) * 1991-12-27 1993-07-20 Tosoh Corp Preparation of methacrylic acid
JPH0710782A (en) * 1993-06-22 1995-01-13 Sumitomo Chem Co Ltd Production of isobutylene and methacrolein
JPH0789726A (en) * 1993-09-04 1995-04-04 Basf Ag Composite metal oxide material, its production and production of methacrylic acid
JPH07267647A (en) * 1994-02-22 1995-10-17 Basf Ag Compound metal oxide material,its preparation and method of preparing acrylic acid by vapor phase catalytic oxidation
WO1996033151A1 (en) * 1995-04-17 1996-10-24 Mobil Oil Corporation Process for the catalytic dehydrogenation of alkanes to alkenes with simultaneous combustion of hydrogen
JPH09278680A (en) * 1996-04-10 1997-10-28 Sumitomo Chem Co Ltd Production of alkene and/or oxygen-containing compound
JPH09299802A (en) * 1996-05-10 1997-11-25 Mitsubishi Chem Corp Manufacture of oxidation catalyst and preparation of methacrylic acid
JPH1036311A (en) * 1996-07-25 1998-02-10 Mitsubishi Chem Corp Production of alpha, beta-unsaturated carboxylic acid
WO1998012167A1 (en) * 1996-09-19 1998-03-26 Basf Aktiengesellschaft Process for producing a catalytically active multimetal oxide material
JPH10128112A (en) * 1996-10-31 1998-05-19 Sumitomo Chem Co Ltd Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JPH10310539A (en) * 1997-05-09 1998-11-24 Mitsubishi Chem Corp Vapor-phase, catalytic oxidation of hydrocarbon
JPH1142434A (en) * 1997-05-28 1999-02-16 Mitsubishi Chem Corp Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same
JPH1133403A (en) * 1997-07-22 1999-02-09 Mitsubishi Rayon Co Ltd Production of catalyst for synthesis of methacrylic acid and production of methacrylic acid
JPH1147598A (en) * 1997-08-05 1999-02-23 Asahi Chem Ind Co Ltd Preparation of catalyst
WO1999008788A1 (en) * 1997-08-20 1999-02-25 Basf Aktiengesellschaft Method for producing multi-metal oxide masses containing mo, v and cu

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021307A1 (en) * 1999-09-17 2001-03-29 Nippon Kayaku Kabushiki Kaisha Catalyst
US6762148B2 (en) 1999-09-17 2004-07-13 Nippon Kayaku Kabushiki Kaisha Catalyst process of making
JP2002191974A (en) * 2000-12-27 2002-07-10 Asahi Kasei Corp Catalyst and method for producing unsaturated nitrile compound using catalyst
US6919472B2 (en) 2001-12-21 2005-07-19 Saudi Basic Industries Corporation Catalyst compositions for the selective conversion of alkanes to unsaturated carboxylic acids, methods of making and methods of using thereof
JP2004161753A (en) * 2002-10-18 2004-06-10 Rohm & Haas Co Preparation of unsaturated carboxylic acid and unsaturated carboxylic ester from alkane and/or alkene
US7229946B2 (en) 2003-03-24 2007-06-12 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
US7504357B2 (en) 2003-03-24 2009-03-17 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
US7345199B2 (en) 2004-03-23 2008-03-18 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
JP2005279487A (en) * 2004-03-30 2005-10-13 Sumitomo Chemical Co Ltd Production method of catalyst for producing methacrylic acid and production method of methacrylic acid
JP2005279488A (en) * 2004-03-30 2005-10-13 Sumitomo Chemical Co Ltd Production method of catalyst for producing methacrylic acid and production method of methacrylic acid
JP4501495B2 (en) * 2004-03-30 2010-07-14 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2006306731A (en) * 2005-04-26 2006-11-09 Asahi Kasei Chemicals Corp Method for continuously producing unsaturated carboxylic ester using alkane as raw material
WO2014046118A1 (en) * 2012-09-18 2014-03-27 国立大学法人北海道大学 Catalyst for producing isobutylene, and method for producing isobutylene using same
CN104640627A (en) * 2012-09-18 2015-05-20 国立大学法人北海道大学 Catalyst for producing isobutylene, and method for producing isobutylene using same
JPWO2014046118A1 (en) * 2012-09-18 2016-08-18 国立大学法人北海道大学 Isobutylene production catalyst and method for producing isobutylene using the same
US9670111B2 (en) 2012-09-18 2017-06-06 National University Corporation Hokkaido University Catalyst for producing isobutylene and method for producing isobutylene using the same
US9815748B2 (en) 2012-09-18 2017-11-14 National University Corporation Hokkaido University Catalyst for producing isobutylene and method for producing isobutylene using the same

Also Published As

Publication number Publication date
JP4182237B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4809531B2 (en) Catalytic oxidation of alkanes to the corresponding acids
EP1771405B1 (en) Process for the selective conversion of alkanes to unsaturated carboxylic acids
JP4346822B2 (en) Molybdenum-vanadium catalyst for the low temperature selective oxidation of propylene, its production and use
JP3500682B2 (en) Catalyst for the production of nitriles from alkanes
JPS6214535B2 (en)
JPH0753448A (en) Production of acrylic acid
EP0775519A1 (en) Vanadium-containing catalyst, process for the production thereof, and use thereof
JP2841324B2 (en) Method for producing methacrolein
JP3237314B2 (en) Method for producing α, β-unsaturated carboxylic acid
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JP4081824B2 (en) Acrylic acid production method
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JPS6123020B2 (en)
JP3331629B2 (en) Catalyst for the production of nitriles from alkanes
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JPH11169716A (en) Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid
JPH0791212B2 (en) Method for producing methacrylic acid
JPS6048496B2 (en) Method for producing methacrylic acid
JPH1036311A (en) Production of alpha, beta-unsaturated carboxylic acid
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP4809532B2 (en) Catalyst for catalytic oxidation of propane to acrylic acid, its production and use
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees