JP2003205237A - Oxidation or ammoxidation catalyst and method thereof - Google Patents

Oxidation or ammoxidation catalyst and method thereof

Info

Publication number
JP2003205237A
JP2003205237A JP2002017021A JP2002017021A JP2003205237A JP 2003205237 A JP2003205237 A JP 2003205237A JP 2002017021 A JP2002017021 A JP 2002017021A JP 2002017021 A JP2002017021 A JP 2002017021A JP 2003205237 A JP2003205237 A JP 2003205237A
Authority
JP
Japan
Prior art keywords
oxide catalyst
catalyst
raw material
niobium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002017021A
Other languages
Japanese (ja)
Other versions
JP4118056B2 (en
Inventor
Takaaki Kato
高明 加藤
Masatoshi Kaneda
正敏 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002017021A priority Critical patent/JP4118056B2/en
Publication of JP2003205237A publication Critical patent/JP2003205237A/en
Application granted granted Critical
Publication of JP4118056B2 publication Critical patent/JP4118056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel catalyst having enhanced selectivity of a target substance for manufacturing an unsaturated acid or unsaturated nitrile by the vapor phase catalytic oxidation or ammoxidation of propane or isobutane. <P>SOLUTION: The catalyst is an oxide having a component composition expressed by general formula (1) and the content of metal element Z (where, Z expresses at least a kind of an element selected from copper, solver and tantalum) is ≤1000 ppm by wt. Mo<SB>1</SB>V<SB>a</SB>Nb<SB>b</SB>X<SB>c</SB>O<SB>n</SB>(1). In formula (1), X expresses at least one kind of an element selected from tellurium and antimony, each of (a), (b), (c) and (n) expresses an atomic ratio per one atom of Mo, (a) is 0.01≤a≤1, (b) is 0.01≤b≤1, (c) is 0.01≤c≤1 and (n) is determined on the basis of the valencies and the composition of constitutional metal. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プロパンまたはイ
ソブタンの気相接触酸化または気相接触アンモ酸化反応
に用いる酸化物触媒、及び該酸化物触媒を用いる不飽和
酸または不飽和ニトリルの製造方法に関する。
TECHNICAL FIELD The present invention relates to an oxide catalyst used in a gas phase catalytic oxidation or a gas phase catalytic ammoxidation reaction of propane or isobutane, and a method for producing an unsaturated acid or an unsaturated nitrile using the oxide catalyst. .

【0002】[0002]

【従来の技術】従来、プロピレンまたはイソブチレンを
気相接触酸化または気相接触アンモ酸化して対応する不
飽和カルボン酸または不飽和ニトリルを製造する方法が
よく知られているが、近年、プロピレンまたはイソブチ
レンに替わってプロパンまたはイソブタンを気相接触酸
化または気相接触アンモ酸化によって対応する不飽和カ
ルボン酸または不飽和ニトリルを製造する方法が着目さ
れており、種々の触媒が提案されている。
2. Description of the Related Art Conventionally, a method for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by subjecting propylene or isobutylene to vapor phase catalytic oxidation or vapor phase ammoxidation is well known. In place of the above, a method of producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by vapor-phase catalytic oxidation or vapor-phase catalytic ammoxidation of propane or isobutane has been noted, and various catalysts have been proposed.

【0003】例えば、Mo−V−Nb−(Te/Sb)
を含む酸化物触媒が、特開平5−148212号公報、
特開平7−232071号公報、特開平8−14140
1号公報、特開平9−157241号公報、特開平10
−330343号公報、特開平10−28862号公
報、特開平11−42434号公報、特開平11−43
314号公報、特開平11−226408号公報、特開
平10−57479号公報、特開2000−70714
号公報、特開2000−143244号公報、特開20
01−58827号公報などに開示されている。
For example, Mo-V-Nb- (Te / Sb)
An oxide catalyst containing a is disclosed in JP-A-5-148212.
JP-A-7-232071, JP-A-8-14140
1, JP-A-9-157241, JP-A-10-157241.
-330343, JP-A-10-28862, JP-A-11-42434, and JP-A-11-43.
314, JP-A-11-226408, JP-A-10-57479, and JP-A-2000-70714.
JP-A-2000-143244, JP-A-20
No. 01-58827 and the like are disclosed.

【0004】また、Mo−V−Sbを含むアクリル酸製
造用の酸化物触媒が、特開2000−354765号公
報、特開2000−317309号公報、特開2000
−254496号公報、特開2000−256257号
公報、特開2000−246108号公報、特開200
0−51693号公報、特開平11−285636号公
報、特開平11−285637号公報、特開平10−2
30164号公報、特開2001−70788号公報な
どに開示されている。
Further, oxide catalysts for the production of acrylic acid containing Mo-V-Sb are disclosed in JP-A-2000-354765, JP-A-2000-317309, and JP-A-2000.
-254449, JP2000-256257, JP2000-246108, JP200
0-51693, JP-A-11-285636, JP-A-11-285637, and JP-A-10-2.
It is disclosed in Japanese Patent No. 30164, Japanese Patent Laid-Open No. 2001-70788, and the like.

【0005】[0005]

【発明が解決しようとする課題】一般的に所望の触媒性
能は、成分組成比を適切な値とすること、製造方法を適
正化すること等により発現する。しかしながら、触媒の
成分組成と製造方法を適正化しても、わずかな不純物元
素の混入により、触媒が本来有する優れた性能を発現で
きないことが多い。
Generally, desired catalyst performance is exhibited by setting the component composition ratio to an appropriate value, optimizing the production method, and the like. However, even if the component composition of the catalyst and the manufacturing method are optimized, the excellent performance originally possessed by the catalyst cannot be often expressed due to the inclusion of a slight amount of impurity element.

【0006】特に、工業的な規模で触媒を製造する場
合、大量に再現性よく優れた性能を有する触媒を製造す
る必要があるが、安価な工業グレードの原料に起因する
成分、各種設備内壁から溶出する成分、設備部材の摩耗
等で混入する成分など、小型設備を用いた製造では起こ
らなかった原因により性能が低下してしまうことがあ
る。従って、それらの不純物成分を特定し、性能低下が
起こらない程度の含有量まで不純物濃度を低下させた触
媒の開発が切望されていた。
[0006] In particular, when producing a catalyst on an industrial scale, it is necessary to produce a large amount of a catalyst having excellent reproducibility and excellent performance. Performance may decrease due to factors that have not occurred in manufacturing using small equipment, such as components to be eluted and components to be mixed in due to wear of equipment members. Therefore, it has been earnestly desired to develop a catalyst in which those impurity components are specified and the impurity concentration is reduced to a content that does not cause performance deterioration.

【0007】そこで、本発明の第1の目的は、目的物の
選択率が高い、不飽和酸または不飽和ニトリルの製造に
用いる、不純物濃度の低い新規な酸化物触媒及びその製
造方法を提供することである。第2の目的は、上記の製
造方法により得られる酸化物触媒を用いて、プロパンま
たはイソブタンを気相接触酸化または気相接触アンモ酸
化反応させ、対応する不飽和酸または不飽和ニトリルを
製造する方法を提供することである。
Therefore, a first object of the present invention is to provide a novel oxide catalyst having a low impurity concentration and used for the production of unsaturated acid or unsaturated nitrile, which has a high selectivity of the objective substance, and a production method thereof. That is. A second object is a method for producing a corresponding unsaturated acid or unsaturated nitrile by subjecting propane or isobutane to a gas phase catalytic oxidation or a gas phase catalytic ammoxidation reaction using the oxide catalyst obtained by the above production method. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは、プロパン
またはイソブタンの気相接触酸化または気相接触アンモ
酸化反応に用いる酸化物触媒について鋭意検討した結
果、モリブデン、バナジウム、ニオブ、テルル及び/ま
たはアンチモンを含む触媒固形分中において、不純物元
素(銅、銀、タンタル)の重量分率を1000ppm以
下とすることにより、上記課題が解決されることを見出
し、本発明をなすに至った。即ち、本発明は次の態様か
らなるものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied oxide catalysts used in the vapor-phase catalytic oxidation or vapor-phase catalytic ammoxidation of propane or isobutane, and as a result, molybdenum, vanadium, niobium, tellurium and / or Further, they have found that the above problems can be solved by setting the weight fraction of impurity elements (copper, silver, tantalum) in the catalyst solid content containing antimony to 1000 ppm or less, and have completed the present invention. That is, the present invention comprises the following aspects.

【0009】[1]プロパンまたはイソブタンの気相接
触酸化反応または気相接触アンモ酸化反応に用いる下記
の一般組成式(1)で表される成分組成の酸化物触媒で
あって、触媒固形分に対する金属元素Z(Zは銅、銀、
タンタルから選ばれる少なくとも1種以上の元素)の割
合が、重量分率で1000ppm以下であることを特徴
とする酸化物触媒。 Mo1aNbbcn (1) (式(1)中、成分Xはテルル及びアンチモンから選ば
れる少なくとも一種の元素であり、a、b、c、d及び
nはMo1原子当たりの原子比を表し、aは0.01≦
a≦1、bは0.01≦b≦1、cは0.01≦c≦
1、そしてnは構成金属の原子価及び組成によって決ま
る数である。)
[1] An oxide catalyst having a component composition represented by the following general composition formula (1), which is used in a gas-phase catalytic oxidation reaction or a gas-phase catalytic ammoxidation reaction of propane or isobutane, wherein Metal element Z (Z is copper, silver,
An oxide catalyst, characterized in that the proportion of at least one element selected from tantalum) is 1000 ppm or less in terms of weight fraction. During Mo 1 V a Nb b X c O n (1) ( Formula (1), component X is at least one element selected from tellurium and antimony, a, b, c, d and n are per Mo1 atoms Represents an atomic ratio, and a is 0.01 ≦
a ≦ 1, b is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦
1 and n are numbers determined by the valence and composition of the constituent metals. )

【0010】[2]上記Zが、銅であることを特徴とす
る上記[1]に記載の酸化物触媒。
[2] The oxide catalyst according to the above [1], wherein Z is copper.

【0011】[3]上記Zの割合が、重量分率で100
ppm以下であることを特徴とする上記[1]または
[2]のいずれかに記載の酸化物触媒。
[3] The above Z ratio is 100 by weight.
The oxide catalyst according to any one of the above [1] and [2], which is at most ppm.

【0012】[4]上記成分Xが、アンチモンであるこ
とを特徴とする上記[1]〜[3]のいずれかに記載の
酸化物触媒。
[4] The oxide catalyst according to any one of the above [1] to [3], wherein the component X is antimony.

【0013】[5]上記酸化物触媒のニオブの原料が、
ジカルボン酸とニオブの化合物を含み、ジカルボン酸/
ニオブのモル比が1〜4のニオブ含有液であることを特
徴とする上記[1]〜[4]のいずれかに記載の酸化物
触媒。
[5] The niobium raw material of the above oxide catalyst is
Including dicarboxylic acid and niobium compounds, dicarboxylic acid /
The oxide catalyst according to any one of the above [1] to [4], which is a niobium-containing liquid having a niobium molar ratio of 1 to 4.

【0014】[6]上記酸化物触媒が、上記一般組成式
(1)で表される触媒構成元素酸化物とこれを担持する
シリカとからなるものであって、該触媒構成元素酸化物
が、該触媒構成元素酸化物とシリカとの全重量に対し、
SiO2換算で20〜60重量%のシリカに担持されて
いることを特徴とする、上記[1]〜[5]のいずれか
に記載の酸化物触媒。
[6] The oxide catalyst comprises a catalyst constituent element oxide represented by the general composition formula (1) and silica carrying the catalyst constituent element oxide, and the catalyst constituent element oxide is Based on the total weight of the catalyst constituent element oxide and silica,
The oxide catalyst according to any one of the above [1] to [5], which is supported on silica in an amount of 20 to 60% by weight in terms of SiO 2 .

【0015】[7]上記[1]〜[6]に記載の酸化物
触媒の製造方法であって、(I)原料調合工程、(II)
乾燥工程、(III)焼成工程から成り、原料調合工程に
おいて、実質的に金属元素Zを含まない原料を用いるこ
とを特徴とする酸化物触媒の製造方法。
[7] A method for producing an oxide catalyst according to the above [1] to [6], which comprises (I) a raw material mixing step and (II)
A method for producing an oxide catalyst, which comprises a drying step and a calcination step (III), wherein a raw material substantially free of the metal element Z is used in the raw material blending step.

【0016】[8]上記原料調合工程及び上記乾燥工程
に用いる設備において、接液部及び/または回転部材質
として、実質的に金属元素Zを含まない材質を用いるこ
とを特徴とする上記[7]に記載の酸化物触媒の製造方
法。
[8] In the equipment used in the raw material blending step and the drying step, a material which does not substantially contain the metal element Z is used as the liquid contact portion and / or the rotating member material. ] The manufacturing method of the oxide catalyst as described in.

【0017】[9]上記焼成工程において、焼成管の材
質及び/または回転部材質として、実質的に金属元素Z
を含まない材質を用いることを特徴とする上記[7]ま
たは[8]のいずれかに記載の酸化物触媒の製造方法。
[9] In the above firing step, the metal element Z is substantially used as the material of the firing tube and / or the material of the rotating member.
The method for producing an oxide catalyst according to any one of the above [7] or [8], characterized in that a material not containing is used.

【0018】[10]上記原料調合工程において、酸化
物触媒のニオブの原料が、ジカルボン酸とニオブの化合
物を含み、ジカルボン酸/ニオブのモル比が1〜4のニ
オブ含有液であることを特徴とする上記[7]〜[9]
のいずれかに記載の酸化物触媒の製造方法。 [11]プロパンまたはイソブタンを気相接触酸化反応
または気相接触アンモ酸化反応させて、対応する不飽和
酸または不飽和ニトリルを製造するにあたり、上記
[1]〜[6]のいずれかに記載の酸化物触媒を用いる
ことを特徴とする不飽和酸または不飽和ニトリルの製造
方法。
[10] In the above-mentioned raw material mixing step, the raw material of niobium of the oxide catalyst is a niobium-containing liquid containing a compound of dicarboxylic acid and niobium and having a dicarboxylic acid / niobium molar ratio of 1 to 4. The above [7] to [9]
5. The method for producing an oxide catalyst according to any one of 1. [11] In producing a corresponding unsaturated acid or unsaturated nitrile by subjecting propane or isobutane to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction, the method according to any one of the above [1] to [6] A method for producing an unsaturated acid or an unsaturated nitrile, which comprises using an oxide catalyst.

【0019】以下、本発明を詳細に説明する。本発明の
触媒は下記の一般組成式(1)で示される酸化物触媒で
ある。 Mo1aNbbcn (1) 式(1)中、成分Xはテルルまたはアンチモンから選ば
れる少なくとも1種以上の元素であり、a、b、c及び
nはMo1原子当たりの原子比を表し、aは0.01≦
a≦1、bは0.01≦b≦1、cは0.01≦c≦
1、そしてnは構成金属の原子価及び組成によって決ま
る数である。Mo1原子当たりの原子比a〜cはさら
に、それぞれ、0.1〜0.4、0.01〜0.2、
0.1〜0.5が好ましい。成分Xとしては、アンチモ
ンがより好ましい。
The present invention will be described in detail below. The catalyst of the present invention is an oxide catalyst represented by the following general composition formula (1). Mo 1 V a Nb b X c O n (1) In formula (1), component X represents at least one element selected from tellurium or antimony, a, b, c and n are atoms per Mo1 atoms Represents a ratio, and a is 0.01 ≦
a ≦ 1, b is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦
1 and n are numbers determined by the valence and composition of the constituent metals. The atomic ratios a to c per Mo atom are 0.1 to 0.4, 0.01 to 0.2, and
0.1 to 0.5 is preferable. As the component X, antimony is more preferable.

【0020】本発明の酸化物触媒において、触媒固形分
に対する金属元素Z(銅、銀、タンタルから選ばれる少
なくとも1種の元素)の割合は、重量分率で1000p
pm以下、好ましくは100ppm以下である。
In the oxide catalyst of the present invention, the weight ratio of the metal element Z (at least one element selected from copper, silver and tantalum) to the catalyst solid content is 1000 p.
It is pm or less, preferably 100 ppm or less.

【0021】すなわち、酸化物触媒中に不純物として含
まれる元素の中でも特に銅、銀及びタンタルは本発明の
酸化物触媒に対する影響が大きいので、これらの内の少
なくとも1種の元素は1000ppm以下、好ましくは
100ppm以下とする。また、銅、銀及びタンタルの
中でも特に銅は酸化物触媒の性能を大幅に低下させるの
で、銅を1000ppm以下、好ましくは100ppm
以下とすることがより好ましい。更に、銅、銀及びタン
タルのそれぞれが1000ppm以下であればより好ま
しく、それぞれが100ppm以下であればなお好まし
い。
That is, among the elements contained as impurities in the oxide catalyst, copper, silver and tantalum have a great influence on the oxide catalyst of the present invention, so at least one of these elements is 1000 ppm or less, preferably Is 100 ppm or less. Further, among copper, silver and tantalum, copper significantly lowers the performance of the oxide catalyst, so that the copper content is 1000 ppm or less, preferably 100 ppm.
The following is more preferable. Furthermore, it is more preferable that each of copper, silver, and tantalum is 1000 ppm or less, and even more preferable that each of them is 100 ppm or less.

【0022】これら元素はなるべく少ない方が好まし
く、下限について得に制限はない。より好ましくは、一
般に金属の分析方法として実施される原子吸光法、IC
P分析法、蛍光X線分析法等における検出限界以下であ
る。ここで、触媒固形分とは、原料調合液を乾燥し、次
いで焼成した際に残る固形分を表し、触媒活性成分及び
担体成分を含有するものである。
It is preferable that the amount of these elements is as small as possible, and there is no limit to the lower limit. More preferably, atomic absorption method, IC, which is generally carried out as a metal analysis method
It is below the detection limit in P analysis method, fluorescent X-ray analysis method and the like. Here, the catalyst solid content represents the solid content remaining when the raw material preparation liquid is dried and then calcined, and contains the catalytically active component and the carrier component.

【0023】本発明の製造方法により得られる酸化物触
媒は、シリカ担持触媒であることが好ましい。酸化物触
媒がシリカ担持触媒の場合には、高い機械的強度を有す
るので、流動床反応器を用いた気相接触酸化反応または
気相接触アンモ酸化反応に好適である。シリカ担体の含
有量は、触媒構成元素の酸化物とシリカ担体から成るシ
リカ担持酸化物触媒の全重量に対して、SiO2換算で
20〜60重量%であることが好ましく、より好ましく
は25〜55重量%である。
The oxide catalyst obtained by the production method of the present invention is preferably a silica-supported catalyst. When the oxide catalyst is a silica-supported catalyst, it has high mechanical strength and is suitable for a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction using a fluidized bed reactor. The content of the silica carrier is preferably 20 to 60% by weight, and more preferably 25 to 60% by weight in terms of SiO 2 , with respect to the total weight of the silica-supported oxide catalyst composed of the oxide of the catalyst constituent elements and the silica carrier. 55% by weight.

【0024】本発明の酸化物触媒を製造するには、次の
一般的な方法で調製することができる。すなわち、
(I)原料調合工程、(II)工程(I)で得られた原料
調合液を乾燥し、触媒前駆体を得る工程、(III)工程
(II)で得られた触媒前駆体を焼成する工程の3つの工
程を経て製造することができる。
The oxide catalyst of the present invention can be prepared by the following general method. That is,
(I) Raw material mixing step, (II) Step of drying raw material mixed solution obtained in step (I) to obtain catalyst precursor, (III) Step of firing catalyst precursor obtained in step (II) It can be manufactured through three steps.

【0025】本発明の酸化物触媒の製造方法における調
合とは、水性溶媒に、触媒構成元素の原料を溶解または
分散させることである。原料とは、工程(I)で用いる
ものである。本発明の調製方法で用いる原料は特に限定
されないが、触媒性能を悪化させる成分である金属元素
Zを実質的に含まないものを用いる。また、担体成分の
原料や水などの溶媒についても、触媒性能を悪化させる
成分を実質的に含まないものが好ましい。原料には、例
えば下記の化合物を用いることができる。
The formulation in the method for producing an oxide catalyst of the present invention is to dissolve or disperse the raw materials of the catalyst constituent elements in an aqueous solvent. The raw material is used in the step (I). The raw material used in the preparation method of the present invention is not particularly limited, but a material that does not substantially contain the metal element Z, which is a component that deteriorates catalyst performance, is used. Further, it is preferable that the raw material of the carrier component and the solvent such as water do not substantially contain a component that deteriorates the catalyst performance. For example, the following compounds can be used as the raw material.

【0026】Moの原料は、ヘプタモリブデン酸アンモ
ニウム〔(NH46Mo724・4H2O〕を好適に用い
ることができる。Vの原料は、メタバナジン酸アンモニ
ウム[NH4VO3]を好適に用いることができる。
The raw material for Mo can be used ammonium heptamolybdate [(NH 4) 6 Mo 7 O 24 · 4H 2 O ] favorably. As a raw material of V, ammonium metavanadate [NH 4 VO 3 ] can be preferably used.

【0027】Nbの原料としては、ニオブ酸、ニオブの
無機酸塩及びニオブの有機酸塩を用いることができる。
特にニオブ酸がよい。ニオブ酸はNb25・nH2Oで
表され、ニオブ水酸化物または酸化ニオブ水和物とも称
される。更に、ジカルボン酸/ニオブのモル比が1〜4
のNb原料液として用いることが好ましい。ジカルボン
酸/ニオブのモル比を上記の値にすることにより、触媒
構成金属の酸化還元状態を調整し触媒性能を特に優れた
ものとすることができる。また、このジカルボン酸はシ
ュウ酸が好ましい。
As the raw material of Nb, niobic acid, an inorganic acid salt of niobium and an organic acid salt of niobium can be used.
Niobate is particularly preferable. Niobate is represented by Nb 2 O 5 .nH 2 O and is also called niobium hydroxide or niobium oxide hydrate. Further, the molar ratio of dicarboxylic acid / niobium is 1 to 4
It is preferable to use it as the Nb raw material liquid. By adjusting the molar ratio of dicarboxylic acid / niobium to the above value, the redox state of the metal constituting the catalyst can be adjusted and the catalyst performance can be made particularly excellent. Further, the dicarboxylic acid is preferably oxalic acid.

【0028】Sbの原料としては三酸化二アンチモン
〔Sb23〕が好ましい。更に、Sbの水性溶媒に対す
る溶解速度を向上させるためには、平均粒径が1μm以
下のSb23を用いることが好ましい。Teの原料とし
てはテルル酸〔H6TeO6〕が好ましい。シリカの原料
はシリカゾルが好ましい。
As a raw material for Sb, diantimony trioxide [Sb 2 O 3 ] is preferable. Further, in order to improve the dissolution rate of Sb in the aqueous solvent, it is preferable to use Sb 2 O 3 having an average particle size of 1 μm or less. As a raw material of Te, telluric acid [H 6 TeO 6 ] is preferable. The silica raw material is preferably silica sol.

【0029】以下に、工程(I)〜(III)からなる本
発明の製造方法による好ましい触媒調製例を説明する。 (工程I:原料調合工程)先に述べた原料を用い、原料
調合液を得る。以下に原料混合液調製の一例を示す。ヘ
プタモリブデン酸アンモニウム、メタバナジン酸アンモ
ニウム、三酸化二アンチモンを水に添加し、70℃以上
に加熱して混合液(A)を調製する。この時、容器内は
窒素雰囲気でもよい。ニオブ酸とシュウ酸を水中で加熱
撹拌して混合液(B0)を調製する。混合液(B0)は特
開平11−253801号公報に教示されている方法で
得られるニオブ含有液を用いることができる。更に、混
合液(B0)の少なくとも一部に、過酸化水素、三酸化
二アンチモンを添加し、混合液(B)を調製する。この
時、H22/Nb(モル比)は0.5〜20、特に、1
〜10が好ましく、Sb/Nb(モル比)は0〜5、特
に0.01〜2が好ましい。混合液(B)にはシュウ酸
を加えることもできる。
Hereinafter, a preferred catalyst preparation example according to the production method of the present invention comprising steps (I) to (III) will be described. (Step I: Raw Material Mixing Step) Using the raw materials described above, a raw material mixed solution is obtained. An example of preparation of the raw material mixed liquid is shown below. Ammonium heptamolybdate, ammonium metavanadate, and diantimony trioxide are added to water and heated to 70 ° C. or higher to prepare a mixed solution (A). At this time, the inside of the container may be a nitrogen atmosphere. Niobic acid and oxalic acid are heated and stirred in water to prepare a mixed solution (B 0 ). As the mixed solution (B 0 ), a niobium-containing solution obtained by the method taught in JP-A No. 11-253801 can be used. Further, hydrogen peroxide and diantimony trioxide are added to at least a part of the mixed solution (B 0 ) to prepare a mixed solution (B). At this time, H 2 O 2 / Nb (molar ratio) is 0.5 to 20, especially 1
-10 is preferable, and Sb / Nb (molar ratio) is 0-5, especially 0.01-2 is preferable. Oxalic acid may be added to the mixed solution (B).

【0030】次に、目的とする組成に合わせて、混合液
(A)、混合液(B)、混合液(B 0)を好適に混合し
て、原料調合液を得る。本発明のアンモ酸化用触媒がシ
リカ担持触媒の場合、シリカゾルを含むように原料調合
液が調製される。シリカゾルは適宜添加することができ
る。また、アンチモンを用いる場合は、混合液(A)、
または、調合途中の混合液(A)の成分を含む液に、過
酸化水素を添加することが好ましい。この時、H
/Sb(モル比)は0.01〜5、特に、1〜3が好ま
しい。また、この時、30℃〜70℃で、30分〜2時
間攪拌を続けることが好ましい。
Next, a mixed solution is prepared according to the desired composition.
(A), mixed solution (B), mixed solution (B 0) Is preferably mixed
A raw material preparation liquid is obtained. The ammoxidation catalyst of the present invention is
In the case of Rica supported catalyst, the raw material should be mixed to contain silica sol.
The liquid is prepared. Silica sol can be added appropriately
It When antimony is used, the mixed solution (A),
Alternatively, the solution containing the components of the mixed solution (A) being prepared may be
It is preferred to add hydrogen oxide. At this time, HTwoOTwo
/ Sb (molar ratio) is preferably 0.01 to 5, particularly preferably 1 to 3.
Good Also, at this time, at 30 ° C to 70 ° C for 30 minutes to 2:00
It is preferable to continue stirring for a while.

【0031】上述の原料調合工程では、用いる設備の接
液部及び/または回転部に用いる材質として、材質構成
成分の溶出や摩耗による異成分の混入が生じないものを
選定するのはもちろんであるが、特に、金属元素Zの混
入が生じない材質を用いることが好ましい。本発明の製
造方法で言う接液部とは、原料を含有する液状物質と常
時接触するか、または接触する可能性のある、設備また
は設備上の領域を表し、原料調合槽や送液管のみに限定
されず、攪拌翼、加熱コイル、冷却コイル、送液ポンプ
の液状物質流通部なども含む。また、原料調合工程にお
ける回転部とは、攪拌機、攪拌機軸受、送液ポンプの液
状物質流通部等において、回転摩耗により生じる物質が
原料を含有する液状物質中に混入する可能性のある設備
または設備上の領域を表す。また、本発明の製造方法で
言う材質とは、触媒製造工程で用いる設備を構成する材
料のことである。原料調合工程における接液部及び/ま
たは回転部に用いる材質として、例えば、SUS304
などのステンレスを好適に用いることができる。
In the above-mentioned raw material mixing step, it goes without saying that the material used for the wetted part and / or the rotary part of the equipment to be used is selected so as not to elute the constituent components of the material or to mix different components due to abrasion. However, it is particularly preferable to use a material that does not cause the mixing of the metal element Z. The wetted part referred to in the production method of the present invention represents a facility or a region on the facility that is constantly in contact with or may be in contact with a liquid substance containing a raw material, and only a raw material mixing tank or a liquid feeding pipe However, the invention is not limited to this, and includes a stirring blade, a heating coil, a cooling coil, a liquid substance circulating portion of a liquid feed pump, and the like. In addition, the rotating part in the raw material mixing step means, in a stirrer, a stirrer bearing, a liquid substance distribution part of a liquid feed pump, etc., equipment or facilities in which a substance generated by rotational wear may be mixed in the liquid substance containing the raw material. Represents the area above. The material referred to in the production method of the present invention is a material that constitutes equipment used in the catalyst production process. As a material used for the liquid contact part and / or the rotating part in the raw material mixing step, for example, SUS304
Stainless steel such as can be preferably used.

【0032】(工程II:乾燥工程)工程(I)で得られ
た原料調合液を噴霧乾燥法によって乾燥させ、乾燥粉体
を得る。噴霧乾燥法における噴霧化は遠心方式、二流体
ノズル方式または高圧ノズル方式を採用することができ
る。乾燥熱源は、スチーム、電気ヒーターなどによって
加熱された空気を用いることができる。熱風の乾燥機入
口温度は150〜300℃が好ましい。また、乾燥工程
の触媒製造設備における接液部及び/または回転部に用
いる材質にも、原料調合工程と同じ考えで材質を選定す
るのが好ましい。
(Step II: Drying Step) The raw material preparation liquid obtained in the step (I) is dried by a spray drying method to obtain a dry powder. For the atomization in the spray drying method, a centrifugal system, a two-fluid nozzle system or a high pressure nozzle system can be adopted. As the dry heat source, air heated by steam, an electric heater or the like can be used. The dryer inlet temperature of hot air is preferably 150 to 300 ° C. In addition, it is preferable to select the material used for the liquid contact part and / or the rotating part in the catalyst manufacturing equipment in the drying step, in the same manner as in the raw material mixing step.

【0033】(工程III:焼成工程)工程(III)では、
工程(II)すなわち乾燥工程で得られた乾燥粉体を焼成
することによって酸化物触媒を得る。焼成は窒素ガス、
アルゴンガス、ヘリウムガスなどの実質的に酸素を含ま
ない不活性ガス雰囲気下、好ましくは、不活性ガスを流
通させながら、500〜800℃、好ましくは600〜
700℃で実施する。焼成時間は0.5〜20時間、好
ましくは1〜8時間である。焼成は、回転炉、トンネル
炉、管状炉、流動焼成炉等を用いて行うことができる
が、大量焼成では回転炉を用いることが好ましい。焼成
は反復することができる。焼成工程の前に、乾燥粉体を
大気雰囲気下または空気流通下で200〜400℃、1
〜5時間で前焼成することもできる。
(Step III: Firing Step) In step (III),
The oxide powder is obtained by calcining the dry powder obtained in step (II), that is, the drying step. Firing is nitrogen gas,
Under an inert gas atmosphere containing substantially no oxygen such as argon gas or helium gas, preferably while flowing an inert gas, 500 to 800 ° C., preferably 600 to
Carry out at 700 ° C. The firing time is 0.5 to 20 hours, preferably 1 to 8 hours. Firing can be performed using a rotary furnace, a tunnel furnace, a tubular furnace, a fluidized firing furnace, or the like, but it is preferable to use a rotary furnace in mass firing. Firing can be repeated. Before the firing step, the dry powder is heated to 200 to 400 ° C. in an air atmosphere or under air flow, 1
It can also be pre-baked in ~ 5 hours.

【0034】上記焼成工程において用いる焼成管及び/
または回転部の材質としては、実質的に金属元素Zを含
有せず、摩耗によって生じる物質の触媒への混入がな
く、更に高温での触媒との接触により起こり得る固相反
応で触媒中に異成分を混入しない材質を用いることが好
ましい。例えば、SUS304などのステンレスを用い
ることができる。ここで、焼成工程における回転部と
は、回転炉において、回転摩耗により生じる物質が触媒
中に混入してしまう恐れのある部位を表す。
Firing tube and / or used in the firing step
Alternatively, as the material of the rotating portion, the metal element Z is not substantially contained, a substance generated by abrasion is not mixed into the catalyst, and further, it is different in the catalyst due to a solid-phase reaction that can occur by contact with the catalyst at high temperature. It is preferable to use a material that does not contain components. For example, stainless steel such as SUS304 can be used. Here, the rotating part in the firing step refers to a part in the rotary furnace where substances generated by rotational wear may be mixed into the catalyst.

【0035】上記の工程(I)〜(III)に従って製造
された酸化物触媒の存在下、プロパンまたはイソブタン
を気相接触酸化または気相接触アンモ酸化反応させて、
対応する不飽和酸または不飽和ニトリルを製造する。
Propane or isobutane is subjected to a gas phase catalytic oxidation or a gas phase catalytic ammoxidation reaction in the presence of the oxide catalyst produced according to the above steps (I) to (III),
The corresponding unsaturated acid or unsaturated nitrile is prepared.

【0036】プロパンまたはイソブタンとアンモニアの
供給原料は必ずしも高純度である必要はなく、工業グレ
ードのガスを使用できる。供給酸素源として空気、酸素
を富化した空気または純酸素を用いることができる。更
に、希釈ガスとしてヘリウム、アルゴン、炭酸ガス、水
蒸気、窒素などを供給してもよい。
The propane or isobutane and ammonia feedstocks do not necessarily have to be of high purity and industrial grade gases can be used. Air, oxygen-enriched air or pure oxygen can be used as the supply oxygen source. Further, helium, argon, carbon dioxide gas, steam, nitrogen or the like may be supplied as a diluent gas.

【0037】プロパンまたはイソブタンの気相接触酸化
は以下の条件で行うことが出来る。反応に供給する酸素
のプロパンまたはイソブタンに対するモル比は0.1〜
6、好ましくは0.5〜4である。反応温度は300℃
〜500℃、好ましくは350℃〜450℃である。反
応圧力は5×104〜5×105Pa、好ましくは1×1
5〜3×105Paである。接触時間は0.1〜10
(s・g/ml)、好ましくは0.5〜5(s・g/m
l)である。本発明において、接触時間は次式で決定さ
れる。接触時間は、下記式に示すとおりである。 接触時間(s・g/ml)=(W/F)×273/(2
73+T) ここで W=充填触媒量(g) F=標準状態(0℃、1.013×105Pa)での原
料混合ガス流量(Nml/s) T=反応温度(℃) である。
The vapor phase catalytic oxidation of propane or isobutane can be carried out under the following conditions. The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to
6, preferably 0.5 to 4. Reaction temperature is 300 ℃
-500 degreeC, Preferably it is 350 degreeC-450 degreeC. The reaction pressure is 5 × 10 4 to 5 × 10 5 Pa, preferably 1 × 1.
It is from 0 5 to 3 × 10 5 Pa. Contact time is 0.1-10
(S · g / ml), preferably 0.5 to 5 (s · g / m)
l). In the present invention, the contact time is determined by the following equation. The contact time is as shown in the following formula. Contact time (s · g / ml) = (W / F) × 273 / (2
73 + T) where W = charged catalyst amount (g) F = raw material mixed gas flow rate (Nml / s) in standard state (0 ° C., 1.013 × 10 5 Pa) T = reaction temperature (° C.)

【0038】プロパンまたはイソブタンの気相接触アン
モ酸化は以下の条件で行うことが出来る。反応に供給す
る酸素のプロパンまたはイソブタンに対するモル比は
0.1〜6、好ましくは0.5〜4である。反応に供給
するアンモニアのプロパンまたはイソブタンに対するモ
ル比は0.3〜1.5、好ましくは0.8〜1.0であ
る。反応温度は350℃〜500℃、好ましくは380
℃〜470℃である。反応圧力は5×104〜5×105
Pa、好ましくは1×105〜3×105Paである。接
触時間は0.1〜10(s・g/ml)、好ましくは
0.5〜5(s・g/ml)である。反応方式は、固定
床、流動床、移動床など従来の方式を採用できるが、反
応熱の除去が容易な流動床反応器が好ましい。また、本
発明の反応は、単流式であってもリサイクル式であって
もよい。
The vapor phase catalytic ammoxidation of propane or isobutane can be carried out under the following conditions. The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4. The molar ratio of ammonia fed to the reaction to propane or isobutane is 0.3 to 1.5, preferably 0.8 to 1.0. The reaction temperature is 350 ° C to 500 ° C, preferably 380
C to 470C. Reaction pressure is 5 × 10 4 to 5 × 10 5
Pa, preferably 1 × 10 5 to 3 × 10 5 Pa. The contact time is 0.1 to 10 (s · g / ml), preferably 0.5 to 5 (s · g / ml). As a reaction system, a conventional system such as a fixed bed, a fluidized bed or a moving bed can be adopted, but a fluidized bed reactor which can easily remove reaction heat is preferable. Further, the reaction of the present invention may be a single flow type or a recycle type.

【0039】[0039]

【発明の実施の形態】以下に本発明の酸化物触媒につい
て、触媒の調製例及びプロパンの気相接触アンモ酸化反
応によるアクリロニトリルの製造例を実施例を用いて説
明するが、本発明はその要旨を変えない限りこれら実施
例に限定されるものではない。また、以下の実施例及び
比較例の触媒を調製するに際しては、スラリーの送液ポ
ンプ、送液ポンプ内液状物質流通部に関しては金属元素
を含まないシリコーンチューブを用い、その他の装置部
材は全てSUS製のものを用いた。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the oxide catalyst of the present invention will be described with reference to Examples of preparation of the catalyst and production of acrylonitrile by gas phase catalytic ammoxidation reaction of propane. The present invention is not limited to these examples as long as it is not changed. Further, in preparing the catalysts of the following Examples and Comparative Examples, a liquid-feeding pump for slurry, a silicone tube containing no metal element was used for the liquid substance circulating portion in the liquid-feeding pump, and all other device members were made of SUS. The one manufactured was used.

【0040】(反応成績の評価方法)プロパンのアンモ
酸化反応の成績は、反応ガスを分析した結果を基に、次
式で定義されるプロパン転化率及びアクリロニトリル選
択率を指標として評価した。 プロパン転化率(%)=(反応したプロパンのモル数)
/(供給したプロパンのモル数)×100 アクリロニトリル選択率(%)=(生成したアクリロニ
トリルのモル数)/(反応したプロパンのモル数)×1
00
(Evaluation Method of Reaction Results) The results of the propane ammoxidation reaction were evaluated based on the results of analysis of the reaction gas, using the propane conversion rate and acrylonitrile selectivity defined by the following formulas as indexes. Propane conversion rate (%) = (number of moles of reacted propane)
/ (Mol number of propane supplied) × 100 acrylonitrile selectivity (%) = (mol number of acrylonitrile produced) / (mol number of reacted propane) × 1
00

【0041】(ニオブ原料液の調製)特開平11−25
3801号公報に倣って、以下の方法でニオブ原料液を
調製した。まず、水5640gにNb25として80.
2重量%を含有するニオブ酸795.1gとシュウ酸二
水和物〔H224・2H2O〕3120gを混合した。
仕込みのシュウ酸/ニオブのモル比は5.24、仕込み
のニオブ濃度は0.502mol(Nb)/kg(液)で
ある。この混合液を95℃で1時間加熱撹拌することに
よって、ニオブが溶解した水溶液を得た。この水溶液を
静置、氷冷後、固体を吸引濾過によって濾別し、均一な
ニオブ含有液を得た。このニオブ含有液のシュウ酸/ニ
オブのモル比は下記の分析により2.395であった。
(Preparation of Niobium Raw Material Liquid) JP-A-11-25
A niobium raw material liquid was prepared by the following method according to Japanese Patent No. 3801. First, 5640 g of water was added as Nb 2 O 5 at 80.
795.1 g of niobic acid containing 2% by weight and 3120 g of oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] were mixed.
The charged oxalic acid / niobium molar ratio was 5.24, and the charged niobium concentration was 0.502 mol (Nb) / kg (liquid). This mixed solution was heated and stirred at 95 ° C. for 1 hour to obtain an aqueous solution in which niobium was dissolved. The aqueous solution was allowed to stand and cooled with ice, and then the solid was filtered off by suction filtration to obtain a uniform niobium-containing liquid. The oxalic acid / niobium molar ratio of this niobium-containing liquid was 2.395 according to the following analysis.

【0042】るつぼにこのニオブ含有液10gを精秤
し、95℃で一夜乾燥後、600℃で1時間熱処理し、
Nb250.849gを得た。この結果から、ニオブ濃
度は0.639mol(Nb)/kg(液)であった。次
いで、別に300mlのガラスビーカーにこのニオブ含
有液3gを精秤し、約80℃の熱水200mlを加え、
続いて1:1硫酸10mlを加えた。得られた溶液をホ
ットスターラー上で液温70℃に保ちながら、攪拌下、
1/4規定KMnO4を用いて滴定した。KMnO4によ
るかすかな淡桃色が約30秒以上続く点を終点とした。
シュウ酸の濃度は、滴定量から次式に従って計算した結
果、1.530mol/kgであった。 2KMnO4+3H2SO4+5H224→K2SO4+2
MnSO4+10CO2+8H2O 得られたニオブ含有液は、シュウ酸/ニオブのモル比を
調整することなく、下記の触媒調製のニオブ原料液(B
0)として用いた。
10 g of this niobium-containing liquid was precisely weighed in a crucible, dried overnight at 95 ° C., and then heat-treated at 600 ° C. for 1 hour,
0.849 g of Nb 2 O 5 was obtained. From this result, the niobium concentration was 0.639 mol (Nb) / kg (liquid). Next, separately weigh 3 g of this niobium-containing liquid into a 300 ml glass beaker, add 200 ml of hot water at about 80 ° C.,
Subsequently, 10 ml of 1: 1 sulfuric acid was added. While stirring the obtained solution on a hot stirrer at a liquid temperature of 70 ° C.,
Titration was performed with 1/4 normal KMnO 4 . The end point was a point where a faint light pink color due to KMnO 4 continued for about 30 seconds or longer.
The concentration of oxalic acid was 1.530 mol / kg as a result of calculation from the titration amount according to the following formula. 2KMnO 4 + 3H 2 SO 4 + 5H 2 C 2 O 4 → K 2 SO 4 +2
MnSO 4 + 10CO 2 + 8H 2 O The obtained niobium-containing liquid was a niobium raw material liquid (B) for catalyst preparation described below without adjusting the oxalic acid / niobium molar ratio.
0 ).

【0043】[0043]

【実施例1】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。水2
242gにヘプタモリブデン酸アンモニウム〔(N
46Mo724・4H2O〕を447.5g、メタバナ
ジン酸アンモニウム〔NH4VO3〕を62.27g、三
酸化二アンチモン〔Sb23〕を77.57g加え、容
器内に窒素ガスを流通させ、攪拌しながら90℃で2時
間30分間加熱して混合液A−1を得た。
[Example 1] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. Water 2
242 g of ammonium heptamolybdate [(N
H 4) a 6 Mo 7 O 24 · 4H 2 O ] 447.5g, 62.27g of ammonium metavanadate [NH 4 VO 3], diantimony trioxide [Sb 2 O 3] was added 77.57G, vessel Nitrogen gas was passed through the mixture and heated at 90 ° C. for 2 hours and 30 minutes with stirring to obtain a mixed solution A-1.

【0044】ニオブ混合液(B0)436.3gに、H2
2として30wt%を含有する過酸化水素水を97.
69g添加し、さらに少量ずつ三酸化二アンチモン〔S
23〕を28.50g加え、室温で10分間攪拌混合
して、混合液B−1を調製した。
To 436.3 g of the niobium mixed solution (B 0 ) was added H 2
Oxygenated water containing 30 wt% as O 2 was added to 97.
69 g was added, and diantimony trioxide [S
b 2 O 3] were added 28.50 g, was mixed and stirred at room temperature for 10 minutes, the mixture B-1 was prepared.

【0045】得られた溶液A−1を70℃に冷却した後
にSiO2として30.6wt%を含有するシリカゾル
1471gを添加し、更にH22として30wt%を含
有する過酸化水素水90.51gを添加し、45℃で1
時間攪拌を続けた。次に混合液B−1を添加して原料調
合液を得た。得られた原料調合液を、遠心式噴霧乾燥器
に供給して乾燥し、微小球状の乾燥粉体を得た。乾燥機
の入口温度は210℃、そして出口温度は120℃であ
った。
After cooling the obtained solution A-1 to 70 ° C., 1471 g of silica sol containing 30.6 wt% as SiO 2 was added, and further hydrogen peroxide solution 90.90 containing 30 wt% as H 2 O 2 . Add 51 g, 1 at 45 ° C
Stirring was continued for hours. Next, the mixed liquid B-1 was added to obtain a raw material preparation liquid. The obtained raw material preparation liquid was supplied to a centrifugal spray dryer and dried to obtain a fine spherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C.

【0046】得られた乾燥粉体480gを直径3インチ
(約7.6cm)のSUS製焼成管に充填し、5.0N
L/minの窒素ガス流通下、管を回転させながら、6
40℃で2時間焼成して触媒を得た。得られた触媒を蛍
光X線分析により組成分析したところ、銅重量含有量は
検出限界以下であった。
480 g of the obtained dry powder was filled in a SUS firing tube having a diameter of 3 inches (about 7.6 cm) and 5.0 N
Under nitrogen gas flow of L / min, while rotating the tube, 6
The catalyst was obtained by calcining at 40 ° C. for 2 hours. When the composition of the obtained catalyst was analyzed by fluorescent X-ray analysis, the weight content of copper was below the detection limit.

【0047】(プロパンのアンモ酸化反応)内径25m
mのバイコールガラス流動床型反応管に調製して得られ
た触媒を45g充填し、反応温度440℃、反応圧力常
圧下にプロパン:アンモニア:酸素:ヘリウム=1:
0.6:1.5:5.6のモル比の混合ガスを接触時間
3.0(s・g/ml)で供給した。得られた反応結果
を下記の表1に示す。
(Propane ammoxidation reaction) Inner diameter 25 m
m of Vycor glass fluidized bed type reaction tube was filled with 45 g of the obtained catalyst, and the reaction temperature was 440 ° C. and the reaction pressure was normal pressure. Propane: ammonia: oxygen: helium = 1: 1.
A mixed gas having a molar ratio of 0.6: 1.5: 5.6 was supplied at a contact time of 3.0 (s · g / ml). The obtained reaction results are shown in Table 1 below.

【0048】[0048]

【実施例2】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。実施
例1で得られた原料調合液に硝酸銅(Cu(NO32
3H2O)0.075gを添加した後、10分間攪拌を
行った以外は実施例1と同様にして酸化物触媒を得た。
焼成後の触媒を蛍光X線分析により組成分析した結果、
触媒中の銅重量含有率は19ppmであった。実施例1
と同様のプロパンのアンモ酸化反応について、得られた
反応結果を下記の表1に示す。
[Example 2] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. The raw material mixture obtained in Example 1 was added with copper nitrate (Cu (NO 3 ) 2
3H 2 O) (0.075 g) was added, and the mixture was stirred for 10 minutes to obtain an oxide catalyst in the same manner as in Example 1.
The composition of the catalyst after calcination was analyzed by fluorescent X-ray analysis,
The weight content of copper in the catalyst was 19 ppm. Example 1
Table 1 below shows the obtained reaction results for the same propane ammoxidation reaction as described above.

【0049】[0049]

【実施例3】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。実施
例1で得られた原料調合液に硝酸銅(Cu(NO32
3H2O)0.21gを添加した後、10分間攪拌を行
った以外は実施例1と同様にして酸化物触媒を得た。焼
成後の触媒を蛍光X線分析により組成分析した結果、触
媒中の銅重量含有率は52ppmであった。実施例1と
同様のプロパンのアンモ酸化反応について、得られた反
応結果を下記の表1に示す。
[Example 3] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. The raw material mixture obtained in Example 1 was added with copper nitrate (Cu (NO 3 ) 2
(3H 2 O) was added, and then an oxide catalyst was obtained in the same manner as in Example 1 except that stirring was performed for 10 minutes. The composition of the catalyst after calcination was analyzed by fluorescent X-ray analysis, and as a result, the copper content by weight in the catalyst was 52 ppm. Regarding the same propane ammoxidation reaction as in Example 1, the obtained reaction results are shown in Table 1 below.

【0050】[0050]

【比較例1】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。実施
例1で得られた原料調合液に硝酸銅(Cu(NO32
3H2O)18.7gを添加した後、10分間攪拌を行
った以外は実施例1と同様にして酸化物触媒を得た。焼
成後の触媒を蛍光X線分析により組成分析した結果、触
媒中の銅重量含有率は4988ppmであった。実施例
1と同様のプロパンのアンモ酸化反応について、得られ
た反応結果を下記の表1に示す。
[Comparative Example 1] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. The raw material mixture obtained in Example 1 was added with copper nitrate (Cu (NO 3 ) 2
(3H 2 O) was added, and then an oxide catalyst was obtained in the same manner as in Example 1 except that stirring was performed for 10 minutes. The composition of the catalyst after calcination was analyzed by fluorescent X-ray analysis, and as a result, the copper content by weight in the catalyst was 4988 ppm. Regarding the same propane ammoxidation reaction as in Example 1, the obtained reaction results are shown in Table 1 below.

【0051】[0051]

【比較例2】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。実施
例1で得られた原料調合液に硝酸銅(Cu(NO32
3H2O)76.3gを添加した後、10分間攪拌を行
った以外は実施例1と同様にして酸化物触媒を得た。焼
成後の触媒を蛍光X線分析により組成分析した結果、触
媒中の銅重量含有率は20025ppmであった。実施
例1と同様のプロパンのアンモ酸化反応について、得ら
れた反応結果を下記の表1に示す。
[Comparative Example 2] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. The raw material mixture obtained in Example 1 was added with copper nitrate (Cu (NO 3 ) 2
3H 2 O) (76.3 g) was added and the mixture was stirred for 10 minutes to obtain an oxide catalyst in the same manner as in Example 1. The composition of the catalyst after calcination was analyzed by fluorescent X-ray analysis, and as a result, the copper content by weight in the catalyst was 20025 ppm. Regarding the same propane ammoxidation reaction as in Example 1, the obtained reaction results are shown in Table 1 below.

【0052】[0052]

【実施例4】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。不純
物である銅が焼成工程において混入したと仮定し、実施
例1と同様にして得られた乾燥粉体480gと銅粉0.
014gを混合して焼成した。銅粉の混合以外は実施例
1と同様にして酸化物触媒を得た。焼成後の触媒を蛍光
X線分析により組成分析した結果、触媒中の銅重量含有
率は26ppmであった。実施例1と同様のプロパンの
アンモ酸化反応について、得られた反応結果を下記の表
1に示す。
[Example 4] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. Assuming that copper as an impurity was mixed in in the firing step, 480 g of the dry powder obtained in the same manner as in Example 1 and the copper powder of 0.
014g was mixed and fired. An oxide catalyst was obtained in the same manner as in Example 1 except that the copper powder was mixed. The composition of the catalyst after calcination was analyzed by fluorescent X-ray analysis, and as a result, the copper content by weight in the catalyst was 26 ppm. Regarding the same propane ammoxidation reaction as in Example 1, the obtained reaction results are shown in Table 1 below.

【0053】[0053]

【比較例3】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。不純
物である銅が焼成工程において混入したと仮定し、実施
例1と同様にして得られた乾燥粉体480gと銅粉2.
44gを混合して焼成した。銅粉の混合以外は実施例1
と同様にして酸化物触媒を得た。焼成後の触媒を蛍光X
線分析により組成分析した結果、触媒中の銅重量含有率
は5020ppmであった。実施例1と同様のプロパン
のアンモ酸化反応について、得られた反応結果を下記の
表1に示す。
[Comparative Example 3] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. Assuming that copper as an impurity was mixed in in the firing step, 480 g of the dry powder obtained in the same manner as in Example 1 and the copper powder 2.
44 g was mixed and fired. Example 1 except mixing of copper powder
An oxide catalyst was obtained in the same manner as in. Fluorescent X after burning catalyst
As a result of compositional analysis by line analysis, the copper weight content in the catalyst was 5020 ppm. Regarding the same propane ammoxidation reaction as in Example 1, the obtained reaction results are shown in Table 1 below.

【0054】[0054]

【比較例4】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。不純
物である銅が焼成工程において混入したと仮定し、実施
例1と同様にして得られた乾燥粉体480gと銅粉9.
90gを混合して焼成した。銅粉の混合以外は実施例1
と同様にして酸化物触媒を得た。焼成後の触媒を蛍光X
線分析により組成分析した結果、触媒中の銅重量含有率
は20110ppmであった。実施例1と同様のプロパ
ンのアンモ酸化反応について、得られた反応結果を下記
の表1に示す。
[Comparative Example 4] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. Assuming that copper as an impurity was mixed in in the firing step, 480 g of dry powder and copper powder obtained in the same manner as in Example 1 and 9.
90g was mixed and baked. Example 1 except mixing of copper powder
An oxide catalyst was obtained in the same manner as in. Fluorescent X after burning catalyst
As a result of composition analysis by line analysis, the copper content by weight in the catalyst was 20110 ppm. Regarding the same propane ammoxidation reaction as in Example 1, the obtained reaction results are shown in Table 1 below.

【0055】[0055]

【比較例5】(触媒の調製) 仕込み組成式がMo10.21Nb0.11Sb0.27n/4
5.0wt%−SiO2 で示される酸化物触媒を次のようにして製造した。実施
例1で得られた原料調合液に炭酸銀(AgCO3)2
6.3gを添加した後、10分間攪拌を行った以外は実
施例1と同様にして酸化物触媒を得た。焼成後の触媒を
蛍光X線分析により組成分析した結果、触媒中の銅重量
含有率は16100ppmであった。実施例1と同様の
プロパンのアンモ酸化反応について、得られた反応結果
を下記の表1に示す。
[Comparative Example 5] (Preparation of catalyst) The composition formula was Mo 1 V 0.21 Nb 0.11 Sb 0.27 O n / 4.
An oxide catalyst represented by 5.0 wt% -SiO 2 was manufactured as follows. Silver carbonate (AgCO 3 ) 2 was added to the raw material preparation liquid obtained in Example 1.
After adding 6.3 g, an oxide catalyst was obtained in the same manner as in Example 1 except that stirring was performed for 10 minutes. The composition of the catalyst after calcination was analyzed by fluorescent X-ray analysis, and as a result, the copper content by weight in the catalyst was 16100 ppm. Regarding the same propane ammoxidation reaction as in Example 1, the obtained reaction results are shown in Table 1 below.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【発明の効果】本発明により得られる酸化物触媒を用い
ることによって、プロパンまたはイソブタンから高い選
択率で不飽和カルボン酸または不飽和ニトリルを製造す
ることができる。また本発明の製造方法により、プロパ
ンまたはイソブタンの気相接触酸化または気相接触アン
モ酸化反応に有効な酸化物触媒を大量にかつ再現性よく
得ることができる。
By using the oxide catalyst obtained by the present invention, unsaturated carboxylic acid or unsaturated nitrile can be produced from propane or isobutane with high selectivity. In addition, the production method of the present invention makes it possible to obtain a large amount and reproducibly of an oxide catalyst effective for the vapor phase catalytic oxidation or vapor phase catalytic ammoxidation of propane or isobutane.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA02B BA27C BB06A BB06B BC26A BC26B BC54A BC54B BC55A BC55B BC59A BC59B BE08A BE08B BE08C CB07 CB54 CB55 DA06 EA01Y EA02Y FB04 FB05 4H006 AA02 AC54 BA12 BA13 BA14 BA30 BA33 BA60 BE30 QN26 4H039 CA70 CC20 CD10    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G069 AA03 AA08 BA02B BA27C                       BB06A BB06B BC26A BC26B                       BC54A BC54B BC55A BC55B                       BC59A BC59B BE08A BE08B                       BE08C CB07 CB54 CB55                       DA06 EA01Y EA02Y FB04                       FB05                 4H006 AA02 AC54 BA12 BA13 BA14                       BA30 BA33 BA60 BE30 QN26                 4H039 CA70 CC20 CD10

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 プロパンまたはイソブタンの気相接触酸
化反応または気相接触アンモ酸化反応に用いる下記の一
般組成式(1)で表される成分組成の酸化物触媒であっ
て、触媒固形分に対する金属元素Z(Zは銅、銀、タン
タルから選ばれる少なくとも1種以上の元素)の割合
が、重量分率で1000ppm以下であることを特徴と
する酸化物触媒。 Mo1aNbbcn (1) (式(1)中、成分Xはテルル及びアンチモンから選ば
れる少なくとも1種の元素であり、a、b、c、d及び
nはMo1原子当たりの原子比を表し、aは0.01≦
a≦1、bは0.01≦b≦1、cは0.01≦c≦
1、そしてnは構成金属の原子価及び組成によって決ま
る数である。)
1. An oxide catalyst having a component composition represented by the following general composition formula (1), which is used in a vapor-phase catalytic oxidation reaction or a vapor-phase catalytic ammoxidation reaction of propane or isobutane, wherein the metal is based on the solid content of the catalyst. An oxide catalyst, wherein the proportion of the element Z (Z is at least one element selected from copper, silver and tantalum) is 1000 ppm or less in terms of weight fraction. During Mo 1 V a Nb b X c O n (1) ( Formula (1), the component X is at least one element selected from tellurium and antimony, a, b, c, d and n are per Mo1 atoms Represents the atomic ratio of, and a is 0.01 ≦
a ≦ 1, b is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦
1 and n are numbers determined by the valence and composition of the constituent metals. )
【請求項2】 上記Zが、銅であることを特徴とする請
求項1に記載の酸化物触媒。
2. The oxide catalyst according to claim 1, wherein Z is copper.
【請求項3】 上記Zの割合が、重量分率で100pp
m以下であることを特徴とする請求項1または2に記載
の酸化物触媒。
3. The weight ratio of Z is 100 pp.
It is m or less, The oxide catalyst of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 上記成分Xが、アンチモンであることを
特徴とする請求項1〜3のいずれか1項に記載の酸化物
触媒。
4. The oxide catalyst according to claim 1, wherein the component X is antimony.
【請求項5】 上記酸化物触媒のニオブの原料が、ジカ
ルボン酸とニオブの化合物を含み、ジカルボン酸/ニオ
ブのモル比が1〜4のニオブ含有液であることを特徴と
する請求項1〜4のいずれか1項に記載の酸化物触媒。
5. The niobium raw material of the oxide catalyst contains a compound of dicarboxylic acid and niobium, and is a niobium-containing liquid having a dicarboxylic acid / niobium molar ratio of 1 to 4. The oxide catalyst according to any one of 4 above.
【請求項6】 上記酸化物触媒が、前記一般組成式
(1)で表される触媒構成元素酸化物とこれを担持する
シリカとからなるものであって、該触媒構成元素酸化物
が、該触媒構成元素酸化物とシリカの全重量に対し、S
iO2換算で20〜60重量%のシリカに担持されてい
ることを特徴とする、請求項1〜5のいずれか1項に記
載の酸化物触媒。
6. The oxide catalyst comprises a catalyst constituent element oxide represented by the general composition formula (1) and silica carrying the catalyst constituent element oxide, wherein the catalyst constituent element oxide is S with respect to the total weight of oxides and silica that constitute the catalyst
The oxide catalyst according to any one of claims 1 to 5, which is supported on silica in an amount of 20 to 60% by weight in terms of iO 2 .
【請求項7】 請求項1〜6に記載の酸化物触媒の製造
方法であって、(I)原料調合工程、(II)乾燥工程、
(III)焼成工程から成り、原料調合工程において、実
質的に金属元素Zを含まない原料を用いることを特徴と
する酸化物触媒の製造方法。
7. The method for producing an oxide catalyst according to claim 1, comprising (I) a raw material mixing step, (II) a drying step,
(III) A method for producing an oxide catalyst, which comprises a calcination step and uses a raw material that does not substantially contain the metal element Z in the raw material mixing step.
【請求項8】 上記原料調合工程及び上記乾燥工程に用
いる設備において、接液部及び/または回転部材質とし
て、実質的に金属元素Zを含まない材質を用いることを
特徴とする請求項7に記載の酸化物触媒の製造方法。
8. In the equipment used in the raw material mixing step and the drying step, a material that does not substantially contain the metal element Z is used as the liquid contact portion and / or the rotating member material. A method for producing the oxide catalyst described.
【請求項9】 上記焼成工程において、焼成管の材質及
び/または回転部材質として、実質的に金属元素Zを含
まない材質を用いることを特徴とする請求項7または8
のいずれかに記載の酸化物触媒の製造方法。
9. The method according to claim 7, wherein in the firing step, a material that does not substantially contain the metal element Z is used as the material of the firing tube and / or the material of the rotating member.
5. The method for producing an oxide catalyst according to any one of 1.
【請求項10】 上記原料調合工程において、酸化物触
媒のニオブの原料が、ジカルボン酸とニオブの化合物を
含み、ジカルボン酸/ニオブのモル比が1〜4のニオブ
含有液であることを特徴とする請求項7〜9のいずれか
1項に記載の酸化物触媒の製造方法。
10. The niobium raw material of the oxide catalyst in the above raw material mixing step is a niobium-containing liquid having a dicarboxylic acid / niobium compound and a dicarboxylic acid / niobium molar ratio of 1 to 4. The method for producing an oxide catalyst according to any one of claims 7 to 9.
【請求項11】 プロパンまたはイソブタンを気相接触
酸化反応または気相接触アンモ酸化反応させて、対応す
る不飽和酸または不飽和ニトリルを製造するにあたり、
請求項1〜6のいずれか1項に記載の酸化物触媒を用い
ることを特徴とする不飽和酸または不飽和ニトリルの製
造方法。
11. Producing a corresponding unsaturated acid or unsaturated nitrile by subjecting propane or isobutane to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction,
A method for producing an unsaturated acid or an unsaturated nitrile, which comprises using the oxide catalyst according to any one of claims 1 to 6.
JP2002017021A 2001-11-06 2002-01-25 Method for producing oxidation or ammoxidation catalyst Expired - Lifetime JP4118056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017021A JP4118056B2 (en) 2001-11-06 2002-01-25 Method for producing oxidation or ammoxidation catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001340161 2001-11-06
JP2001-340161 2001-11-06
JP2002017021A JP4118056B2 (en) 2001-11-06 2002-01-25 Method for producing oxidation or ammoxidation catalyst

Publications (2)

Publication Number Publication Date
JP2003205237A true JP2003205237A (en) 2003-07-22
JP4118056B2 JP4118056B2 (en) 2008-07-16

Family

ID=27666915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017021A Expired - Lifetime JP4118056B2 (en) 2001-11-06 2002-01-25 Method for producing oxidation or ammoxidation catalyst

Country Status (1)

Country Link
JP (1) JP4118056B2 (en)

Also Published As

Publication number Publication date
JP4118056B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4530595B2 (en) Oxide catalyst for oxidation or ammoxidation
KR101772250B1 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
KR101772248B1 (en) Process for preparing improved mixed metal oxide ammoxidation catalysts
JP5694727B2 (en) Method for producing unsaturated acid or unsaturated nitrile
EP3233272B1 (en) Improved mixed metal oxide ammoxidation catalysts
KR101524392B1 (en) Method for producing unsaturated nitrile
JP6526062B2 (en) Improved selective ammoxidation catalyst
JP4081824B2 (en) Acrylic acid production method
JP2000070714A (en) Production of catalyst for production of unsaturated nitrile
RU2702126C1 (en) Method of producing an oxide catalyst and a method of producing an unsaturated nitrile
JP4118056B2 (en) Method for producing oxidation or ammoxidation catalyst
JP2007326036A (en) Oxide catalyst for oxidation or amm oxidation
JP4212139B2 (en) Method for preparing catalyst for ammoxidation
JP2001276618A (en) Catalyst for oxidation or ammoxidation
JP4050904B2 (en) Method for producing oxidation or ammoxidation catalyst
JP2003170044A (en) Catalyst preparation method
JPH11239725A (en) Catalyst and manufacture of unsaturated nitrile using it
JP2007216081A (en) Manufacturing method for oxide catalyst
JP4014863B2 (en) Method for producing oxidation or ammoxidation catalyst
JP4111715B2 (en) Method for producing ammoxidation catalyst
JP4162915B2 (en) Preparation method of oxidation catalyst and production method of nitrile using the catalyst
JP4667674B2 (en) Method for producing oxidation or ammoxidation catalyst
JP4180317B2 (en) Method for producing oxidation reaction catalyst
JP4647858B2 (en) Oxidation or ammoxidation oxide catalyst and method for producing the same
JP4535608B2 (en) Catalyst and method for producing unsaturated nitrile using the catalyst

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R150 Certificate of patent or registration of utility model

Ref document number: 4118056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term