JP2005066660A - Molding stock manufacturing method - Google Patents

Molding stock manufacturing method Download PDF

Info

Publication number
JP2005066660A
JP2005066660A JP2003301364A JP2003301364A JP2005066660A JP 2005066660 A JP2005066660 A JP 2005066660A JP 2003301364 A JP2003301364 A JP 2003301364A JP 2003301364 A JP2003301364 A JP 2003301364A JP 2005066660 A JP2005066660 A JP 2005066660A
Authority
JP
Japan
Prior art keywords
molten metal
cooling rod
solid
water
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003301364A
Other languages
Japanese (ja)
Other versions
JP4253549B2 (en
Inventor
Noriyuki Ueno
紀幸 上野
Tsuyoshi Fujita
剛志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Light Metal Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Toyota Motor Corp filed Critical Nippon Light Metal Co Ltd
Priority to JP2003301364A priority Critical patent/JP4253549B2/en
Publication of JP2005066660A publication Critical patent/JP2005066660A/en
Application granted granted Critical
Publication of JP4253549B2 publication Critical patent/JP4253549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding stock manufacturing method capable of realizing sufficiently large grain refining effect even during the continuous casting. <P>SOLUTION: In the continuous casting in which molten metal M is poured into a water-cooled mold 1 from the top, and a cast ingot 7 is continuously drawn by using a movable panel 6 from a bottom of the mold 1, a cooling bar 10 is inserted into a liquid phase area A or solid/liquid phase coexistent area B in the water-cooled mold 1, and the cooling bar 10 is rotated and vertically oscillated by a rotary unit 11 and an exciting means 12 while performing electromagnetic stirring of the molten metal M by an electromagnetic stirring device 9. A large amount of fine primary crystals are formed around the cooling bar 10 by the contact of the cooling bar 10 with the molten metal M. The primary crystals are dispersed into the solid/liquid phase coexistent area B in the electromagnetic-stirred molten metal flow. In the solid/liquid phase coexistent area B, the molten metal is started to solidify with the primary crystals as a crystal nucleus, and the growth and coarsening of crystalline particles are suppressed thereby. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、連続鋳造(半連続鋳造も含む)により成形素材を得る技術に係り、より詳しくは結晶粒の微細化対策を施した成形素材の製造方法に関する。   The present invention relates to a technique for obtaining a molding material by continuous casting (including semi-continuous casting), and more particularly to a method of manufacturing a molding material in which measures for crystal grain refinement are taken.

連続鋳造法は、鋳型内に上方から溶湯を注入し、前記鋳型の底部から鋳塊を連続に引出す鋳造法であり、生産性に優れかつ材料歩留りが良好であることから、鍛造、圧延、押出、伸線等の成形素材の製造に多く用いられている。
一方、最近、成形素材を半溶融状態として成形を行う、いわゆる半溶融成形が注目を集めている。この半溶融成形によれば、汎用のダイカスト鋳造に比べて、結晶粒が細かく機械的性質に優れた成形品が得られ、例えばアルミニウム系材料、マグネシウム系材料等の自動車部品の製造に有用となる。しかるに、この半溶融成形によれば、成形素材における結晶組織が成形後の機械的性質に大きく影響することが確認されており、したがって、上記した連続鋳造で得られる成形素材を半溶融成形に用いる場合には、当然に結晶粒の細かいことが要求される。
なお、上記鍛造、圧延、押出、伸線等の一般的な成形に用いられる成形材料においても、結晶粒の細かいことが要求されることは、もちろんである。
The continuous casting method is a casting method in which molten metal is poured into the mold from above, and the ingot is continuously drawn out from the bottom of the mold, and because it has excellent productivity and good material yield, forging, rolling, extrusion It is often used in the production of molding materials such as wire drawing.
On the other hand, so-called semi-molten molding, in which molding is performed with a molding material in a semi-molten state, has recently attracted attention. According to this semi-melt molding, compared with general-purpose die casting, a molded product with fine crystal grains and excellent mechanical properties can be obtained. For example, it is useful for manufacturing automobile parts such as aluminum-based materials and magnesium-based materials. . However, according to this semi-melt molding, it has been confirmed that the crystal structure in the molding material greatly affects the mechanical properties after molding. Therefore, the molding material obtained by the above continuous casting is used for the semi-melt molding. In some cases, the crystal grains are naturally required to be fine.
Needless to say, fine crystal grains are also required in molding materials used for general molding such as forging, rolling, extrusion, and wire drawing.

ところで、溶融金属を耐熱容器内で半凝固状態のスラリーとして成形機へ直接供給する、いわゆる半凝固鋳造プロセスの分野では、例えば特許文献1に記載されるように、溶湯を電磁攪拌しながらこれに超音波振動を加えることで、結晶粒を微細化することを行っている。したがって、この技術を上記した連続鋳造に適用することで、結晶粒の微細化を図ることができるものと期待される。   By the way, in the field of so-called semi-solid casting process in which molten metal is directly supplied to a molding machine as a semi-solid slurry in a heat-resistant container, for example, as described in Patent Document 1, the molten metal is mixed with this while electromagnetically stirring. Crystal grains are refined by applying ultrasonic vibration. Therefore, it is expected that crystal grains can be refined by applying this technique to the above-described continuous casting.

特開2000−246415号公報JP 2000-246415 A

しかしながら、上記特許文献1記載される技術を単に連続鋳造に適用した場合は、耐熱容器内でバッチ式に処理する半凝固鋳造プロセスと異なって、水冷鋳型との接触で凝固が短時間で進むため、超音波振動と電磁攪拌とを組合せただけでは、十分なる結晶粒の微細化効果が得られない虞れがある。
本発明は、上記した技術的背景に鑑みてなされたもので、その課題とするところは、連続鋳造においても、十分なる結晶粒の微細化効果をあげることができる成形素材の製造方法を提供することにある。
However, when the technique described in Patent Document 1 is simply applied to continuous casting, solidification proceeds in a short time by contact with a water-cooled mold, unlike a semi-solid casting process in which batch processing is performed in a heat-resistant container. There is a possibility that sufficient crystal grain refining effect cannot be obtained only by combining ultrasonic vibration and electromagnetic stirring.
The present invention has been made in view of the above-described technical background, and an object of the present invention is to provide a method for producing a molding material capable of providing a sufficient crystal grain refinement effect even in continuous casting. There is.

上記課題を解決するため、本発明は、水冷鋳型内に上方から溶湯を注入し、前記鋳型の底部から鋳塊を連続に引出す連続鋳造により成形素材を得る方法おいて、前記連続鋳造に際し、前記鋳塊よりも上側の液相領域または固・液共存相領域に冷却棒を挿入し、溶湯を電磁攪拌しながら前記冷却棒を回転させることを特徴とする。
このように行う成形素材の製造方法においては、回転する冷却棒に溶湯が接触することで、溶湯内に多量の微細な初晶が発生し、この発生した初晶は、溶湯に対する冷却棒による機械的攪拌と溶湯の電磁攪拌とにより固・液共存相領域内に分散し、固・液共存相領域内では、この微細な初晶を核として凝固が進み、結晶粒の成長、粗大化が効果的に抑えられる。
本発明において、上記冷却棒は、回転に加えて、その軸方向へ縦振動させるようにしてもよく、これにより初晶の発生および分散がより促進される。
また、この冷却棒は、上記回転および縦振動に加えて公転運動させるようにしても、さらに、公転運動の軌跡を中心に該軌跡に交差する方向へ振動させるようにしてもよく、冷却棒のこれらの動きにより初晶の発生および分散がより一層促進される。
本発明において、上記成形素材の種類(使用目的)は任意であるが、半溶融成形用ビレットとすることでき、かかるビレットを用いることで、半溶融成形で得られる成形品の機械的性質が向上する。
In order to solve the above-mentioned problem, the present invention is a method for injecting molten metal from above into a water-cooled mold and obtaining a molding material by continuous casting in which an ingot is continuously drawn from the bottom of the mold. A cooling rod is inserted into the liquid phase region or the solid / liquid coexisting phase region above the ingot, and the cooling rod is rotated while electromagnetically stirring the molten metal.
In the molding material manufacturing method performed in this way, a large amount of fine primary crystals are generated in the molten metal due to the molten metal coming into contact with the rotating cooling rod, and the generated primary crystal is a machine with a cooling rod for the molten metal. Is dispersed in the solid-liquid coexistence phase region by mechanical stirring and electromagnetic stirring of the molten metal, and solidification progresses with this fine primary crystal as a nucleus in the solid-liquid coexistence phase region, and the growth and coarsening of the crystal grains are effective. Can be suppressed.
In the present invention, the cooling rod may be caused to vibrate longitudinally in the axial direction in addition to rotation, thereby further promoting the generation and dispersion of primary crystals.
The cooling rod may be revolved in addition to the rotation and longitudinal vibration, or may be vibrated in a direction intersecting the trajectory centering on the trajectory of the revolving motion. These movements further promote the generation and dispersion of primary crystals.
In the present invention, the type (purpose of use) of the molding material is arbitrary, but it can be a semi-melt molding billet. By using such a billet, the mechanical properties of a molded product obtained by semi-melt molding are improved. To do.

本発明に係る成形素材の製造方法によれば、結晶粒の細かい成形素材を連続鋳造により安定して得ることができるので、各種成形特に半溶融成形で得られる成形品の機械的性質の向上に大きく寄与する。   According to the method for producing a molding material according to the present invention, a molding material with fine crystal grains can be stably obtained by continuous casting, so that the mechanical properties of molded products obtained by various moldings, particularly semi-melt molding, can be improved. A big contribution.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。
図1は、本発明に係る成形材料の製造方法を実施するための連続鋳造装置と該装置を用いて行う連続鋳造の実施状況を示したものである。同図において、1は、上部および下部を開放した円筒状の水冷鋳型であり、断熱材からなる上部型体2と金属製の下部型体3との二段構造となっている。下部型体3の内部にはウォータジャケット4が設けられており、このウォータジャケット4には、図示を略す給水手段から冷却水Wが給送されるようになっている。また、下部型体3の下端内周縁部には、前記ウォータジャケット4内の冷却水Wを斜め下方へ向けて逆円錐状に噴射するスリット5が設けられている。なお、このスリット5は、複数の噴射口に替えてもよい。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a continuous casting apparatus for carrying out the method for producing a molding material according to the present invention and a state of continuous casting performed using the apparatus. In the figure, reference numeral 1 denotes a cylindrical water-cooled mold whose upper and lower portions are open, and has a two-stage structure of an upper mold body 2 made of a heat insulating material and a metal lower mold body 3. A water jacket 4 is provided inside the lower mold 3, and cooling water W is supplied to the water jacket 4 from a water supply means (not shown). In addition, a slit 5 for injecting the cooling water W in the water jacket 4 obliquely downward in an inverted conical shape is provided on the inner peripheral edge at the lower end of the lower mold body 3. The slit 5 may be replaced with a plurality of injection ports.

上記水冷鋳型1の下方には、昇降可能に可動盤6が配設されている。この可動盤6は、水冷鋳型1内に注入された溶湯Mを受け、かつ凝固後の鋳塊7を下方へ引出す役割をなすもので、昇降駆動手段8の昇降ロッド8aの上端に支持されている。
また、水冷鋳型1の周りには、該水冷鋳型1内の溶湯Mを電磁攪拌するための電磁攪拌装置9の電磁コイル9aが配設されている。
Below the water-cooled mold 1, a movable platen 6 is disposed so as to be movable up and down. The movable plate 6 serves to receive the molten metal M injected into the water-cooled mold 1 and to draw the solidified ingot 7 downward, and is supported by the upper end of the lifting rod 8a of the lifting drive means 8. Yes.
An electromagnetic coil 9a of an electromagnetic stirring device 9 for electromagnetically stirring the molten metal M in the water-cooled mold 1 is disposed around the water-cooled mold 1.

一方、水冷鋳型1の上方には、冷却棒10とこの冷却棒10を支持し回転させる回転ユニット(回転駆動手段)11とが配設されている。この回転ユニット11には冷却棒10が吊下支持されている。回転ユニット11は、図示を略す昇降手動に支持されて任意昇降するようになっており、この回転ユニット11の昇降に応じて、冷却棒10の下端部が水冷鋳型1内に挿入されるようになる。冷却棒10はまた、その上端部が前記回転ユニット11を挿通して延ばされており、その上端には加振手段12が設置されている。加振手段12は、冷却棒10に縦振動を付与するためのもので、これにより冷却棒10は、水冷鋳型1内で縦振動しながら回転するようになる。   On the other hand, a cooling rod 10 and a rotation unit (rotation drive means) 11 that supports and rotates the cooling rod 10 are disposed above the water-cooled mold 1. A cooling rod 10 is suspended and supported on the rotating unit 11. The rotary unit 11 is supported by a lifting manual (not shown) and is arbitrarily lifted and lowered so that the lower end of the cooling rod 10 is inserted into the water-cooled mold 1 according to the lifting and lowering of the rotating unit 11. Become. The cooling rod 10 is also extended at its upper end through the rotary unit 11, and the vibration means 12 is installed at its upper end. The vibration means 12 is for imparting longitudinal vibration to the cooling rod 10, whereby the cooling rod 10 rotates while being longitudinally vibrated in the water-cooled mold 1.

本実施形態において、上記冷却棒10の設置位置は任意であり、図2(1)に示すように水冷鋳型1と同心に設置しても、あるいは同図(2)に示すように水冷鋳型1の偏心位置に設置してもよい。また、この冷却棒10の材種は、鋳造すべき金属よりも融点が高ければ任意であり、例えばアルミニウム系材料を鋳造する場合は、鉄系材料はもとより、銅系材料、セラミックス等を選択することができる。   In the present embodiment, the position of the cooling rod 10 is arbitrary. Even if it is installed concentrically with the water-cooled mold 1 as shown in FIG. 2 (1), or the water-cooled mold 1 as shown in FIG. You may install in the eccentric position. The material of the cooling rod 10 is arbitrary as long as it has a melting point higher than that of the metal to be cast. For example, when casting an aluminum-based material, a copper-based material, ceramics, etc. are selected as well as an iron-based material. be able to.

連続鋳造に際しては、予め昇降駆動手段8の昇降ロッド8aと一体に可動盤6を上昇させて、該可動盤6を水冷鋳型1の下部型体3の開口端部内に位置決めしておく。また、回転ユニット11と一体に冷却棒10を下降させ、その下端部を水冷鋳型1内の、後述する適当深さまで挿入する。
上記準備完了後、図示を略す注湯管を通して水冷鋳型1内に溶湯Mを注入する。すると、溶湯Mは、前記可動盤6上に滞留し、次第にその液面を上昇させ、この間、可動盤6および内部冷却されている下部型体3に接触する部分から凝固が始まる。そして、この凝固開始にタイミングを合せて昇降駆動手段8が作動し、昇降ロッド8aと一体に可動盤6が一定速度で下降する。すると、この可動盤6の下降に追従して鋳塊7が水冷鋳型1の下方へ次第に引出される。この時、下部型体3のスリット5から冷却水Wが内方へ向けて噴射されているので、鋳塊7は、その外周面から急速に冷却され、これにより固相線Sは、図1に示すように下部型体3の開口端よりわずか上側に寄った位置を維持する。
In continuous casting, the movable plate 6 is raised in advance integrally with the lifting rod 8 a of the lifting drive means 8, and the movable plate 6 is positioned in the open end of the lower mold body 3 of the water-cooled mold 1. Further, the cooling rod 10 is lowered integrally with the rotary unit 11, and the lower end thereof is inserted into the water-cooled mold 1 to an appropriate depth described later.
After completion of the preparation, the molten metal M is poured into the water-cooled mold 1 through a pouring pipe (not shown). Then, the molten metal M stays on the movable platen 6 and gradually raises its liquid level. During this time, solidification starts from the portion that contacts the movable platen 6 and the lower mold body 3 that is internally cooled. Then, the raising / lowering driving means 8 operates in synchronization with the start of solidification, and the movable plate 6 is lowered at a constant speed integrally with the raising / lowering rod 8a. Then, the ingot 7 is gradually pulled out below the water-cooled mold 1 following the lowering of the movable platen 6. At this time, since the cooling water W is sprayed inward from the slit 5 of the lower mold body 3, the ingot 7 is rapidly cooled from the outer peripheral surface thereof, whereby the solidus S is shown in FIG. As shown in FIG. 4, the position slightly above the opening end of the lower mold body 3 is maintained.

一方、水冷鋳型1内の上部側に溜まった溶湯Mは、断熱材製の上部型体2との接触で溶融状態を維持しており、液相領域Aを確定する液相線Lは、上部型体2と下部型体3との境界付近に存在する。しかして、この液相線Lと上記固相線Sとの間は、液相と固相とが共存する固・液共存相領域Bとなっており、鋳塊7は、この固・液共存相領域B内で成長し、上記可動盤6の下降に応じて次第にその長さを増加させる。   On the other hand, the molten metal M accumulated on the upper side in the water-cooled mold 1 maintains a molten state in contact with the upper mold body 2 made of a heat insulating material, and the liquidus line L defining the liquidus region A is It exists near the boundary between the mold 2 and the lower mold 3. Thus, between the liquidus line L and the solidus line S is a solid / liquid coexisting phase region B in which the liquid phase and the solid phase coexist, and the ingot 7 It grows in the phase region B, and its length is gradually increased as the movable platen 6 descends.

本実施形態においては、図1に示すように冷却棒10の先端部を上記液相領域Aに浸漬させている。また、水冷鋳型1内への溶湯の充填完了と前後して上記電磁攪拌装置9が起動される。冷却棒10は、加振手段12と回転ユニット11とによりその軸方向に縦振動を起こしながら回転しており、これにより冷却棒10には常に新鮮な溶湯Mが接触し、この結果、冷却棒10の周りには微細な初晶が多量に発生する。一方、この多量に発生した初晶は、電磁攪拌装置9により電磁攪拌される溶湯Mの流れに乗って固・液共存相領域B内に分散する。これにより固・液共存相領域B内では、前記微細な初晶が核となって凝固が進み、この結果、樹枝状晶(デンドライト)の生成が抑制され、結晶粒の成長および粗大化が効果的に抑えられる。
すなわち、得られた鋳塊7は、微細な球状結晶が集合する組織となっており、したがって、この鋳塊7を半溶融成形用ビレットとして用いた場合は、強度および靭性(機械的性質)に著しく優れた半溶融成形品が得られるようになる。
In the present embodiment, as shown in FIG. 1, the tip of the cooling rod 10 is immersed in the liquid phase region A. Further, the electromagnetic stirring device 9 is started before or after the filling of the molten metal into the water-cooled mold 1 is completed. The cooling rod 10 rotates while causing longitudinal vibration in the axial direction by the vibration means 12 and the rotating unit 11, so that the fresh molten metal M always contacts the cooling rod 10, and as a result, the cooling rod 10 A large amount of fine primary crystals are generated around 10. On the other hand, the primary crystals generated in a large amount are dispersed in the solid / liquid coexistence phase region B on the flow of the molten metal M that is electromagnetically stirred by the electromagnetic stirring device 9. As a result, in the solid-liquid coexistence phase region B, the fine primary crystals become nuclei and solidification progresses. As a result, the formation of dendrites is suppressed, and the growth and coarsening of crystal grains are effective. Can be suppressed.
That is, the obtained ingot 7 has a structure in which fine spherical crystals are aggregated. Therefore, when this ingot 7 is used as a billet for semi-melt molding, the strength and toughness (mechanical properties) are improved. A remarkably excellent semi-molten molded product can be obtained.

ここで、上記実施形態においては、冷却棒10を液相領域Aに浸漬させるようにしたが、この冷却棒10は、固・液共存相領域Bに浸漬させるようにしてもよい。このように冷却棒10を固・液共存相領域Bに浸漬させた場合は、初晶の発生に加え、冷却棒10の機械的攪拌による初晶の破壊が起こるので、結晶粒はより一層微細化する。   In the above embodiment, the cooling rod 10 is immersed in the liquid phase region A. However, the cooling rod 10 may be immersed in the solid / liquid coexisting phase region B. Thus, when the cooling rod 10 is immersed in the solid / liquid coexistence phase region B, the primary crystal is broken by mechanical stirring of the cooling rod 10 in addition to the generation of the primary crystal, so that the crystal grains are much finer. Turn into.

また、上記冷却棒10は、例えば図3に示すように、回転しながら公転運動させるようにしても、図4に示すように、公転運動の軌跡を中心にこれに交差する方向へ振動(ここでは、螺旋運動)させるようにしても、あるいは水冷鋳型1の半径方向へ横振動させるようにしてもよい。このような冷却棒10の動きにより、初晶の発生および破壊がより一層促進され、結晶粒はより一層微細化する。なお、このような冷却棒10の運動は、これを支持する回転ユニット11を介して容易に実施することができる。
なお、本発明は、半連続鋳造を行ってもよいもので、この場合は、水冷鋳型1内に所定量の溶湯Mを注入することで、所定長の鋳塊が得られるようになる。
Further, for example, as shown in FIG. 3, the cooling rod 10 oscillates in a direction intersecting with the center of the revolving motion locus as shown in FIG. Then, a spiral motion) may be performed, or the water-cooled mold 1 may be laterally vibrated in the radial direction. By such movement of the cooling rod 10, the generation and destruction of primary crystals are further promoted, and the crystal grains are further refined. In addition, such a movement of the cooling rod 10 can be easily performed through the rotating unit 11 that supports the cooling rod 10.
In the present invention, semi-continuous casting may be performed. In this case, a predetermined length of ingot is obtained by injecting a predetermined amount of molten metal M into the water-cooled mold 1.

本発明に係る成形材料の製造方法を実施するための連続鋳造装置と該装置を用いて行う連続鋳造の実施状況を示す断面図である。It is sectional drawing which shows the implementation condition of the continuous casting performed using the continuous casting apparatus for implementing the manufacturing method of the molding material which concerns on this invention, and this apparatus. 本連続鋳造の実施に用いる冷却棒の設置態様と動きとを示す模式図である。It is a schematic diagram which shows the installation aspect and movement of a cooling rod used for implementation of this continuous casting. 本連続鋳造の実施に用いる冷却棒の、他の設置態様と動きとを示す模式図である。It is a schematic diagram which shows the other installation aspect and movement of the cooling rod used for implementation of this continuous casting. 本連続鋳造の実施に用いる冷却棒の、さらに他の設置態様と動きとを示す模式図である。It is a schematic diagram which shows the further another installation aspect and movement of the cooling rod used for implementation of this continuous casting.

符号の説明Explanation of symbols

1 水冷鋳型
6 可動盤
7 鋳塊
9 電磁攪拌装置
10 冷却棒
11 回転ユニット
12 加振手段
M 溶湯
A 液相領域
B 固・液共存相領域
W 冷却水

1 Water-cooled mold 6 Movable platen 7 Ingot 9 Electromagnetic stirrer 10 Cooling rod 11 Rotating unit 12 Exciting means M Molten metal A Liquid phase region B Solid / liquid coexisting phase region W Cooling water

Claims (5)

水冷鋳型内に上方から溶湯を注入し、前記鋳型の底部から鋳塊を連続に引出す連続鋳造により成形素材を得る方法において、前記連続鋳造に際し、前記鋳塊よりも上側の液相領域または固・液共存相領域に冷却棒を挿入し、溶湯を電磁攪拌しながら前記冷却棒を回転させることを特徴とする成形素材の製造方法。   In the method of obtaining a molding material by continuous casting by pouring molten metal from above into a water-cooled mold and continuously drawing the ingot from the bottom of the mold, in the continuous casting, the liquid phase region above the ingot or solid / solid A method for producing a molding material, comprising inserting a cooling rod into a liquid coexisting phase region and rotating the cooling rod while electromagnetically stirring the molten metal. 冷却棒を、その軸方向へ縦振動させることを特徴とする請求項1に記載の成形素材の製造方法。   The method for producing a molding material according to claim 1, wherein the cooling rod is longitudinally vibrated in the axial direction thereof. 冷却棒を、公転運動させることを特徴とする請求項1または2に記載の成形素材の製造方法。   The method for producing a molding material according to claim 1 or 2, wherein the cooling rod is revolved. 冷却棒を、公転運動の軌跡を中心に該軌跡に交差する方向へ振動させることを特徴とする請求項3に記載の成形素材の製造方法。   4. The method of manufacturing a molding material according to claim 3, wherein the cooling rod is vibrated in a direction crossing the trajectory of the revolving motion as a center. 成形素材が、半溶融成形用ビレットであることを特徴とする請求項1乃至4の何れか1項に記載の成形素材の製造方法。

The method for producing a molding material according to any one of claims 1 to 4, wherein the molding material is a billet for semi-melt molding.

JP2003301364A 2003-08-26 2003-08-26 Manufacturing method of molding material Expired - Fee Related JP4253549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301364A JP4253549B2 (en) 2003-08-26 2003-08-26 Manufacturing method of molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301364A JP4253549B2 (en) 2003-08-26 2003-08-26 Manufacturing method of molding material

Publications (2)

Publication Number Publication Date
JP2005066660A true JP2005066660A (en) 2005-03-17
JP4253549B2 JP4253549B2 (en) 2009-04-15

Family

ID=34406008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301364A Expired - Fee Related JP4253549B2 (en) 2003-08-26 2003-08-26 Manufacturing method of molding material

Country Status (1)

Country Link
JP (1) JP4253549B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161081A (en) * 2011-04-01 2011-08-24 天津福来明思铝业有限公司 Continuous casting method for producing aluminium alloy semisolid casting ingot
JP5680244B1 (en) * 2014-04-23 2015-03-04 株式会社Lafジャパン Alloy refinement method and precipitate refinement apparatus used therefor
CN106563777A (en) * 2015-10-08 2017-04-19 富准精密工业(深圳)有限公司 Preparation method and device for semi-solid metal slurry
CN106925735A (en) * 2015-12-30 2017-07-07 北京有色金属研究总院 A kind of device and method for preparing big specification high-quality aluminium alloy cast ingot
CN106925730A (en) * 2015-12-30 2017-07-07 北京有色金属研究总院 The preparation facilities and method of a kind of big specification fine grain homogeneous aluminium alloy cast ingot
CN108788031A (en) * 2018-05-25 2018-11-13 南京尚吉增材制造研究院有限公司 Continuous water mold and coagulation forming method
CN113438993A (en) * 2019-02-13 2021-09-24 诺维尔里斯公司 Cast metal product with high grain roundness
CN117564231A (en) * 2023-10-24 2024-02-20 湖南镁宇科技有限公司 AQ80M magnesium alloy oversized ingot blank and preparation method and application thereof
CN118002767A (en) * 2024-04-10 2024-05-10 东北大学 Device and process method for vibration chilling nucleation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451463A (en) * 2020-04-17 2020-07-28 江苏环胜合金科技有限公司 High-precision silver-copper bar semi-continuous casting equipment with stirring vibration device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161081A (en) * 2011-04-01 2011-08-24 天津福来明思铝业有限公司 Continuous casting method for producing aluminium alloy semisolid casting ingot
JP5680244B1 (en) * 2014-04-23 2015-03-04 株式会社Lafジャパン Alloy refinement method and precipitate refinement apparatus used therefor
CN106563777A (en) * 2015-10-08 2017-04-19 富准精密工业(深圳)有限公司 Preparation method and device for semi-solid metal slurry
CN106925735A (en) * 2015-12-30 2017-07-07 北京有色金属研究总院 A kind of device and method for preparing big specification high-quality aluminium alloy cast ingot
CN106925730A (en) * 2015-12-30 2017-07-07 北京有色金属研究总院 The preparation facilities and method of a kind of big specification fine grain homogeneous aluminium alloy cast ingot
CN106925730B (en) * 2015-12-30 2019-06-18 北京有色金属研究总院 A kind of preparation facilities and method of big specification fine grain homogeneous aluminium alloy cast ingot
CN106925735B (en) * 2015-12-30 2019-06-18 北京有色金属研究总院 A kind of device and method preparing big specification high-quality aluminium alloy cast ingot
CN108788031A (en) * 2018-05-25 2018-11-13 南京尚吉增材制造研究院有限公司 Continuous water mold and coagulation forming method
CN113438993A (en) * 2019-02-13 2021-09-24 诺维尔里斯公司 Cast metal product with high grain roundness
CN117564231A (en) * 2023-10-24 2024-02-20 湖南镁宇科技有限公司 AQ80M magnesium alloy oversized ingot blank and preparation method and application thereof
CN118002767A (en) * 2024-04-10 2024-05-10 东北大学 Device and process method for vibration chilling nucleation

Also Published As

Publication number Publication date
JP4253549B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
CN101660063B (en) Device for preparing semi-solid alloy melt and process for preparing AlSi9Mg semi-solid alloy
JP4836244B2 (en) Casting method
JP3630327B2 (en) Solid-liquid coexistence state metal slurry production equipment
JP4154385B2 (en) Solid-liquid coexistence state metal material manufacturing equipment
JP3549054B2 (en) Method and apparatus for producing metallic material in solid-liquid coexistence state, method and apparatus for producing semi-solid metal slurry
JP4253549B2 (en) Manufacturing method of molding material
CN105772654A (en) Stirring and mixing method for solid-liquid metal
CN101234420A (en) Ultrasound wave compression mold casting method and special-purpose equipment thereof
JP2010247179A (en) Method of manufacturing aluminum alloy ingot, and the aluminum alloy ingot
JP3520994B1 (en) Solid-liquid coexisting metal slurry manufacturing equipment
CN201512567U (en) Device for preparing semi-solid alloy melt
CN102836971B (en) Electromagnetic stirring water-cooled mold and method for pouring steel ingot
KR200320004Y1 (en) Apparatus for producing a semi-solid metallic slurry
JP2008105038A (en) Apparatus for continuously casting magnesium alloy
CN1332773C (en) Improved method of vibration exciting metal liquid shape crystal nucleus and its device
EP1970144B1 (en) Supply method and apparatus for semi-solid metal
CN107498010A (en) The preparation technology and device of a kind of light alloy semisolid slurry
CN1301166C (en) Preparation method of high speed steel blank and its equipment
CN108145099B (en) Method and device for preparing large composite steel ingot by rotary insert core blank
JP4314207B2 (en) Casting method and casting apparatus
CN1142044C (en) Technology for manufacturing circular alloy blank used for semi-solid processing
CN104439196B (en) The technique of consumable shear flow method thinning solidification structure and device thereof
JP3685459B1 (en) Solid-liquid coexistence state metal slurry manufacturing method and manufacturing apparatus thereof
JP7135556B2 (en) Method for manufacturing titanium ingot
JP3632179B1 (en) Solid-liquid coexisting state metal material production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees