JP2005065395A - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP2005065395A
JP2005065395A JP2003291025A JP2003291025A JP2005065395A JP 2005065395 A JP2005065395 A JP 2005065395A JP 2003291025 A JP2003291025 A JP 2003291025A JP 2003291025 A JP2003291025 A JP 2003291025A JP 2005065395 A JP2005065395 A JP 2005065395A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
output
power supply
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291025A
Other languages
English (en)
Inventor
Mitsunori Hatakeyama
光則 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003291025A priority Critical patent/JP2005065395A/ja
Publication of JP2005065395A publication Critical patent/JP2005065395A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】接続される負荷の大小にかかわらず、効率を最大にする。
【解決手段】ダイオードブリッジ4の出力端の一方と、FET6のドレインとの間に、チョークコイル5が設けられる。FET6のソースは、ダイオードブリッジ4の出力端の他方と接続され、そのゲートは制御回路13と接続される。FET6と並列になるように、コンデンサ7が設けられる。直列に接続されたFET8、9は、FET6のドレイン・ソース間に接続される。直列に接続されたチョークコイル10、コンデンサ11は、FET9と並列になるように設けられる。コンデンサ12は、コンデンサ11と並列になるように設けられる。トランス21の一次巻き線側は、チョークコイル10と並列になるように設けられる。入力電圧検出回路14は、入力端子2と接続され、入力電圧を検出する。トランス21の二次巻き線側には、ダイオード22、23が設けられる。
【選択図】図1

Description

この発明は、入力電圧および負荷が変動しても、高効率となるように共振条件を変化させることができる電流共振型スイッチングコンバータから構成される電源装置に関する。
従来の電流共振型スイッチングコンバータでは、共振ポイントが固定されている。そのため、最大負荷時に効率が最大となるように共振条件が決められていた。
なお、AC(Alternating Current)100V(AC85V乃至AC132V)およびAC200V(AC170V乃至AC264V)の入力に対応した、いわゆるワイド入力対応の場合であっても、スイッチング素子のオン抵抗による損失を低減し、交流入力電圧のピーク値より高い直流電圧を高い効率で出力でき、しかも実用的な負荷を接続することができるようにしているものもある(例えば、特許文献1参照。)。
特開平9−103076号公報
また、電流共振型コンバータと整流電流経路にスイッチング出力を帰還する方式の力率改善回路を備えた電源回路として、できるだけ低コスト化と小型/軽量化を図った上で、負荷連動に対する力率の安定化を実現しているものもある(例えば、特許文献2参照。)。
特開平9−140139号公報
しかしながら、最大負荷時に効率が最大となるように共振条件が決められていたため、軽負荷時などでは、共振ポイントからずれた周波数で動作することになるため、効率が悪化するという問題があった。さらに、待機電力を小さくすることが困難である。
また、装置に電源を搭載して実際に使用する負荷は、マージンを考慮して最大負荷より小さく設定される。これによって実使用時は、最大の効率で動作していないという問題も生じる。
従って、この発明の目的は、入力電圧や接続される負荷の大小にかかわらず、効率を最大とすることができる電源装置を提供することにある。
上述した課題を達成するために請求項1の発明は、力率改善コンバータの後段に共振型コンバータが接続される電源装置において、商用電源を整流した第1の電圧から第2の電圧を出力する力率改善コンバータと、少なくともコイルおよびコンデンサを備え、出力された第2の電圧から所定の電圧となる出力電圧を得る共振型コンバータと、第2の電圧の値、コイルのインダクタンス、およびコンデンサのキャパシタンスの少なくとも1つ以上を可変させることによって、共振条件を制御する制御手段とを有することを特徴とする電源装置である。
このように、第2の電圧の値、コイルのインダクタンス、およびコンデンサのキャパシタンスの少なくとも1つ以上を可変させることによって、共振条件を制御し、高効率で動作させることができる。
この発明に依れば、大電力および高効率化を図ることができ、さらに装置の小型化も図ることができる。また、待機電力を低く抑えることができ、広い電流範囲で高効率動作させることができる。
以下、この発明の一実施形態について図面を参照して説明する。図1は、この発明が適用された一実施形態の全体的構成を示す。参照符号1で示す商用電源は、一例としてAC95V〜AC264Vの電圧である。ダイオードブリッジ4の入力端の一方から導出される入力端子2と、その他方から導出される入力端子3とを介して商用電源1が供給される。
ダイオードブリッジ4の出力端の一方と、PチャンネルのMOSFET6のドレインとの間に、チョークコイル5が設けられる。MOSFET6のソースは、ダイオードブリッジ4の出力端の他方と接続され、そのゲートは制御回路13と接続される。MOSFET6と並列になるように、コンデンサ7が設けられる。このチョークコイル5、MOSFET6、およびコンデンサ7から力率改善コンバータ(PFC)回路が構成される。
PチャンネルのMOSFET8のドレインはMOSFET6のドレインと接続され、そのソースはPチャンネルのMOSFET9のドレインと接続され、そのゲートは制御回路13と接続される。PチャンネルのMOSFET9のソースはMOSFET6のソースと接続され、そのゲートは制御回路13と接続される。
直列に接続されたチョークコイル10およびコンデンサ11は、MOSFET9と並列になるように設けられる。このチョークコイル10は、制御回路13によってそのインダクタンスを任意に可変することができる。コンデンサ12は、コンデンサ11と並列になるように設けられる。このコンデンサ12は、制御回路13によってそのキャパシタンスを任意に可変することができる。
トランス21の一次巻き線側は、チョークコイル10と並列になるように設けられる。入力電圧検出回路14は、入力端子2と接続され、商用電源1が供給される入力電圧を検出する。検出された入力電圧は、制御回路13へ供給される。
トランス21の二次巻き線側の一方は、ダイオード22のアノードと接続され、その他方は、ダイオード23のアノードと接続される。トランス21の二次巻き線に設けられるセンタタップは、抵抗27を介して出力端子30と接続される。ダイオード22のカソードと、ダイオード23のカソードとは接続され、その接続点と出力端子29との間にチョークコイル24が設けられる。コンデンサ25は、出力端子29とトランス21の二次巻き線側のセンタタップとの間に設けられる。出力端子29および30との間に、負荷31が設けられる。
電圧検出回路26は、出力端子29と接続され、出力端子29および30から出力される電圧が検出される。検出された電圧は、制御回路13へ供給される。抵抗27の両端と接続される電流検出回路28では、負荷31に流れる電流が検出される。検出された電流は、制御回路13へ供給される。
制御回路13では、入力電圧検出回路14からの入力電圧、電圧検出回路26からの電圧、および電流検出回路28からの電流に応じて、MOSFET6、8、および9のオン/オフが制御され、さらにチョークコイル10のインダクタンスおよびコンデンサ12のキャパシタンスが制御される。
このように、力率改善コンバータ回路および電流共振型スイッチングコンバータ回路によって構成される。力率改善コンバータ回路から出力される電圧を動作条件によって可変させる制御が制御回路13によって行われる。また、チョークコイル10およびコンデンサ12のインダクタンスおよびキャパシタンスを可変させる制御がが制御回路13によって行われる。これら3つの要素を制御することによって、常に効率の高い共振条件で動作させることができる。
この図1に示す回路図の動作について説明する。商用電源1から供給されるAC入力がダイオードブリッジ4で整流される。整流されたダイオードブリッジ4の出力は、力率改善コンバータ回路で力率の改善と同時に昇圧が行われる。一例として、昇圧後の電圧(以下、「+B電圧」と称する)は、DC(Direct Current)250V〜DC380Vとする。この+B電圧を後段の電流共振型スイッチングコンバータ回路で必要な電圧、例えば12Vに安定化して負荷31に電力が供給される。
従来の回路であれば、力率改善コンバータ回路で昇圧された電圧は定電圧であり、例えば380Vなどに安定化して次段の電流共振型スイッチングコンバータ回路の入力電圧とするが、この一実施形態では、AC入力電圧と、出力の負荷電流を検出して、+B電圧を可変し、最も高効率で動作できる電圧に制御するようにしたものである。
また、図2には、電流共振型スイッチングコンバータの出力電力曲線の一例を示す。動作周波数点を参照符号41で示し、動作最低周波数を参照符号42で示す。
従来の回路であれば、電流共振型スイッチングコンバータの動作周波数は、出力電力に応じて変動し、図2中に示すように、負荷が大きくなると、動作周波数を低くして出力電圧を一定に保ち、反対に負荷が小さくなると、動作周波数を高くして出力電圧を一定に保つように制御がなされる。
電流共振型スイッチングコンバータの動作周波数は、入力電圧、すなわち+B電圧によっても変動し、+B電圧が低いときは動作周波数を低くし、+B電圧が高いときは動作周波数を高くして出力電圧を一定に保つ。
このように電流共振型スイッチングコンバータの動作周波数は、負荷によって変動し、出力電圧を一定に保つ場合、負荷が軽くなるほど動作周波数が高くなる。電流共振型スイッチングコンバータの効率は、出力電力が最大となるポイントで最も高効率になるように設計されているため、軽負荷時の効率を高くすることが困難である。
これを改善するために、この一実施形態では、軽負荷時には、+B電圧を下げることによって、常に動作周波数点が出力最大のポイント付近となるように制御される。この制御によって、全負荷領域において高効率な周波数で電流共振型スイッチングコンバータを動作させることができる。
また、軽負荷時に+B電圧を下げることによって、力率改善コンバータ回路から出力される昇圧された電圧が低くなるため、力率改善コンバータ回路の効率も上がり電源装置全体として高効率になる。
制御回路13によって制御されるチョークコイル10およびコンデンサ12は、共振周波数(図2の出力電力が最大になる周波数)を変化させるために、+B電圧の制御の補助的に追加されたものであり、AC入力電圧が高いときなど、+B電圧を下げる制御ができない領域で、周波数を変化させず、出力電力特性の曲線のピーク位置を変化させて効率低下を防ぐものである。
この一実施形態により、広い負荷領域、広い入力電圧の動作条件で電流共振回路の高能率化を実現できる。
この発明は、上述したこの発明の一実施形態等に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
この発明が適用される一実施形態について説明するための回路図である。 この発明が適用される一実施形態について説明するための特性図である。
符号の説明
1 商用電源
2、3 入力端子
4 ダイオードブリッジ
5、10、24 チョークコイル
6、8、9 MOSFET
7、11、12、25 コンデンサ
13 制御回路
14 入力電圧検出回路
21 トランス
22、23 ダイオード
26 電圧検出回路
27 抵抗
28 電流検出回路
29、30 出力端子
31 負荷

Claims (2)

  1. 力率改善コンバータの後段に共振型コンバータが接続される電源装置において、
    商用電源を整流した第1の電圧から第2の電圧を出力する力率改善コンバータと、
    少なくともコイルおよびコンデンサを備え、上記出力された第2の電圧から所定の電圧となる出力電圧を得る共振型コンバータと、
    上記第2の電圧の値、上記コイルのインダクタンス、および上記コンデンサのキャパシタンスの少なくとも1つ以上を可変させることによって、共振条件を制御する制御手段と
    を有することを特徴とする電源装置。
  2. 上記制御手段は、
    接続される負荷の値が変動しても、上記高効率となる上記共振型コンバータの共振ポイントで動作させるようにしたことを特徴とする請求項1に記載の電源装置。
JP2003291025A 2003-08-11 2003-08-11 電源装置 Pending JP2005065395A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291025A JP2005065395A (ja) 2003-08-11 2003-08-11 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291025A JP2005065395A (ja) 2003-08-11 2003-08-11 電源装置

Publications (1)

Publication Number Publication Date
JP2005065395A true JP2005065395A (ja) 2005-03-10

Family

ID=34368841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291025A Pending JP2005065395A (ja) 2003-08-11 2003-08-11 電源装置

Country Status (1)

Country Link
JP (1) JP2005065395A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012249363A (ja) * 2011-05-25 2012-12-13 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP2014003764A (ja) * 2012-06-15 2014-01-09 Panasonic Corp 電力変換装置
WO2015137069A1 (ja) * 2014-03-13 2015-09-17 オムロン株式会社 電流共振型直流電圧変換器、制御用集積回路および電流共振型直流電圧変換方法
JP5813184B1 (ja) * 2014-07-07 2015-11-17 三菱電機株式会社 直流変換装置
DE102015106335A1 (de) * 2015-04-24 2016-10-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Gleichstromwandlers
EP3809576A1 (en) * 2019-10-17 2021-04-21 Infineon Technologies Austria AG Dynamic regulation resonant power converter
US11509228B2 (en) 2019-10-17 2022-11-22 Infineon Technologies Austria Ag Dynamic regulation resonant power converter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012249363A (ja) * 2011-05-25 2012-12-13 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP2014003764A (ja) * 2012-06-15 2014-01-09 Panasonic Corp 電力変換装置
WO2015137069A1 (ja) * 2014-03-13 2015-09-17 オムロン株式会社 電流共振型直流電圧変換器、制御用集積回路および電流共振型直流電圧変換方法
JP2015177595A (ja) * 2014-03-13 2015-10-05 オムロン株式会社 電流共振型直流電圧変換器、制御用集積回路および電流共振型直流電圧変換方法
US10079545B2 (en) 2014-03-13 2018-09-18 Omron Corporation Current resonant type DC voltage converter, control integrated circuit, and current resonant type DC voltage conversion method
JP5813184B1 (ja) * 2014-07-07 2015-11-17 三菱電機株式会社 直流変換装置
JP2016019321A (ja) * 2014-07-07 2016-02-01 三菱電機株式会社 直流変換装置
DE102015106335A1 (de) * 2015-04-24 2016-10-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Gleichstromwandlers
US10011179B2 (en) 2015-04-24 2018-07-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating a resonant DC-DC converter of a charger
EP3809576A1 (en) * 2019-10-17 2021-04-21 Infineon Technologies Austria AG Dynamic regulation resonant power converter
US11005379B1 (en) 2019-10-17 2021-05-11 Infineon Technologies Austria Ag Dynamic regulation resonant power converter
US11509228B2 (en) 2019-10-17 2022-11-22 Infineon Technologies Austria Ag Dynamic regulation resonant power converter

Similar Documents

Publication Publication Date Title
CN110226282B (zh) Llc谐振转换器
US7245087B2 (en) Power conversion device
US7511929B2 (en) Switching power supply and semiconductor device used therefor
AU2014355917B2 (en) Power source apparatus and electric device
US8824170B2 (en) Power factor correct current resonance converter
US7778048B2 (en) Switching power supply apparatus
US20080031027A1 (en) Method and Apparatus for Reducing Body Diode Conduction of Synchronous Rectifiers
US9564813B2 (en) Switching power-supply device
JP2011101585A (ja) 力率を増加させた駆動回路
JP2004201385A (ja) Dc/dcコンバータ回路
KR101069795B1 (ko) 전력 변환 장치
JP2005065395A (ja) 電源装置
JP3591635B2 (ja) 直流−直流変換装置
JP4635584B2 (ja) スイッチング電源装置
US5933333A (en) Switching power supply apparatus
US20020039043A1 (en) Synchronous rectifier circuit
JP2007159305A (ja) 電源装置
JP2006223070A (ja) 力率改善回路
JP2004096967A (ja) スイッチング電源装置
JP4217821B2 (ja) スイッチング電源装置
JP2019047716A (ja) 電源装置
JP5259341B2 (ja) 電源装置および電源装置の制御方法
JP2007057783A (ja) 画像形成装置
JP2004215417A (ja) Dc/dcコンバータ
JP2000333452A (ja) フォワードコンバータ