JP2005071645A - 水素供給装置および燃料電池装置 - Google Patents
水素供給装置および燃料電池装置 Download PDFInfo
- Publication number
- JP2005071645A JP2005071645A JP2003209192A JP2003209192A JP2005071645A JP 2005071645 A JP2005071645 A JP 2005071645A JP 2003209192 A JP2003209192 A JP 2003209192A JP 2003209192 A JP2003209192 A JP 2003209192A JP 2005071645 A JP2005071645 A JP 2005071645A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- fuel
- side electrode
- fuel cell
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/22—Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
- H01M8/222—Fuel cells in which the fuel is based on compounds containing nitrogen, e.g. hydrazine, ammonia
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
【課題】装置構成をシンプルにでき、しかも、エネルギー効率のよい発電を実現することのできる、燃料電池装置、および、その燃料電池装置に用いられる水素供給装置を提供すること。
【解決手段】燃料電池装置1として、燃料として水素ガスが用いられる燃料電池部4と、その燃料電池部4に水素ガスを供給するための水素供給装置3とを備え、水素供給装置3には、標準酸化還元電位が0以下の燃料を分解する燃料側電極8と、水素を生成させる水素生成側電極9と、それらの間に介装される電解質膜10とを設ける。この水素供給装置3によれば、標準酸化還元電位が0以下の燃料の自発的な電解反応により、外部電源を不要とし、装置構成をシンプルでき、さらには、エネルギー効率よく水素を生成できる。そのため、この燃料電池装置1によれば、簡易な構成により、効率のよい発電を実現することができる。
【選択図】 図1
【解決手段】燃料電池装置1として、燃料として水素ガスが用いられる燃料電池部4と、その燃料電池部4に水素ガスを供給するための水素供給装置3とを備え、水素供給装置3には、標準酸化還元電位が0以下の燃料を分解する燃料側電極8と、水素を生成させる水素生成側電極9と、それらの間に介装される電解質膜10とを設ける。この水素供給装置3によれば、標準酸化還元電位が0以下の燃料の自発的な電解反応により、外部電源を不要とし、装置構成をシンプルでき、さらには、エネルギー効率よく水素を生成できる。そのため、この燃料電池装置1によれば、簡易な構成により、効率のよい発電を実現することができる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、水素供給装置および燃料電池装置、詳しくは、水素を燃料とする燃料電池部に水素を供給するための水素供給装置、および、その水素供給装置と、その水素供給装置から水素が供給される燃料電池部とを備える燃料電池装置に関する。
【0002】
【従来の技術】
現在まで、水素ガスを燃料とする固体高分子電解質膜形燃料電池が各種提案されている。このような固体高分子電解質膜形燃料電池は、通常、固体高分子電解質膜を挟んで、水素側電極および酸素側電極が対向配置されており、水素側電極に水素を供給するとともに酸素側電極に空気を供給することにより、水素側電極において、水素からプロトンH+および電子e−を生成させて、そのプロトンH+を固体高分子電解質膜を介して酸素側電極に移動させるとともに、電子e−を外部回路を介して酸素側電極に移動させ、酸素側電極において、これらを酸素と反応させて水を生成させ、これによって起電力を生じさせるようにしている。
【0003】
そして、このような固体高分子電解質膜形燃料電池は、主として、自動車用途としての開発が進められており、その燃料となる水素は、高圧水素ボンベや液化水素ボンベとして自動車に直接搭載する他、例えば、自動車に改質器を搭載して、メタノールやガソリンなどを燃料として供給し、これを改質器によって改質して水素を得るようにすることが各種提案されている。
【0004】
また、例えば、特開2002−252017号公報(特許文献1)には、メタノールの電解反応により水素を生成する電解部と、水素と酸素または空気から電力を発生させる燃料電池部とを直列に組み合わせたメタノール燃料電池が提案されている。
【0005】
このメタノール燃料電池は、電解部において、メタノールから電解反応により水素を取り出して、この水素を燃料として、燃料電池部を運転するものであって、メタノールを燃料としながらも、クロスオーバー現象を低減して、高いエネルギー効率で発電が可能とされている。
【0006】
【特許文献1】
特開2002−252017号公報
【発明が解決しようとする課題】
しかし、上記公報に記載されるメタノール燃料電池では、始動時において、電解部でメタノールを最初に電解反応させるための外部電源や、燃料電池部が運転した後において、燃料電池部で発生した電力を電解部に供給するための電力供給部材が必要となり、装置構成が複雑となる。
【0007】
また、燃料電池部で発生した電力の一部を、電解部に供給するために、その分のエネルギー効率の低下が不可避となる。
【0008】
本発明は、このような事情に鑑みなされたものであり、その目的とするところは、装置構成をシンプルにでき、しかも、エネルギー効率のよい発電を実現することのできる、燃料電池装置、および、その燃料電池装置に用いられる水素供給装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の水素供給装置は、標準酸化還元電位が0以下の燃料を分解する燃料側電極と、前記燃料側電極に対向配置され、水素を生成させる水素生成側電極と、前記燃料側電極と前記水素生成側電極との間に介在される電解質膜とを備えていることを特徴としている。
【0010】
また、本発明の水素供給装置において、標準酸化還元電位が0以下の燃料が、ヒドラジンであることが好ましい。
【0011】
また、本発明は、上記した水素供給装置と、水素を燃料とする燃料電池部とを備えている燃料電池装置をも含んでいる。
【0012】
また、本発明の燃料電池装置において、前記燃料電池部は、前記水素生成側電極において発生した水素が供給される水素側電極と、酸素または空気が供給される酸素側電極と、前記水素側電極と前記酸素側電極との間に介在される固体高分子電解質膜とを備えていることが好ましい。
【0013】
【発明の実施の形態】
図1は、本発明の燃料電池装置の一実施形態を示す概略構成図、図2は、図1に示す燃料電池装置に設けられている本発明の水素供給装置の一実施形態を示す概略構成図、図3は、図1に示す燃料電池装置に設けられている燃料電池部の燃料電池セルの一実施形態を示す概略構成図である。
【0014】
図1において、この燃料電池装置1は、燃料供給部2、水素供給装置3および燃料電池部4を備えている。
【0015】
燃料供給部2は、燃料タンク5および燃料ポンプ6を備えている。
【0016】
燃料タンク5には、標準酸化還元電位が0以下の燃料、つまり、標準水素電極との電位差が0かマイナスとなる燃料、例えば、ヒドラジン(NH2NH2)、水加ヒドラジン(NH2NH2・H2O)などのヒドラジン類、例えば、アンモニア(NH3)、例えば、ギ酸(HCOOH)などが貯蔵されている。このような燃料を用いれば、水素供給装置3の燃料側電極8において自発的な電解反応が促進されるので、電解反応を生じさせるための外部電源を不要とすることができる。
【0017】
また、このような燃料は、単独または2種類以上併用してもよく、好ましくは、ヒドラジン類およびアンモニア、より好ましくは、ヒドラジン類が用いられる。ヒドラジン類を用いれば、後述するように、COおよびCO2の生成がなく、触媒被毒の低減化と、実質的なゼロエミッションを実現することができる。
【0018】
燃料ポンプ6は、燃料タンク5および水素供給装置3と、燃料供給ライン22を介して接続されており、燃料タンク5に貯蔵されている燃料を、単位時間あたり所定量で水素供給装置3に輸送するようにしている。
【0019】
水素供給装置3は、図2に示すように、水素生成セル7を備えており、水素生成セル7は、燃料側電極(すなわち、アノード側電極)8、水素生成側電極(すなわち、カソード側電極)9および電解質膜10を備えている。燃料側電極8および水素生成側電極9は、それらの間に電解質膜10を介在させた状態で、対向配置されている。
【0020】
燃料側電極8は、特に制限されないが、例えば、担体に触媒が担持されている多孔質電極が用いられる。この燃料側電極8は、電解質膜10の一方の面と接触するように対向状に設けられている。
【0021】
触媒としては、特に制限されないが、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、鉄族元素(Fe、Co、Ni)などの周期表第VIII族元素や、例えば、Cu、Ag、Auなどの周期表第Ib族元素など、さらにはこれらの組み合わせなどが用いられる。好ましくは、Pt、Pd、Ni、Agが用いられる。また、燃料の種類によってCOが副生する場合には、これらとともに、Ruを用いれば、触媒の被毒を防止することができる。
【0022】
また、担体は、例えば、カーボンなどからなる導電性多孔質担体が用いられる。
【0023】
そして、上記した触媒を、上記した担体に公知の方法によって担持させることにより、多孔質電極を形成することができる。触媒の担持量は、例えば、0.1〜5.0mg/cm2、好ましくは、0.1〜1.0mg/cm2である。
【0024】
また、燃料側電極8は、触媒を担体に担持させずに、直接、電解質膜10の表面に積層形成してもよく、その場合には、電解質膜10が一体的に積層形成される膜−電極接合体として用いられる。
【0025】
このような膜−電極接合体は、上記した触媒の粉末(金属ブラック)と電解質溶液とを混合分散して、その溶液の粘度を適量の有機溶媒を配合することにより調整した後、この溶液を、例えば、スプレーコートなどの公知のコーティング方法によって電解質膜10の表面に塗布し、乾燥後、ホットプレスすることによって、触媒を電解質膜10の表面に定着させることにより形成することができる。なお、膜−電極接合体において、用いられる金属ブラックとしては、例えば、Ruブラック、Rhブラック、Pdブラック、Irブラック、Ptブラックおよびこれらの金属の組み合わせなどが、好ましく用いられる。
【0026】
また、このような膜−電極接合体は、電解質膜10の表面に、上記した触媒金属を無電解めっきにより形成することもできる。
【0027】
なお、電解質膜10の表面に直接積層(担持)される触媒の担持量は、上記と同様に、0.1〜5.0mg/cm2、好ましくは、0.1〜3.0mg/cm2である。
【0028】
また、水素生成側電極9は、特に制限されないが、例えば、上記と同様の触媒が担体に担持されている多孔質電極が用いられる。この水素生成側電極9は、電解質膜10の他方の面と接触するように対向状に設けられている。また、このような水素生成側電極9は、上記と同様に、触媒を担体に担持させずに、直接、電解質膜10の表面に積層形成してもよく、その場合には、電解質膜10が一体的に積層形成される膜−電極接合体として用いられ、上記した燃料側電極8と同様の方法によって、燃料側電極8と同時に、またはそれとは別途に、積層形成することができる。
【0029】
なお、水素生成側電極9における触媒の担持量は、例えば、0.1〜5.0mg/cm2、好ましくは、0.1〜1.0mg/cm2である。
【0030】
電解質膜10は、装置条件などによって、燃料側電極8での燃料の触媒反応により生成されるプロトン(H+)を移動させるためのカチオン交換膜、または、水素生成側電極9での水の触媒反応により生成される水酸イオン(OH−)を移動させるためのアニオン交換膜が用いられる。
【0031】
カチオン交換膜としては、例えば、パーフルオロ系、部分フッ素系、炭化水素系などのポリマー骨格へイオン交換基として、スルホン酸、リン酸、カルボン酸基などが導入された固体高分子膜が好ましく用いられ、また、アニオン交換膜としては、例えば、パーフルオロ系、部分フッ素系、炭化水素系などのポリマー骨格へイオン交換基として、ピリジニウム基(四級アンモニウム)などが導入された固体高分子膜が好ましく用いられる。このようなカチオン交換膜またはアニオン交換膜は、市販されている公知のものを用いることができる。
【0032】
なお、この電解質膜10は、通常、図示しない加湿器によって加湿され、常に水分が含まれた状態が保持されている。
【0033】
また、水素生成セル7は、さらに、燃料供給部材11、水素排出部材12、集電体13およびガス拡散層付き集電体14などを備えている。
【0034】
燃料供給部材11は、ガス不透過の導電性部材からなり、その一方の面が、燃料側電極8と対向するように設けられている。この燃料供給部材11には、その燃料側電極8と対向する一方の面において、燃料側電極8の全面に燃料を供給するための、例えば、葛折状の溝からなる燃料側流路15が形成されている。また、燃料供給部材11には、燃料側流路15の上流側端部に連通する供給口16が、燃料供給部材11の厚さ方向を貫通するように形成されており、また、燃料側流路15の下流側端部に連通する排出口17が、燃料供給部材11の厚さ方向を貫通するように形成されている。
【0035】
供給口16には、燃料供給ライン22を介して燃料ポンプ6が接続されており、排出口17には、未反応燃料の還流路24が接続されている。なお、この還流路24は、図1に示すように、一方が排出口17に接続されるとともに、他方が燃料タンク5に接続されており、排出口17から排出される未反応燃料を、燃料タンク5に戻すようにしている。
【0036】
水素排出部材12は、図2に示すように、燃料供給部材11と同様に、ガス不透過の導電性部材からなり、その一方の面が、水素生成側電極9と対向するように設けられている。この水素排出部材12には、その水素生成側電極9と対向する一方の面において、水素生成側電極9において発生する水素ガスを排出するための、例えば、葛折状の溝からなる水素生成側流路18が形成されている。また、水素排出部材12には、水素生成側流路18の上流側端部に連通する供給口19が、水素排出部材12の厚さ方向を貫通するように形成されており、また、水素生成側流路18の下流側端部に連通する排出口20が、水素排出部材12の厚さ方向を貫通するように形成されている。
【0037】
供給口19は、常時は閉鎖され、必要により図示しないガス供給ラインが接続され、排出口20には、燃料電池部4に水素ガスを輸送するための水素供給ライン23が接続されている。
【0038】
また、集電体13は、その一方の面が燃料供給部材11における燃料側流路15と対向状に接触するように、その他方の面が燃料側電極8と対向状に接触するように、これら燃料供給部材11と燃料側電極8との間に介装されている。
【0039】
この集電体13は、燃料側電極8と燃料供給部材11との間において、燃料液体の透過と燃料側電極8にて発生した電子(e−)の燃料供給部材11への伝達の効率を向上させるものであり、多孔性の導電性部材、例えば、チタンファイバーの焼結体やカーボンクロスなどが用いられる。
【0040】
また、ガス拡散層付き集電体14は、その一方の面が水素排出部材12における水素生成側流路18と対向状に接触するように、その他方の面が水素生成側電極9と対向状に接触するように、これら水素排出部材12と水素生成側電極9との間に介装されている。
【0041】
このガス拡散層付き集電体14は、水素生成側電極9と水素排出部材12との間において、外部回路21より水素生成側電極9に供給される電子の伝達の効率を向上させるものであり、ガス透過性かつ疎水性の導電性部材、例えば、撥水処理を施したカーボンクロスなどが用いられる。
【0042】
そして、この水素生成セル7では、電解質膜10がカチオン交換膜である場合には、燃料供給部材11の燃料側流路15に上記した燃料を供給すれば、集電体13を介して、その燃料が燃料側電極8と接触して、触媒反応によりプロトンおよび電子、窒素(燃料の種類によっては、CO、CO2などを同時に生成する場合がある。)に分解され、プロトンが電解質膜10を通過して水素生成側電極9に移動されるとともに、電子が後述する外部回路21を通過して水素生成側電極9に移動され、水素生成側電極9において、これらプロトンおよび電子が結合することにより、水素ガスが生成される。生成された水素ガスは、ガス拡散層付き集電体14を透過して水素生成側流路18に排出され、排出口20から水素供給ライン23を介して、燃料電池部4に送られる。
【0043】
より具体的には、例えば、燃料としてヒドラジンを用いた場合には、燃料側電極8において、触媒により、下記式(1)の反応が促され、
NH2NH2→N2+4H++4e− (1)
また、水素生成側電極9においては、上記式(1)により生成し、電解質膜10を通過したH+および後述する外部回路21を通過した電子e−を、下記式(2)に示すように結合させて、水素ガスを生成させる。
【0044】
4H++4e−→2H2 (2)
このように、燃料としてヒドラジンを用いた場合には、ヒドラジンの有する水素−窒素結合および窒素−窒素結合により、触媒反応によって容易に窒素およびプロトンを生成させて、触媒被毒を防止しつつ、効率の良い電解反応を実現することができる。しかも、ヒドラジンは、炭素を含まないため、燃料側電極8においては窒素のみが生成され、COおよびCO2の生成がなく、触媒の被毒がないので耐久性の向上を図ることができ、さらには、実質的なゼロエミッションを実現することができる。
【0045】
また、電解質膜10がアニオン交換膜である場合には、電解質膜10に含有されている水、あるいは、必要に応じて水素生成側流路18の供給口19に図示しないガス供給ラインから、加湿された不活性ガスを供給した場合には、その不活性ガスに含まれている水が、水素生成電極9と接触して、外部回路21を経由して供給される電子と反応し水酸イオンと水素が生成する。水酸イオンは電解質膜10を通過して燃料側電極8に移動される。そして、燃料側電極8においては、燃料供給部材11の燃料側流路15に供給されている燃料が、集電体13を介して、燃料側電極8と接触して、水酸イオンと反応し水と窒素(燃料の種類によっては、CO、CO2などを同時に生成する場合がある。)を生成する。その際に電子が生成される。生成した電子は外部回路21を経由して水素生成側電極9に供給され、水素生成が継続する。生成された水素ガスは、ガス拡散層付き集電体14から水素生成側流路18に排出され、排出口20から水素供給ライン23を介して、燃料電池部4に送られる。
【0046】
より具体的には、水素生成側電極9においては、触媒により下記式(3)の水の電解反応が促されるとともに、燃料側電極8においては、例えば、燃料としてヒドラジンを用いた場合には、触媒により下記式(4)の反応が促される。
【0047】
4H2O+4e−→4OH−+2H2 (3)
NH2NH2+4OH−→N2+4H2O+4e− (4)
このように、燃料としてヒドラジンを用いた場合には、上記と同様に、ヒドラジンの有する水素−窒素結合および窒素−窒素結合により、触媒反応によって容易に窒素および水を生成させて、触媒被毒を防止しつつ、効率の良い電解反応を実現することができる。しかも、ヒドラジンは、炭素を含まないため、燃料側電極8においては窒素および水のみが生成され、COおよびCO2の生成がなく、触媒の被毒がないので耐久性の向上を図ることができ、さらには、実質的なゼロエミッションを実現することができる。
【0048】
なお、このような電解反応において、水素排出部材12の水素生成側流路18は、通常、供給口19を閉鎖して、水素ガスの排出にのみに用いればよいが、電解質膜10の加湿のため、あるいは、電解質膜10としてアニオン交換膜を用いるときに、電解質膜10に含有されている水によらず、外部から水分を供給する必要がある場合などには、この供給口19に図示しないガス供給ラインを接続して、加湿された不活性ガスを供給すればよい。
【0049】
また、外部回路21は、特に制限されず、燃料側供給部材11と水素生成側供給部材12とが電気的に接続されるものであればよく、例えば、この水素生成セル7において生じる起電力が大きければ、この燃料電池装置1に付帯する補助装置(例えば、上記した燃料ポンプなど)の電源として構成してもよく、あるいは、小さければ、これらを直結するショート回路として最大限の水素を生成する構成としてもよい。
【0050】
そして、この水素供給装置3は、工業的には、このような水素生成セル7が複数積み重ねられるスタック構造として用いられる。スタック構造とするには、例えば、直接メタノール型燃料電池などに見られる公知のスタック構造を採用することができ、例えば、燃料供給部材11および水素排出部材12が、その両面に燃料側流路15および水素生成側流路18が形成されるセパレータとして構成される。
【0051】
燃料電池部4は、図3に示す燃料電池セル31を備えている。図3において、この燃料電池セル31は、イオン伝導体としての電解質膜34、水素側電極32、酸素側電極33、水素供給部材35、酸素供給部材36および2つのガス拡散層付き集電体48を備えている。
【0052】
電解質膜34は、カチオンもしくはアニオン交換型の固体高分子電解質膜からなり、より具体的には、例えば、パーフルオロスルホン酸膜などが用いられる。
【0053】
水素側電極32および酸素側電極33は、電解質膜34をその両側から挟むように設けられており、水素供給部材35および酸素供給部材36は、これら水素側電極32および酸素側電極33を、さらにその両側から挟むように設けられており、2つのガス拡散層付き集電体48は、水素側電極32と水素供給部材35との間、および、酸素側電極33と酸素供給部材36との間に、それぞれ設けられている。
【0054】
水素側電極32および酸素側電極33は、例えば、貴金属が担持されるカーボンブラックなどの高表面積の導電性担体から形成されている。
【0055】
水素供給部材35は、ガス不透過の導電性部材からなり、その一方の面が、水素側電極32と対向するように設けられている。この水素供給部材35には、その水素側電極32と対向する一方の面において、水素側電極32の全面に水素ガスを供給するための、例えば、葛折状の溝からなる水素供給側流路37が形成されている。また、水素供給部材35には、水素供給側流路37の上流側端部に連通する供給口38が、水素供給部材35の厚さ方向を貫通するように形成されており、また、水素供給側流路37の下流側端部に連通する排出口39が、水素供給部材35の厚さ方向を貫通するように形成されている。
【0056】
供給口38には、水素供給装置3と接続されている水素供給ライン23が接続されており、排出口39には、図示しないドレインが接続されている。
【0057】
酸素供給部材36は、ガス不透過の導電性部材からなり、その一方の面が、酸素側電極33と対向するように設けられている。この酸素供給部材36には、その酸素側電極33と対向する一方の面において、酸素側電極33の全面に空気(酸素)を供給するための、例えば、葛折状の溝からなる酸素側流路40が形成されている。また、酸素供給部材36には、酸素側流路40の上流側端部に連通する供給口41が、酸素供給部材36の厚さ方向を貫通するように形成されており、また、酸素側流路40の下流側端部に連通する排出口42が、酸素供給部材36の厚さ方向を貫通するように形成されている。
【0058】
供給口41には、コンプレッサ43が接続されており、排出口42には、図示しないドレインが接続されている。
【0059】
各ガス拡散層付き集電体48は、上記した水素供給装置3のガス拡散層付き集電体14と同様の部材からなり、水素側電極32と水素供給部材35との間、および、酸素側電極33と酸素供給部材36との間に介装されている。
【0060】
そして、この燃料電池セル31では、水素供給部材35の供給口38に、水素供給装置3から水素供給ライン23を介して水素ガスが供給され、酸素供給部材36の供給口41に、コンプレッサ43から空気(酸素)が供給される。そうすると、水素側電極32においては、水素供給側流路37からガス拡散層付き集電体48を介して水素ガスが供給されるので、電解質膜34がプロトン交換型の場合、下記式(5)の反応が促される。
【0061】
H2→2H++2e− (5)
また、酸素側電極33においては、上記式(5)により生成し、電解質膜34を通過したプロトンおよび後述する外部回路44を通過した電子と、コンプレッサ43から酸素側流路40を介して供給される空気中の酸素とが、下記式(6)のように反応して、水を生じ、この電解反応において、外部回路44に起電力が発生する。
【0062】
1/2O2+2H++2e−→H2O (6)
そして、この燃料電池部4は、工業的には、このような燃料電子セル31が複数積み重ねられる、公知のスタック構造として用いられる。スタック構造とするには、例えば、水素供給部材35および酸素供給部材36が、その両面に水素供給側流路37および酸素側流路40が形成されるセパレータとして構成される。
【0063】
なお、燃料電池部4は、上記の実施形態にかかわらず、燃料ガスとして水素を用いる、公知のいずれの燃料電池をも用いることができる。
【0064】
また、外部回路44は、水素供給部材35および酸素供給部材36を電気的に接続する回路として構成され、特に制限されないが、例えば、この燃料電池装置1を自動車に搭載する場合には、図1に示すように、パワーコントロールユニット45からモータ46や二次電池47に電力を分配する公知の回路として構成すればよい。
【0065】
そして、この燃料電池装置1では、水素供給装置3において、標準酸化還元電位が0以下の燃料を供給して水素ガスを生成させ、これを燃料電池部4に供給することにより、水素ガスを燃料とする燃料電池部4において発電しているので、簡易な構成により、効率のよい発電を実現することができる。
【0066】
すなわち、この水素供給部3には、標準酸化還元電位が0以下の燃料が供給されるので、閉回路時には自発的に電解反応が促進される。
【0067】
より具体的に述べると、上記した電解反応を進めるには、燃料側電極(アノード側電極)8および水素生成側電極(カソード側電極)9における酸化還元電位が、燃料側電極8<水素生成側電極9であって、かつ、電解反応促進のためのエネルギーロスをまかなえるだけの電位差が必要となる。このような電解反応において、燃料の標準酸化還元電位が0以下であれば、反応に必要なエネルギーロスを最小限に抑えることで、水素生成側電極9において自発的に水素生成反応を生じさせることが可能となる。一方、例えば、燃料としてメタノールを用いると、酸化還元電位が燃料側電極8>水素生成側電極9となり自発的反応の可能性は無くなる。また、メタノールの酸化に必要なエネルギー(過電圧)も大きいため、電解反応を進めるには、外部から相当するエネルギーを供給し続ける必要がある。
【0068】
そのため、この水素供給部3では、燃料としてメタノールを用いる場合のように、外部電源からの電力により始動させる必要がなく、そのような外部電源を不要とすることができる。また、燃料電池部4が運転した後においても、燃料電池部4で発生した電力を水素供給部3に供給して、水素供給部3における水素ガスの生成を促進させる必要がないため、そのための回路を不要とすることができる。その結果、装置構成を非常にシンプルにすることができる。
【0069】
さらに、燃料としてメタノールを用いる場合には、燃料電池部4で発生した電力で水素供給部3における水素ガスの生成を促進させる必要があるため、燃料電池部4で発生した電力の一部を水素供給部3に供給しなければならず、その分のエネルギー効率の低下が不可避となるが、この燃料電池装置1によれば、水素供給部3に電力を供給しなくても、燃料の自発的な電解反応により効率よく水素ガスを得ることができるので、その分のエネルギー効率の低下がなく、エネルギー効率のよい発電を実現することができる。
【0070】
そのため、このような水素供給装置3は、従来より知られているような、液体燃料を水素ガスに改質するための改質装置に代えて用いることができるので、このような水素供給装置3を備える燃料電池装置1は、特に制限されることなく種々の分野、例えば、自動車などの輸送装置用動力源、屋外用可般式小型発電装置、携帯家電用の電源装置として、広く用いることができる。
【0071】
実施例
以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これら実施例に何ら制限されるものではない。
【0072】
実施例1
1)膜−電極接合体の作製
H2PtCl6溶液と、NaBH4(還元剤)とを、カチオン交換型パーフルオロ系固体高分子電解質膜(Nafion117(登録商標)、デュポン社製)からなる電解質膜10の両側にそれぞれ配置して、その電解質膜10の両面に、無電解めっきにより、Ptからなる燃料側電極8および水素生成側電極9をそれぞれ形成した。Ptの担持量は、両面ともに1mg/cm2であった。なお、得られた膜−電極接合体は、円形をなし、その電極面積は10cm2であった。
【0073】
2)水素供給装置の作製
集電体13としてチタンファイバーの焼結体を用い、ガス拡散層付き集電体14として撥水性カーボン層を塗布したカーボンクロスを用いて、これら、電解質膜10の両面に燃料側電極8および水素生成側電極9が形成された膜−電極接合体と、集電体13と、ガス拡散層付き集電体14とを、予め燃料供給部材11および水素排出部材12がセットされている試験用の水素生成セル7に挟み込むことにより、水素供給装置3を作製した。
【0074】
3)水素生成量と発生電圧の測定
燃料供給部材11には、2モル/Lに調整したヒドラジン・水和物(N2H4・H2O)水溶液を2mL/分で流通させ、水素排出部材12には、60℃に加湿したアルゴンガスを200mL/分で流通させた。なお、水素生成セル7は、60℃に温度調節した。
【0075】
外部回路21として、電流を調節するためのカレントパルスジェネレータ(HC−115型、北斗電工社製)を接続し、このカレントパルスジェネレータによって電流を調節しながら発生電圧を測定するとともに、水素排出部材12において発生した水素を、ガス流量測定装置とガスクロマトグラフとで測定することにより、水素生成量を測定した。
【0076】
その結果を図4に示す。
【0077】
実施例2
1)膜−電極接合体の作製
Pt(NH4)6Cl4溶液と、NaBH4(還元剤)とを、アニオン交換型パーフルオロ系固体高分子電解質膜(Tosflex SF−17(登録商標)、東ソー社製)からなる電解質膜10の両側にそれぞれ配置して、その電解質膜10の両面に、無電解めっきにより、Ptからなる燃料側電極8および水素生成側電極9をそれぞれ形成した。Ptの担持量は、両面ともに1mg/cm2であった。なお、得られた膜−電極接合体は、円形をなし、その電極面積は10cm2であった。
【0078】
2)水素供給装置の作製
集電体13としてチタンファイバーの焼結体を用い、ガス拡散層付き集電体14としてカーボンクロスを用いて、これら、電解質膜10の両面に燃料側電極8および水素生成側電極9が形成された膜−電極接合体と、集電体13と、ガス拡散層付き集電体14とを、予め燃料供給部材11および水素排出部材12がセットされている試験用の水素生成セル7に挟み込むことにより、水素供給装置3を作製した。
【0079】
3)水素生成量と発生電圧の測定
燃料供給部材11には、2モル/Lに調整したヒドラジン・水和物(N2H4・H2O)水溶液を2mL/分で流通させ、水素排出部材12には、60℃に加湿したアルゴンガスを200mL/分で流通させた。なお、水素生成セル7は、60℃に温度調節した。
【0080】
外部回路21として、電流を調節するためのカレントパルスジェネレータ(HC−115型、北斗電工社製)を接続し、このカレントパルスジェネレータによって電流を調節しながら発生電圧を測定するとともに、水素排出部材12において発生した水素を、ガス流量測定装置とガスクロマトグラフとで測定することにより、水素生成量を測定した。
【0081】
その結果を図5に示す。
【0082】
図4および図5から明らかなように、実施例1および実施例2の水素供給装置3では、閉回路時に0.04〜0.07Vの起電力が発生し、電流密度の増加に従って水素発生量(実線)が増加する一方、発生電圧(点線)が低下して、その発生電圧がゼロになったときに、自発的に得られる最大電流値(=最大水素生成量)が観測された。
【0083】
【発明の効果】
以上述べたように、本発明の水素供給装置によれば、標準酸化還元電位が0以下の燃料を用いるので、燃料の自発的な電解反応により、外部電源を不要とし、また、装置構成をシンプルにすることができ、さらには、エネルギー効率よく水素を生成させることができる。そのため、この水素供給装置を備える本発明の燃料電池装置によれば、簡易な構成により、効率のよい発電を実現することができる。
【図面の簡単な説明】
【図1】本発明の燃料電池装置の一実施形態を示す概略構成図である。
【図2】図1に示す燃料電池装置の水素供給装置の一実施形態を示す要部概略構成図である。
【図3】図1に示す燃料電池装置の燃料電池部の一実施形態を示す要部概略構成図である。
【図4】実施例1の水素供給装置(カチオン交換型)における、電流密度、発生電圧および水素生成量の関係を示す相関図である。
【図5】実施例2の水素供給装置(アニオン交換型)における、電流密度、発生電圧および水素生成量の関係を示す相関図である。
【符号の説明】
1 燃料電池装置
3 水素供給装置
4 燃料電池部
8 燃料側電極
9 水素生成側電極
10 電解質膜
32 水素側電極
33 酸素側電極
34 電解質膜
【発明の属する技術分野】
本発明は、水素供給装置および燃料電池装置、詳しくは、水素を燃料とする燃料電池部に水素を供給するための水素供給装置、および、その水素供給装置と、その水素供給装置から水素が供給される燃料電池部とを備える燃料電池装置に関する。
【0002】
【従来の技術】
現在まで、水素ガスを燃料とする固体高分子電解質膜形燃料電池が各種提案されている。このような固体高分子電解質膜形燃料電池は、通常、固体高分子電解質膜を挟んで、水素側電極および酸素側電極が対向配置されており、水素側電極に水素を供給するとともに酸素側電極に空気を供給することにより、水素側電極において、水素からプロトンH+および電子e−を生成させて、そのプロトンH+を固体高分子電解質膜を介して酸素側電極に移動させるとともに、電子e−を外部回路を介して酸素側電極に移動させ、酸素側電極において、これらを酸素と反応させて水を生成させ、これによって起電力を生じさせるようにしている。
【0003】
そして、このような固体高分子電解質膜形燃料電池は、主として、自動車用途としての開発が進められており、その燃料となる水素は、高圧水素ボンベや液化水素ボンベとして自動車に直接搭載する他、例えば、自動車に改質器を搭載して、メタノールやガソリンなどを燃料として供給し、これを改質器によって改質して水素を得るようにすることが各種提案されている。
【0004】
また、例えば、特開2002−252017号公報(特許文献1)には、メタノールの電解反応により水素を生成する電解部と、水素と酸素または空気から電力を発生させる燃料電池部とを直列に組み合わせたメタノール燃料電池が提案されている。
【0005】
このメタノール燃料電池は、電解部において、メタノールから電解反応により水素を取り出して、この水素を燃料として、燃料電池部を運転するものであって、メタノールを燃料としながらも、クロスオーバー現象を低減して、高いエネルギー効率で発電が可能とされている。
【0006】
【特許文献1】
特開2002−252017号公報
【発明が解決しようとする課題】
しかし、上記公報に記載されるメタノール燃料電池では、始動時において、電解部でメタノールを最初に電解反応させるための外部電源や、燃料電池部が運転した後において、燃料電池部で発生した電力を電解部に供給するための電力供給部材が必要となり、装置構成が複雑となる。
【0007】
また、燃料電池部で発生した電力の一部を、電解部に供給するために、その分のエネルギー効率の低下が不可避となる。
【0008】
本発明は、このような事情に鑑みなされたものであり、その目的とするところは、装置構成をシンプルにでき、しかも、エネルギー効率のよい発電を実現することのできる、燃料電池装置、および、その燃料電池装置に用いられる水素供給装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の水素供給装置は、標準酸化還元電位が0以下の燃料を分解する燃料側電極と、前記燃料側電極に対向配置され、水素を生成させる水素生成側電極と、前記燃料側電極と前記水素生成側電極との間に介在される電解質膜とを備えていることを特徴としている。
【0010】
また、本発明の水素供給装置において、標準酸化還元電位が0以下の燃料が、ヒドラジンであることが好ましい。
【0011】
また、本発明は、上記した水素供給装置と、水素を燃料とする燃料電池部とを備えている燃料電池装置をも含んでいる。
【0012】
また、本発明の燃料電池装置において、前記燃料電池部は、前記水素生成側電極において発生した水素が供給される水素側電極と、酸素または空気が供給される酸素側電極と、前記水素側電極と前記酸素側電極との間に介在される固体高分子電解質膜とを備えていることが好ましい。
【0013】
【発明の実施の形態】
図1は、本発明の燃料電池装置の一実施形態を示す概略構成図、図2は、図1に示す燃料電池装置に設けられている本発明の水素供給装置の一実施形態を示す概略構成図、図3は、図1に示す燃料電池装置に設けられている燃料電池部の燃料電池セルの一実施形態を示す概略構成図である。
【0014】
図1において、この燃料電池装置1は、燃料供給部2、水素供給装置3および燃料電池部4を備えている。
【0015】
燃料供給部2は、燃料タンク5および燃料ポンプ6を備えている。
【0016】
燃料タンク5には、標準酸化還元電位が0以下の燃料、つまり、標準水素電極との電位差が0かマイナスとなる燃料、例えば、ヒドラジン(NH2NH2)、水加ヒドラジン(NH2NH2・H2O)などのヒドラジン類、例えば、アンモニア(NH3)、例えば、ギ酸(HCOOH)などが貯蔵されている。このような燃料を用いれば、水素供給装置3の燃料側電極8において自発的な電解反応が促進されるので、電解反応を生じさせるための外部電源を不要とすることができる。
【0017】
また、このような燃料は、単独または2種類以上併用してもよく、好ましくは、ヒドラジン類およびアンモニア、より好ましくは、ヒドラジン類が用いられる。ヒドラジン類を用いれば、後述するように、COおよびCO2の生成がなく、触媒被毒の低減化と、実質的なゼロエミッションを実現することができる。
【0018】
燃料ポンプ6は、燃料タンク5および水素供給装置3と、燃料供給ライン22を介して接続されており、燃料タンク5に貯蔵されている燃料を、単位時間あたり所定量で水素供給装置3に輸送するようにしている。
【0019】
水素供給装置3は、図2に示すように、水素生成セル7を備えており、水素生成セル7は、燃料側電極(すなわち、アノード側電極)8、水素生成側電極(すなわち、カソード側電極)9および電解質膜10を備えている。燃料側電極8および水素生成側電極9は、それらの間に電解質膜10を介在させた状態で、対向配置されている。
【0020】
燃料側電極8は、特に制限されないが、例えば、担体に触媒が担持されている多孔質電極が用いられる。この燃料側電極8は、電解質膜10の一方の面と接触するように対向状に設けられている。
【0021】
触媒としては、特に制限されないが、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、鉄族元素(Fe、Co、Ni)などの周期表第VIII族元素や、例えば、Cu、Ag、Auなどの周期表第Ib族元素など、さらにはこれらの組み合わせなどが用いられる。好ましくは、Pt、Pd、Ni、Agが用いられる。また、燃料の種類によってCOが副生する場合には、これらとともに、Ruを用いれば、触媒の被毒を防止することができる。
【0022】
また、担体は、例えば、カーボンなどからなる導電性多孔質担体が用いられる。
【0023】
そして、上記した触媒を、上記した担体に公知の方法によって担持させることにより、多孔質電極を形成することができる。触媒の担持量は、例えば、0.1〜5.0mg/cm2、好ましくは、0.1〜1.0mg/cm2である。
【0024】
また、燃料側電極8は、触媒を担体に担持させずに、直接、電解質膜10の表面に積層形成してもよく、その場合には、電解質膜10が一体的に積層形成される膜−電極接合体として用いられる。
【0025】
このような膜−電極接合体は、上記した触媒の粉末(金属ブラック)と電解質溶液とを混合分散して、その溶液の粘度を適量の有機溶媒を配合することにより調整した後、この溶液を、例えば、スプレーコートなどの公知のコーティング方法によって電解質膜10の表面に塗布し、乾燥後、ホットプレスすることによって、触媒を電解質膜10の表面に定着させることにより形成することができる。なお、膜−電極接合体において、用いられる金属ブラックとしては、例えば、Ruブラック、Rhブラック、Pdブラック、Irブラック、Ptブラックおよびこれらの金属の組み合わせなどが、好ましく用いられる。
【0026】
また、このような膜−電極接合体は、電解質膜10の表面に、上記した触媒金属を無電解めっきにより形成することもできる。
【0027】
なお、電解質膜10の表面に直接積層(担持)される触媒の担持量は、上記と同様に、0.1〜5.0mg/cm2、好ましくは、0.1〜3.0mg/cm2である。
【0028】
また、水素生成側電極9は、特に制限されないが、例えば、上記と同様の触媒が担体に担持されている多孔質電極が用いられる。この水素生成側電極9は、電解質膜10の他方の面と接触するように対向状に設けられている。また、このような水素生成側電極9は、上記と同様に、触媒を担体に担持させずに、直接、電解質膜10の表面に積層形成してもよく、その場合には、電解質膜10が一体的に積層形成される膜−電極接合体として用いられ、上記した燃料側電極8と同様の方法によって、燃料側電極8と同時に、またはそれとは別途に、積層形成することができる。
【0029】
なお、水素生成側電極9における触媒の担持量は、例えば、0.1〜5.0mg/cm2、好ましくは、0.1〜1.0mg/cm2である。
【0030】
電解質膜10は、装置条件などによって、燃料側電極8での燃料の触媒反応により生成されるプロトン(H+)を移動させるためのカチオン交換膜、または、水素生成側電極9での水の触媒反応により生成される水酸イオン(OH−)を移動させるためのアニオン交換膜が用いられる。
【0031】
カチオン交換膜としては、例えば、パーフルオロ系、部分フッ素系、炭化水素系などのポリマー骨格へイオン交換基として、スルホン酸、リン酸、カルボン酸基などが導入された固体高分子膜が好ましく用いられ、また、アニオン交換膜としては、例えば、パーフルオロ系、部分フッ素系、炭化水素系などのポリマー骨格へイオン交換基として、ピリジニウム基(四級アンモニウム)などが導入された固体高分子膜が好ましく用いられる。このようなカチオン交換膜またはアニオン交換膜は、市販されている公知のものを用いることができる。
【0032】
なお、この電解質膜10は、通常、図示しない加湿器によって加湿され、常に水分が含まれた状態が保持されている。
【0033】
また、水素生成セル7は、さらに、燃料供給部材11、水素排出部材12、集電体13およびガス拡散層付き集電体14などを備えている。
【0034】
燃料供給部材11は、ガス不透過の導電性部材からなり、その一方の面が、燃料側電極8と対向するように設けられている。この燃料供給部材11には、その燃料側電極8と対向する一方の面において、燃料側電極8の全面に燃料を供給するための、例えば、葛折状の溝からなる燃料側流路15が形成されている。また、燃料供給部材11には、燃料側流路15の上流側端部に連通する供給口16が、燃料供給部材11の厚さ方向を貫通するように形成されており、また、燃料側流路15の下流側端部に連通する排出口17が、燃料供給部材11の厚さ方向を貫通するように形成されている。
【0035】
供給口16には、燃料供給ライン22を介して燃料ポンプ6が接続されており、排出口17には、未反応燃料の還流路24が接続されている。なお、この還流路24は、図1に示すように、一方が排出口17に接続されるとともに、他方が燃料タンク5に接続されており、排出口17から排出される未反応燃料を、燃料タンク5に戻すようにしている。
【0036】
水素排出部材12は、図2に示すように、燃料供給部材11と同様に、ガス不透過の導電性部材からなり、その一方の面が、水素生成側電極9と対向するように設けられている。この水素排出部材12には、その水素生成側電極9と対向する一方の面において、水素生成側電極9において発生する水素ガスを排出するための、例えば、葛折状の溝からなる水素生成側流路18が形成されている。また、水素排出部材12には、水素生成側流路18の上流側端部に連通する供給口19が、水素排出部材12の厚さ方向を貫通するように形成されており、また、水素生成側流路18の下流側端部に連通する排出口20が、水素排出部材12の厚さ方向を貫通するように形成されている。
【0037】
供給口19は、常時は閉鎖され、必要により図示しないガス供給ラインが接続され、排出口20には、燃料電池部4に水素ガスを輸送するための水素供給ライン23が接続されている。
【0038】
また、集電体13は、その一方の面が燃料供給部材11における燃料側流路15と対向状に接触するように、その他方の面が燃料側電極8と対向状に接触するように、これら燃料供給部材11と燃料側電極8との間に介装されている。
【0039】
この集電体13は、燃料側電極8と燃料供給部材11との間において、燃料液体の透過と燃料側電極8にて発生した電子(e−)の燃料供給部材11への伝達の効率を向上させるものであり、多孔性の導電性部材、例えば、チタンファイバーの焼結体やカーボンクロスなどが用いられる。
【0040】
また、ガス拡散層付き集電体14は、その一方の面が水素排出部材12における水素生成側流路18と対向状に接触するように、その他方の面が水素生成側電極9と対向状に接触するように、これら水素排出部材12と水素生成側電極9との間に介装されている。
【0041】
このガス拡散層付き集電体14は、水素生成側電極9と水素排出部材12との間において、外部回路21より水素生成側電極9に供給される電子の伝達の効率を向上させるものであり、ガス透過性かつ疎水性の導電性部材、例えば、撥水処理を施したカーボンクロスなどが用いられる。
【0042】
そして、この水素生成セル7では、電解質膜10がカチオン交換膜である場合には、燃料供給部材11の燃料側流路15に上記した燃料を供給すれば、集電体13を介して、その燃料が燃料側電極8と接触して、触媒反応によりプロトンおよび電子、窒素(燃料の種類によっては、CO、CO2などを同時に生成する場合がある。)に分解され、プロトンが電解質膜10を通過して水素生成側電極9に移動されるとともに、電子が後述する外部回路21を通過して水素生成側電極9に移動され、水素生成側電極9において、これらプロトンおよび電子が結合することにより、水素ガスが生成される。生成された水素ガスは、ガス拡散層付き集電体14を透過して水素生成側流路18に排出され、排出口20から水素供給ライン23を介して、燃料電池部4に送られる。
【0043】
より具体的には、例えば、燃料としてヒドラジンを用いた場合には、燃料側電極8において、触媒により、下記式(1)の反応が促され、
NH2NH2→N2+4H++4e− (1)
また、水素生成側電極9においては、上記式(1)により生成し、電解質膜10を通過したH+および後述する外部回路21を通過した電子e−を、下記式(2)に示すように結合させて、水素ガスを生成させる。
【0044】
4H++4e−→2H2 (2)
このように、燃料としてヒドラジンを用いた場合には、ヒドラジンの有する水素−窒素結合および窒素−窒素結合により、触媒反応によって容易に窒素およびプロトンを生成させて、触媒被毒を防止しつつ、効率の良い電解反応を実現することができる。しかも、ヒドラジンは、炭素を含まないため、燃料側電極8においては窒素のみが生成され、COおよびCO2の生成がなく、触媒の被毒がないので耐久性の向上を図ることができ、さらには、実質的なゼロエミッションを実現することができる。
【0045】
また、電解質膜10がアニオン交換膜である場合には、電解質膜10に含有されている水、あるいは、必要に応じて水素生成側流路18の供給口19に図示しないガス供給ラインから、加湿された不活性ガスを供給した場合には、その不活性ガスに含まれている水が、水素生成電極9と接触して、外部回路21を経由して供給される電子と反応し水酸イオンと水素が生成する。水酸イオンは電解質膜10を通過して燃料側電極8に移動される。そして、燃料側電極8においては、燃料供給部材11の燃料側流路15に供給されている燃料が、集電体13を介して、燃料側電極8と接触して、水酸イオンと反応し水と窒素(燃料の種類によっては、CO、CO2などを同時に生成する場合がある。)を生成する。その際に電子が生成される。生成した電子は外部回路21を経由して水素生成側電極9に供給され、水素生成が継続する。生成された水素ガスは、ガス拡散層付き集電体14から水素生成側流路18に排出され、排出口20から水素供給ライン23を介して、燃料電池部4に送られる。
【0046】
より具体的には、水素生成側電極9においては、触媒により下記式(3)の水の電解反応が促されるとともに、燃料側電極8においては、例えば、燃料としてヒドラジンを用いた場合には、触媒により下記式(4)の反応が促される。
【0047】
4H2O+4e−→4OH−+2H2 (3)
NH2NH2+4OH−→N2+4H2O+4e− (4)
このように、燃料としてヒドラジンを用いた場合には、上記と同様に、ヒドラジンの有する水素−窒素結合および窒素−窒素結合により、触媒反応によって容易に窒素および水を生成させて、触媒被毒を防止しつつ、効率の良い電解反応を実現することができる。しかも、ヒドラジンは、炭素を含まないため、燃料側電極8においては窒素および水のみが生成され、COおよびCO2の生成がなく、触媒の被毒がないので耐久性の向上を図ることができ、さらには、実質的なゼロエミッションを実現することができる。
【0048】
なお、このような電解反応において、水素排出部材12の水素生成側流路18は、通常、供給口19を閉鎖して、水素ガスの排出にのみに用いればよいが、電解質膜10の加湿のため、あるいは、電解質膜10としてアニオン交換膜を用いるときに、電解質膜10に含有されている水によらず、外部から水分を供給する必要がある場合などには、この供給口19に図示しないガス供給ラインを接続して、加湿された不活性ガスを供給すればよい。
【0049】
また、外部回路21は、特に制限されず、燃料側供給部材11と水素生成側供給部材12とが電気的に接続されるものであればよく、例えば、この水素生成セル7において生じる起電力が大きければ、この燃料電池装置1に付帯する補助装置(例えば、上記した燃料ポンプなど)の電源として構成してもよく、あるいは、小さければ、これらを直結するショート回路として最大限の水素を生成する構成としてもよい。
【0050】
そして、この水素供給装置3は、工業的には、このような水素生成セル7が複数積み重ねられるスタック構造として用いられる。スタック構造とするには、例えば、直接メタノール型燃料電池などに見られる公知のスタック構造を採用することができ、例えば、燃料供給部材11および水素排出部材12が、その両面に燃料側流路15および水素生成側流路18が形成されるセパレータとして構成される。
【0051】
燃料電池部4は、図3に示す燃料電池セル31を備えている。図3において、この燃料電池セル31は、イオン伝導体としての電解質膜34、水素側電極32、酸素側電極33、水素供給部材35、酸素供給部材36および2つのガス拡散層付き集電体48を備えている。
【0052】
電解質膜34は、カチオンもしくはアニオン交換型の固体高分子電解質膜からなり、より具体的には、例えば、パーフルオロスルホン酸膜などが用いられる。
【0053】
水素側電極32および酸素側電極33は、電解質膜34をその両側から挟むように設けられており、水素供給部材35および酸素供給部材36は、これら水素側電極32および酸素側電極33を、さらにその両側から挟むように設けられており、2つのガス拡散層付き集電体48は、水素側電極32と水素供給部材35との間、および、酸素側電極33と酸素供給部材36との間に、それぞれ設けられている。
【0054】
水素側電極32および酸素側電極33は、例えば、貴金属が担持されるカーボンブラックなどの高表面積の導電性担体から形成されている。
【0055】
水素供給部材35は、ガス不透過の導電性部材からなり、その一方の面が、水素側電極32と対向するように設けられている。この水素供給部材35には、その水素側電極32と対向する一方の面において、水素側電極32の全面に水素ガスを供給するための、例えば、葛折状の溝からなる水素供給側流路37が形成されている。また、水素供給部材35には、水素供給側流路37の上流側端部に連通する供給口38が、水素供給部材35の厚さ方向を貫通するように形成されており、また、水素供給側流路37の下流側端部に連通する排出口39が、水素供給部材35の厚さ方向を貫通するように形成されている。
【0056】
供給口38には、水素供給装置3と接続されている水素供給ライン23が接続されており、排出口39には、図示しないドレインが接続されている。
【0057】
酸素供給部材36は、ガス不透過の導電性部材からなり、その一方の面が、酸素側電極33と対向するように設けられている。この酸素供給部材36には、その酸素側電極33と対向する一方の面において、酸素側電極33の全面に空気(酸素)を供給するための、例えば、葛折状の溝からなる酸素側流路40が形成されている。また、酸素供給部材36には、酸素側流路40の上流側端部に連通する供給口41が、酸素供給部材36の厚さ方向を貫通するように形成されており、また、酸素側流路40の下流側端部に連通する排出口42が、酸素供給部材36の厚さ方向を貫通するように形成されている。
【0058】
供給口41には、コンプレッサ43が接続されており、排出口42には、図示しないドレインが接続されている。
【0059】
各ガス拡散層付き集電体48は、上記した水素供給装置3のガス拡散層付き集電体14と同様の部材からなり、水素側電極32と水素供給部材35との間、および、酸素側電極33と酸素供給部材36との間に介装されている。
【0060】
そして、この燃料電池セル31では、水素供給部材35の供給口38に、水素供給装置3から水素供給ライン23を介して水素ガスが供給され、酸素供給部材36の供給口41に、コンプレッサ43から空気(酸素)が供給される。そうすると、水素側電極32においては、水素供給側流路37からガス拡散層付き集電体48を介して水素ガスが供給されるので、電解質膜34がプロトン交換型の場合、下記式(5)の反応が促される。
【0061】
H2→2H++2e− (5)
また、酸素側電極33においては、上記式(5)により生成し、電解質膜34を通過したプロトンおよび後述する外部回路44を通過した電子と、コンプレッサ43から酸素側流路40を介して供給される空気中の酸素とが、下記式(6)のように反応して、水を生じ、この電解反応において、外部回路44に起電力が発生する。
【0062】
1/2O2+2H++2e−→H2O (6)
そして、この燃料電池部4は、工業的には、このような燃料電子セル31が複数積み重ねられる、公知のスタック構造として用いられる。スタック構造とするには、例えば、水素供給部材35および酸素供給部材36が、その両面に水素供給側流路37および酸素側流路40が形成されるセパレータとして構成される。
【0063】
なお、燃料電池部4は、上記の実施形態にかかわらず、燃料ガスとして水素を用いる、公知のいずれの燃料電池をも用いることができる。
【0064】
また、外部回路44は、水素供給部材35および酸素供給部材36を電気的に接続する回路として構成され、特に制限されないが、例えば、この燃料電池装置1を自動車に搭載する場合には、図1に示すように、パワーコントロールユニット45からモータ46や二次電池47に電力を分配する公知の回路として構成すればよい。
【0065】
そして、この燃料電池装置1では、水素供給装置3において、標準酸化還元電位が0以下の燃料を供給して水素ガスを生成させ、これを燃料電池部4に供給することにより、水素ガスを燃料とする燃料電池部4において発電しているので、簡易な構成により、効率のよい発電を実現することができる。
【0066】
すなわち、この水素供給部3には、標準酸化還元電位が0以下の燃料が供給されるので、閉回路時には自発的に電解反応が促進される。
【0067】
より具体的に述べると、上記した電解反応を進めるには、燃料側電極(アノード側電極)8および水素生成側電極(カソード側電極)9における酸化還元電位が、燃料側電極8<水素生成側電極9であって、かつ、電解反応促進のためのエネルギーロスをまかなえるだけの電位差が必要となる。このような電解反応において、燃料の標準酸化還元電位が0以下であれば、反応に必要なエネルギーロスを最小限に抑えることで、水素生成側電極9において自発的に水素生成反応を生じさせることが可能となる。一方、例えば、燃料としてメタノールを用いると、酸化還元電位が燃料側電極8>水素生成側電極9となり自発的反応の可能性は無くなる。また、メタノールの酸化に必要なエネルギー(過電圧)も大きいため、電解反応を進めるには、外部から相当するエネルギーを供給し続ける必要がある。
【0068】
そのため、この水素供給部3では、燃料としてメタノールを用いる場合のように、外部電源からの電力により始動させる必要がなく、そのような外部電源を不要とすることができる。また、燃料電池部4が運転した後においても、燃料電池部4で発生した電力を水素供給部3に供給して、水素供給部3における水素ガスの生成を促進させる必要がないため、そのための回路を不要とすることができる。その結果、装置構成を非常にシンプルにすることができる。
【0069】
さらに、燃料としてメタノールを用いる場合には、燃料電池部4で発生した電力で水素供給部3における水素ガスの生成を促進させる必要があるため、燃料電池部4で発生した電力の一部を水素供給部3に供給しなければならず、その分のエネルギー効率の低下が不可避となるが、この燃料電池装置1によれば、水素供給部3に電力を供給しなくても、燃料の自発的な電解反応により効率よく水素ガスを得ることができるので、その分のエネルギー効率の低下がなく、エネルギー効率のよい発電を実現することができる。
【0070】
そのため、このような水素供給装置3は、従来より知られているような、液体燃料を水素ガスに改質するための改質装置に代えて用いることができるので、このような水素供給装置3を備える燃料電池装置1は、特に制限されることなく種々の分野、例えば、自動車などの輸送装置用動力源、屋外用可般式小型発電装置、携帯家電用の電源装置として、広く用いることができる。
【0071】
実施例
以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これら実施例に何ら制限されるものではない。
【0072】
実施例1
1)膜−電極接合体の作製
H2PtCl6溶液と、NaBH4(還元剤)とを、カチオン交換型パーフルオロ系固体高分子電解質膜(Nafion117(登録商標)、デュポン社製)からなる電解質膜10の両側にそれぞれ配置して、その電解質膜10の両面に、無電解めっきにより、Ptからなる燃料側電極8および水素生成側電極9をそれぞれ形成した。Ptの担持量は、両面ともに1mg/cm2であった。なお、得られた膜−電極接合体は、円形をなし、その電極面積は10cm2であった。
【0073】
2)水素供給装置の作製
集電体13としてチタンファイバーの焼結体を用い、ガス拡散層付き集電体14として撥水性カーボン層を塗布したカーボンクロスを用いて、これら、電解質膜10の両面に燃料側電極8および水素生成側電極9が形成された膜−電極接合体と、集電体13と、ガス拡散層付き集電体14とを、予め燃料供給部材11および水素排出部材12がセットされている試験用の水素生成セル7に挟み込むことにより、水素供給装置3を作製した。
【0074】
3)水素生成量と発生電圧の測定
燃料供給部材11には、2モル/Lに調整したヒドラジン・水和物(N2H4・H2O)水溶液を2mL/分で流通させ、水素排出部材12には、60℃に加湿したアルゴンガスを200mL/分で流通させた。なお、水素生成セル7は、60℃に温度調節した。
【0075】
外部回路21として、電流を調節するためのカレントパルスジェネレータ(HC−115型、北斗電工社製)を接続し、このカレントパルスジェネレータによって電流を調節しながら発生電圧を測定するとともに、水素排出部材12において発生した水素を、ガス流量測定装置とガスクロマトグラフとで測定することにより、水素生成量を測定した。
【0076】
その結果を図4に示す。
【0077】
実施例2
1)膜−電極接合体の作製
Pt(NH4)6Cl4溶液と、NaBH4(還元剤)とを、アニオン交換型パーフルオロ系固体高分子電解質膜(Tosflex SF−17(登録商標)、東ソー社製)からなる電解質膜10の両側にそれぞれ配置して、その電解質膜10の両面に、無電解めっきにより、Ptからなる燃料側電極8および水素生成側電極9をそれぞれ形成した。Ptの担持量は、両面ともに1mg/cm2であった。なお、得られた膜−電極接合体は、円形をなし、その電極面積は10cm2であった。
【0078】
2)水素供給装置の作製
集電体13としてチタンファイバーの焼結体を用い、ガス拡散層付き集電体14としてカーボンクロスを用いて、これら、電解質膜10の両面に燃料側電極8および水素生成側電極9が形成された膜−電極接合体と、集電体13と、ガス拡散層付き集電体14とを、予め燃料供給部材11および水素排出部材12がセットされている試験用の水素生成セル7に挟み込むことにより、水素供給装置3を作製した。
【0079】
3)水素生成量と発生電圧の測定
燃料供給部材11には、2モル/Lに調整したヒドラジン・水和物(N2H4・H2O)水溶液を2mL/分で流通させ、水素排出部材12には、60℃に加湿したアルゴンガスを200mL/分で流通させた。なお、水素生成セル7は、60℃に温度調節した。
【0080】
外部回路21として、電流を調節するためのカレントパルスジェネレータ(HC−115型、北斗電工社製)を接続し、このカレントパルスジェネレータによって電流を調節しながら発生電圧を測定するとともに、水素排出部材12において発生した水素を、ガス流量測定装置とガスクロマトグラフとで測定することにより、水素生成量を測定した。
【0081】
その結果を図5に示す。
【0082】
図4および図5から明らかなように、実施例1および実施例2の水素供給装置3では、閉回路時に0.04〜0.07Vの起電力が発生し、電流密度の増加に従って水素発生量(実線)が増加する一方、発生電圧(点線)が低下して、その発生電圧がゼロになったときに、自発的に得られる最大電流値(=最大水素生成量)が観測された。
【0083】
【発明の効果】
以上述べたように、本発明の水素供給装置によれば、標準酸化還元電位が0以下の燃料を用いるので、燃料の自発的な電解反応により、外部電源を不要とし、また、装置構成をシンプルにすることができ、さらには、エネルギー効率よく水素を生成させることができる。そのため、この水素供給装置を備える本発明の燃料電池装置によれば、簡易な構成により、効率のよい発電を実現することができる。
【図面の簡単な説明】
【図1】本発明の燃料電池装置の一実施形態を示す概略構成図である。
【図2】図1に示す燃料電池装置の水素供給装置の一実施形態を示す要部概略構成図である。
【図3】図1に示す燃料電池装置の燃料電池部の一実施形態を示す要部概略構成図である。
【図4】実施例1の水素供給装置(カチオン交換型)における、電流密度、発生電圧および水素生成量の関係を示す相関図である。
【図5】実施例2の水素供給装置(アニオン交換型)における、電流密度、発生電圧および水素生成量の関係を示す相関図である。
【符号の説明】
1 燃料電池装置
3 水素供給装置
4 燃料電池部
8 燃料側電極
9 水素生成側電極
10 電解質膜
32 水素側電極
33 酸素側電極
34 電解質膜
Claims (4)
- 標準酸化還元電位が0以下の燃料を分解する燃料側電極と、
前記燃料側電極に対向配置され、水素を生成させる水素生成側電極と、
前記燃料側電極と前記水素生成側電極との間に介在される電解質膜とを備えていることを特徴とする、水素供給装置。 - 標準酸化還元電位が0以下の燃料が、ヒドラジンであることを特徴とする、請求項1に記載の水素供給装置。
- 請求項1または2に記載の水素供給装置と、水素を燃料とする燃料電池部とを備えていることを特徴とする、燃料電池装置。
- 前記燃料電池部は、
前記水素生成側電極において発生した水素が供給される水素側電極と、
酸素または空気が供給される酸素側電極と、
前記水素側電極と前記酸素側電極との間に介在される固体高分子電解質膜とを備えていることを特徴とする、請求項3に記載の燃料電池装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003209192A JP2005071645A (ja) | 2003-08-28 | 2003-08-28 | 水素供給装置および燃料電池装置 |
US10/926,244 US20050106430A1 (en) | 2003-08-28 | 2004-08-26 | Hydrogen supply device and fuel-cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003209192A JP2005071645A (ja) | 2003-08-28 | 2003-08-28 | 水素供給装置および燃料電池装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005071645A true JP2005071645A (ja) | 2005-03-17 |
Family
ID=34402210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003209192A Pending JP2005071645A (ja) | 2003-08-28 | 2003-08-28 | 水素供給装置および燃料電池装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20050106430A1 (ja) |
JP (1) | JP2005071645A (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006244961A (ja) * | 2005-03-07 | 2006-09-14 | Daihatsu Motor Co Ltd | 燃料電池 |
JP2006244960A (ja) * | 2005-03-07 | 2006-09-14 | Daihatsu Motor Co Ltd | 燃料電池 |
JP2009269781A (ja) * | 2008-05-07 | 2009-11-19 | National Institute Of Advanced Industrial & Technology | 水素発生方法 |
CN101971743A (zh) * | 2010-09-15 | 2011-02-16 | 无锡同春新能源科技有限公司 | 风氢新能源应用在采棉机上的动力装置 |
CN101971733A (zh) * | 2010-08-26 | 2011-02-16 | 无锡同春新能源科技有限公司 | 一种将太阳氢新能源作为动力装置的收割机 |
CN101971741A (zh) * | 2010-09-13 | 2011-02-16 | 无锡同春新能源科技有限公司 | 太阳氢新能源应用在采棉机上的动力装置 |
CN101971738A (zh) * | 2010-09-24 | 2011-02-16 | 无锡同春新能源科技有限公司 | 一种将太阳氢新能源作为动力装置的玉米收割机 |
JP2012148225A (ja) * | 2011-01-18 | 2012-08-09 | National Institute Of Advanced Industrial Science & Technology | 水素化物の電気化学的酸化用触媒 |
JP2014040625A (ja) * | 2012-08-21 | 2014-03-06 | National Institute Of Advanced Industrial & Technology | ヒドラジン化合物からの水素発生方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2890786B1 (fr) * | 2005-09-13 | 2007-10-19 | Air Liquide | Installation stationnaire de fourniture d'energie electrique comprenant une pile a combustible |
EP2269253A1 (en) * | 2008-11-12 | 2011-01-05 | Ramot at Tel-Aviv University Ltd. | A direct liquid fuel cell having hydrazine or derivatives thereof as fuel |
JP5751516B2 (ja) * | 2011-09-07 | 2015-07-22 | 国立研究開発法人産業技術総合研究所 | 水素発生用触媒及び水素発生方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6758871B2 (en) * | 2002-11-20 | 2004-07-06 | More Energy Ltd. | Liquid fuel compositions for electrochemical fuel cells |
-
2003
- 2003-08-28 JP JP2003209192A patent/JP2005071645A/ja active Pending
-
2004
- 2004-08-26 US US10/926,244 patent/US20050106430A1/en not_active Abandoned
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006244961A (ja) * | 2005-03-07 | 2006-09-14 | Daihatsu Motor Co Ltd | 燃料電池 |
WO2006095840A1 (ja) * | 2005-03-07 | 2006-09-14 | Daihatsu Motor Co., Ltd. | 燃料電池 |
JP2006244960A (ja) * | 2005-03-07 | 2006-09-14 | Daihatsu Motor Co Ltd | 燃料電池 |
JP2009269781A (ja) * | 2008-05-07 | 2009-11-19 | National Institute Of Advanced Industrial & Technology | 水素発生方法 |
CN101971733A (zh) * | 2010-08-26 | 2011-02-16 | 无锡同春新能源科技有限公司 | 一种将太阳氢新能源作为动力装置的收割机 |
CN101971741A (zh) * | 2010-09-13 | 2011-02-16 | 无锡同春新能源科技有限公司 | 太阳氢新能源应用在采棉机上的动力装置 |
CN101971743A (zh) * | 2010-09-15 | 2011-02-16 | 无锡同春新能源科技有限公司 | 风氢新能源应用在采棉机上的动力装置 |
CN101971738A (zh) * | 2010-09-24 | 2011-02-16 | 无锡同春新能源科技有限公司 | 一种将太阳氢新能源作为动力装置的玉米收割机 |
JP2012148225A (ja) * | 2011-01-18 | 2012-08-09 | National Institute Of Advanced Industrial Science & Technology | 水素化物の電気化学的酸化用触媒 |
JP2014040625A (ja) * | 2012-08-21 | 2014-03-06 | National Institute Of Advanced Industrial & Technology | ヒドラジン化合物からの水素発生方法 |
Also Published As
Publication number | Publication date |
---|---|
US20050106430A1 (en) | 2005-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5242764A (en) | Near ambient, unhumidified solid polymer fuel cell | |
CA2646422C (en) | Fuel cell implementing fuel deficiency countermeasures at the anode and cathode | |
US20110065016A1 (en) | Fuel cell and fuel cell layer | |
US20080138668A1 (en) | Direct methanol fuel cell | |
JP2010525535A (ja) | 電気化学的改質器および燃料電池を備える、電気エネルギーを発生させるためのシステム | |
US20040166397A1 (en) | Cathode structure for direct methanol fuel cell | |
US20100167099A1 (en) | Membrance electrode assembly (mea) structure and manufacturing method thereof | |
US20050095465A1 (en) | Fuel cell | |
JP2005071645A (ja) | 水素供給装置および燃料電池装置 | |
JP2002231265A (ja) | 燃料電池 | |
JP6998797B2 (ja) | 有機ハイドライド製造装置、有機ハイドライドの製造方法およびエネルギー輸送方法 | |
JP2008210581A (ja) | 燃料電池 | |
US6730424B1 (en) | Electrochemical method to improve the performance of H2/air PEM fuel cells and direct methanol fuel cells | |
JP4054095B2 (ja) | 直接型ジメチルエーテル燃料電池、直接型積層ジメチルエーテル燃料電池システム、発電方法および前記燃料電池用電極触媒 | |
WO2007119130A1 (en) | Fuel cell | |
JP2003510767A (ja) | 内部改質器を有する燃料電池及びその作動方法 | |
JP2007141477A (ja) | 触媒材料及びそれを用いた電解質膜−電極接合体と燃料電池 | |
CN101151754B (zh) | 燃料电池 | |
JP2007018858A (ja) | 燃料電池システム | |
JP2016012537A (ja) | 燃料電池用ガス拡散シートおよび燃料電池 | |
US20120164554A1 (en) | Membrane electrode assembly, fuel cell with the same, and fuel cell generating system | |
WO2012102715A1 (en) | A membrane electrode assembly for fuel cells | |
JP2003308869A (ja) | 燃料電池 | |
US7910252B2 (en) | Hydrogen supply system | |
WO2009119434A1 (ja) | 燃料電池ユニット、燃料電池スタックおよび電子機器 |