JP2005062377A - Optical and electric combined substrate - Google Patents

Optical and electric combined substrate Download PDF

Info

Publication number
JP2005062377A
JP2005062377A JP2003291027A JP2003291027A JP2005062377A JP 2005062377 A JP2005062377 A JP 2005062377A JP 2003291027 A JP2003291027 A JP 2003291027A JP 2003291027 A JP2003291027 A JP 2003291027A JP 2005062377 A JP2005062377 A JP 2005062377A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
surface light
light emitting
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003291027A
Other languages
Japanese (ja)
Other versions
JP4119809B2 (en
Inventor
Takashi Shioda
剛史 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003291027A priority Critical patent/JP4119809B2/en
Publication of JP2005062377A publication Critical patent/JP2005062377A/en
Application granted granted Critical
Publication of JP4119809B2 publication Critical patent/JP4119809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical and electric combined substrate being a board-level optical interconnection realized at a low cost to avoid problems of light loss, a rise in cost, small and unstable input/output intensity, and contamination. <P>SOLUTION: Disclosed is the optical and electric combined substrate in which optical wiring and a surface type light emitting element 1 or surface type light receiving element 2 are mounted; and the surface type light emitting element or surface type light receiving element and the optical wiring 7 are connected by an optical waveguide 10 which is bent, and a light emission end part of the surface type light emitting element or a light reception end part of the surface type light receiving element and one end of the optical waveguide, and the other end part of the optical waveguide and an end part of the optical wiring are connected directly to each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は高分子光導波路に関し、特に光集積回路、光インターコネクション用光学部品等で用いられる光電気混載板およびその製造方法に関する。   The present invention relates to a polymer optical waveguide, and more particularly to an opto-electric hybrid board used in an optical integrated circuit, an optical component for optical interconnection, and the like, and a manufacturing method thereof.

光部品あるいは光ファイバの基材としては、光伝搬損失が小さく、伝送帯域が広いという特徴を有する石英ガラスや多成分ガラス等の無機系の材料が広く使用されているが、最近では高分子系の材料も開発され、無機系材料に比べて加工性や価格の点で優れていることから、光導波路用材料として注目されている。例えば、ポリメチルメタクリレート(PMMA)、あるいは、ポリスチレンのような透明性に優れた高分子をコアとし、そのコア材料よりも屈折率の低い高分子をクラッド材料としたコア−クラッド構造からなる平板型光導波路が作製されている(特開平3−188402号)。これに対して耐熱性の高い透明性高分子であるポリイミドを用い低損失の平板型光導波路が実現されている(特開平2−110500号)。コストなどの要求から光インターコネクション分野において、面発光型レーザ(VCSEL)が搭載されようとしているが、基板に対して垂直に出射するレーザ光を基板に対して水平な光導波路に入射するとき、約90°の光路変換が必要となる。高分子光導波路では、ダイシングソーによって、約45°に切削し、90°光路変換を可能にしている(特許文献1:特開平10−300961)。 しかしながら、ダイシングソーで切削する場合、必要な場所以外も45°に切削してしまうこと、切削時に汚染の恐れがあること、更には、受発光素子との間隔を50μm以下にすることは難しく、切削だけでは集光機能が無いため光が発散してしまい損失の原因になるなどの問題がある。   As base materials for optical components or optical fibers, inorganic materials such as quartz glass and multicomponent glass, which have the characteristics of low light propagation loss and wide transmission band, are widely used. These materials have also been developed and are attracting attention as materials for optical waveguides because they are superior in processability and price compared to inorganic materials. For example, a flat plate type having a core-clad structure in which a polymer having excellent transparency such as polymethyl methacrylate (PMMA) or polystyrene is used as a core and a polymer having a refractive index lower than that of the core material is used as a cladding material. An optical waveguide has been produced (Japanese Patent Laid-Open No. 3-188402). On the other hand, a low-loss flat optical waveguide is realized using polyimide, which is a transparent polymer having high heat resistance (Japanese Patent Laid-Open No. 2-110500). In the field of optical interconnection due to demands such as cost, surface emitting lasers (VCSELs) are about to be mounted. When laser light emitted perpendicular to the substrate is incident on an optical waveguide that is horizontal to the substrate, An optical path change of about 90 ° is required. The polymer optical waveguide is cut to about 45 ° by a dicing saw to enable 90 ° optical path conversion (Patent Document 1: Japanese Patent Laid-Open No. 10-300961). However, when cutting with a dicing saw, it may be cut at 45 ° other than the necessary place, there is a risk of contamination at the time of cutting, and further, it is difficult to make the interval between the light emitting and receiving elements 50 μm or less, Since there is no light collecting function by cutting alone, there is a problem that light diverges and causes loss.

図3に示すようにインクジェット方式などで形成したマイクロレンズ5を用いて集光させることも提案されている。プリント配線板8のインターポーザ基板4に設けられた発光素子1あるいは、受光素子2と45度カットされた光導波路7の間にマイクロレンズ5が基板側とパッケージ側に形成されている。これにより位置精度が緩和され、通常のハンダ実装のみで光結合が可能となる。しかしながら、レンズ用樹脂の粘度、導波路表面の濡れ性管理などコスト高になってしまう。また、空気中を伝搬するため、反射が起こり入出力強度も小さくかつ不安定になる、更には、汚染などの問題があった。   As shown in FIG. 3, it has also been proposed to collect light using a microlens 5 formed by an inkjet method or the like. Microlenses 5 are formed on the substrate side and the package side between the light emitting element 1 or the light receiving element 2 provided on the interposer substrate 4 of the printed wiring board 8 and the optical waveguide 7 cut by 45 degrees. As a result, positional accuracy is relaxed, and optical coupling is possible only with ordinary solder mounting. However, this increases the cost of managing the viscosity of the lens resin and the wettability of the waveguide surface. Further, since it propagates in the air, reflection occurs, the input / output intensity becomes small and unstable, and there are problems such as contamination.

可とう性を有するプラスチック光導波路を曲げて受発光素子に結合する方法が提案されている(特許文献2:特開平5−281428)。
この方法は、しかしながら、基板を精度良く穴加工や曲面加工しなければならなく、コスト高になってしまう。
A method of bending a flexible plastic optical waveguide and coupling it to a light emitting / receiving element has been proposed (Patent Document 2: JP-A-5-281428).
However, this method requires a hole or curved surface of the substrate to be accurately processed, resulting in high costs.

更に、図2に示すように発光素子1や受光素子2と光配線7を備えたプリント配線板8に形成した穴に光路変換のための端面45度カットしたピン9を挿入する方法も提案されている。この場合、ピンは光ファイバを短くカットして得られるが、1mm前後の長さを数ミクロンの精度で作製する必要がある、穴の要求位置精度が非常に高いなど高精度加工が要求されるため、コスト高になってしまう。また、基板を通さずに光導波路を曲げて上面を空中配線する方法もあるが、高さに制限がある場合実現困難である。
特開平10−300961号公報 特開平5−281428号公報
Further, as shown in FIG. 2, a method of inserting a pin 9 cut at an end face of 45 degrees for optical path conversion into a hole formed in a printed wiring board 8 having a light emitting element 1, a light receiving element 2 and an optical wiring 7 is also proposed. ing. In this case, the pin is obtained by cutting the optical fiber short, but it is necessary to produce a length of about 1 mm with an accuracy of several microns, and high precision processing is required such as the required position accuracy of the hole is very high. Therefore, the cost becomes high. There is also a method of bending the optical waveguide without passing through the substrate and wiring the upper surface in the air, but it is difficult to realize when the height is limited.
Japanese Patent Laid-Open No. 10-300961 JP-A-5-281428

本発明の目的は、上記の問題を回避すべく、低コストで実現できるボードレベル光インターコネクションとなる光電気混載基板を提供することにある。   An object of the present invention is to provide an opto-electric hybrid board serving as a board level optical interconnection that can be realized at a low cost in order to avoid the above-described problems.

本発明者は、鋭意検討した結果、面型発光素子または面型受光素子と基板に形成された光配線を光結合するために、ピンやミラーなどを用いて90°変換するのではなく、光導波路フィルムを用いて、面発光素子あるいは面受光素子と光配線を直接結合することにより、前記課題を解決することを見出し、本発明を完成させた。   As a result of diligent study, the present inventor did not perform 90 ° conversion using a pin, a mirror, or the like to optically couple the surface light emitting element or the surface light receiving element and the optical wiring formed on the substrate. The inventors have found that the above problems can be solved by directly coupling a surface light emitting element or a surface light receiving element and an optical wiring using a waveguide film, and have completed the present invention.

すなわち本発明は、光配線および面型発光素子または面型受光素子が搭載された光電気混載板であって、面型発光素子または面型受光素子と光配線との間が屈曲した光導波路で結ばれ、面端発光素子の発光端部または面型受光素子の受光端部と光導波路の一方の端部、および光導波路の他端部と光配線の端部とがそれぞれ直接結合されている光電気混載板である。   That is, the present invention is an opto-electric hybrid board on which an optical wiring and a surface light emitting element or a surface light receiving element are mounted, and is an optical waveguide in which a space between the surface light emitting element or the surface light receiving element and the optical wiring is bent. The light emitting end of the surface edge light emitting element or the light receiving end of the surface light receiving element and one end of the optical waveguide, and the other end of the optical waveguide and the end of the optical wiring are directly coupled to each other. It is an opto-electric hybrid board.

このとき、前記光配線が面型発光素子または面型受光素子が取り付けられた側と反対側の面に設けられており、前期光導波路が光電気混載板に設けられたスルーホールを貫通していることが薄型化に寄与するので好ましい。   At this time, the optical wiring is provided on a surface opposite to the side on which the surface light emitting element or the surface light receiving element is attached, and the optical waveguide passes through a through hole provided in the opto-electric hybrid board. Since it contributes to thickness reduction, it is preferable.

また本発明は、光配線および面型発光素子または面型受光素子が搭載された光電気混載板の製造方法であって、面型発光素子の発光端部または面型受光素子の受光端部に光導波路の一端部を直接接合した後に、面型発光素子または面型受光素子を光電気混載板に対して固定し、光混載板に設けられたスルーホールを貫通した光導波路を屈曲させて、面型発光素子または面型受光素子が取り付けられた側と反対側の面に取り付けられた光配線の端部と光導波路の前記他端部を直接接合する工程を含むことを特徴とする光電気混載板の製造方法である。光導波路をスルーホールを貫通させるのは、面型発光素子または面型受光素子に直接接合させる前でもよいし、直接接合させた後でもよい。   The present invention also relates to a method of manufacturing an opto-electric hybrid board on which an optical wiring and a surface light emitting element or a surface light receiving element are mounted. After directly joining one end of the optical waveguide, the surface light emitting element or the surface light receiving element is fixed to the opto-electric hybrid board, and the optical waveguide penetrating through the through-hole provided in the optical hybrid board is bent, And a step of directly joining the end portion of the optical wiring attached to the surface opposite to the side on which the surface light emitting element or the surface light receiving element is attached to the other end portion of the optical waveguide. It is a manufacturing method of a mixed board. The optical waveguide may be penetrated through the through-hole before or after being directly bonded to the surface light emitting element or the surface light receiving element.

光電気混載板は1枚の基板からなりその表に面型発光素子または面型受光素子が搭載され裏面に光配線がされていてもよいし、また面型発光素子または面型受光素子が凸形状基板の内側に搭載されその凸形状基板が光電気混載板の主基板の表に取り付けられ、主基板の裏面に光配線がされていてもよい。この光配線は通常の光導波路であって基板面上に貼り付けられたものでよいし、基板面上に形成された光導波路でもよい。   The opto-electric hybrid board is composed of a single substrate, and a surface type light emitting element or a surface type light receiving element may be mounted on the front surface, and an optical wiring may be provided on the back surface. The convex substrate mounted on the inside of the shape substrate may be attached to the front surface of the main substrate of the opto-electric hybrid board, and optical wiring may be provided on the back surface of the main substrate. This optical wiring may be a normal optical waveguide that is affixed on the substrate surface, or may be an optical waveguide formed on the substrate surface.

光導波路と面型発光素子や面型受光素子などの光素子との光結合は、光素子を基板に実装後に行うと、基板の反りの影響を受けたり、屈曲させた短い光導波路を光素子に対して垂直に保持することが難しいため、光結合効率が低くなってしまう。また、光結合を行う箇所が多い場合、その度に治具を移動させる必要があるため、光結合の時間も長くなってしまう。   When optical coupling between an optical waveguide and an optical element such as a surface light emitting element or a surface light receiving element is performed after the optical element is mounted on a substrate, the optical element is affected by the warp of the substrate or a short optical waveguide is bent. However, since it is difficult to hold it vertically, the optical coupling efficiency is lowered. In addition, when there are many places where optical coupling is performed, it is necessary to move the jig each time, so that the time for optical coupling is also increased.

光導波路と光素子の光結合を先に行うと、以上のことは起こらない。
また、光導波路と光配線の光結合は、要求位置精度も低く、比較的簡単に結合できる。
If the optical coupling between the optical waveguide and the optical element is performed first, the above will not occur.
Further, the optical coupling between the optical waveguide and the optical wiring has a low required position accuracy and can be coupled relatively easily.

本発明による光電気混載基板構造を用いることにより、結合効率が良好でかつ量産性の優れた低コストな光電気混載板などが製造できる。    By using the opto-electric hybrid board structure according to the present invention, a low-cost opto-electric hybrid board having good coupling efficiency and excellent mass productivity can be manufactured.

以下、本発明を詳細に説明する。ここでは、ポリイミド光導波路、面発光型あるいは面受光型光素子を例に挙げて説明するが、光導波路の材料としてポリイミド以外の光学用材料の樹脂を用いて光結合することももちろん可能である。 Hereinafter, the present invention will be described in detail. Here, a polyimide optical waveguide, a surface light emitting type or a surface light receiving type optical element will be described as an example, but it is of course possible to optically couple using an optical material resin other than polyimide as the material of the optical waveguide. .

まず、本発明に用いる光導波路の一例として光導波路フィルムの製造方法を説明する。シリコンウェハ上に下部クラッド層を形成する。その上にコア層を形成する。次に、所望のコアパターンの描いてあるマスクパターンを用いて、レジストパターン形成を行う。このレジストをマスクとして酸素プラズマでドライエッチングする。次に、残ったレジストを剥離液で除去する。次に上から上部クラッド層を形成する。次に、フッ酸水溶液に浸せきさせシリコンウェハから、光導波路を剥離する。このようにして得られた光導波路フィルムを、所望の形状にダイシングソー等で切り出す。この光導波路フィルムの長さは、基板の厚みに数mm加えた長さとし、パッケージ実装後、光導波路が基板の裏面から出るように長さを調整する。   First, the manufacturing method of an optical waveguide film is demonstrated as an example of the optical waveguide used for this invention. A lower cladding layer is formed on the silicon wafer. A core layer is formed thereon. Next, a resist pattern is formed using a mask pattern on which a desired core pattern is drawn. Using this resist as a mask, dry etching is performed with oxygen plasma. Next, the remaining resist is removed with a stripping solution. Next, an upper cladding layer is formed from above. Next, the optical waveguide is peeled off from the silicon wafer by dipping in a hydrofluoric acid aqueous solution. The optical waveguide film thus obtained is cut into a desired shape with a dicing saw or the like. The length of the optical waveguide film is a length obtained by adding several millimeters to the thickness of the substrate, and the length is adjusted so that the optical waveguide comes out from the back surface of the substrate after package mounting.

次に図1を用いて本発明の光混載板の製造方法の一例を示す。上述のように作成された短冊光導波路10を凸形状のインターポーザ基板4の内側に実装されている面型発光素子1あるいは面型受光素子2に直接突き当て結合する。すなわち光導波路の長さ方向に直角に切断して得た端面を、面型発光素子の発光部または面型受光素子の受光部に直接突き当てて固定する。   Next, an example of the manufacturing method of the optical hybrid board of this invention is shown using FIG. The strip optical waveguide 10 created as described above is directly abutted and coupled to the surface light emitting element 1 or the surface light receiving element 2 mounted inside the convex interposer substrate 4. That is, the end face obtained by cutting at right angles to the length direction of the optical waveguide is directly abutted on and fixed to the light emitting part of the surface light emitting element or the light receiving part of the surface light receiving element.

インターポーザ基板4には面型受発光素子を経由する光信号を電気的に処理するICチップ3が取り付けられていてもよい。結合時の位置あわせ方法としてマーカを用いても良いし、発光させて短冊光導波路内を導波する光強度が最大になるようにして位置合わせしても良い。光導波路のコア中心と受発光素子の受発光径の中心が重なる位置で接着材を用いて接着する。このようにして、光導波路の端面に受発光素子をレンズや反射面を介さずに直接結合することが出来る(図1(a))。   The interposer substrate 4 may be provided with an IC chip 3 for electrically processing an optical signal passing through the surface light emitting / receiving element. A marker may be used as an alignment method at the time of coupling, or alignment may be performed so that the intensity of light that is emitted and guided in the strip optical waveguide is maximized. Bonding is performed using an adhesive at a position where the core center of the optical waveguide and the center of the light receiving and emitting diameter of the light receiving and emitting element overlap. In this manner, the light emitting / receiving element can be directly coupled to the end face of the optical waveguide without using a lens or a reflecting surface (FIG. 1 (a)).

樹脂封止材11等で光素子を封止したのち、ドリルやレーザなどで形成されたプリント配線板8のスルーホール6に光導波路を通して、インターポーザ基板(例えば、BGA:ball grid array基板)にハンダボール12を用いてハンダ実装する(図1(b))。電気的な実装をここではハンダを用いて説明しているが、種々の電気実装方法を用いることが出来る。その後、光素子に直接結合した短冊状光導波路10をプリント配線板の内部あるいは裏面に貼り合せられた光配線7に接続する。すなわち光導波路をその長さ方向に直角に切断して得られた端面と、同様に光配線をその長さ方向に直角に切断して得られた端面同士を突き合わせて固定した。このとき、光軸をあわせるためにマーカを用いても良いし、光導波路および光配線の外形形状から光軸となる中心位置を求めて行っても良い。必要であれば、接着剤13を用いて接続部を固定する(図1(c))。   After the optical element is sealed with a resin sealing material 11 or the like, the optical waveguide is passed through the through hole 6 of the printed wiring board 8 formed by a drill or a laser, and soldered to an interposer substrate (for example, BGA: ball grid array substrate). Solder mounting is performed using the balls 12 (FIG. 1B). Although electrical mounting is described here using solder, various electrical mounting methods can be used. Thereafter, the strip-shaped optical waveguide 10 directly coupled to the optical element is connected to the optical wiring 7 bonded to the inside or the back surface of the printed wiring board. That is, the end face obtained by cutting the optical waveguide at right angles to the length direction and the end faces obtained by cutting the optical wiring at right angles to the length direction were abutted and fixed. At this time, a marker may be used to align the optical axis, or the center position serving as the optical axis may be obtained from the outer shape of the optical waveguide and the optical wiring. If necessary, the connecting portion is fixed using the adhesive 13 (FIG. 1 (c)).

これにより、45°カットした光導波路あるいは光ファイバを用いる場合と比較して、結合損失が大幅に低減でき、かつ低コスト光電気混載板が形成出来る。   Thereby, compared with the case where the optical waveguide or optical fiber cut by 45 ° is used, the coupling loss can be greatly reduced, and a low-cost opto-electric hybrid board can be formed.

引き続いて、実施例を用いて本発明を更に詳しく説明する。なお、分子構造の異なる種々の高分子の溶液を用いることにより数限りない本発明の高分子光導波路および光電気混載板が得られることは明らかである。したがって、本発明はこれらの実施例のみに限定されるものではない。
4インチシリコンウェハ上に2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)と2,2−ビス(トリフルオロメチル)−4, 4' −ジアミノビフェニル(TFDB)から形成されるポリイミドをクラッドとして、6FDAと4, 4' −オキシジアニリン(ODA)から形成されるポリイミドをコアとして、フォトリソグラフィとドライエッチング技術により光導波路フィルムを形成する。その後、このシリコンウェハ上の光導波路を5wt%のフッ酸水溶液中に浸漬させ、シリコンウェハから光導波路を剥し、フィルム光導波路を作製した。フィルム導波路の厚みは約50μmとした。長さ5mm、幅3mmになるように短冊光導波路をダイシングソーにより切り出した。
Subsequently, the present invention will be described in more detail with reference to examples. It is apparent that the polymer optical waveguide and the opto-electric hybrid board of the present invention can be obtained by using various polymer solutions having different molecular structures. Therefore, the present invention is not limited only to these examples.
2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis (trifluoromethyl) -4,4'-diaminobiphenyl (TFDB) on a 4-inch silicon wafer An optical waveguide film is formed by photolithography and dry etching techniques using a polyimide formed from (3) as a cladding and a polyimide formed from 6FDA and 4,4′-oxydianiline (ODA) as a core. Thereafter, the optical waveguide on the silicon wafer was immersed in a 5 wt% hydrofluoric acid aqueous solution, and the optical waveguide was peeled off from the silicon wafer to produce a film optical waveguide. The thickness of the film waveguide was about 50 μm. A strip optical waveguide was cut out by a dicing saw so as to have a length of 5 mm and a width of 3 mm.

この光導波路をBGA基板に実装された面発光型レーザダイオードおよび面受光型フォトディテクタを直接結合した。このとき、面発光レーザを発光させて位置合わせを行った。光導波路のコア中心と受発光素子のそれぞれ受発光径の中心が重なる位置でUV硬化エポキシ接着材を用いて接着した。このようにして、光導波路の端面に光素子を直接突き当て結合した。その後、BGAパッケージを、光配線として光導波路フィルムが裏面に貼り合せられているプリント配線板にハンダ実装した。このとき、プリント配線板には短冊光導波路を通す穴が形成されている。穴を貫通した短冊光導波路を曲げ、光配線の光導波路の端面と接続した。位置合わせ後、接着剤により固定した。このようにして、光電気混載板が製造できた。   This optical waveguide was directly coupled to a surface emitting laser diode and a surface light receiving photodetector mounted on a BGA substrate. At this time, alignment was performed by emitting a surface emitting laser. Bonding was performed using a UV curable epoxy adhesive at a position where the center of the core of the optical waveguide and the center of the light receiving / emitting element overlap each other. In this way, the optical element was directly abutted and coupled to the end face of the optical waveguide. Thereafter, the BGA package was solder-mounted on a printed wiring board in which an optical waveguide film was bonded to the back surface as an optical wiring. At this time, a hole through which the strip optical waveguide passes is formed in the printed wiring board. The strip optical waveguide penetrating the hole was bent and connected to the end face of the optical waveguide of the optical wiring. After alignment, it was fixed with an adhesive. In this way, an opto-electric hybrid board could be manufactured.

受発光素子と電気回路の双方を搭載して光信号や光通信の中継処理を行う光電気混載基板に応用できる。     The present invention can be applied to an opto-electric hybrid board that mounts both a light emitting / receiving element and an electric circuit and performs relay processing of optical signals and optical communications.

本発明による光素子と光配線の光結合構造の一例を示す図である。It is a figure which shows an example of the optical coupling structure of the optical element and optical wiring by this invention. 光ピンを用いた光素子と光配線の光結合構造の従来例を示す図である。It is a figure which shows the prior art example of the optical coupling structure of the optical element and optical wiring which used the optical pin. マイクロレンズを用いた光素子と光配線の光結合構造の従来例を示す図である。It is a figure which shows the prior art example of the optical coupling structure of the optical element and optical wiring using a micro lens.

符号の説明Explanation of symbols

1:発光素子、 2:受光素子、 3:ICチップ、
4:インターポーザ基板、 5:マイクロレンズ、 6:スルーホール、
7:光配線、 8:プリント配線板、 9:ピン、
10:光導波路、 11:封止材、 12:ハンダボール、
13:接着剤


1: light emitting element, 2: light receiving element, 3: IC chip,
4: Interposer substrate, 5: Micro lens, 6: Through hole,
7: Optical wiring, 8: Printed wiring board, 9: Pin,
10: optical waveguide, 11: sealing material, 12: solder ball,
13: Adhesive


Claims (3)

光配線および面型発光素子または面型受光素子が搭載された光電気混載板であって、面型発光素子または面型受光素子と光配線との間が屈曲した光導波路で結ばれ、面型発光素子の発光端部または面型受光素子の受光端部と光導波路の一方の端部、および光導波路の他端部と光配線の端部とがそれぞれ直接結合されていることを特徴とする光電気混載板。 An opto-electric hybrid board on which an optical wiring and a surface light emitting element or a surface light receiving element are mounted, the surface light emitting element or the surface light receiving element and the optical wiring being connected by a bent optical waveguide, The light emitting end of the light emitting element or the light receiving end of the surface light receiving element and one end of the optical waveguide, and the other end of the optical waveguide and the end of the optical wiring are directly coupled to each other. Photoelectric mixed board. 前記光配線が面型発光素子または面型受光素子が取り付けられた側と反対側の面に設けられており、前期光導波路が光電気混載板に設けられたスルーホールを貫通している請求項1に記載の光電気混載板。 The optical wiring is provided on a surface opposite to the side on which the surface light emitting element or the surface light receiving element is attached, and the optical waveguide passes through a through hole provided in the opto-electric hybrid board. The opto-electric hybrid board according to 1. 光配線および面型発光素子または面型受光素子が搭載された光電気混載板の製造方法であって、面型発光素子の発光端部または面型受光素子の受光端部に光導波路の一端部を直接接合した後に、面型発光素子または面型受光素子を光電気混載板に対して固定し、光混載板に設けられたスルーホールを貫通した前記光導波路を屈曲させて、面型発光素子または面型受光素子が取り付けられた側と反対側の面に取り付けられた光配線の端部と前記光導波路の他端部を直接接合する工程を含むことを特徴とする光電気混載板の製造方法。 A method of manufacturing an opto-electric hybrid board on which an optical wiring and a surface light emitting element or a surface light receiving element are mounted, wherein one end portion of an optical waveguide is provided at a light emitting end portion of the surface light emitting element or a light receiving end portion of the surface light receiving element. After the direct bonding, the surface light emitting element or the surface light receiving element is fixed to the opto-electric hybrid board, and the optical waveguide penetrating the through hole provided in the optical hybrid board is bent, so that the surface light emitter Or manufacturing an opto-electric hybrid board, comprising a step of directly joining an end portion of an optical wiring attached to a surface opposite to a side on which a surface light receiving element is attached and the other end portion of the optical waveguide. Method.
JP2003291027A 2003-08-11 2003-08-11 Opto-electric hybrid board Expired - Fee Related JP4119809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291027A JP4119809B2 (en) 2003-08-11 2003-08-11 Opto-electric hybrid board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291027A JP4119809B2 (en) 2003-08-11 2003-08-11 Opto-electric hybrid board

Publications (2)

Publication Number Publication Date
JP2005062377A true JP2005062377A (en) 2005-03-10
JP4119809B2 JP4119809B2 (en) 2008-07-16

Family

ID=34368843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291027A Expired - Fee Related JP4119809B2 (en) 2003-08-11 2003-08-11 Opto-electric hybrid board

Country Status (1)

Country Link
JP (1) JP4119809B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025310A (en) * 2005-07-19 2007-02-01 Sony Corp Optical information processor
JP2007171661A (en) * 2005-12-22 2007-07-05 Fuji Xerox Co Ltd Optical connector and method of manufacturing optical connector
JP2008256870A (en) * 2007-04-03 2008-10-23 Omron Corp Optical cable module and electronic device incorporating it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674525B2 (en) * 2011-03-29 2015-02-25 日東電工株式会社 Manufacturing method of opto-electric hybrid board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025310A (en) * 2005-07-19 2007-02-01 Sony Corp Optical information processor
JP4654807B2 (en) * 2005-07-19 2011-03-23 ソニー株式会社 Optical information processing equipment
JP2007171661A (en) * 2005-12-22 2007-07-05 Fuji Xerox Co Ltd Optical connector and method of manufacturing optical connector
JP4664200B2 (en) * 2005-12-22 2011-04-06 富士ゼロックス株式会社 Optical connection device
JP2008256870A (en) * 2007-04-03 2008-10-23 Omron Corp Optical cable module and electronic device incorporating it

Also Published As

Publication number Publication date
JP4119809B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US7590315B2 (en) Optical waveguide and optical module using the same
JP4704126B2 (en) Optical module
TW442678B (en) Connector-type optical transceiver using SOI optical waveguide
CN102308236A (en) Optical waveguide and optical waveguide module
TW200428057A (en) Photo module
JP2009128430A (en) Optical waveguide device production method, optical waveguide device produced by the method, and optical waveguide connection structure to be used for the device
JP2007072007A (en) Optical waveguide module
JP2004212847A (en) Optical coupler
JPH05333232A (en) Non adjustment optical connector
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JP4119809B2 (en) Opto-electric hybrid board
JP2004233687A (en) Optical waveguide substrate and optical module
JP2004325999A (en) Optical fiber transceiver module and electronic device
JP4703441B2 (en) Optical waveguide device and opto-electric hybrid device
JP2006047764A (en) Projected optical waveguide, method of manufacturing the same and optoelectric hybrid substrate using the same
JP2005070141A (en) Optical waveguide structure with optical path conversion component and manufacturing method therefor and optical path conversion component
JP4290065B2 (en) Optical module and manufacturing method thereof
JP2004206015A (en) Optical and electric hybrid circuit board
JP2003172836A (en) Optical waveguide element with optical path alternation function
JP5047591B2 (en) Flexible optical waveguide and optical waveguide module
JP2004021042A (en) Opto-electric consolidated wiring board
JP2006276892A (en) Method for manufacturing optical path conversion connector
JP2004212774A (en) Optical coupling method using optical waveguide
JP2004170578A (en) Optical coupling method using optical waveguide
KR100398045B1 (en) Module for transmitting and receiving an optic signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Ref document number: 4119809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees