JP2005056928A - Crimping unit structure - Google Patents

Crimping unit structure Download PDF

Info

Publication number
JP2005056928A
JP2005056928A JP2003206313A JP2003206313A JP2005056928A JP 2005056928 A JP2005056928 A JP 2005056928A JP 2003206313 A JP2003206313 A JP 2003206313A JP 2003206313 A JP2003206313 A JP 2003206313A JP 2005056928 A JP2005056928 A JP 2005056928A
Authority
JP
Japan
Prior art keywords
crimping
phase
unit structure
tool
crimping tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003206313A
Other languages
Japanese (ja)
Inventor
Naoshi Akiguchi
尚士 秋口
Mitsuyoshi Nagano
光芳 永野
Norimitsu Koe
規充 向江
Shigeya Sakaguchi
茂也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Panasonic Holdings Corp
Original Assignee
Nippon Tungsten Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2003206313A priority Critical patent/JP2005056928A/en
Publication of JP2005056928A publication Critical patent/JP2005056928A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crimping unit structure which is free from generation of junction failure and provided with sufficiently high precision, low cost and high reliability by obtaining crimping tool material wherein parallel flatness of the crimping surface of a crimping tool is maintained accurately, temperature irregularity in the crimping tool at the time of bonding is not present, irregularity of hardenability of adhesive agent is not generated, and deformation of stretching or the like of a flexible substrate is uniform. <P>SOLUTION: Ceramic material of Si<SB>3</SB>N<SB>4</SB>is used as crimping tools 7, 8 which material has 50 or more vol% at volume capacity, in particular, has crystal of two phases of α-Si<SB>3</SB>N<SB>4</SB>phase and β-Si<SB>3</SB>N<SB>4</SB>phase, and proportion of two phases occupying α-Si<SB>3</SB>N<SB>4</SB>phase is 5 or more and 50 or less at vol%. The crimping unit has structure composed of maintenance parts 3, 4, 5, 6 which hold the crimping tool 7, 8 at a parallel flat surface, and a plurality of heating heaters 9 which are arranged in the maintenance parts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基板電極端子とフレキシブル基板電極端子の接合や、ガラエポ基板電極端子とフレキシブル基板電極端子の接合に用いる圧着ユニット構造に関する。
【0002】
【従来の技術】
係る電極端子の接合に用いられる圧着ユニットを構成する圧着ツール材としては、下記の特許文献に記載されているように、ステンレススチールのような金属材料、超硬合金、アルミナ系セラミック材料が知られている。
【0003】
【特許文献1】
特開平7−235563号公報
【0004】
【特許文献2】
特開平11−145165号公報
【0005】
【特許文献3】
特開2002−261121号公報
【0006】
【発明が解決しようとする課題】
近年、その接合する電極端子の形成ピッチが小さくなる傾向にあり、より低コストで、高精度、高信頼性の接合が求められるようになった。そのためには、被圧着材を両面から挟み込む圧着ユニットの圧着面の平行平面度を正確に維持する必要がある。
【0007】
ところが、上記従来の圧着ツール材は、熱膨張係数や、熱伝導係数の関係から、2つのツールの圧着面の平行平面度を正確に保持するのが難しく、また、接合時のツール内の温度のばらつきが大きく、接着材の硬化性にばらつきが発生したり、フレキシブル基板の伸び等の変形が不均一となる傾向がある。
【0008】
そのため、電極端子同士の接合不良が発生する可能性が高く、また、低コスト、高精度、高信頼性を十分に満足できないことがあった。
【0009】
本発明が解決しようとする課題は、接合不良の発生がなく、低コストで、高精度、高信頼性を十分に満足できる圧着ユニット構造を提供することにある。
【0010】
【課題を解決するための手段】
本発明の圧着ユニット構造は、Si基セラミック材を加熱圧着のための2つの圧着ツールの中の少なくとも1つに使用し、その2つの圧着ツールのそれぞれの圧着面を平行に保持する保持部と、その保持部に複数個の加熱ヒータを配置した構造からなる。
Siは、熱膨張係数が従来の金属材料、超硬合金、アルミナ系セラミック材料のような加熱圧着ツール材と比較して数分の一と小さいため、室温から高温まで優れた平面精度が維持でき、高精度、低コスト、高信頼性の接合が可能な加熱圧着ツール材として使用できる。そして、加熱圧着ツール材として、所望の強靭性、熱膨張係数を確保するためには、Siを50体積%以上含有するSi基セラミック材とすることが必須である。
【0011】
また、このSi基セラミック材は、α−Si相とβ−Si相の2相の結晶をもち、2相に占めるα−Si相の割合が体積%で5以上50以下であることが望ましい。
【0012】
α−Si相は、Siの一部がY,Mg,O,Alによって置換されたものであり、β−Si相は、Siの一部がO,Alで置換されたものである。このα−Si相とβ−Si相の2相の結晶をもつセラミック材は、α−Si相とβ−Si相のいずれかの単独相からなるセラミックス材より、結晶組織が微細で、曲げ強度が高く、気孔率が0.5%以下と少ないため、優れた平面度、面粗度をもつ加熱圧着面が得られる。
【0013】
さらに、前記圧着ユニット構造において、保持部に配置されている複数個の加熱ヒータを偶数個とすることで、さらに、優れた圧着ツールの平面平行度が保持できる。
【0014】
【発明の実施形態】
以下、本発明の実施の形態を以下の実施例によって説明する。
【0015】
(本発明に係る圧着ツール材の調製)
主成分として、α−Si相とβ−Si相を所定の割合で含む平均粒子径が0.5ミクロンのSi粉末と、焼結助剤として平均粒子径1.0ミクロン以下のY、AlN、MgO、TiNなどの粉末を添加し、メタノール溶媒中で純度が99.5%以上のZrO製ボールを入れたゴムライニングポット中で20時間分散混合を行った。得られたスラリーを取り出した後、アルコール系のバインダーを添加して、クローズドスプレードライヤーによって窒素雰囲気中で造粒混合を行った。得られた造粒粉を金型プレスによって4×5×45mmの曲げ試験片、Φ20×3tmmの熱伝導率測定用試料を作製し、脱脂の後、窒素ガス中、2023K〜2123Kの温度域で普通焼結を行った。また、焼結試料の一部を、1923K〜2023Kの温度域で窒素ガスを用いたHIP処理を行った。
【0016】
(本発明に係る圧着ツール材の特性の評価)
図1は、得られた本発明に係る試料の各温度における熱膨張係数の変化を、Al−TiCとSKD−60と対比して示す。同図に示されているように、本発明に係るSi基セラミック材は、熱膨張率の温度変化がSKD−60の1/5以下、Al−TiCセラミックスの1/3以下であって、しかも温度変化に対する影響を受けにくいことを示している。これは室温での高い精度が高温でも維持されることを意味する。
【0017】
表1は、試料No.1〜13に示す各組成のものを本発明に係る圧着ユニット構造の圧着ツールとしての特性を評価したものである。同表において、試料No.1〜5は本発明の実施例を、また、No.6〜13は比較例としてSUS304、SKD61の金属製、WC−Co超硬合金、Al、Al−TiC、ZrOのセラミックスなどの材料と比較したものである。
【0018】
本発明に係る圧着ツール材は、上記の調製法に準じて作成し、後述する図2と3に示す圧着ユニット構造の圧着ツールに合わせた形状に研削加工した。圧着ツール材の圧着面は平面度2μm以下に加工し、実機による評価を行ったものである。それぞれの評価結果を表1に示す。
【0019】
【表1】

Figure 2005056928
平面度と熱膨張率
圧着ツールの使用温度は、通常423〜673Kであるため、室温で加工する圧着使用面は使用温度で熱膨張による変形がある。その変形は転写される圧着面の平面度の劣化を意味するため、室温から高温にかけて平面度の変化は可能な限り少ないことが必要となる。本発明の圧着ツールの273〜1273Kの間の平均熱膨張率は、3.2〜3.5×10−6/Kで、比較例の場合と対比して極めて小さいものであった。
【0020】
ノッチ加工後の曲げ強度低下
圧着ツールは圧力を伝達して被処理物を接着するものであるため、圧力に対する抵抗性が高くなければならない。すなわち、どのような形状の圧力面であっても破損することが許されない用途である。そこで、JIS曲げ試験片の測定面(底面)中央部に2Rのノッチ(溝)を加工して曲げ強度の低下を測定した。その結果、強度が高い材料が有利ではあるが、セラミックスの中ではNo.1からNo.5までのSi系材料やZrO系材料の低下は小さい。本発明のSi系材料の中でも、α−Si相が多い材料やβ−Si相の単独相からなるSiセラミックスよりも気孔が少なく曲げ強度が高いα−β相複合型のSiセラミック材料のほうが、より強度低下が少ないことが認められ、より好ましい特性であることがわかった。
【0021】
表1の試料No.6は、分散強化を目的にSiCを55重量%(換算で55体積%)添加したものであるが、緻密性が十分ではなく、低強度で面粗度が荒れるなど、使用に耐えない状態であった。このことから、Si成分としては50体積%以上であることが好ましいといえる。
【0022】
表面酸化
圧力ツールは加熱圧着するときに大気雰囲気で423〜673Kの高温にさらされるため、酸化の問題がある。酸化はツール成分の酸化による酸化物生成、酸化による昇華など、変質によって表面に与えるダメージが大きいので、平面度や面粗度の劣化を引き起こす。表1に示されるように、比較のAl、ZrO以外は酸化され易く、本発明のSiセラミックスが最も良い結果を示した。
【0023】
(実機による評価)
図2は、本発明の圧着ユニット構造10の例を示す。同図において、1、2は上下それぞれのユニット基材を、また、3、4は上下それぞれのツール押さえを示す。上下の圧着ツール7、8は、それぞれ、ユニット基材1、2に、ツール押さえ3、4で挟まれ、ネジ5,6によってネジ止めされている。9は、上の圧着ツール7が保持されているユニット基材1の上部に配置されているヒーターを示す。上の圧着ツール7は本発明による圧着ツール材を用いるが、下の圧着ツール8としては、本発明による圧着ツール材の使用が好ましいが、特に限定されず、いかなる材質のものも使用可能である。また、ヒータ9としては、カートリッジ型ヒーターが好ましいが、特にこれに限定されない。ヒーターの有効長さは、差し込まれるユニット基材1の長さの±20%の範囲内であるのが好ましい。20%よりも長いと、ヒーターが断線する可能性があり、20%以下であると、加熱のための熱容量が不足する。圧着の際に、上下のユニット基材1,2を駆動する手段としては、シリンダーによる駆動や、モーターによる駆動、あるいは、その両方を会わせた駆動が採用可能である。
【0024】
図3は、図2に示す圧着ユニット構造10におけるヒーター9の配置を側面から見た図を示すもので、ヒーター9は、図2に示す上のユニット基材1の中心に対して、左右に均等に、偶数個配置されている。
【0025】
本発明のSi基セラミックス焼結体を作成し、図2と図3に示す圧着ユニット構造に合わせた形状に研削加工して圧着ツールを作成した。使用する圧着面は平行度5μm以下、平面度2μm以下に加工し、実機による評価を行った。
【0026】
図2に示すヒーター9(カートリッジ型、直径8mm、有効長さ35mm)を上のユニット基材1に4本配置したものを用い、圧着ツール7,8(長さ100mm、幅4mm、高さ15mm)として研削加工した表1の組成No.1のSi基セラミックスを上下のユニット基材1,2に、ツール押さえ3,4にてネジ止めし、所定の位置にFPCが接着剤シートにより仮止めされたガラス基板の圧着位置を、前記圧着ツール7,8間に配置して、453K、3.92MPa、20秒の条件にて、加圧加熱して硬化した。
【0027】
比較例として、上の圧着ツールに従来使用してきたAl−TiCセラミックスを用いて評価した。実施例と比較例のサンプルをn=10個ずつ作製し、室温358K、湿度65%の条件で2000時間使用した場合、本発明の圧着ユニット構造による接合不良の発生率は0であったのに対し、比較例の場合は20であった。また、453K、3.92MPaの条件で20秒保持後室温まで冷却する加圧加熱急冷却のサイクルを590サイクル繰り返した場合、本発明の圧着ユニット構造による接合不良の発生率は0であったのに対し、比較例の場合は30であった。
【0028】
【発明の効果】
本発明の圧着ツール材を使用した圧着ユニット構造を使用しての接合は、高精度の接合が可能で、接合不良の発生がなく、かつ、低コスト、高信頼性を十分に満足できるものである。
【図面の簡単な説明】
【図1】本発明に係る圧着ツール材の熱膨張率を示す図である。
【図2】本発明の圧着ユニット構造の例を示す。
【図3】図2に示す圧着ユニット構造におけるヒーターの配置を側面から見た図である。
【符号の説明】
1、2:ユニット基材
3、4:ツール押さえ
5、6:ネジ
7、8:圧着ツール
9:ヒーター
10:圧着ユニット構造[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure-bonding unit structure used for joining a glass substrate electrode terminal and a flexible substrate electrode terminal, and joining a glass epoxy substrate electrode terminal and a flexible substrate electrode terminal.
[0002]
[Prior art]
As described in the following patent documents, metal materials such as stainless steel, cemented carbides, and alumina-based ceramic materials are known as crimping tool materials constituting the crimping unit used for joining the electrode terminals. ing.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-235563
[Patent Document 2]
Japanese Patent Laid-Open No. 11-145165
[Patent Document 3]
Japanese Patent Laid-Open No. 2002-261121
[Problems to be solved by the invention]
In recent years, the formation pitch of the electrode terminals to be joined tends to be reduced, and high-precision and high-reliability joining is required at a lower cost. For this purpose, it is necessary to accurately maintain the parallel flatness of the crimping surface of the crimping unit that sandwiches the material to be crimped from both sides.
[0007]
However, it is difficult for the above-mentioned conventional crimping tool materials to accurately maintain the parallel flatness of the crimping surfaces of the two tools due to the relationship between the thermal expansion coefficient and the thermal conductivity coefficient, and the temperature in the tool at the time of joining. There is a tendency that the variation of the adhesive material is uneven, the variation in the curability of the adhesive material, and the deformation such as the elongation of the flexible substrate become non-uniform.
[0008]
For this reason, there is a high possibility that bonding failure between the electrode terminals occurs, and the low cost, high accuracy, and high reliability may not be sufficiently satisfied.
[0009]
The problem to be solved by the present invention is to provide a pressure-bonding unit structure that does not cause poor bonding, is low in cost, and can sufficiently satisfy high accuracy and high reliability.
[0010]
[Means for Solving the Problems]
The crimping unit structure of the present invention uses Si 3 N 4 based ceramic material for at least one of two crimping tools for thermocompression bonding, and holds the crimping surfaces of the two crimping tools in parallel. It has a structure in which a holding portion and a plurality of heaters are arranged in the holding portion.
Si 3 N 4 has a coefficient of thermal expansion that is a fraction of that of conventional metal tools, cemented carbide, and alumina-based ceramic materials, so it has excellent plane accuracy from room temperature to high temperatures. Can be maintained, and can be used as a thermocompression bonding tool material that can be bonded with high accuracy, low cost, and high reliability. Then, the thermocompression bonding tool material, in order to ensure desired toughness, thermal expansion coefficient, it is essential that the Si 3 N 4 group ceramic material containing Si 3 N 4 50% by volume or more.
[0011]
Further, this Si 3 N 4 base ceramic material has two-phase crystals of α-Si 3 N 4 phase and β-Si 3 N 4 phase, and the proportion of α-Si 3 N 4 phase in the two phases is volume. It is desirable that it is 5 or more and 50 or less in%.
[0012]
In the α-Si 3 N 4 phase, a part of Si 3 N 4 is substituted with Y, Mg, O, and Al, and in the β-Si 3 N 4 phase, a part of Si 3 N 4 is O. , Al. The α-Si 3 N 4 phase and β-Si 3 N 4 phase ceramic material having a two-phase crystals consists either alone phase of α-Si 3 N 4 phase and β-Si 3 N 4 phase Since the crystal structure is finer than the ceramic material, the bending strength is high, and the porosity is as low as 0.5% or less, a thermocompression bonding surface having excellent flatness and surface roughness can be obtained.
[0013]
Furthermore, in the said crimping | compression-bonding unit structure, the plane parallelism of the outstanding crimping | compression-bonding tool can be hold | maintained by making the several heaters arrange | positioned at the holding | maintenance part into an even number.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the following examples.
[0015]
(Preparation of crimping tool material according to the present invention)
As main components, an Si 3 N 4 powder containing an α-Si 3 N 4 phase and a β-Si 3 N 4 phase at a predetermined ratio and having an average particle size of 0.5 microns, and an average particle size of 1 as a sintering aid Disperse and mix for 20 hours in a rubber lining pot containing ZrO 2 balls with a purity of 99.5% or more in a methanol solvent by adding powders of Y 2 O 3 , AlN, MgO, TiN, etc. Went. After the obtained slurry was taken out, an alcohol-based binder was added and granulated and mixed in a nitrogen atmosphere with a closed spray dryer. A 4 × 5 × 45 mm bending test piece and Φ20 × 3 tmm thermal conductivity measurement sample are prepared from the obtained granulated powder by a die press, and after degreasing, in a nitrogen gas in a temperature range of 2023K to 2123K. Normal sintering was performed. A part of the sintered sample was subjected to HIP treatment using nitrogen gas in the temperature range of 1923K to 2023K.
[0016]
(Evaluation of characteristics of crimping tool material according to the present invention)
FIG. 1 shows the change of the thermal expansion coefficient at each temperature of the obtained sample according to the present invention in comparison with Al 2 O 3 —TiC and SKD-60. As shown in the figure, the Si 3 N 4 based ceramic material according to the present invention has a temperature change of the thermal expansion coefficient of 1/5 or less of SKD-60, and 1/3 of Al 2 O 3 —TiC ceramics. It is shown below, and it is difficult to be affected by temperature change. This means that high accuracy at room temperature is maintained even at high temperatures.
[0017]
Table 1 shows Sample No. The characteristics as the crimping tool of the crimping unit structure according to the present invention were evaluated for each of the compositions shown in 1-13. In the same table, sample No. Nos. 1 to 5 are examples of the present invention. 6-13 shows a comparison as a comparative example SUS304, SKD61 made of a metal, WC-Co cemented carbide, Al 2 O 3, Al 2 O 3 -TiC, the materials such as ZrO 2 ceramic.
[0018]
The crimping tool material according to the present invention was prepared according to the above-described preparation method, and was ground into a shape suitable for the crimping tool having the crimping unit structure shown in FIGS. The crimping surface of the crimping tool material is processed to have a flatness of 2 μm or less and evaluated by an actual machine. Each evaluation result is shown in Table 1.
[0019]
[Table 1]
Figure 2005056928
Since the working temperature of the flatness and thermal expansion coefficient crimping tool is usually 423 to 673 K, the crimping working surface processed at room temperature is deformed due to thermal expansion at the working temperature. The deformation means deterioration of the flatness of the pressure-bonding surface to be transferred, so that the change in flatness from room temperature to high temperature needs to be as small as possible. The average coefficient of thermal expansion between 273 and 1273 K of the crimping tool of the present invention was 3.2 to 3.5 × 10 −6 / K, which was extremely small as compared with the comparative example.
[0020]
Since the crimping tool for lowering the bending strength after notching transmits pressure and adheres an object to be processed, it must have high resistance to pressure. That is, it is an application in which any shape of the pressure surface is not allowed to break. Accordingly, a 2R notch (groove) was machined in the center of the measurement surface (bottom surface) of the JIS bending test piece to measure the decrease in bending strength. As a result, a material having high strength is advantageous. 1 to No. The decrease in Si 3 N 4 -based materials and ZrO 2 -based materials up to 5 is small. Among the Si 3 N 4 -based materials of the present invention, α has a lower bending strength and higher bending strength than materials having a large amount of α-Si 3 N 4 phase or Si 3 N 4 ceramics having a single phase of β-Si 3 N 4 phase. It was found that the -β phase composite type Si 3 N 4 ceramic material is less preferable in strength reduction and has more preferable characteristics.
[0021]
Sample No. in Table 1 No. 6 is the addition of SiC by 55 wt% (55 vol% in terms of conversion) for the purpose of dispersion strengthening. However, the denseness is not sufficient, the strength is low, the surface roughness is rough, and the like cannot be used. there were. Therefore, the Si 3 N 4 component can be said that preferably at least 50% by volume.
[0022]
Since the surface oxidation pressure tool is exposed to a high temperature of 423 to 673 K in an air atmosphere when thermocompression bonding is performed, there is an oxidation problem. Oxidation causes damage to the surface due to alteration such as oxide generation due to oxidation of tool components and sublimation due to oxidation, which causes deterioration of flatness and surface roughness. As shown in Table 1, other than comparative Al 2 O 3 and ZrO 2 were easily oxidized, and the Si 3 N 4 ceramic of the present invention showed the best results.
[0023]
(Evaluation with actual machine)
FIG. 2 shows an example of the crimping unit structure 10 of the present invention. In the same figure, 1 and 2 show the unit base material of each of upper and lower sides, and 3 and 4 show the tool presser of each of the upper and lower sides. The upper and lower crimping tools 7, 8 are sandwiched between the unit bases 1, 2 by the tool holders 3, 4, and are fixed by screws 5, 6. Reference numeral 9 denotes a heater disposed on the upper portion of the unit base material 1 on which the upper crimping tool 7 is held. The upper crimping tool 7 uses the crimping tool material according to the present invention, but the lower crimping tool 8 is preferably the crimping tool material according to the present invention, but is not particularly limited, and any material can be used. . The heater 9 is preferably a cartridge type heater, but is not particularly limited thereto. The effective length of the heater is preferably within a range of ± 20% of the length of the unit base 1 to be inserted. If it is longer than 20%, the heater may be disconnected, and if it is 20% or less, the heat capacity for heating is insufficient. As a means for driving the upper and lower unit bases 1 and 2 at the time of pressure bonding, driving by a cylinder, driving by a motor, or driving in which both are combined can be employed.
[0024]
3 shows a side view of the arrangement of the heaters 9 in the crimping unit structure 10 shown in FIG. 2, and the heaters 9 are arranged laterally with respect to the center of the upper unit base 1 shown in FIG. An even number is arranged evenly.
[0025]
A Si 3 N 4 based ceramic sintered body according to the present invention was prepared and ground into a shape matching the crimp unit structure shown in FIGS. 2 and 3 to produce a crimp tool. The pressure-bonding surface to be used was processed to have a parallelism of 5 μm or less and a flatness of 2 μm or less, and evaluated with an actual machine.
[0026]
Using four heaters 9 (cartridge type, diameter 8 mm, effective length 35 mm) shown in FIG. 2 arranged on the unit base 1 above, crimping tools 7 and 8 (length 100 mm, width 4 mm, height 15 mm) The composition No. in Table 1 was ground as 1 Si 3 N 4 base ceramics are screwed to the upper and lower unit bases 1 and 2 with the tool holders 3 and 4, and the crimping position of the glass substrate on which the FPC is temporarily fixed by the adhesive sheet is set at a predetermined position. These were placed between the crimping tools 7 and 8 and cured by pressurizing and heating under the conditions of 453K, 3.92 MPa and 20 seconds.
[0027]
As a comparative example, evaluation was performed using Al 2 O 3 —TiC ceramics conventionally used for the above crimping tool. When n = 10 samples of Examples and Comparative Examples were prepared and used for 2000 hours under conditions of room temperature of 358K and humidity of 65%, the incidence of joint failure due to the crimping unit structure of the present invention was 0. On the other hand, it was 20 in the comparative example. In addition, when the pressure heating and rapid cooling cycle of cooling to room temperature after holding for 20 seconds under the condition of 453K and 3.92 MPa was repeated 590 cycles, the incidence of bonding failure due to the crimping unit structure of the present invention was 0. On the other hand, in the case of the comparative example, it was 30.
[0028]
【The invention's effect】
Joining using the crimping unit structure using the crimping tool material of the present invention is capable of highly accurate joining, does not cause joining failure, and can sufficiently satisfy low cost and high reliability. is there.
[Brief description of the drawings]
FIG. 1 is a diagram showing a coefficient of thermal expansion of a crimping tool material according to the present invention.
FIG. 2 shows an example of a crimping unit structure of the present invention.
3 is a side view of the heater arrangement in the crimping unit structure shown in FIG. 2. FIG.
[Explanation of symbols]
1, 2: Unit base material 3, 4: Tool holder 5, 6: Screw 7, 8: Crimping tool 9: Heater 10: Crimp unit structure

Claims (3)

被圧着材を挟んで配置される2つの圧着ツールと、その2つの圧着ツールの圧着面を平行に保持する保持部とを備え、その保持部に複数個の加熱ヒータが配置され、前記2つの圧着ツールの中の少なくとも1つがSiを50体積%以上含有するSi基セラミック材からなる圧着ユニット構造。Two crimping tools arranged with a material to be crimped sandwiched therebetween, and a holding unit that holds the crimping surfaces of the two crimping tools in parallel, and a plurality of heaters are arranged in the holding unit. at least one crimping unit structure composed of Si 3 N 4 group ceramic material containing Si 3 N 4 50% by volume or more in the crimping tool. Si基セラミック材が、α−Si相とβ−Si相の2相の結晶をもち、2相に占めるα−Si相の割合が体積%で5以上50以下である請求項1に記載の圧着ユニット構造。The Si 3 N 4 based ceramic material has two-phase crystals of α-Si 3 N 4 phase and β-Si 3 N 4 phase, and the proportion of α-Si 3 N 4 phase in the two phases is 5% by volume. The pressure-bonding unit structure according to claim 1, wherein the pressure-bonding unit structure is 50 or less. 保持部に配置された複数個の加熱ヒータが、偶数個である請求項1又は2に記載の圧着ユニット構造。The pressure-bonding unit structure according to claim 1 or 2, wherein the plurality of heaters arranged in the holding portion is an even number.
JP2003206313A 2003-08-06 2003-08-06 Crimping unit structure Pending JP2005056928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206313A JP2005056928A (en) 2003-08-06 2003-08-06 Crimping unit structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206313A JP2005056928A (en) 2003-08-06 2003-08-06 Crimping unit structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008120504A Division JP4719246B2 (en) 2008-05-02 2008-05-02 Crimp unit structure

Publications (1)

Publication Number Publication Date
JP2005056928A true JP2005056928A (en) 2005-03-03

Family

ID=34363217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206313A Pending JP2005056928A (en) 2003-08-06 2003-08-06 Crimping unit structure

Country Status (1)

Country Link
JP (1) JP2005056928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150350A1 (en) * 2009-06-23 2010-12-29 東芝三菱電機産業システム株式会社 Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150350A1 (en) * 2009-06-23 2010-12-29 東芝三菱電機産業システム株式会社 Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus
JP5303643B2 (en) * 2009-06-23 2013-10-02 東芝三菱電機産業システム株式会社 Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus
US10864597B2 (en) 2009-06-23 2020-12-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus

Similar Documents

Publication Publication Date Title
EP1930306B1 (en) Ceramics composite member and method of producing the same
CA2679846C (en) Metal-ceramic composite air braze with ceramic particulate
EP2090557B1 (en) Yttrium oxide material, member for use in semiconductor manufacturing apparatus, and method for producing yttrium oxide material
JP2006128603A (en) Ceramic member and manufacturing method therefor
EP2612844A1 (en) Boron carbide-containing ceramic bonded body and method for producing the bonded body
CN101844916B (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP5096872B2 (en) Application tool tip member and application tool having the same
EP0895284A1 (en) Metal-ceramic composite circuit substrates
JP4719246B2 (en) Crimp unit structure
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JP4429742B2 (en) Sintered body and manufacturing method thereof
JP2005056928A (en) Crimping unit structure
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP4802312B2 (en) Ceramic jig and manufacturing method thereof
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP5073894B2 (en) Silicon nitride leaf spring material, manufacturing method and use thereof
JP5809884B2 (en) BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP3853438B2 (en) Method for producing sintered silicon nitride
JP5809896B2 (en) BORON CARBIDE-CONTAINING CERAMIC-OXIDE CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP4332824B2 (en) Method for producing high thermal conductivity silicon nitride sintered body, sintered body thereof, substrate, circuit board for semiconductor element
JP2002293637A (en) Aluminum nitride sintered compact, and manufacturing method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Effective date: 20071221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080218

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080307

A521 Written amendment

Effective date: 20080502

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080514

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080606