JP2008105038A - Apparatus for continuously casting magnesium alloy - Google Patents

Apparatus for continuously casting magnesium alloy Download PDF

Info

Publication number
JP2008105038A
JP2008105038A JP2006288108A JP2006288108A JP2008105038A JP 2008105038 A JP2008105038 A JP 2008105038A JP 2006288108 A JP2006288108 A JP 2006288108A JP 2006288108 A JP2006288108 A JP 2006288108A JP 2008105038 A JP2008105038 A JP 2008105038A
Authority
JP
Japan
Prior art keywords
horn
magnesium alloy
mold
tip
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006288108A
Other languages
Japanese (ja)
Inventor
Yuichi Yamashita
友一 山下
Kazunori Shimizu
和紀 清水
Satoru Hanaki
悟 花木
Susumu Miyamoto
宮本  進
Tatsuo Gogo
達夫 御後
Yasumasa Matsumoto
泰誠 松本
Seiwa Nagaki
聖和 長木
Yoshiki Tsunekawa
好樹 恒川
Hisashi Sasaki
悠 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Technological Institute
Sankyo Tateyama Aluminium Inc
Original Assignee
Toyota Technological Institute
Sankyo Tateyama Aluminium Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Technological Institute, Sankyo Tateyama Aluminium Inc filed Critical Toyota Technological Institute
Priority to JP2006288108A priority Critical patent/JP2008105038A/en
Publication of JP2008105038A publication Critical patent/JP2008105038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for continuously casting a magnesium alloy with which crystal grain over the whole zone in a billet can uniformly be made to be fine. <P>SOLUTION: This apparatus is provided with a tundish 2 for holding the molten magnesium alloy 1, a mold for setting at the bottom part of the tundish and an impressing horn 5 for impressing ultrasonic vibration 4 from the upper part of the molten magnesium alloy flowing into the mold, and the impressing horn is formed as a curving surface shape bulged toward the lower part of the tip end part 6 and the tip end part of the impressing horn is positioned in the mold. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マグネシウム合金の連続鋳造装置に関する。   The present invention relates to a magnesium alloy continuous casting apparatus.

マグネシウム合金は、実用金属中で最も軽く、自動車部品や電気機器部品への利用が進められている。マグネシウム合金を鍛造用素材として適用する場合、素材の加工性を向上するために結晶粒を微細化することが必須である。これまで、結晶粒径が300〜600μmと粗大な鋳造材(ビレット)を鍛造用素材として適用することは極めて困難であり、押出加工等の二次加工を行わなければ、鍛造による成形が可能な所望の結晶粒径(100μm以下)を得ることは不可能であった。そのため、マグネシウム合金の鍛造用素材として、押出棒材が採用されることがほとんどであった。
他方、溶湯の過熱処理や微細化剤の添加等により、ビレットの結晶粒を微細化する試みがなされている。これらの手法により、鍛造加工に適用し得る結晶粒径が得られる可能性はあるものの、前者は鋳造作業時の安全性や設備負荷の増大、後者はビレット内部品質の低下や環境への負荷の増大といった面で問題があった。
Magnesium alloys are the lightest among practical metals and are being used for automobile parts and electrical equipment parts. When applying a magnesium alloy as a forging material, it is essential to refine the crystal grains in order to improve the workability of the material. Until now, it has been extremely difficult to apply a coarse cast material (billet) having a crystal grain size of 300 to 600 μm as a material for forging, and forging can be performed unless secondary processing such as extrusion is performed. It was impossible to obtain a desired crystal grain size (100 μm or less). For this reason, extruded rods have been mostly adopted as forging materials for magnesium alloys.
On the other hand, attempts have been made to refine billet crystal grains by, for example, heat treatment of molten metal or addition of a micronizing agent. Although there is a possibility that a crystal grain size applicable to forging can be obtained by these methods, the former increases safety and equipment load during casting operations, and the latter decreases the internal quality of the billet and reduces the environmental load. There was a problem in terms of increase.

特許文献1には、鋳造過程で溶融金属に超音波振動を印加することにより、結晶粒を微細化できることが記載されている。従来、溶融金属に超音波振動を印加するための印加ホーンは、先端が平坦面になっており、このような印加ホーンを用いて超音波振動を印加すると、ビレットの中心部ほど結晶粒が細かくなり、ビレットの全域にわたって均一に微細化できなかった。
特開平2−247314号公報
Patent Document 1 describes that crystal grains can be refined by applying ultrasonic vibration to molten metal during the casting process. Conventionally, an application horn for applying ultrasonic vibration to molten metal has a flat tip, and when ultrasonic vibration is applied using such an application horn, the crystal grains become finer at the center of the billet. Thus, the billet could not be uniformly refined over the entire area of the billet.
JP-A-2-247314

本発明は以上に述べた実情に鑑み、ビレットの全域にわたって結晶粒を均一に微細化できるマグネシウム合金の連続鋳造装置の提供を目的とする。   An object of the present invention is to provide a continuous casting apparatus of a magnesium alloy capable of uniformly refining crystal grains over the entire area of the billet in view of the above situation.

上記の課題を達成するために、請求項1記載の発明によるマグネシウム合金の連続鋳造装置は、マグネシウム合金溶湯を収納するタンディッシュと、タンディッシュの底部に設置した鋳型と、鋳型内に流入したマグネシウム合金溶湯に上方より超音波振動を印加する印加ホーンとを備え、印加ホーンは、先端部が下方に向かって膨出する曲面形状であり、印加ホーンの先端を鋳型内に位置させていることを特徴とする。ここで、「印加ホーンの先端を鋳型内に位置させている」には、印加ホーンの先端が鋳型の上端又は下端と同一高さである場合も含まれる。   In order to achieve the above object, a magnesium alloy continuous casting apparatus according to the first aspect of the present invention includes a tundish containing molten magnesium alloy, a mold installed at the bottom of the tundish, and magnesium flowing into the mold. An application horn that applies ultrasonic vibration to the molten alloy from above, and the application horn has a curved shape with the tip bulging downward, and the tip of the application horn is positioned in the mold. Features. Here, “the tip of the application horn is positioned in the mold” includes the case where the tip of the application horn is at the same height as the upper end or the lower end of the mold.

請求項1記載の発明によるマグネシウム合金の連続鋳造装置は、印加ホーンの先端部が下方に向かって膨出する曲面形状であることにより、印加ホーンの先端部全体から超音波振動が周囲に照射され、超音波振動が照射される領域が拡がり、しかも印加ホーンの先端を鋳型内に位置させているので、鋳型内のマグネシウム合金溶湯の凝固界面に対して超音波振動をより均一に照射することができ、その結果ビレットの全域にわたって結晶粒を均一に微細化できる。   In the magnesium alloy continuous casting apparatus according to the first aspect of the present invention, since the tip of the application horn has a curved shape that bulges downward, ultrasonic vibration is irradiated from the entire tip of the application horn to the surroundings. In addition, since the region where the ultrasonic vibration is irradiated is expanded and the tip of the application horn is positioned in the mold, the ultrasonic vibration can be more uniformly irradiated to the solidification interface of the magnesium alloy melt in the mold. As a result, the crystal grains can be uniformly refined over the entire area of the billet.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明のマグネシウム合金の連続鋳造装置の概要を示す縦断面図であり、図2はこの連続鋳造装置の鋳型近傍を拡大して示す縦断面図である。本連続鋳造装置は、図1に示すように、マグネシウム合金溶湯1を収納するタンディッシュ2と、タンディッシュ2の底部に設置した円筒状の鋳型3と、冷却水ジャケット7と、昇降する受台8とを備えており、受台8の下降によりマグネシウム合金溶湯1を鋳型3から下方に連続的に引き出しながら、冷却水ジャケット7から噴射する冷却水9により凝固させ、円形断面のビレット10を連続鋳造するものである。鋳型3は、周囲を耐火材11で保持されている。また鋳型3は、図2に示すように、内周面15が入口側から出口側に向けて次第に拡径するテーパー面となっており、その内周面15の下側に逃がし部16を設けてある。図中の符号12は、マグネシウム合金溶湯1の凝固界面を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an outline of a magnesium alloy continuous casting apparatus of the present invention, and FIG. 2 is an enlarged longitudinal sectional view showing the vicinity of a mold of the continuous casting apparatus. As shown in FIG. 1, the continuous casting apparatus includes a tundish 2 that houses a molten magnesium alloy 1, a cylindrical mold 3 installed at the bottom of the tundish 2, a cooling water jacket 7, and a cradle that moves up and down. 8, the magnesium alloy melt 1 is continuously drawn downward from the mold 3 by lowering the cradle 8, and solidified by the cooling water 9 sprayed from the cooling water jacket 7, and the billet 10 having a circular cross section is continuously formed. It is for casting. The periphery of the mold 3 is held by a refractory material 11. As shown in FIG. 2, the mold 3 has a tapered surface in which the inner peripheral surface 15 gradually increases in diameter from the inlet side toward the outlet side, and a relief portion 16 is provided below the inner peripheral surface 15. It is. Reference numeral 12 in the figure indicates a solidification interface of the molten magnesium alloy 1.

さらに本連続鋳造装置は、超音波振動発生器13と、超音波振動発生器13に取付けた印加ホーン5とを備え、印加ホーン5の先端部6から鋳型3内に流入したマグネシウム合金溶湯1に縦方向の超音波振動4を直接印加できるようにしている。印加ホーン5は、先端部6の形状が半球型の円柱形状となっており、材質は鉄鋼製である。印加ホーン5は、中心を鋳型3の中心に一致させて鉛直に設けてあり、昇降装置14により上下方向に移動可能としてある。このように連続鋳造中における鋳型3内のマグネシウム合金溶湯1に超音波振動4を直接印加することで、鋳型3内のマグネシウム合金溶湯1の凝固核生成が促進され、さらには、おもに結晶粒界に晶出する強固な金属間化合物が破砕されるため、ビレット10の結晶粒を微細化することができる。   The continuous casting apparatus further includes an ultrasonic vibration generator 13 and an application horn 5 attached to the ultrasonic vibration generator 13, and the magnesium alloy melt 1 flowing into the mold 3 from the tip 6 of the application horn 5. The ultrasonic vibration 4 in the vertical direction can be directly applied. The application horn 5 has a cylindrical shape in which the tip 6 is hemispherical and made of steel. The application horn 5 is vertically provided with its center coincident with the center of the mold 3 and can be moved in the vertical direction by the lifting device 14. In this way, by directly applying the ultrasonic vibration 4 to the molten magnesium alloy 1 in the mold 3 during continuous casting, solidification nucleation of the molten magnesium alloy 1 in the mold 3 is promoted. Since the strong intermetallic compound that crystallizes is crushed, the crystal grains of the billet 10 can be refined.

以下に、超音波振動の印加による結晶粒微細化効果を検証するために行った実験の結果を示す。マグネシウム合金は、AZ91−1%Caマグネシウム合金を用いた。AZ91−1%Caマグネシウム合金の化学組成は、表1のとおりである。
実験手順は以下のとおりである。電気炉でマグネシウム合金を溶解し、予熱したタンディッシュ内に溶湯1を注ぐ。タンディッシュ2内の溶湯温度が700℃になった時点で下方への引き出しを開始し、一定の速度で連続鋳造を行った。引出速度は80mm/min、冷却水量は14.0リットル/minとした。鋳造するビレット10は、直径Dが55mm、長さ300mmとした。照射した超音波振動の共振周波数は19.5kHz、振幅は6.5μmであった。ビレット10の組織観察、平均粒径測定は、ビレット中央部付近から切り出した円筒形試料を研磨・エッチングして行った。結晶粒径の測定は、中心と端部を結んだ線分の中点で行った。
Below, the result of the experiment conducted in order to verify the crystal grain refinement | miniaturization effect by application of an ultrasonic vibration is shown. As the magnesium alloy, AZ91-1% Ca magnesium alloy was used. Table 1 shows the chemical composition of the AZ91-1% Ca magnesium alloy.
The experimental procedure is as follows. A magnesium alloy is melted in an electric furnace, and molten metal 1 is poured into a preheated tundish. When the molten metal temperature in the tundish 2 reached 700 ° C., downward drawing was started, and continuous casting was performed at a constant speed. The drawing speed was 80 mm / min, and the amount of cooling water was 14.0 liters / min. The billet 10 to be cast had a diameter D of 55 mm and a length of 300 mm. The resonance frequency of the irradiated ultrasonic vibration was 19.5 kHz, and the amplitude was 6.5 μm. The observation of the structure of the billet 10 and the measurement of the average particle diameter were performed by polishing and etching a cylindrical sample cut out from the vicinity of the center of the billet. The crystal grain size was measured at the midpoint of the line segment connecting the center and end.

上記の鋳造条件で、印加ホーン5の直径dと先端部6の形状の違いによる影響を検証するために、直径40mmで先端部形状が半球型の印加ホーン5、直径30mmで先端部形状が半球型の印加ホーン5、直径40mmで先端部形状が平坦型の印加ホーン5、直径30mmで先端部形状が平坦型の印加ホーン5でそれぞれ超音波振動を印加しながら連続鋳造を行い、鋳造した各ビレット10の組織観察、平均結晶粒径の測定を行った。印加ホーン5の先端は鋳型3の上端と同一高さとした。実験結果を表2に示す。また図3(a)に、直径40mmで先端部形状が半球型の印加ホーンで超音波振動を印加しながら連続鋳造したビレットのマクロ組織を示し、図3(b)に超音波振動を印加せずに連続鋳造したビレットのマクロ組織を示す。
In order to verify the influence due to the difference in the diameter d of the applied horn 5 and the shape of the tip 6 under the above casting conditions, the applied horn 5 having a diameter of 40 mm and a tip shape of a hemisphere, the tip shape of the tip 30 having a diameter of 30 mm and a hemisphere Continuous casting was performed while applying ultrasonic vibration with an application horn 5 of a mold, an application horn 5 with a diameter of 40 mm and a flat tip shape, and an application horn 5 with a diameter of 30 mm and a flat tip shape. Observation of the structure of the billet 10 and measurement of the average crystal grain size were performed. The tip of the application horn 5 was flush with the upper end of the mold 3. The experimental results are shown in Table 2. 3A shows a macro structure of a billet continuously cast while applying ultrasonic vibration with an application horn having a diameter of 40 mm and a hemispherical tip, and FIG. 3B applies ultrasonic vibration. The macrostructure of a billet continuously cast without a metal is shown.

この実験の結果から、印加ホーン5の直径が大きいものの方が結晶粒がより微細化されること、印加ホーン5の先端部6が半球型のものの方が平坦型のものより結晶粒がより微細化され、尚且つビレットの全域にわたりほぼ均一に微細化されることが分かる。直径40mm、先端部形状が半球型の印加ホーン5で超音波振動を印加した場合には、平均結晶粒径が75μmにまで微細化され、且つビレットの全域にわたり均一な粒度分布となり、そのまま鍛造用素材として適用可能なビレットが得られた。印加ホーン先端部形状が平坦型の場合に粒度分布がビレット中心部ほど細かくなるのに対して、先端部形状が半球型だと全域にわたって均一に微細化されるのは、超音波振動4は印加ホーン5の底面から垂直方向に照射されるため、印加ホーン先端部6が平坦型だと印加ホーン5の真下の領域にしか超音波振動4が照射されないのに対して、印加ホーン先端部6が半球型の場合は、図2に示すように、半球型の面全体から垂直に超音波振動4が照射され、超音波振動4が照射される領域が拡がり、且つ鋳型3内のマグネシウム合金溶湯1の凝固界面12に超音波振動4をより均一に照射できるためと考えられる。   As a result of this experiment, the crystal grains are made finer when the diameter of the applied horn 5 is larger, and the crystal grains are finer when the tip 6 of the applied horn 5 is hemispherical than when the applied horn 5 is flat. In addition, it can be seen that the material is refined almost uniformly over the entire area of the billet. When ultrasonic vibration is applied with an application horn 5 having a diameter of 40 mm and a hemispherical tip, the average crystal grain size is refined to 75 μm, and a uniform grain size distribution is obtained over the entire billet. A billet applicable as a material was obtained. When the tip shape of the applied horn is flat, the particle size distribution becomes finer toward the center of the billet, whereas when the tip shape is a hemispherical shape, the ultrasonic vibration 4 is applied evenly throughout the entire area. Since irradiation is performed vertically from the bottom surface of the horn 5, when the application horn tip 6 is a flat type, the ultrasonic vibration 4 is applied only to a region directly below the application horn 5, whereas the application horn tip 6 is In the case of the hemispherical type, as shown in FIG. 2, the ultrasonic vibration 4 is irradiated vertically from the entire hemispherical surface, the region irradiated with the ultrasonic vibration 4 is expanded, and the magnesium alloy melt 1 in the mold 3 is expanded. This is considered to be because the ultrasonic vibration 4 can be irradiated more uniformly on the solidification interface 12 of the solid phase.

次に、印加ホーン5の浸漬深さの違いによるビレットの結晶粒の微細化への影響を検証するため、直径30mmで先端部形状が半球型の印加ホーン5を使用し、印加ホーン5の先端の位置をX=−5,0,10,40mmと変化させて連続鋳造し、鋳造した各ビレットの平均粒径の測定、組織観察を行った。ここで印加ホーン先端位置Xは、図2に示すように、鋳型3の内周面15の下端から印加ホーン5の先端までの距離に相当し、X=−5mmのときは印加ホーン5の先端が鋳型3の内周面15の下端よりも5mm低い位置にあり、X=0mmのときは印加ホーン5の先端が鋳型3の内周面15の下端と同じ高さにあり、X=40mmのときは印加ホーン5の先端が鋳型3の上端と同じ高さになる。表3に各ビレットの平均粒径の測定結果を示し、図4に各ビレットのミクロ組織を示す。
Next, in order to verify the influence on the refinement of billet crystal grains due to the difference in the immersion depth of the applied horn 5, the applied horn 5 having a diameter of 30 mm and a hemispherical tip is used. The position of was continuously cast with X = −5, 0, 10, 40 mm, and the average particle size of each cast billet was measured and the structure was observed. The applied horn tip position X corresponds to the distance from the lower end of the inner peripheral surface 15 of the mold 3 to the tip of the applied horn 5 as shown in FIG. 2, and when X = −5 mm, the tip of the applied horn 5 Is 5 mm lower than the lower end of the inner peripheral surface 15 of the mold 3, and when X = 0 mm, the tip of the applied horn 5 is at the same height as the lower end of the inner peripheral surface 15 of the mold 3, and X = 40 mm Sometimes the tip of the application horn 5 is at the same height as the upper end of the mold 3. Table 3 shows the measurement results of the average particle diameter of each billet, and FIG. 4 shows the microstructure of each billet.

この実験結果から、印加ホーン5を最も深く浸漬したX=−5mmのときで平均結晶粒径が24μmと最も微細化され、印加ホーンを上昇させるにつれて微細化効果が小さくなることが分かる。すなわち、印加ホーン5の先端をマグネシウム合金溶湯1の凝固界面12に近付けるほど、結晶粒がより微細化される。このように、印加ホーンの浸漬深さの違いにより結晶粒の微細化効果が大きく影響されるため、本連続鋳造装置のように印加ホーンを上下に移動可能とすることで、印加ホーンを上下に移動させて最適な状態で超音波振動を印加できる。   From this experimental result, it can be seen that when X = -5 mm where the applied horn 5 is immersed most deeply, the average crystal grain size is as fine as 24 μm, and the effect of miniaturization becomes smaller as the applied horn is raised. That is, the closer the tip of the application horn 5 is to the solidification interface 12 of the molten magnesium alloy 1, the finer the crystal grains. Thus, since the effect of crystal grain refinement is greatly affected by the difference in immersion depth of the applied horn, the applied horn can be moved up and down by enabling the applied horn to move up and down as in this continuous casting apparatus. The ultrasonic vibration can be applied in an optimum state by moving.

本発明は、以上に述べた実施形態に限定されない。印加ホーンは、鋳型内のマグネシウム合金溶湯に超音波振動を伝えられるものであればよく、材質等は適宜変更することもできる。印加ホーン5の先端部6の形状は、半球型に限らず、図5(a)に示すように、印加ホーン5の半径よりも大きい一定の曲率Rで湾曲する球面状としたり、図5(b)に示すように、前後方向や左右方向から見て楕円を半分に切ったような形の湾曲面とすることもできる。また印加ホーンは、一定の高さに固定して設けることもできる。鋳型は、内周面がストレートのものであってもよい。   The present invention is not limited to the embodiments described above. The application horn may be any material as long as it can transmit ultrasonic vibrations to the molten magnesium alloy in the mold, and the material and the like can be changed as appropriate. The shape of the tip portion 6 of the application horn 5 is not limited to a hemispherical shape, and as shown in FIG. 5A, the shape of the tip portion 6 may be a spherical shape curved with a constant curvature R larger than the radius of the application horn 5. As shown in b), it may be a curved surface shaped like an ellipse cut in half when viewed from the front-rear direction or the left-right direction. The application horn can also be fixedly provided at a certain height. The mold may have a straight inner peripheral surface.

本発明のマグネシウム合金の連続鋳造装置の概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the continuous casting apparatus of the magnesium alloy of this invention. 同連続鋳造装置の鋳型近傍を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the mold vicinity of the continuous casting apparatus. (a)は直径40mmで先端部形状が半球型の印加ホーンで超音波振動を印加しながら鋳造したビレットのマクロ組織を示し、(b)は超音波振動を印加しないで鋳造したビレットのマクロ組織を示している。(A) shows a macro structure of a billet cast while applying ultrasonic vibration with an application horn having a diameter of 40 mm and a hemispherical tip. (B) shows a macro structure of a billet cast without applying ultrasonic vibration. Is shown. 印加ホーン先端位置Xを変化させて鋳造したビレットのミクロ組織の写真であって、(a)はX=−5mmのもの、(b)はX=0mmのもの、(c)はX=10mmのもの、(d)はX=40mmのものである。It is a photograph of the microstructure of a billet cast by changing the tip position X of the applied horn, where (a) is for X = -5 mm, (b) is for X = 0 mm, and (c) is for X = 10 mm. (D) is for X = 40 mm. 印加ホーン先端部の形状の他の例を示す印加ホーン先端部の正面図である。It is a front view of the application horn front-end | tip part which shows the other example of the shape of an application horn front-end | tip part.

符号の説明Explanation of symbols

1 マグネシウム合金溶湯
2 タンディッシュ
3 鋳型
4 超音波振動
5 印加ホーン
6 印加ホーンの先端部
1 Magnesium alloy molten metal 2 Tundish 3 Mold 4 Ultrasonic vibration 5 Applied horn 6 Tip of applied horn

Claims (1)

マグネシウム合金溶湯を収納するタンディッシュと、タンディッシュの底部に設置した鋳型と、鋳型内に流入したマグネシウム合金溶湯に上方より超音波振動を印加する印加ホーンとを備え、印加ホーンは、先端部が下方に向かって膨出する曲面形状であり、印加ホーンの先端を鋳型内に位置させていることを特徴とするマグネシウム合金の連続鋳造装置。   A tundish that contains molten magnesium alloy, a mold installed at the bottom of the tundish, and an application horn that applies ultrasonic vibration from above to the molten magnesium alloy that has flowed into the mold. A magnesium alloy continuous casting apparatus, characterized in that it has a curved shape that bulges downward, and the tip of an application horn is positioned in a mold.
JP2006288108A 2006-10-23 2006-10-23 Apparatus for continuously casting magnesium alloy Pending JP2008105038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288108A JP2008105038A (en) 2006-10-23 2006-10-23 Apparatus for continuously casting magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288108A JP2008105038A (en) 2006-10-23 2006-10-23 Apparatus for continuously casting magnesium alloy

Publications (1)

Publication Number Publication Date
JP2008105038A true JP2008105038A (en) 2008-05-08

Family

ID=39438838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288108A Pending JP2008105038A (en) 2006-10-23 2006-10-23 Apparatus for continuously casting magnesium alloy

Country Status (1)

Country Link
JP (1) JP2008105038A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247179A (en) * 2009-04-15 2010-11-04 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy ingot, and the aluminum alloy ingot
JP2011212737A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Continuous casting apparatus
KR101235633B1 (en) 2009-12-29 2013-02-20 신닛테츠스미킨 카부시키카이샤 Device for transferring ultrasound into molten metal
JP2015208748A (en) * 2014-04-23 2015-11-24 日本軽金属株式会社 Manufacturing method of aluminum alloy billet and aluminum alloy billet
CN106180601A (en) * 2016-08-30 2016-12-07 中国重型机械研究院股份公司 Coloured light metal plate ingot continuous casting apparatus and casting technique thereof
CN107116194A (en) * 2017-05-24 2017-09-01 东北大学 A kind of magnesium alloy variable-frequency ultrasound semi-continuous casting equipment
KR20180040981A (en) * 2016-10-13 2018-04-23 한국전기연구원 Ultrasound delivering apparatus and method for controlling the same
CN110315041A (en) * 2019-08-06 2019-10-11 中南大学 A kind of method that multi-source ultrasonic wave auxiliary D.C.casting prepares big specification 7XXX line aluminium alloy billet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247179A (en) * 2009-04-15 2010-11-04 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy ingot, and the aluminum alloy ingot
KR101235633B1 (en) 2009-12-29 2013-02-20 신닛테츠스미킨 카부시키카이샤 Device for transferring ultrasound into molten metal
JP2011212737A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Continuous casting apparatus
JP2015208748A (en) * 2014-04-23 2015-11-24 日本軽金属株式会社 Manufacturing method of aluminum alloy billet and aluminum alloy billet
CN106180601A (en) * 2016-08-30 2016-12-07 中国重型机械研究院股份公司 Coloured light metal plate ingot continuous casting apparatus and casting technique thereof
KR20180040981A (en) * 2016-10-13 2018-04-23 한국전기연구원 Ultrasound delivering apparatus and method for controlling the same
KR102633661B1 (en) 2016-10-13 2024-02-05 한국전기연구원 Ultrasound delivering apparatus and method for controlling the same
CN107116194A (en) * 2017-05-24 2017-09-01 东北大学 A kind of magnesium alloy variable-frequency ultrasound semi-continuous casting equipment
CN110315041A (en) * 2019-08-06 2019-10-11 中南大学 A kind of method that multi-source ultrasonic wave auxiliary D.C.casting prepares big specification 7XXX line aluminium alloy billet

Similar Documents

Publication Publication Date Title
JP2008105038A (en) Apparatus for continuously casting magnesium alloy
JP4836244B2 (en) Casting method
CN110280746A (en) The method that a kind of high-strength ultrasonic wave added in list source casts big specification 2XXX line aluminium alloy billet
JP6340893B2 (en) Method for producing aluminum alloy billet
JP5413815B2 (en) Aluminum alloy manufacturing method and casting apparatus
US10441999B2 (en) Ultrasonic grain refining
JP5051636B2 (en) Casting method and casting apparatus used therefor.
JP4594336B2 (en) Solidification method
JP2010247179A (en) Method of manufacturing aluminum alloy ingot, and the aluminum alloy ingot
JP5242416B2 (en) Method for preparing a metal structure suitable for semi-molten metal processing
JP2006102807A (en) Method for reforming metallic structure
CN101234420A (en) Ultrasound wave compression mold casting method and special-purpose equipment thereof
JP3555485B2 (en) Rheocasting method and apparatus
Khalifa et al. Effect of ultrasonic melt treatment on microstructure of A356 aluminium cast alloys
JP2009095874A (en) Continuous casting equipment of magnesium alloy
CN101899634B (en) Method for eliminating elongated flaky Fe-enriched phase in aluminum alloy
JP2018094628A (en) Casting method of active metal
Mehta et al. Effects of amplitude of die vibration on cast structure of Al4. 5Cu alloy
JP2005066660A (en) Molding stock manufacturing method
JP7206965B2 (en) Method and apparatus for manufacturing titanium ingot
Chen et al. The effects of ultrasonic treatments on the microstructure and mechanical properties of SAC0307 solder
JP6452037B2 (en) Casting method and casting apparatus
CN109868371B (en) Protection method of ultrasonic probe
RU2674553C1 (en) Method of modification of aluminum and its alloys
KR102656953B1 (en) Molds for manufacturing mold steel in inert gas or pressurized electroslag remelting processes