JP3555485B2 - Rheocasting method and apparatus - Google Patents

Rheocasting method and apparatus Download PDF

Info

Publication number
JP3555485B2
JP3555485B2 JP05764599A JP5764599A JP3555485B2 JP 3555485 B2 JP3555485 B2 JP 3555485B2 JP 05764599 A JP05764599 A JP 05764599A JP 5764599 A JP5764599 A JP 5764599A JP 3555485 B2 JP3555485 B2 JP 3555485B2
Authority
JP
Japan
Prior art keywords
molten metal
rheocast
ultrasonic horn
horn
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05764599A
Other languages
Japanese (ja)
Other versions
JP2000246415A (en
Inventor
政広 郡市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP05764599A priority Critical patent/JP3555485B2/en
Publication of JP2000246415A publication Critical patent/JP2000246415A/en
Application granted granted Critical
Publication of JP3555485B2 publication Critical patent/JP3555485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
溶湯を半凝固状態にして鋳造するレオキャスト法及びその装置に関する。
【0002】
【従来の技術】
レオキャスト法は、溶湯を冷却する過程で初晶(最初に固まる晶)を球状化し、固相と液相とが共存する半凝固状態で鋳造する方法である。ここで、溶湯を冷却する過程で初晶を球状化するためには、溶湯が固まり初める温度(液相線温度)付近でその溶湯を等温保持する方法と、溶湯が半凝固する温度領域でその溶湯を攪拌して初晶を剪断して丸くする方法とがある。しかし、いずれの方法も容器内で溶湯の温度差が生じないように溶湯をゆっくり冷却させる必要があるため、初晶の粒径が大きくなり、鋳造品の引張り強さが低下するという問題がある。
【0003】
上記した問題をある程度解決する技術が特開平8−243707号公報に記載されている。このレオキャスト法は、図8に示されるように、溶湯を貯留する容器2の側壁にウォータジャケット2wを設けて溶湯を急冷できるようにし、さらに超音波ホーン4によって容器内の溶湯を攪拌可能にしたものである。これによって、初晶を比較的小さくすることが可能になる。
【0004】
【発明が解決しようとする課題】
しかし、従来のレオキャスト法によると、超音波ホーン4によって容器内の溶湯を攪拌する方法のため、溶湯が液体の状態では攪拌が比較的良好に行われるが、凝固が進んで溶湯の粘性が高くなると、攪拌の効果は超音波ホーン4の近傍にしか及ばなくなる。このため、超音波ホーン4から離れた位置にある溶湯、即ち容器の壁面付近の溶湯はほとんど攪拌されないため、その部分の溶湯は自然に近い状態で樹枝状に凝固し、初晶を球状化することは難しい。さらに、容器の壁面付近は冷却水によって急冷されるのに対し、壁面から離れた容器の中央部は比較的ゆっくり冷却される。このため、容器の壁面付近と中央部とで溶湯の温度差が大きくなり初晶の粒径が不安定になる。
この結果、従来のレオキャスト法では半溶融金属が均一なスラリー状にならないという問題がある。
【0005】
本発明は、上記問題点を解決するためになされたものであり、本発明の技術的課題は、容器内で溶湯を効率的に攪拌するとともに、溶湯の初晶を効率的に剪断して微細球状化させることである。
【0006】
【課題を解決するための手段】
上記した課題は、各請求項の発明によって解決される。
請求項1の発明は、溶湯を半凝固状態にして鋳造するレオキャスト法であって、上部開放型の容器に貯留された溶湯に対して上方から柱形の超音波ホーンの先端部を浸漬する工程と、溶湯に対して前記超音波ホーンにより振動を付与するとともに、溶湯が前記超音波ホーンのほぼ軸方向に流動するようにその溶湯を攪拌しながら、前記超音波ホーンで溶湯の初晶を剪断して球状化させる工程とを有することを特徴とする。
本発明によると、溶湯に対して超音波振動を加えるため、その振動が加えられた溶湯の初晶を効率的に剪断して微細に球状化することができる。さらに、超音波ホーンに対してほぼ軸方向に流動するようにその溶湯を攪拌するため、容器内の溶湯に均等に超音波振動を加えることができる。また、攪拌により容器内で溶湯の温度差が生じ難いため、半溶融金属が均一なスラリー状になる。
【0007】
請求項2の発明は、溶湯が超音波ホーンのほぼ軸方向に流動するように、電磁力を利用してその溶湯を攪拌することを特徴とする。
請求項3の発明は、溶湯が前記超音波ホーンのほぼ軸方向に流動するように、超音波ホーンを軸方向に往復動させて、その溶湯を攪拌することを特徴とする。
【0008】
【発明の実施の形態】
(第一の実施の形態)
以下、図1から図6に基づいて本発明の第一の実施の形態に係るレオキャスト法及びその装置について説明する。本実施の形態は自動車の足回り部品を製造する際に本発明に係るレオキャスト法を利用したものであり、図1にそのレオキャスト法を実施するための装置(レオキャスト装置)の要部縦断面図が示されている。
【0009】
前記レオキャスト装置10は、約3kgのアルミ溶湯(以下、溶湯という)を貯留する耐熱容器12を備えている。耐熱容器12は有底円筒形をした上部開放型の容器であり、その周囲に耐熱容器12内の溶湯を攪拌するための電磁攪拌装置14の電磁コイル14cが装着されている。なお、耐熱容器12の内径は約120mmに設定されている。即ち、電磁攪拌装置14が本発明の攪拌手段に相当する。
【0010】
また、耐熱容器12の上方には耐熱容器12内の溶湯に対して18kHz、0.6kwの超音波振動を加える超音波発振装置(図示されていない)が設置されており、その超音波発振装置のホーン16の先端部16fが前記溶湯に約20mm浸漬される。なお、前記ホーン16はセラミックによって円柱形に成形されており、その外径は約40mmに設定されている。即ち、前記超音波発振装置のホーン16が本発明の振動付与手段に相当する。
また、前記耐熱容器12に貯留される溶湯の成分は、Si7.34%、Cu0.01%以下、Mg0.33%、Fe0.18%、Ti0.19%、残り全部がAlである。
【0011】
次に、本実施の形態に係るレオキャスト法について説明する。
先ず、前記耐熱容器12に前述の成分の溶湯が約3kg供給される。ここで、耐熱容器12に供給される際の溶湯の温度は約620℃である。耐熱容器12に溶湯が供給されると、電磁攪拌装置14が駆動されて溶湯が攪拌されるとともに、その溶湯に超音波発振装置のホーン16が浸漬されて18kHz、0.6kwの超音波振動が加えられる。
この状態で、溶湯の温度が582℃になるまでその溶湯を約0.6℃/秒の速さで冷却させる。これによって、溶湯が半凝固して均一なスラリー状になる。
【0012】
スラリー状の半凝固金属は高圧鋳造機(図示されていない)に移され、0.2m/秒の射出速度で金型のキャビティに充填される。
このようにして、鋳造された製品は金型から取出された後、T6処理が行われる。なお、T6処理とはアルミニウムの熱処理のことであり、溶体化処理を行った後、加熱によって室温以上の温度で時効処理を行うことをいう。
本実施の形態に係るT6処理の条件は、溶体化処理における加熱温度及び加熱時間は530℃・約五時間で、冷却は水による急冷方式であり、時効処理における加熱温度及び加熱時間は140℃・約四時間である。
【0013】
図2は、本実施の形態に係るレオキャスト法によって鋳造された後、T6処理された製品Iの顕微鏡写真を表している。また、図3は超音波振動を加えずに、その他は本実施の形態に係るレオキャスト法と同じ条件で鋳造され、さらにT6処理された製品IIの顕微鏡写真である。
図4は、製品Iと製品IIとの初晶をの大きさを表す棒グラフであり、着色された棒が製品I、非着色の棒が製品IIを表している。
このように、図2から図4において明らかなように、超音波振動により初晶が効果的に微細化されることが分かる。
【0014】
図5は、試験片に加える引張り強さとその試験片の伸びを表すグラフであり、●は製品Iを試験片とした場合のデータで、○は製品IIを試験片とした場合のデータである。製品Iは製品IIよりも初晶が小さいため、その分だけ引張り強さが向上していると考えられる。
【0015】
次に、初晶に対する溶湯の攪拌の影響を調査するために、本実施の形態に係る方法により溶湯を半凝固状態にした後(582℃まで冷却後)、その半溶融金属をそのまま凝固させた試料Iと、溶湯を攪拌せずに超音波振動を加えただけで溶湯を半凝固状態にした後、その半溶融金属をそのまま凝固させた試料IIとを顕微鏡で組織調査した。図6は、その顕微鏡組織調査の結果であり、試料I,IIの各部位(位置a,位置b,位置c,位置d)における初晶の粒径を表している。ここで、●は試料Iのデータであり、○は試料IIのデータである。
【0016】
即ち、両試料I,IIとも超音波発振装置のホーン16の近傍(位置a)では初晶が微細化されているが、試料IIの方はホーン16から離れた部位(位置b,位置c,位置d)では初晶の粒径が大きくなっている。これに対して、試料Iはホーン16から離れた部位(位置b,位置c,位置d)でも初晶が微細化されている。したがって、溶湯を攪拌することにより超音波振動が耐熱容器12内の溶湯に均等に加えられるのに対し、溶湯を攪拌しなければ超音波振動がホーン16の近傍の溶湯にしか加えられないことが分かる。
【0017】
このように、本実施の形態に係るレオキャスト法によると、溶湯に対して超音波振動を加えるため、その振動が加えられた溶湯の初晶を効率的に剪断して微細に球状化することができる。さらに、電磁攪拌装置14によりホーン16に対して常に新たな溶湯が接触するように溶湯を攪拌するため、容器12内の溶湯に均等に超音波振動を加えることができる。また、攪拌により容器内で溶湯の温度差が生じ難いため、半溶融金属が均一なスラリー状になる。即ち、溶湯の初晶が微細に球状化するとともに半溶融金属が均一なスラリー状になるため、その半溶融金属を鋳造して成形された鋳造品の引張り強さ(伸び)が向上する。
【0018】
(第二の実施の形態)
以下、図7に基づいて本発明の第二の実施の形態に係るレオキャスト法及びその装置の説明を行う。
本実施の形態に係るレオキャスト装置20は、第一の実施の形態に係るレオキャスト装置10が電磁攪拌装置14によって耐熱容器12内の溶湯を攪拌するのに対し、超音波発振装置のホーン26を上下に移動させて耐熱容器22内の溶湯を攪拌するものである。
これによって、溶湯を攪拌する機構が簡易なものになり、設備コストを低減させることができる。
【0019】
なお、第一の実施の形態及び第二の実施の形態では、耐熱容器に溶湯を供給した後、速やかにその溶湯に対し超音波振動を加えるようにしたが、溶湯が固まり始める温度(液相線温度)より約10℃高い温度まで溶湯が冷えた後に超音波振動を加えても良い。
以上、本発明の実施の形態について説明したが、この発明の実施の形態には請求の範囲に記載した技術的事項以外に次のような技術的事項を有するものであることを付記しておく。
(1) 請求項2に記載されたレオキャスト装置において、
攪拌手段は、電磁力を利用して溶湯を攪拌することを特徴とするレオキャスト装置。
(2) 請求項2に記載されたレオキャスト装置において、
攪拌手段は、振動付与手段を溶湯の内部で移動させることにより、溶湯を攪拌することを特徴とするレオキャスト装置。
【0020】
【発明の効果】
本発明によると、溶湯の初晶が微細に球状化するとともに半溶融金属が均一なスラリー状になるため、その半溶融金属を鋳造して成形された鋳造品の引張り強さが向上し、鋳造品の品質向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の第一実施の形態に係るレオキャスト装置の要部縦断面図である。
【図2】本発明の第一実施の形態に係るレオキャスト法により鋳造した製品の顕微鏡写真である。
【図3】超音波振動を加えないで溶湯を半溶融状態まで冷却してレオキャスト法により鋳造した製品の顕微鏡写真である。
【図4】本発明の第一実施の形態に係るレオキャスト法により鋳造した製品と、超音波振動を加えないで溶湯を半溶融状態まで冷却してレオキャスト法により鋳造した製品との初晶の大きさを比較したグラフである。
【図5】本発明の第一実施の形態に係るレオキャスト法により鋳造した製品と、超音波振動を加えないで溶湯を半溶融状態まで冷却してレオキャスト法により鋳造した製品との引張り強さを比較したグラフである。
【図6】試料の各部位における初晶の大きさを表すグラフである(A図)。初晶の大きさを測定した各部位を表す図面である(B図)。
【図7】本発明の第二の実施の形態に係るレオキャスト装置の要部縦断面図である。
【図8】従来のレオキャスト装置の要部縦断面図である。
【符号の説明】
12 耐熱容器
14 電磁攪拌装置(攪拌手段)
16 超音波発振装置のホーン(振動付与手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rheocast method for casting a molten metal in a semi-solid state and a device therefor.
[0002]
[Prior art]
The rheocast method is a method in which a primary crystal (a crystal that solidifies first) is spheroidized in a process of cooling a molten metal, and is cast in a semi-solid state in which a solid phase and a liquid phase coexist. Here, in order to make the primary crystal spheroidized in the process of cooling the molten metal, a method of keeping the molten metal at an isothermal temperature near the temperature at which the molten metal starts to solidify (liquidus temperature), There is a method in which the primary crystal is sheared and rounded by stirring the molten metal. However, in either method, it is necessary to slowly cool the molten metal so as not to cause a temperature difference of the molten metal in the container, so that there is a problem that the grain size of the primary crystal increases and the tensile strength of the cast product decreases. .
[0003]
A technique for solving the above-described problem to some extent is described in Japanese Patent Application Laid-Open No. 8-243707. In this rheocast method, as shown in FIG. 8, a water jacket 2w is provided on a side wall of a container 2 for storing the molten metal so that the molten metal can be rapidly cooled, and the molten metal in the container can be stirred by an ultrasonic horn 4. It was done. This makes it possible to make the primary crystal relatively small.
[0004]
[Problems to be solved by the invention]
However, according to the conventional rheocasting method, since the molten metal in the container is stirred by the ultrasonic horn 4, stirring is relatively well performed when the molten metal is in a liquid state, but solidification proceeds and the viscosity of the molten metal increases. When the height is increased, the effect of the agitation reaches only the vicinity of the ultrasonic horn 4. For this reason, the molten metal at a position away from the ultrasonic horn 4, that is, the molten metal near the wall surface of the container is hardly agitated, so that the molten metal in that portion solidifies in a dendritic state in a state close to nature and spheroidizes the primary crystals. It is difficult. Furthermore, while the vicinity of the wall surface of the container is rapidly cooled by the cooling water, the central portion of the container away from the wall surface is cooled relatively slowly. For this reason, the temperature difference of the molten metal between the vicinity of the wall surface of the container and the central portion becomes large, and the particle size of the primary crystal becomes unstable.
As a result, there is a problem that the semi-molten metal does not form a uniform slurry in the conventional rheocast method.
[0005]
The present invention has been made in order to solve the above problems, and a technical problem of the present invention is to efficiently stir a molten metal in a container and efficiently shear a primary crystal of the molten metal to obtain fine particles. It is to make it spherical.
[0006]
[Means for Solving the Problems]
The above-mentioned problem is solved by the invention of each claim.
The invention according to claim 1 is a rheocasting method for casting a molten metal in a semi-solid state, wherein the tip of a column-shaped ultrasonic horn is immersed from above into the molten metal stored in an open-topped container. Step and while applying vibration to the molten metal by the ultrasonic horn, while stirring the molten metal so that the molten metal flows substantially in the axial direction of the ultrasonic horn, the primary crystal of the molten metal with the ultrasonic horn. And spheroidizing by shearing.
According to the present invention, since the ultrasonic vibration is applied to the molten metal, the primary crystal of the molten metal to which the vibration is applied can be efficiently sheared to be finely spherical. Further, since the molten metal is stirred so as to flow substantially in the axial direction with respect to the ultrasonic horn, ultrasonic vibration can be evenly applied to the molten metal in the container. Further, since the temperature difference of the molten metal is hardly generated in the container due to the stirring, the semi-molten metal becomes a uniform slurry.
[0007]
The invention according to claim 2 is characterized in that the molten metal is stirred by using an electromagnetic force so that the molten metal flows substantially in the axial direction of the ultrasonic horn.
The invention according to claim 3 is characterized in that the ultrasonic horn is reciprocated in the axial direction so that the molten metal flows substantially in the axial direction of the ultrasonic horn, and the molten metal is stirred.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
(First embodiment)
Hereinafter, a rheocast method and an apparatus therefor according to a first embodiment of the present invention will be described with reference to FIGS. This embodiment utilizes the rheocasting method according to the present invention when manufacturing underbody parts of an automobile. FIG. 1 shows a main part of an apparatus (rheocasting apparatus) for performing the rheocasting method. A longitudinal section is shown.
[0009]
The rheocast device 10 includes a heat-resistant container 12 for storing about 3 kg of molten aluminum (hereinafter, referred to as molten metal). The heat-resistant container 12 is an open-top container having a bottomed cylindrical shape, around which an electromagnetic coil 14c of an electromagnetic stirring device 14 for stirring the molten metal in the heat-resistant container 12 is mounted. The inner diameter of the heat-resistant container 12 is set to about 120 mm. That is, the electromagnetic stirring device 14 corresponds to the stirring means of the present invention.
[0010]
An ultrasonic oscillator (not shown) for applying ultrasonic vibration of 18 kHz and 0.6 kW to the molten metal in the heat-resistant container 12 is installed above the heat-resistant container 12. Of the horn 16 is immersed in the molten metal by about 20 mm. The horn 16 is formed in a cylindrical shape by ceramic, and its outer diameter is set to about 40 mm. That is, the horn 16 of the ultrasonic oscillation device corresponds to the vibration applying means of the present invention.
The components of the molten metal stored in the heat-resistant container 12 are 7.34% of Si, 0.01% or less of Cu, 0.33% of Mg, 0.18% of Fe, and 0.19% of Ti, and the rest is Al.
[0011]
Next, the rheocast method according to the present embodiment will be described.
First, about 3 kg of the above-mentioned molten metal is supplied to the heat-resistant container 12. Here, the temperature of the molten metal when supplied to the heat-resistant container 12 is about 620 ° C. When the molten metal is supplied to the heat-resistant container 12, the electromagnetic stirring device 14 is driven to agitate the molten metal, and the horn 16 of the ultrasonic oscillator is immersed in the molten metal, so that ultrasonic vibration of 18 kHz and 0.6 kW is generated. Added.
In this state, the molten metal is cooled at a rate of about 0.6 ° C./sec until the temperature of the molten metal reaches 582 ° C. As a result, the molten metal is semi-solidified into a uniform slurry.
[0012]
The slurry-like semi-solid metal is transferred to a high-pressure caster (not shown) and filled into a mold cavity at an injection speed of 0.2 m / sec.
After the cast product is removed from the mold, the T6 process is performed. Note that the T6 treatment is a heat treatment of aluminum, which means that after performing a solution treatment, an aging treatment is performed at a temperature equal to or higher than room temperature by heating.
The conditions of the T6 treatment according to the present embodiment are as follows: the heating temperature and the heating time in the solution treatment are 530 ° C. for about 5 hours, the cooling is a quenching method using water, and the heating temperature and the heating time in the aging treatment are 140 ° C.・ About 4 hours.
[0013]
FIG. 2 shows a micrograph of the product I that has been cast by the rheocast method according to the present embodiment and then subjected to T6 treatment. FIG. 3 is a photomicrograph of a product II that was cast under the same conditions as the rheocast method according to the present embodiment without applying ultrasonic vibration, and further subjected to T6 treatment.
FIG. 4 is a bar graph showing the size of primary crystals of Product I and Product II, wherein colored bars represent Product I and uncolored bars represent Product II.
As can be seen from FIGS. 2 to 4, the primary crystal is effectively refined by the ultrasonic vibration.
[0014]
FIG. 5 is a graph showing the tensile strength applied to the test piece and the elongation of the test piece. ● indicates data when the product I was used as the test piece, and ○ indicates data when the product II was used as the test piece. . Since the primary crystal of the product I is smaller than that of the product II, it is considered that the tensile strength is improved by that much.
[0015]
Next, in order to investigate the influence of stirring of the molten metal on the primary crystal, the molten metal was semi-solidified (after cooling to 582 ° C.) by the method according to the present embodiment, and the semi-molten metal was solidified as it was. Microstructures of Sample I and Sample II, in which the molten metal was made into a semi-solidified state only by applying ultrasonic vibration without stirring the molten metal, and then the semi-molten metal was directly solidified, were examined with a microscope. FIG. 6 shows the result of the microstructure examination, and shows the primary crystal grain size at each part (position a, position b, position c, and position d) of Samples I and II. Here, ● is the data of sample I, and ○ is the data of sample II.
[0016]
That is, in both samples I and II, the primary crystal is refined in the vicinity of the horn 16 (position a) of the ultrasonic oscillator, but in the sample II, the portion away from the horn 16 (position b, position c, At the position d), the primary crystal has a large particle size. On the other hand, in the sample I, the primary crystal is also refined even at a portion (position b, position c, and position d) apart from the horn 16. Therefore, while the ultrasonic vibration is uniformly applied to the molten metal in the heat-resistant container 12 by stirring the molten metal, the ultrasonic vibration is applied only to the molten metal near the horn 16 unless the molten metal is agitated. I understand.
[0017]
As described above, according to the rheocast method according to the present embodiment, since ultrasonic vibration is applied to the molten metal, the primary crystal of the molten metal to which the vibration is applied is efficiently sheared and finely spheroidized. Can be. Furthermore, since the molten metal is stirred by the electromagnetic stirring device 14 so that the molten metal always comes into contact with the horn 16, ultrasonic vibration can be evenly applied to the molten metal in the container 12. Further, since the temperature difference of the molten metal is hardly generated in the container due to the stirring, the semi-molten metal becomes a uniform slurry. That is, since the primary crystal of the molten metal is finely spheroidized and the semi-molten metal becomes a uniform slurry, the tensile strength (elongation) of a cast product formed by casting the semi-molten metal is improved.
[0018]
(Second embodiment)
Hereinafter, a rheocast method and an apparatus therefor according to the second embodiment of the present invention will be described with reference to FIG.
The rheocast device 20 according to the present embodiment is different from the rheocast device 10 according to the first embodiment in that the molten metal in the heat-resistant container 12 is stirred by the electromagnetic stirrer 14, whereas the horn 26 of the ultrasonic oscillator is used. Is moved up and down to agitate the molten metal in the heat-resistant container 22.
Thereby, the mechanism for stirring the molten metal becomes simple, and the equipment cost can be reduced.
[0019]
In the first embodiment and the second embodiment, after the molten metal is supplied to the heat-resistant container, ultrasonic vibration is immediately applied to the molten metal. Ultrasonic vibration may be applied after the molten metal has cooled to a temperature about 10 ° C. higher than the linear temperature.
The embodiments of the present invention have been described above. It should be noted that the embodiments of the present invention have the following technical matters in addition to the technical matters described in the claims. .
(1) In the reocast device according to claim 2,
The stirrer stirs the molten metal using electromagnetic force.
(2) In the rheocast device according to claim 2,
The stirrer stirs the molten metal by moving the vibration imparting means inside the molten metal.
[0020]
【The invention's effect】
According to the present invention, since the primary crystal of the molten metal is finely spheroidized and the semi-molten metal becomes a uniform slurry, the tensile strength of the cast product formed by casting the semi-molten metal is improved, Product quality can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a main part of a rheocast device according to a first embodiment of the present invention.
FIG. 2 is a micrograph of a product cast by a rheocast method according to the first embodiment of the present invention.
FIG. 3 is a photomicrograph of a product cast by a rheocast method after cooling a molten metal to a semi-molten state without applying ultrasonic vibration.
FIG. 4 shows primary crystals of a product cast by a rheocast method according to the first embodiment of the present invention and a product cast by a rheocast method by cooling a molten metal to a semi-molten state without applying ultrasonic vibration. 5 is a graph comparing the magnitudes of.
FIG. 5 shows tensile strength between a product cast by a rheocast method according to the first embodiment of the present invention and a product cast by a rheocast method by cooling a molten metal to a semi-molten state without applying ultrasonic vibration. It is the graph which compared this.
FIG. 6 is a graph showing the size of primary crystals in each part of a sample (FIG. A). It is a figure showing each part which measured the size of the primary crystal (Drawing B).
FIG. 7 is a longitudinal sectional view of a main part of a rheocast device according to a second embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of a main part of a conventional rheocast device.
[Explanation of symbols]
12 heat-resistant container 14 electromagnetic stirring device (stirring means)
16 Horn of ultrasonic oscillator (vibration applying means)

Claims (3)

溶湯を半凝固状態にして鋳造するレオキャスト法であって、
上部開放型の容器に貯留された溶湯に対して上方から柱形の超音波ホーンの先端部を浸漬する工程と、
溶湯に対して前記超音波ホーンにより振動を付与するとともに、溶湯が前記超音波ホーンのほぼ軸方向に流動するようにその溶湯を攪拌しながら、前記超音波ホーンで溶湯の初晶を剪断して球状化させる工程と、
を有することを特徴とするレオキャスト法。
A rheocast method of casting molten metal in a semi-solid state ,
A step of immersing the tip of the columnar ultrasonic horn from above into the molten metal stored in the open top container,
With applying vibration by the ultrasonic horn against the melt, while the melt is stirring the molten metal to flow in a generally axial direction of the ultrasonic horn, and shearing the primary crystal of the molten metal in the ultrasonic horn A step of spheroidizing;
The rheocast method characterized by having .
請求項1に記載されたレオキャスト法であって、  The rheocast method according to claim 1,
溶湯が超音波ホーンのほぼ軸方向に流動するように、電磁力を利用してその溶湯を攪拌することを特徴とするレオキャスト法。  A rheocast method characterized by agitating the molten metal using electromagnetic force so that the molten metal flows substantially in the axial direction of the ultrasonic horn.
請求項1に記載されたレオキャスト法であって、  The rheocast method according to claim 1,
溶湯が超音波ホーンのほぼ軸方向に流動するように、超音波ホーンを軸方向に往復動させて、その溶湯を攪拌することを特徴とするレオキャスト法。A rheocasting method wherein the ultrasonic horn is reciprocated in the axial direction so that the molten metal flows substantially in the axial direction of the ultrasonic horn, and the molten metal is stirred.
JP05764599A 1999-03-04 1999-03-04 Rheocasting method and apparatus Expired - Fee Related JP3555485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05764599A JP3555485B2 (en) 1999-03-04 1999-03-04 Rheocasting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05764599A JP3555485B2 (en) 1999-03-04 1999-03-04 Rheocasting method and apparatus

Publications (2)

Publication Number Publication Date
JP2000246415A JP2000246415A (en) 2000-09-12
JP3555485B2 true JP3555485B2 (en) 2004-08-18

Family

ID=13061644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05764599A Expired - Fee Related JP3555485B2 (en) 1999-03-04 1999-03-04 Rheocasting method and apparatus

Country Status (1)

Country Link
JP (1) JP3555485B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198500A (en) * 2010-03-24 2011-09-28 加特可株式会社 Casting device and casting method
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233067A1 (en) * 2002-07-19 2004-02-05 Bühler AG Forming a crystallizable material in the liquid or pasty state
CN1323782C (en) * 2003-11-20 2007-07-04 北京有色金属研究总院 Method of preparing semi solid state moltem metal/blank by ultrasonic treatment to control solidification and its device
KR100850783B1 (en) * 2007-01-08 2008-08-06 강충길 Fabrication of rheology materials making system by using vacuum equipment, press pressure equipment and electro magnetic stirring equipment
JP4551995B2 (en) * 2007-03-08 2010-09-29 独立行政法人物質・材料研究機構 Aluminum alloy for casting
JP6384872B2 (en) * 2015-06-12 2018-09-05 アイダエンジニアリング株式会社 Method and apparatus for producing semi-solid metal material
CN106216617B (en) * 2016-09-14 2018-04-17 湖南涉外经济学院 Metal semi-solid slurry preparation facilities
KR101880428B1 (en) * 2016-12-30 2018-07-23 (주)동산테크 A ELECTRON PULSE GENERATOR FOR manufacturing of Al alloy
CN111036860A (en) * 2019-12-21 2020-04-21 王常亮 Method for producing colored metal casting melt
CN111730036B (en) * 2020-07-30 2020-11-06 东北大学 Same-level electromagnetic casting device and method
CN112404391B (en) * 2020-11-19 2021-11-30 西安交通大学 Device and method for preparing particle reinforced metal matrix composite material by semi-solid rheoforming
CN112404371B (en) * 2020-11-19 2022-05-06 西安交通大学 Aluminum alloy wheel hub semisolid rheoforming slurry preparation and transfer device
CN112404390B (en) * 2020-11-19 2021-09-03 西安交通大学 Device and method for preparing semi-solid rheoforming slurry and quantitatively transferring

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198500A (en) * 2010-03-24 2011-09-28 加特可株式会社 Casting device and casting method
US9382598B2 (en) 2010-04-09 2016-07-05 Southwire Company, Llc Ultrasonic device with integrated gas delivery system
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals
US9528167B2 (en) 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US10316387B2 (en) 2013-11-18 2019-06-11 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US10441999B2 (en) 2015-02-09 2019-10-15 Hans Tech, Llc Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10639707B2 (en) 2015-09-10 2020-05-05 Southwire Company, Llc Ultrasonic grain refining and degassing procedures and systems for metal casting

Also Published As

Publication number Publication date
JP2000246415A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
JP3555485B2 (en) Rheocasting method and apparatus
EP1413373A2 (en) Method and apparatus for pressure diecasting a semi-solid metallic slurry
KR100526096B1 (en) Apparatus for producing a semi-solid metallic slurry
JPH1133692A (en) Manufacture of metallic slurry for semi-solidified casting
JP3520994B1 (en) Solid-liquid coexisting metal slurry manufacturing equipment
JP5242416B2 (en) Method for preparing a metal structure suitable for semi-molten metal processing
JP2004114153A (en) Method and apparatus for producing metallic material in solid-liquid coexisting state and method and apparatus for producing semi-solidified metallic slurry
JP2004507361A (en) Method and apparatus for on-demand production of semi-solid material for casting
JP2006519704A (en) Method and apparatus for preparing metal alloys
KR100434999B1 (en) Manufacturing method of billet for thixocasting method and manufacturing apparatus thereof
JP3511378B1 (en) Method and apparatus for manufacturing metal forming billet in solid-liquid coexistence state, method and apparatus for manufacturing semi-solid forming billet
CN1480275A (en) Method and equipment for preparing semisolid fused mass of ferrous material
Gencalp et al. Effects of Low-Frequency Mechanical Vibration and Casting Temperatures on Microstructure of Semisolid AlSi 8 Cu 3 Fe Alloy
KR20130041473A (en) Manufacturing method of high pressure rheocasting and apparatus thereof
KR100436116B1 (en) Manufacturing apparatus of billet for thixocasting method
JP3978492B2 (en) Method for producing semi-solid metal and metal material having fine spheroidized structure
JP3520991B1 (en) Method for producing metallic material in solid-liquid coexistence state
JP2001303150A (en) Metallic grain for casting, its producing method and injection-forming method for metal
Czerwinski Engineering liquid metals to manufacture quality components
JPH10140260A (en) Method of precast forming
CA2425759A1 (en) Process for transforming a metal alloy into a partially-solid/partially liquid shaped body
JPH10128516A (en) Formation of semi-molten metal
JPH04158952A (en) Method for holding semi-solidified metal slurry
JP3899539B2 (en) Aluminum alloy casting
KR20180000476A (en) Apparatus for manufacturing semi-solidified metal slurry

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees