JP2005071694A - Electrolyte membrane for fuel cell and forming method thereof - Google Patents

Electrolyte membrane for fuel cell and forming method thereof Download PDF

Info

Publication number
JP2005071694A
JP2005071694A JP2003297259A JP2003297259A JP2005071694A JP 2005071694 A JP2005071694 A JP 2005071694A JP 2003297259 A JP2003297259 A JP 2003297259A JP 2003297259 A JP2003297259 A JP 2003297259A JP 2005071694 A JP2005071694 A JP 2005071694A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fluororesin
sulfonic acid
fuel cell
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003297259A
Other languages
Japanese (ja)
Other versions
JP3781023B2 (en
Inventor
Hideo Sawada
英夫 沢田
Hajime Nishi
甫 西
Yasuaki Yamamoto
康彰 山本
Yuzo Ito
雄三 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003297259A priority Critical patent/JP3781023B2/en
Publication of JP2005071694A publication Critical patent/JP2005071694A/en
Application granted granted Critical
Publication of JP3781023B2 publication Critical patent/JP3781023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane for a fuel cell which is excellent in heat resistance and ion exchanging property and low in cost, and a forming method thereof. <P>SOLUTION: The electrolyte membrane for a fuel cell is formed by compounding a modified fluororesin made by irradiation by ionizing radiation at a temperature not lower than the melting point of the resin or a mixture of the modified fluororesin and the other polymer with a hybrid compound obtained by a reaction between a fluorine-containing hydrocarbon compound having a sulfonic group and tetraethoxysilane (TEOS). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、優れた耐熱性及び電池性能を有する燃料電池用電解質膜及びその製造方法に関するものである。   The present invention relates to an electrolyte membrane for fuel cells having excellent heat resistance and battery performance, and a method for producing the same.

固体高分子型燃料電池は、固体高分子よりなる電解質膜と、この電解質膜を挟むようにして設けられた燃料極と空気極とで構成されている。燃料電池用の固体高分子電解質膜としては、例えば、デュポン社の商品名「ナフィオン(Nafion:登録商標)」で知られるパーフルオロスルホン酸ポリマからなるものがある。   A polymer electrolyte fuel cell includes an electrolyte membrane made of a solid polymer, and a fuel electrode and an air electrode provided so as to sandwich the electrolyte membrane. As a solid polymer electrolyte membrane for a fuel cell, for example, there is one made of a perfluorosulfonic acid polymer known by a trade name “Nafion (registered trademark)” of DuPont.

しかし、パーフルオロスルホン酸ポリマからなる固体高分子電解質膜は、多工程に亘る合成過程を経て製造され高価であり、コストを低減させるために、汎用の炭化水素系材料を用いた電解質膜が種々検討されている。ところが、炭化水素系材料はパーフルオロスルホン酸ポリマに比べて耐熱性に乏しく、燃料電池の発電効率を向上させるために運転を高温で行うと、容易にスルホン酸基が脱離してイオン交換性を失ってしまう問題があった。   However, solid polymer electrolyte membranes made of perfluorosulfonic acid polymers are manufactured through a multi-step synthesis process and are expensive. In order to reduce costs, various electrolyte membranes using general-purpose hydrocarbon-based materials are available. It is being considered. However, hydrocarbon-based materials have poor heat resistance compared to perfluorosulfonic acid polymers, and when the operation is performed at a high temperature in order to improve the power generation efficiency of the fuel cell, the sulfonic acid groups are easily detached and ion exchange properties are improved. There was a problem of losing.

そこで、本発明者等は、樹脂の融点以上の温度で電離性放射線を照射して架橋させてなる改質ふっ素樹脂に、スルホン酸基を有する成分をグラフトさせた改質ふっ素樹脂からなる燃料電池用電解質膜を提案した(特許文献1)。   Accordingly, the present inventors have provided a fuel cell comprising a modified fluororesin in which a component having a sulfonic acid group is grafted to a modified fluororesin that is crosslinked by irradiation with ionizing radiation at a temperature equal to or higher than the melting point of the resin. Proposed an electrolyte membrane (Patent Document 1).

特開2002−313364号公報JP 2002-313364 A

このスルホン酸基を有する成分をグラフトさせた改質ふっ素樹脂は、イオン交換性は良好なものの、SO2 分解ピーク温度は300℃前後であり、耐熱性に劣る課題を有している。 The modified fluororesin grafted with a component having a sulfonic acid group has a good ion exchange property, but has an SO 2 decomposition peak temperature of about 300 ° C. and has a problem of poor heat resistance.

本発明の目的は、優れた耐熱性およびイオン交換性を有し、しかも低コストの燃料電池用電解質膜及びその製造方法を提供することにある。   An object of the present invention is to provide an electrolyte membrane for a fuel cell having excellent heat resistance and ion exchange properties, and a method for producing the same.

本発明は上記目的を達成するため、樹脂の融点以上の温度で電離性放射線を照射してなる改質ふっ素樹脂又は該改質ふっ素樹脂と他の高分子との混合物に、スルホン酸基を有する含ふっ素炭化水素化合物とテトラエトキシシラン(TEOS)を反応させたハイブリッド化合物を複合化させた燃料電池用電解質膜を提供する。   In order to achieve the above object, the present invention has a sulfonic acid group in a modified fluororesin formed by irradiating ionizing radiation at a temperature equal to or higher than the melting point of the resin or a mixture of the modified fluororesin and another polymer. Provided is a fuel cell electrolyte membrane in which a hybrid compound obtained by reacting a fluorine-containing hydrocarbon compound and tetraethoxysilane (TEOS) is combined.

また、本発明は、前記燃料電池用電解質膜の製造方法として、ふっ素樹脂に、酸素濃度10torr以下のもとで、且つ当該ふっ素樹脂の融点以上に加熱された状態下で、電離性放射線を線量0.1kGy〜1MGyの範囲で照射してなる改質ふっ素樹脂又は該改質ふっ素樹脂と他の高分子材料との混和物からなる膜に、酸性条件下でアルコール中に分散させたスルホン酸基を有する含ふっ素炭化水素化合物を互いにテトラエトキシシランで化学結合させ、改質ふっ素樹脂と複合化させることを特徴とする燃料電池用電解質膜の製造方法を提供する。   Further, the present invention provides a method for producing an electrolyte membrane for a fuel cell, wherein ionizing radiation is dosed to a fluororesin under a condition where the oxygen concentration is 10 torr or less and the melting point of the fluororesin is heated. Sulfonic acid groups dispersed in alcohol under acidic conditions on a film made of a modified fluororesin irradiated by irradiation in the range of 0.1 kGy to 1 MGy or a mixture of the modified fluororesin and another polymer material There is provided a method for producing an electrolyte membrane for a fuel cell, characterized in that fluorine-containing hydrocarbon compounds having a chemical bond are chemically bonded to each other with tetraethoxysilane and combined with a modified fluororesin.

このように、本発明の電解質膜は、放射線を照射してなる改質ふっ素樹脂又は該改質ふっ素樹脂と他の高分子との混合物に、酸性条件下でアルコール中に分散させたスルホン酸基を有する含ふっ素炭化水素系材料を互いにテトラエトキシシランで化学結合させ、改質ふっ素樹脂と複合化することにより作製した電解質膜であり、優れた耐熱性およびイオン交換性を有しており、しかも汎用で低コストの炭化水素系材料を原料として用いているため、低コスト化を図ることができる。   As described above, the electrolyte membrane of the present invention has a sulfonic acid group dispersed in alcohol under acidic conditions in a modified fluororesin or a mixture of the modified fluororesin and another polymer irradiated with radiation. This is an electrolyte membrane produced by chemically bonding fluorine-containing hydrocarbon-based materials with tetraethoxysilane to form a composite with a modified fluorine resin, and has excellent heat resistance and ion exchange properties. Since a general-purpose and low-cost hydrocarbon-based material is used as a raw material, the cost can be reduced.

本発明によれば、低コストで優れたイオン交換性を有し、しかも耐熱性に優れた燃料電池用電解質膜を実現できる。   According to the present invention, it is possible to realize an electrolyte membrane for a fuel cell having excellent ion exchange properties at low cost and excellent heat resistance.

本発明に使用されるふっ素樹脂としては、テトラフルオロエチレン系重合体(PTFE)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体(PFA)及びテトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体(FEP)といったものを挙げることができ、形状は特に限定されるものではないが、粉末状、シート状、フィルム状、ブロック状、繊維状のいずれでもよく、又、これら材料同士あるいはこれら材料と他の材料との積層体や複合体であってもよい。   The fluororesin used in the present invention includes tetrafluoroethylene polymer (PTFE), tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer. (FEP) can be mentioned, and the shape is not particularly limited, but may be any of powder, sheet, film, block, and fiber, and between these materials or with these materials It may be a laminate or composite with other materials.

上記PTFEの中には、パーフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン、(パーフルオロアルキル)エチレン、あるいはクロロトリフルオロエチレン等の共重合性モノマーに基づく重合単位を1モル%以下含有するものも含まれる。また、上記共重合体形式のふっ素樹脂の場合、その分子構造の中に少量の第3成分を含むことは有り得る。   The PTFE includes those containing 1 mol% or less of a polymer unit based on a copolymerizable monomer such as perfluoro (alkyl vinyl ether), hexafluoropropylene, (perfluoroalkyl) ethylene, or chlorotrifluoroethylene. It is. In the case of the copolymer type fluororesin, a small amount of the third component may be included in the molecular structure.

本発明における改質ふっ素樹脂は、ふっ素樹脂に酸素濃度10torr以下の不活性ガス雰囲気下で、且つ融点以上に加熱された状態下で、電離性放射線を線量0.1kGy〜1MGyの範囲で照射することにより得ることができる。酸素濃度が10torrを超える雰囲気下では、十分な架橋効果を達成できず、又、電離性放射線の照射線量が0.1kGy未満では十分な架橋効果を達成できず、1MGyを超えると伸びの著しい低下を招く。なお、改質ふっ素樹脂成形体は、シート又はブロック等の形状のふっ素樹脂成形体に電離性放射線を照射して製造してもよく、又、電離性放射線を照射したふっ素樹脂粉末を圧縮成形等により、シート又はブロック等の形状に成形してもよい。   The modified fluororesin in the present invention is irradiated with ionizing radiation in a dose range of 0.1 kGy to 1 MGy in an inert gas atmosphere having an oxygen concentration of 10 torr or less and heated to a melting point or higher. Can be obtained. In an atmosphere where the oxygen concentration exceeds 10 torr, a sufficient crosslinking effect cannot be achieved, and when the irradiation dose of ionizing radiation is less than 0.1 kGy, a sufficient crosslinking effect cannot be achieved, and when it exceeds 1 MGy, the elongation decreases significantly. Invite. The modified fluororesin molded body may be produced by irradiating ionizing radiation onto a fluororesin molded body having a shape such as a sheet or a block, or compression molding of a fluororesin powder irradiated with ionizing radiation. Thus, it may be formed into a sheet or block shape.

ふっ素樹脂を改質するときの電離性放射線としては、γ線、電子線、X線、中性子線、あるいは高エネルギーイオン等が使用される。電離性放射線を照射するに際しては、ふっ素樹脂をその結晶融点以上に加熱しておく必要がある。例えばふっ素樹脂としてPTFEを使用する場合には、この材料の結晶融点である327℃よりも高い温度にふっ素樹脂を加熱した状態で電離性放射線を照射する必要があり、また、PFAやFEPを使用する場合には、前者が310℃、後者が275℃に特定される融点よりも高い温度に過熱して照射する。ふっ素樹脂をその融点以上に加熱することは、ふっ素樹脂を構成する主鎖の分子運動を活発化させることになり、その結果、分子間の架橋反応を効率良く促進させることが可能となる。但し、過度の加熱は、逆に分子鎖の切断と分解を招くようになるので、加熱温度はふっ素樹脂の融点よりも10〜30℃高い範囲内に抑えるべきである。   As ionizing radiation for modifying the fluororesin, γ rays, electron beams, X rays, neutron rays, high energy ions, or the like are used. When irradiating with ionizing radiation, it is necessary to heat the fluororesin above its crystalline melting point. For example, when PTFE is used as the fluororesin, it is necessary to irradiate the ionizing radiation while the fluororesin is heated to a temperature higher than 327 ° C., which is the crystal melting point of this material, and PFA or FEP is used. In this case, the irradiation is performed by heating to a temperature higher than the melting point specified by 310 ° C. for the former and 275 ° C. for the latter. Heating the fluororesin beyond its melting point activates the molecular motion of the main chain constituting the fluororesin, and as a result, the cross-linking reaction between molecules can be efficiently promoted. However, excessive heating leads to breakage and decomposition of the molecular chain, so the heating temperature should be kept within a range of 10 to 30 ° C. higher than the melting point of the fluororesin.

本発明の変性ふっ素樹脂は、上記のようにして得た改質ふっ素樹脂に、酸性条件下でアルコール中に分散させたスルホン酸基を有する含ふっ素炭化水素系材料を互いにテトラエトキシシランで化学結合させ、改質ふっ素樹脂と複合化することにより得ることができる。   The modified fluororesin of the present invention is obtained by chemically bonding a fluorine-containing hydrocarbon-based material having sulfonic acid groups dispersed in alcohol under acidic conditions to each other with tetraethoxysilane. And can be obtained by compounding with a modified fluororesin.

改質ふっ素樹脂と複合化する化合物としては、過酸化フルオロアルカノイルと2−メタクリロキシエタンスルホン酸(MES)単体とを反応させて生成するか、又は更にメチルメタクリレート(MMA)あるいはジメチルアクリルアミド(DMAA)を加えて生成したフルオロアルキル基含有スルホン酸オリゴマーを挙げることができる。   The compound to be complexed with the modified fluororesin is formed by reacting fluoroalkanoyl peroxide and 2-methacryloxyethanesulfonic acid (MES) alone, or further methyl methacrylate (MMA) or dimethylacrylamide (DMAA). Fluoroalkyl group-containing sulfonic acid oligomer produced by adding

上記フルオロアルキル基含有スルホン酸オリゴマーは、テトラエトキシシランにより改質ふっ素樹脂との複合化が可能であり、これらのオリゴマーを多く付与することにより、イオン交換性を効果的に向上させることができる。また、側鎖に直接スルホン酸基を有する上記材料は、ベンゼン環に付加したスルホン酸基に比べて離脱しにくいため、高温運転においても優れたイオン交換性を持続することができる。   The fluoroalkyl group-containing sulfonic acid oligomer can be combined with a modified fluororesin by tetraethoxysilane, and by adding a large amount of these oligomers, ion exchange properties can be effectively improved. In addition, the above-mentioned material having a sulfonic acid group directly in the side chain is less likely to leave than a sulfonic acid group added to a benzene ring, so that excellent ion exchange can be maintained even at high temperature operation.

複合化の際に用いるアルコールは汎用のエタノールやプロパノールの他に改質ふっ素材脂とフルオロアルキル基含有スルホン酸オリゴマーとの親和性を上げる為にトリフロロエタノールやヘキサフロロイソプロパノールなどのふっ素系アルコールを用いても良い。   In addition to general-purpose ethanol and propanol, the alcohol used for complexing is not limited to fluorine-based alcohols such as trifluoroethanol and hexafluoroisopropanol in order to increase the affinity between the modified fluorinated fat and the fluoroalkyl group-containing sulfonic acid oligomer. It may be used.

また、改質ふっ素樹脂とフルオロアルキル基含有スルホン酸オリゴマーとのあいだに化学結合を生じさせるために、改質ふっ素樹脂に予め放射線を照射して反応活性点をつくっても良い。   In order to generate a chemical bond between the modified fluororesin and the fluoroalkyl group-containing sulfonic acid oligomer, a reactive site may be created by previously irradiating the modified fluororesin with radiation.

イオン交換性を付与するため一定以上のスルホン酸基数を確保する必要があり、複合化率は10wt%以上でなければならない。グラフト反応に続くスルホン化でイオン交換性が付与されるが、その尺度であるスルホン酸当量重量は1100g/eq以下でなければならない。   In order to impart ion exchange properties, it is necessary to secure a certain number or more of sulfonic acid groups, and the composite rate must be 10 wt% or more. Ion exchangeability is imparted by sulfonation following the grafting reaction, and the sulfonic acid equivalent weight, which is a measure thereof, must be 1100 g / eq or less.

本発明においては、改質ふっ素樹脂と他の高分子材料との混和物によっても電解質膜を形成することが可能である。他の高分子材料としては、未改質の(電離性放射線の照射によって改質を行っていない)PTFE、PFA、FEP等のふっ素樹脂、ポリエチレン、ポリプロピレン等のポリオレフイン、ポリエーテルサルホン、ポリイミド、ポリエーテルエーテルケトン等のエンジニアリングプラスチックを挙げることができる。   In the present invention, the electrolyte membrane can also be formed by a mixture of a modified fluororesin and another polymer material. Other polymeric materials include unmodified (not modified by irradiation with ionizing radiation) PTFE, PFA, FEP and other fluorine resins, polyethylene, polypropylene and other polyolefins, polyethersulfone, polyimide, Mention may be made of engineering plastics such as polyetheretherketone.

次に、本発明の実施の形態について、実施例に基づいて説明するが、本発明の実施の形態はこれらの実施例に限定されるものではない。   Next, embodiments of the present invention will be described based on examples, but the embodiments of the present invention are not limited to these examples.

[実施例1]
厚さ50μm、6cm角のPTFEフィルムに対して、酸素濃度0.5torrの窒素ガス雰囲気下、340℃の加熱温度のもとで電子線(加速電圧800keV)を120kGy照射し、改質PTFEフィルムを得た。改質前後のPTFEフィルムの融点と結晶化点をDSCで測定したところ、未改質PTFEフィルムの融点は330℃、結晶化点は310℃であったのに対し、改質PTFEフィルムの融点は315℃、結晶化点は290℃であった。また、改質PTFEフィルムにおける残存ラジカル量をESRで測定したところ、残存ラジカルは全く認められなかった。
[Example 1]
A PTFE film having a thickness of 50 μm and a 6 cm square was irradiated with 120 kGy of an electron beam (acceleration voltage 800 keV) at a heating temperature of 340 ° C. in a nitrogen gas atmosphere having an oxygen concentration of 0.5 torr to obtain a modified PTFE film. Obtained. When the melting point and crystallization point of the PTFE film before and after the modification were measured by DSC, the melting point of the unmodified PTFE film was 330 ° C. and the crystallization point was 310 ° C., whereas the melting point of the modified PTFE film was The temperature was 315 ° C and the crystallization point was 290 ° C. Further, when the amount of residual radicals in the modified PTFE film was measured by ESR, no residual radicals were observed.

一方、過酸化フルオロアルカノイルと2−メタクリロキシエタンスルホン酸(MES)とを窒素気流下にて45℃で5時間反応させ、得られた粗生成物を再沈殿法により精製したところ、以下の化1に示されるフルオロアルキル基含有スルホン酸オリゴマーを得た。   On the other hand, fluoroalkanoyl peroxide and 2-methacryloxyethanesulfonic acid (MES) were reacted at 45 ° C. for 5 hours under a nitrogen stream, and the resulting crude product was purified by a reprecipitation method. The fluoroalkyl group-containing sulfonic acid oligomer shown in 1 was obtained.

Figure 2005071694
Figure 2005071694

改質PTFEフィルムをエタノールに溶解させた前記含ふっ素スルホン酸オリゴマー及びテトラエトキシシラン(TEOS)のエタノール溶液中にディップし、1N(規定度)のHCl存在下、室温で24時間反応させた。その後、フィルムを常温で24時間真空乾燥させた。PTFEフィルムの反応前後の重量差から求めた複合化率は23%であった。ここで、規定度とは、溶液の濃度を示す単位であり、溶液1dm3中に1グラム当量の溶質を含む溶液の濃度を1Nと定める。 The modified PTFE film was dipped in an ethanol solution of the fluorine-containing sulfonic acid oligomer and tetraethoxysilane (TEOS) dissolved in ethanol, and reacted at room temperature in the presence of 1N (normality) HCl for 24 hours. Thereafter, the film was vacuum-dried at room temperature for 24 hours. The composite ratio determined from the weight difference before and after the reaction of the PTFE film was 23%. Here, the normality is a unit indicating the concentration of the solution, and the concentration of a solution containing 1 gram equivalent of a solute in 1 dm 3 of the solution is defined as 1N.

複合化した改質PTFEフィルムを常温で24時間含水させ、0.1mol/lのKCl水溶液に24時間浸漬した後、フィルムを取り出し、その水溶液に0.05mol/lのNaOHをビゥレットにて滴下して中和滴定することにより、イオン交換容量を測定し、その結果からスルホン酸当量重量を計算したところ、980(g/eq)であった。プロトンの伝導性を表すイオン伝導率(25℃)は1.6×10-2(S/cm)であった。また、TG−MS分析を行い、耐熱性を評価した結果、SO2 の分解ピーク温度は430℃であった。このピーク温度は、SO2 の発生状況を示した横軸温度のTG−MSフラグメントグラムにおいて、曲線がピークを示す温度である。このように、イオン導電性および耐熱性が良好であることが分かった。 The composite modified PTFE film was hydrated at room temperature for 24 hours and immersed in a 0.1 mol / l KCl aqueous solution for 24 hours, then the film was taken out and 0.05 mol / l NaOH was dropped into the aqueous solution with a violet. The ion exchange capacity was measured by neutralization titration, and the sulfonic acid equivalent weight was calculated from the result, and it was 980 (g / eq). The ionic conductivity (25 ° C.) representing proton conductivity was 1.6 × 10 −2 (S / cm). Also performs TG-MS analysis, the results of evaluation of the heat resistance, decomposition peak temperature of SO 2 was 430 ° C.. This peak temperature is the temperature at which the curve shows a peak in the TG-MS fragment gram of the horizontal axis temperature indicating the generation state of SO 2 . Thus, it turned out that ion conductivity and heat resistance are favorable.

[実施例2]
厚さ50μm、6cm角のPTFEフィルムに対して、実施例1と同様に電子線を照射して改質PTFEフィルムを得た。この改質PTFEフィルムに、空気中、常温で電子線を30kGy照射し、反応活性点をつくった。
[Example 2]
A PTFE film having a thickness of 50 μm and a 6 cm square was irradiated with an electron beam in the same manner as in Example 1 to obtain a modified PTFE film. This modified PTFE film was irradiated with an electron beam at 30 kGy in air at room temperature to create a reactive site.

一方、過酸化フルオロアルカノイル、2−メタクリロキシエタンスルホン酸(MES)、ジメチルアクリルアミド(DMAA)を窒素気流下にて45℃で5時間反応させ、得られた粗生成物を再沈殿法により精製し、以下の化2に示すスルホン酸基を有するフルオロアルキル基含有ジメチルアクリルアミドコオリゴマーを得た。   On the other hand, fluoroalkanoyl peroxide, 2-methacryloxyethanesulfonic acid (MES), and dimethylacrylamide (DMAA) were reacted at 45 ° C. for 5 hours under a nitrogen stream, and the resulting crude product was purified by a reprecipitation method. Thus, a fluoroalkyl group-containing dimethylacrylamide co-oligomer having a sulfonic acid group represented by Chemical Formula 2 below was obtained.

Figure 2005071694
Figure 2005071694

次に、反応活性点をつくった改質PTFEフィルムをエタノールに溶解させた前記含ふっ素スルホン酸オリゴマー及びテトラエトキシシラン(TEOS)のトリフロロエタノール溶液中にディップし、1NのHCl存在下、室温で24時間反応させた。その後、フィルムを常温で24時間真空乾燥させた。PTFEフィルムの反応前後の重量差から求めた複合化率は28%であった。   Next, the modified PTFE film in which the reaction active sites are formed is dipped into the trifluoroethanol solution of the fluorine-containing sulfonic acid oligomer and tetraethoxysilane (TEOS) dissolved in ethanol at room temperature in the presence of 1N HCl. The reaction was performed for 24 hours. Thereafter, the film was vacuum-dried at room temperature for 24 hours. The composite ratio determined from the weight difference before and after the reaction of the PTFE film was 28%.

複合化によりイオン伝導性を付与した改質PTFEフィルムのイオン交換容量を実施例1と同様に測定し、その結果からスルホン酸当量重量を計算したところ、1008(g/eq)であった。イオン伝導率(25℃)は1.2×10-3(S/cm)であった。また、SO2 の分解ピーク温度は410℃であった。イオン導電性、耐熱性ともに良好である。 The ion exchange capacity of the modified PTFE film to which ion conductivity was imparted by complexing was measured in the same manner as in Example 1, and the sulfonic acid equivalent weight was calculated from the result, which was 1008 (g / eq). The ionic conductivity (25 ° C.) was 1.2 × 10 −3 (S / cm). The decomposition peak temperature of SO 2 was 410 ° C. Both ionic conductivity and heat resistance are good.

[実施例3]
PTFEモールディングパウダ(分子量800万、平均粒径25μm)を360℃で1時間加熱して焼成した後、酸素濃度0.5torrの窒素ガス雰囲気下、335℃の加熱温度のもとで電子線(加速電圧800keV)を120kGy照射し、その後粉砕により、平均粒径25μmの改質PTFEパウダを得た。これを未改質FEPペレット(MI=25、平均粒径25μm)に重量分率で50%ブレンドして2軸押出し機で混合ペレットを作製した。得られたペレットをホットフォーミング成形(予備成形圧力;500kgf/cm2 、焼成温度;360℃、冷却圧力;350kgf/cm2 )して得られたブロックを200℃で10時間アニールした後、厚さ50μmのフィルムにスカイビングした。
[Example 3]
After firing PTFE molding powder (molecular weight 8 million, average particle size 25 μm) at 360 ° C. for 1 hour, electron beam (acceleration under a nitrogen gas atmosphere with an oxygen concentration of 0.5 torr and under a heating temperature of 335 ° C. A modified PTFE powder having an average particle diameter of 25 μm was obtained by irradiation with 120 kGy at a voltage of 800 keV and then grinding. This was blended 50% by weight with unmodified FEP pellets (MI = 25, average particle size 25 μm) to produce mixed pellets with a twin screw extruder. The obtained pellets were subjected to hot forming molding (preforming pressure: 500 kgf / cm 2 , firing temperature: 360 ° C., cooling pressure: 350 kgf / cm 2 ), and the resulting block was annealed at 200 ° C. for 10 hours, and then the thickness was increased. Skiving was performed on a 50 μm film.

この未改質FEP/改質PTFEフィルム(厚さ50μm、6cm角)を、実施例2と同様の方法で得られたスルホン酸基を有するフルオロアルキル基含有ジメチルアクリルアミドコオリゴマーとテトラエトキシシラン(TEOS)を添加したエタノール溶液中にディップし、1NのHCl存在下、室温で24時間反応させた。その後、フィルムを常温で24時間真空乾燥させた。未改質FEP/改質PTFEフィルムの反応前後の重量差から求めた複合化率は33%であった。   This unmodified FEP / modified PTFE film (thickness 50 μm, 6 cm square) was prepared by the same method as in Example 2, and a fluoroalkyl group-containing dimethylacrylamide co-oligomer having a sulfonic acid group and tetraethoxysilane (TEOS). ) Was added to the ethanol solution added, and reacted in the presence of 1N HCl at room temperature for 24 hours. Thereafter, the film was vacuum-dried at room temperature for 24 hours. The composite ratio determined from the weight difference before and after the reaction of the unmodified FEP / modified PTFE film was 33%.

グラフト・スルホン化によりイオン伝導性を付与した改質PTFEフィルムのイオン交換容量を実施例1と同様に測定し、その結果からスルホン酸当量重量を計算したところ、1060(g/eq)であった。イオン伝導率(25℃)は1.4×10-3(S/cm)であった。また、SO2 の分解ピーク温度は380℃であった。この場合もイオン導電性、耐熱性ともに良好である。 The ion exchange capacity of the modified PTFE film to which ion conductivity was imparted by graft sulfonation was measured in the same manner as in Example 1. The sulfonic acid equivalent weight was calculated from the result, and it was 1060 (g / eq). . The ionic conductivity (25 ° C.) was 1.4 × 10 −3 (S / cm). The decomposition peak temperature of SO 2 was 380 ° C. In this case, both ionic conductivity and heat resistance are good.

[比較例1]
厚さ50μm、6cm角のPTFEフィルムに対して、実施例1と同様に電子線を照射して改質PTFEフィルムを得た。
[Comparative Example 1]
A PTFE film having a thickness of 50 μm and a 6 cm square was irradiated with an electron beam in the same manner as in Example 1 to obtain a modified PTFE film.

一方、過酸化フルオロアルカノイルと2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)とを窒素気流下にて45℃で5時間反応させ、得られた粗生成物を再沈殿法により精製したところ、以下の反応式に示されるスルホベタインセグメント含有フルオロアルキル基オリゴマーを得た。   On the other hand, when fluoroalkanoyl peroxide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were reacted at 45 ° C. for 5 hours under a nitrogen stream, the resulting crude product was purified by a reprecipitation method. A sulfobetaine segment-containing fluoroalkyl group oligomer represented by the following reaction formula was obtained.

Figure 2005071694
Figure 2005071694

改質PTFEフィルムをエタノールに溶解させた前記スルホベタインセグメント含有フルオロアルキル基オリゴマー及びテトラエトキシシラン(TEOS)のエタノール溶液中にディップし、1NのHCl存在下、室温で24時間反応させた。その後、フィルムを常温で24時間真空乾燥させた。PTFEフィルムの反応前後の重量差から求めた複合化率は88%であった。   The modified PTFE film was dipped in an ethanol solution of the sulfobetaine segment-containing fluoroalkyl group oligomer and tetraethoxysilane (TEOS) dissolved in ethanol and reacted at room temperature in the presence of 1N HCl for 24 hours. Thereafter, the film was vacuum-dried at room temperature for 24 hours. The composite ratio determined from the weight difference before and after the reaction of the PTFE film was 88%.

複合化した改質PTFEフィルムを常温で24時間含水させ、0.1mol/lのKCl水溶液に24時間浸漬した後、フィルムを取り出し、その水溶液に0.05mol/lのNaOHをビゥレットにて滴下して中和滴定することにより、イオン交換容量を測定し、その結果からスルホン酸当量重量を計算したところ、1600(g/eq)であった。プロトンの伝導性を表すイオン伝導率(25℃)は0.6×10-2(S/cm)であった。また、TG−MS分析を行い、耐熱性を評価した結果、SO2 の分解ピーク温度は290℃であった。この場合、プロトン伝導性は良好だが、耐熱性はあまり良好ではない。 The composite modified PTFE film was hydrated at room temperature for 24 hours, immersed in a 0.1 mol / l KCl aqueous solution for 24 hours, the film was taken out, and 0.05 mol / l NaOH was dropped into the aqueous solution with a violet. The ion exchange capacity was measured by neutralization titration, and the sulfonic acid equivalent weight was calculated from the result, and it was 1600 (g / eq). The ionic conductivity (25 ° C.) representing proton conductivity was 0.6 × 10 −2 (S / cm). Also performs TG-MS analysis, the results of evaluation of the heat resistance, decomposition peak temperature of SO 2 was 290 ° C.. In this case, the proton conductivity is good, but the heat resistance is not so good.

[比較例2]
厚さ50μm、6cm角のPTFEフィルムに対して、実施例1と同様に電子線を照射して改質PTFEフィルムを得た。一方、実施例1と同様に過酸化フルオロアルカノイルと2−メタクリロキシエタンスルホン酸(MES)とを反応させ、得られた粗生成物からフルオロアルキル基含有スルホン酸オリゴマーを得た。
[Comparative Example 2]
A PTFE film having a thickness of 50 μm and a 6 cm square was irradiated with an electron beam in the same manner as in Example 1 to obtain a modified PTFE film. On the other hand, fluoroalkanoyl peroxide and 2-methacryloxyethanesulfonic acid (MES) were reacted in the same manner as in Example 1, and a fluoroalkyl group-containing sulfonic acid oligomer was obtained from the resulting crude product.

改質PTFEフィルムをエタノールに溶解させた前記含ふっ素スルホン酸オリゴマーのエタノール溶液中にディップし、1NのHCl存在下、室温で24時間反応させた。その後、フィルムを常温で24時間真空乾燥させた。PTFEフィルムの反応前後の重量差から求めた複合化率は96%であった。   The modified PTFE film was dipped in an ethanol solution of the fluorine-containing sulfonic acid oligomer dissolved in ethanol and reacted at room temperature in the presence of 1N HCl for 24 hours. Thereafter, the film was vacuum-dried at room temperature for 24 hours. The composite ratio determined from the weight difference before and after the reaction of the PTFE film was 96%.

複合化した改質PTFEフィルムを常温で24時間含水させ、0.1mol/lのKCl水溶液に24時間浸漬した後、フィルムを取り出し、その水溶液に0.05mol/lのNaOHをビゥレットにて滴下して中和滴定することにより、イオン交換容量を測定し、その結果からスルホン酸当量重量を計算したところ、1000(g/eq)であった。プロトンの伝導性を表すイオン伝導率(25℃)は1.5×10-2(S/cm)であった。また、TG−MS分析を行い、耐熱性を評価した結果、SO2 の分解ピーク温度は330℃であった。この場合もプロトン伝導性は良好だが、耐熱性は現行のNafion(登録商標)膜ほどではない。
The composite modified PTFE film was hydrated at room temperature for 24 hours, immersed in a 0.1 mol / l KCl aqueous solution for 24 hours, the film was taken out, and 0.05 mol / l NaOH was dropped into the aqueous solution with a violet. The ion exchange capacity was measured by neutralization titration, and the sulfonic acid equivalent weight was calculated from the result, and was 1000 (g / eq). The ionic conductivity (25 ° C.) representing proton conductivity was 1.5 × 10 −2 (S / cm). Also performs TG-MS analysis, the results of evaluation of the heat resistance, decomposition peak temperature of SO 2 was 330 ° C.. Again, the proton conductivity is good, but the heat resistance is not as good as the current Nafion® membrane.

Claims (6)

樹脂の融点以上の温度で電離性放射線を照射してなる改質ふっ素樹脂又は該改質ふっ素樹脂と他の高分子材料との混和物に、スルホン酸基を有する含ふっ素炭化水素化合物とテトラエトキシシラン(TEOS)を反応させたハイブリッド化合物を複合化させることを特徴とする燃料電池用電解質膜。   A fluorine-containing hydrocarbon compound having a sulfonic acid group and tetraethoxy are added to a modified fluororesin obtained by irradiating ionizing radiation at a temperature higher than the melting point of the resin or a mixture of the modified fluororesin and another polymer material. An electrolyte membrane for a fuel cell, wherein a hybrid compound obtained by reacting silane (TEOS) is combined. 前記ふっ素樹脂は、テトラフルオロエチレン系重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体及びテトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体から選ばれる少なくとも1種である請求項1記載の燃料電池用電解質膜。   2. The fluororesin is at least one selected from a tetrafluoroethylene polymer, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, and a tetrafluoroethylene / hexafluoropropylene copolymer. An electrolyte membrane for a fuel cell. 前記スルホン酸基を有する含ふっ素炭化水素系材料は、過酸化フルオロアルカノイルと2−メタクリロキシエタンスルホン酸(MES)単体とを反応させて生成するか、又は更にメチルメタクリレート(MMA)あるいはジメチルアクリルアミド(DMAA)を加えて生成したフルオロアルキル基含有スルホン酸オリゴマーである請求項1記載の燃料電池用電解質膜。   The fluorine-containing hydrocarbon material having a sulfonic acid group is produced by reacting fluoroalkanoyl peroxide with 2-methacryloxyethanesulfonic acid (MES) alone, or further methyl methacrylate (MMA) or dimethylacrylamide ( 2. The electrolyte membrane for a fuel cell according to claim 1, which is a fluoroalkyl group-containing sulfonic acid oligomer produced by adding DMAA). SO2 分解のピーク温度が350℃以上である請求項1〜3記載の燃料電池用電解質膜。 The electrolyte membrane for fuel cells according to claim 1, wherein the peak temperature of SO 2 decomposition is 350 ° C. or higher. スルホン酸当量重量が1100g/eq以下である請求項1〜4記載の燃料電池用電解質膜。   The electrolyte membrane for fuel cells according to claim 1, wherein the sulfonic acid equivalent weight is 1100 g / eq or less. ふっ素樹脂に、酸素濃度10torr以下のもとで、且つ当該ふっ素樹脂の融点以上に加熱された状態下で、電離性放射線を線量0.1kGy〜1MGyの範囲で照射してなる改質ふっ素樹脂又は該改質ふっ素樹脂と他の高分子材料との混和物からなる膜に、酸性条件下でアルコール中に分散させたスルホン酸基を有する含ふっ素炭化水素化合物を互いにテトラエトキシシランで化学結合させ、改質ふっ素樹脂と複合化させることを特徴とする燃料電池用電解質膜の製造方法。
A modified fluororesin formed by irradiating a fluororesin with ionizing radiation in a dose range of 0.1 kGy to 1 MGy under an oxygen concentration of 10 torr or less and heated above the melting point of the fluororesin A membrane comprising an admixture of the modified fluororesin and another polymer material, and a fluorine-containing hydrocarbon compound having a sulfonic acid group dispersed in alcohol under an acidic condition is chemically bonded to each other with tetraethoxysilane; A method for producing an electrolyte membrane for a fuel cell, comprising combining with a modified fluororesin.
JP2003297259A 2003-08-21 2003-08-21 ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME Expired - Fee Related JP3781023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297259A JP3781023B2 (en) 2003-08-21 2003-08-21 ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297259A JP3781023B2 (en) 2003-08-21 2003-08-21 ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2005071694A true JP2005071694A (en) 2005-03-17
JP3781023B2 JP3781023B2 (en) 2006-05-31

Family

ID=34403175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297259A Expired - Fee Related JP3781023B2 (en) 2003-08-21 2003-08-21 ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP3781023B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120871A1 (en) * 2005-05-06 2006-11-16 Shin-Etsu Chemical Co., Ltd. Solid polymer electrolyte membrane, method for producing same, and fuel cell
WO2007142031A1 (en) * 2006-06-09 2007-12-13 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
WO2008044405A1 (en) * 2006-10-06 2008-04-17 Japan Atomic Energy Agency Polymer electrolyte film for fuel cell which has silane crosslinked structure, and electrode assembly for fuel cell comprising the polymer electrolyte film
JP2009509029A (en) * 2005-09-19 2009-03-05 スリーエム イノベイティブ プロパティズ カンパニー Fuel cell electrolyte membrane using acidic polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827989B (en) * 2019-02-13 2021-07-09 首都师范大学 Domestic blood fluorine concentration detect reagent box

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120871A1 (en) * 2005-05-06 2006-11-16 Shin-Etsu Chemical Co., Ltd. Solid polymer electrolyte membrane, method for producing same, and fuel cell
KR101126407B1 (en) * 2005-05-06 2012-03-28 신에쓰 가가꾸 고교 가부시끼가이샤 Solid polymer electrolyte membrane, method for rpoducing same, and fuel cell
US8183304B2 (en) 2005-05-06 2012-05-22 Shin-Etsu Chemical Co., Ltd. Process for producing solid polyelectrolyte film by graft-polymerizing polymerizable monomer with fluororesin film, solid polyelectrolyte film obtainable by the process, and fuel cell
JP2009509029A (en) * 2005-09-19 2009-03-05 スリーエム イノベイティブ プロパティズ カンパニー Fuel cell electrolyte membrane using acidic polymer
WO2007142031A1 (en) * 2006-06-09 2007-12-13 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
EP2034547A4 (en) * 2006-06-09 2011-07-27 Shinetsu Chemical Co Electrolyte membrane-electrode assembly for direct methanol fuel cell
US9083026B2 (en) 2006-06-09 2015-07-14 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
WO2008044405A1 (en) * 2006-10-06 2008-04-17 Japan Atomic Energy Agency Polymer electrolyte film for fuel cell which has silane crosslinked structure, and electrode assembly for fuel cell comprising the polymer electrolyte film
US8283088B2 (en) 2006-10-06 2012-10-09 Japan Atomic Energy Agency Silane crosslinked structure-introduced fuel-cell polymer electrolyte membrane and fuel-cell electrode assembly having the same

Also Published As

Publication number Publication date
JP3781023B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
EP1806371B1 (en) Electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
TWI343143B (en) Non-perfluorinated resins containing ionic or ionizable groups and products containing the same
JP3817213B2 (en) Polymer electrolyte membrane
JP4986219B2 (en) Electrolyte membrane
WO2008023801A1 (en) Polymer electrolyte membrane composed of aromatic polymer membrane base and method for producing the same
JP4514643B2 (en) Solid polymer electrolyte membrane for direct methanol fuel cell, method for producing the same, and direct methanol fuel cell
JP4854284B2 (en) Method for producing polymer electrolyte membrane
JP5673922B2 (en) Cross-linked aromatic polymer electrolyte membrane, production method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
JP3781023B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP4904667B2 (en) Method for producing solid polymer electrolyte
JP4810726B2 (en) Method for producing solid polymer electrolyte
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4683181B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4434666B2 (en) Method for producing solid polymer electrolyte membrane and fuel cell
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
JP2006307051A (en) Solid polymer electrolytic membrane and method for producing the same, and fuel battery
JP4390047B2 (en) Solid polymer electrolyte membrane, method for producing the same, and fuel cell
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP4499004B2 (en) Method for producing sulfonated polymer electrolyte membrane
JP2004087380A (en) Electrolyte film for fuel cell, and its manufacturing method
Singhal et al. Radiation-grafted ion exchange membranes (RGIEMs) for fuel cell applications
CN117397071A (en) Proton exchange membrane
JP2003234111A (en) Electrolyte film for fuel cell and its manufacturing method as well as fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Ref document number: 3781023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees