JP2005055759A - マイクロレンズの製造方法およびマイクロレンズ、光学装置、光伝送装置、レーザプリンタ用ヘッド、レーザプリンタ - Google Patents

マイクロレンズの製造方法およびマイクロレンズ、光学装置、光伝送装置、レーザプリンタ用ヘッド、レーザプリンタ Download PDF

Info

Publication number
JP2005055759A
JP2005055759A JP2003288031A JP2003288031A JP2005055759A JP 2005055759 A JP2005055759 A JP 2005055759A JP 2003288031 A JP2003288031 A JP 2003288031A JP 2003288031 A JP2003288031 A JP 2003288031A JP 2005055759 A JP2005055759 A JP 2005055759A
Authority
JP
Japan
Prior art keywords
microlens
base member
droplets
lens material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003288031A
Other languages
English (en)
Other versions
JP4241259B2 (ja
Inventor
Hironobu Hasei
宏宣 長谷井
Satoshi Kito
聡 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003288031A priority Critical patent/JP4241259B2/ja
Priority to KR1020040060327A priority patent/KR100615934B1/ko
Priority to US10/902,175 priority patent/US20050058773A1/en
Priority to CNB2004100559214A priority patent/CN1295521C/zh
Priority to TW093123391A priority patent/TWI244973B/zh
Publication of JP2005055759A publication Critical patent/JP2005055759A/ja
Application granted granted Critical
Publication of JP4241259B2 publication Critical patent/JP4241259B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)

Abstract

【課題】 液滴の着弾位置精度を向上させ、形状精度のよいマイクロレンズを製造することができるマイクロレンズの製造方法およびマイクロレンズ、光学装置、光伝送装置、レーザプリンタ用ヘッド、レーザプリンタを提供することができるようにする。
【解決手段】 基体3上に形成された土台部材4b上に、液滴吐出ヘッド34からレンズ材料7である所定滴数の液滴を吐出してマイクロレンズ8aを形成するマイクロレンズの製造方法であって、基体3と液滴吐出ヘッド34との相対移動を止めて、液滴吐出ヘッド34から基体3上の所定の位置に液滴を複数個吐出することを特徴とする。
【選択図】 図4

Description

本発明は、マイクロレンズの製造方法およびマイクロレンズ、光学装置、光伝送装置、レーザプリンタ用ヘッド、レーザプリンタに関する。
近年、マイクロレンズと呼ばれる微小レンズを多数有した光学装置が提供されている。このような光学装置としては、例えばレーザを備えた発光装置や、光ファイバの光インタコネクション、さらには入射光を集めるための集光レンズを有した固体撮像素子などがある。
ところで、このような光学装置を構成するマイクロレンズは、従来では金型を用いた成形法や、フォトリソグラフィー法によって成形されていた。
また、近年ではプリンタなどに用いられている液滴吐出法を用い、微細パターンであるマイクロレンズを形成するといった提案もなされている(例えば、特許文献1参照。)。
特開平11−142608号公報 (第2−3頁、第1図)
上述したように、液滴吐出法を用いた従来のマイクロレンズの製造方法においては、マイクロレンズを形成する基板と液滴を吐出する液滴吐出ヘッドとを相対移動させながら同一個所に複数の液滴を吐出させ、1個のマイクロレンズを製造していた。具体的には、基板をスキャン(往復移動)させ、基板が液滴吐出ヘッドの下方を通過する毎に液滴吐出ヘッドから所定の場所に向けて1ドットの液滴をさせていた。
しかしながら、このような方法では基板と液滴吐出ヘッドとが相対移動しているため、液滴の着弾位置精度を向上させ難いという問題があった。
本発明は、上記の課題を解決するためになされたものであって、液滴の着弾位置精度を向上させ、形状精度のよいマイクロレンズを製造することができるマイクロレンズの製造方法およびマイクロレンズ、光学装置、光伝送装置、レーザプリンタ用ヘッド、レーザプリンタを提供することを目的とする。
上記目的を達成するために、本発明のマイクロレンズの製造方法は、基体上に形成された土台部材上に、液滴吐出ヘッドからレンズ材料である所定滴数の液滴を吐出してマイクロレンズを形成するマイクロレンズの製造方法であって、前記基体と前記液滴吐出ヘッドとの相対移動を止めて、前記液滴吐出ヘッドから前記基体上の所定の位置に前記液滴を複数個吐出することを特徴とする。
すなわち、本発明のマイクロレンズの製造方法は、上記基体と上記液滴吐出ヘッドとが相対移動を止めた状態で上記液滴を複数個吐出しているため、従来の基体と液滴吐出ヘッドとを相対移動させながら液滴を吐出させる方法よりも、上記液滴の着弾位置精度を向上させることができる。そのため、マイクロレンズの形状精度も向上させることができる。
また、上記液滴を複数個吐出しているため、上記所定滴数の液滴を吐出するまでに上記基体と上記液滴吐出ヘッドとが相対移動する(スキャンする)回数を減らすことができる。そのため、液滴の着弾位置のばらつきを抑えることができ、着弾位置精度を向上させることができる。
また、上記基体と上記液滴吐出ヘッドとの相対移動を止めた状態で吐出される上記液滴の数を増やせば増やすほど、上記液滴の着弾位置精度を向上させやすくなる。
上記の構成を実現するために、より具体的には、液滴吐出ヘッドから一度に連続して吐出される液滴滴数が前記所定滴数と等しくしてもよい。
この構成によれば、上記基体と上記液滴吐出ヘッドとが相対移動を止めた状態で、一度に連続して液滴が上記所定滴数吐出される。そのため、液滴の着弾位置のばらつきをより抑えやすくすることができ、より着弾位置制度を向上させることができる。
上記の構成を実現するために、より具体的には、液滴吐出ヘッドから一度に連続して吐出される液滴滴数が所定滴数より少なく、次に同一土台部材上に液滴が吐出されるまでに、土台部材上に着弾したレンズ材料の仮硬化を行なってもよい。
この構成によれば、土台部材上に着弾したレンズ材料を仮硬化してから、再び液滴を土台部材上に吐出している。仮硬化を行うことにより、仮硬化を行わない場合よりもより多くのレンズ材料液滴を、マイクロレンズの形状を損なうことなく、土台部材上に吐出させることができる。そのため、より大きなマイクロレンズを土台部材上に形成することができる。
上記の構成を実現するために、より具体的には、同一土台部材上に吐出された液滴の合計数が所定滴数と等しくなるまで、相対移動を止めたままの状態で、同一土台部材上に液滴の吐出を繰り返してもよい。
この構成によれば、吐出された液滴の合計数が上記所定滴数となるまで同一土台部材上に液滴を吐出している。そのため、液滴を吐出し終わるまで上記土台部材と上記液滴吐出ヘッドとの相対位置関係が一定に保たれることになり、液滴の着弾位置がばらつくのを抑えることができ、着弾位置精度を向上させることができる。
上記の構成を実現するために、より具体的には、一つの土台部材上に液滴を吐出した後に、他の土台部材の少なくとも1つの土台部材上に液滴を吐出し、再び一つの土台部材上に液滴を吐出してもよい。
この構成によれば、他の土台部材上に液滴を吐出している間に、着弾したレンズ材料の仮硬化を平行して行うことができるため、上記基材上にマイクロレンズを形成するのに必要な時間を短縮させることができる。
上記の構成を実現するために、より具体的には、液滴吐出ヘッドから一度に複数の土台部材上に液滴を吐出してもよい。
この構成によれば、複数の土台部材上に液滴を同時に吐出するため、上記基材上にマイクロレンズを形成するのに必要な時間を短縮させることができる。
上記の構成を実現するために、より具体的には、レンズ材料が揮発性溶剤によって希釈された材料であって、着弾したレンズ材料を所定時間放置することで仮硬化が行われてもよい。
この構成によれば、着弾したレンズ材料を所定時間放置することで、レンズ材料中の上記溶剤を蒸発させ、レンズ材料の粘度を増加させることにより仮硬化を行っている。そのため、マイクロレンズの形状を損なうことなく、土台部材上により多くのレンズ材料を吐出させることができ、より大きなマイクロレンズを形成することができる。
上記の構成を実現するために、より具体的には、レンズ材料が紫外線に反応して硬化する材料であって、着弾したレンズ材料に紫外線を照射することで仮硬化が行われてもよい。
この構成によれば、着弾したレンズ材料に紫外線を照射することでレンズ材料の仮硬化を行っている。そのため、マイクロレンズの形状を損なうことなく、土台部材上により多くのレンズ材料を吐出させることができ、より大きなマイクロレンズを形成することができる。
本発明のマイクロレンズは、上記本発明のマイクロレンズの製造方法で製造されたことを特徴とする。
このマイクロレンズによれば、上記基材と上記液滴吐出ヘッドとの相対移動を止めて液滴を吐出しているので、上記土台部材上に液滴をより精度よく着弾させることができ、形状精度のよりよいマイクロレンズとすることができる。
また、着弾したレンズ材料を仮硬化させてから再び液滴を吐出、着弾させているので、上記土台部材上に載るレンズ材料の量を多くすることができ、より大きなマイクロレンズとすることができる。
本発明の光学装置は、面発光レーザと、上記本発明のマイクロレンズの製造方法で得られたマイクロレンズとを備え、マイクロレンズを面発光レーザの出射側に配設したことを特徴とする。
この光学装置によれば、前述したように、より形状精度がよく、より大きな形状に形成されたマイクロレンズを上記面発光レーザの出射側に配設しているので、このマイクロレンズによって発光レーザからの出射光の平行光化等を良好に行うことが可能になり、したがって良好な発光特性(光学特性)を有するものとなる。
本発明の光伝送装置は、上記本発明の光学装置と、受光素子と、光学装置からの出射光を前記受光素子に伝送する光伝送手段とを備えたことを特徴とする。
この光伝送装置によれば、前述したように、良好な発光特性(光学特性)を有する光学装置を備えているので、伝送特性が良好な光伝送装置となる。
本発明のレーザプリンタ用ヘッドは、上記本発明の光学装置を備えたことを特徴とする。
このレーザプリンタ用ヘッドによれば、前述したように、良好な発光特性(光学特性)を有する光学装置を備えているので、描画特性が良好なレーザプリンタ用ヘッドとなる。
本発明のレーザプリンタは、上記本発明のレーザプリンタ用ヘッドを備えたことを特徴とする。
このレーザプリンタによれば、前述したように、描画特性が良好なレーザプリンタ用ヘッドを備えているので、このレーザプリンタ自体が描画特性に優れたものとなる。
〔第1の実施の形態〕
以下、本発明の第1の実施の形態について図1から図8を参照して説明する。
図1は本実施の形態のマイクロレンズの製造方法の工程フローの概略を示す図である。
まず、本実施の形態のマイクロレンズの製造方法について説明する。本発明のマイクロレンズの製造方法は、図1に示すように、基体上に土台部材を形成する土台形成工程(S1)と、前記土台部材の上面を撥液処理する基材撥液化工程(S2)と、前記撥液処理した土台部材の上面上に液滴吐出法によってレンズ材料を複数ドット吐出し、前記土台部材上にマイクロレンズを形成する吐出工程(S3)と、紫外線をレンズ材料に照射して硬化させる紫外線硬化工程(S4)と、硬化したマイクロレンズに熱処理を施すキュア工程(S5)と、を備えている。
ここで、本発明において「基体」とは、前記土台部材を形成できる面を有するものをいい、具体的にはガラス基板や半導体基板、さらにはこれらに各種の機能性薄膜や機能性要素を形成したものをいう。また、前記土台部材を形成できる面については、平面であっても曲面であってもよく、さらに基体自体の形状についても特に限定されることなく種々の形状のものが採用可能である。
本発明では、図2(a)に示すように例えばGaAs基板1を用い、このGaAs基板1に多数の面発光レーザ2を形成したものを基体3として用意する。そして、この基体3の上面側、すなわち前記面発光レーザ2の出射側となる面上に、土台部材の形成材料を設け、土台部材材料層4を形成する。なお、面発光レーザ2には、その出射口の周辺にポリイミド樹脂等からなる絶縁層(図示せず)が形成されている。ここで、土台部材の形成材料としては、透光性を有する材料、すなわち、前記面発光レーザ2からの発光光の波長域においてほとんど吸収を起こさず、したがって実質的にこの発光光を透過させる材料とするのが好ましく、例えばポリイミド系樹脂、アクリル系樹脂、エポキシ系樹脂、あるいはフッ素系樹脂等が好適に用いられるが、特にポリイミド系樹脂がより好適に用いられる。
まず土台形成工程(S1)について説明する。
本実施形態では、土台部材の形成材料としてポリイミド系樹脂を用いるものとする。そして、このポリイミド系樹脂の前駆体を基体3上に塗布し、その後約150℃で加熱処理することにより、図2(a)に示したような土台部材材料層4とする。なお、この土台部材材料層4については、この段階では十分に硬化を進ませず、その形状を保持できる程度の硬さにしておく。
このようにしてポリイミド系樹脂からなる土台部材材料層4を形成したら、図2(b)に示すようにこの土台部材材料層4上にレジスト層5を形成する。そして、所定のパターンを形成したマスク6をレジスト層5を用いて露光し、さらに現像することにより、図2(c)に示すようにレジストパターン5aを形成する。
次いで、レジストパターン5aをマスクとして、例えばアルカリ系溶液を用いたウエットエッチングによって土台部材材料層4をパターニングする。これにより、図2(d)に示すように基体3上に土台部材パターン4aが形成される。ここで、形成する土台部材パターン4aについては、その上面形状を円形あるいは楕円形、もしくは多角形に形成するのが、これの上にマイクロレンズを形成するうえで好ましく、本実施形態では上面形状を円形にしている。また、このような円形の上面の中心位置が、基体3に形成した前記面発光レーザ2の出射口(図示せず)の直上に位置するように形成する。
その後、図2(e)に示すようにレジストパターン5aを除去し、さらに約350℃で熱処理を行うことにより、土台部材パターン4aを十分に硬化させて土台部材4bとする。
次いで、この土台部材4bの上面を撥液処理する基材撥液化工程(S2)について説明する。
この撥液処理としては、例えば、基板の表面に自己組織化膜を形成する方法、プラズマ処理法等を採用できる。
自己組織膜形成法では、導電膜配線を形成すべき基板の表面に、有機分子膜などからなる自己組織化膜を形成する。
基板表面を処理するための有機分子膜は、基板に結合可能な官能基と、その反対側に親液基あるいは撥液基といった基板の表面性を改質する(表面エネルギーを制御する)官能基と、これらの官能基を結ぶ炭素の直鎖あるいは一部分岐した炭素鎖とを備えており、基板に結合して自己組織化して分子膜、例えば単分子膜を形成する。
ここで、自己組織化膜とは、基板の下地層等の構成原子と反応可能な結合性官能基とそれ以外の直鎖分子とからなり、直鎖分子の相互作用により極めて高い配向性を有する化合物を、配向させて形成された膜である。この自己組織化膜は、単分子を配向させて形成されているので、極めて膜厚を薄くすることができ、しかも、分子レベルで均一な膜となる。すなわち、膜の表面に同じ分子が位置するため、膜の表面に均一でしかも優れた撥液性や親液性を付与することができる。
上記の高い配向性を有する化合物として、例えばフルオロアルキルシランを用いることにより、膜の表面にフルオロアルキル基が位置するように各化合物が配向されて自己組織化膜が形成され、膜の表面に均一な撥液性が付与される。
自己組織化膜を形成する化合物としては、ヘプタデカフルオロ−1,1,2,2テトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロ−1,1,2,2テトラヒドロデシルトリメトキシシラン、ヘプタデカフルオロ−1,1,2,2テトラヒドロデシルトリクロロシラン、トリデカフルオロ−1,1,2,2テトラヒドロオクチルトリエトキシシラン、トリデカフルオロ−1,1,2,2テトラヒドロオクチルトリメトキシシラン、トリデカフルオロ−1,1,2,2テトラヒドロオクチルトリクロロシラン、トリフルオロプロピルトリメトキシシラン等のフルオロアルキルシラン(以下「FAS」という)を例示できる。これらの化合物は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
なお、FASを用いることにより、基板との密着性と良好な撥液性とを得ることができる。
FASは、一般的に構造式RnSiX(4−n)で表される。ここでnは1以上3以下の整数を表し、Xはメトキシ基、エトキシ基、ハロゲン原子などの加水分解基である。またRはフルオロアルキル基であり、(CF)(CF)x(CH)yの(ここでxは0以上10以下の整数を、yは0以上4以下の整数を表す)構造を持ち、複数個のR又はXがSiに結合している場合には、R又はXはそれぞれすべて同じでもよく、異なっていてもよい。Xで表される加水分解基は加水分解によりシラノールを形成して、基板(ガラス、シリコン)の下地のヒドロキシル基と反応してシロキサン結合で基板と結合する。一方、Rは表面に(CF)等のフルオロ基を有するため、基板の下地表面を濡れない(表面エネルギーが低い)表面に改質する。
有機分子膜などからなる自己組織化膜は、上記の原料化合物と基板とを同一の密閉容器中に入れておき、室温で2〜3日程度の間放置することにより基板上に形成される。また、密閉容器全体を100℃に保持することにより、3時間程度で基板上に形成される。これらは気相からの形成法であるが、液相からも自己組織化膜を形成できる。例えば、原料化合物を含む溶液中に基板を浸積し、洗浄、乾燥することで基板上に自己組織化膜が形成される。
なお、自己組織化膜を形成する前に、基板表面に紫外光を照射したり、溶媒により洗浄したりして、基板表面の前処理を施すことが望ましい。
一方、プラズマ法としては、例えば大気雰囲気中にてテトラフルオロメタンを処理ガスとするCFプラズマ処理法が好適に採用される。このCFプラズマ処理の条件は、例えばプラズマパワーが50〜1000kW、テトラフルオロメタン(CF)のガス流量が50〜100ml/min、プラズマ放電電極に対する基体3の搬送速度が0.5〜1020mm/sec、基体温度が70〜90℃とされる。なお、処理ガスとしては、テトラフルオロメタン(CF)に限定されることなく、他のフルオロカーボン系のガスを用いることもできる。このような撥液化処理を行うことにより、土台部材4bの上面にはこれを構成する樹脂中にフッ素基が導入され、これによって高い撥液性が付与される。
ここで、このような撥液処理については、特に、土台部材4bの形成材料で形成された平面に対して後述するレンズ材料を配した際、該レンズ材料の接触角が20°以上となるような撥液性を発揮するように、行うのが好ましい。
すなわち、図7に示すように土台部材4bの形成材料(本例ではポリイミド系樹脂)で土台部材材料層4を形成し、その表面を平面とする。そして、この表面に対して前述した撥液処理を施す。次いで、この表面上にレンズ材料7を液滴吐出法によって配する。
すると、レンズ材料7は土台部材材料層4の表面に対する濡れ性に応じた形状の液滴となる。このとき、土台部材材料層4の表面張力をγ、レンズ材料7の表面張力をγ、土台部材材料層4とレンズ材料7との間の界面張力をγSL、土台部材材料層4に対するレンズ材料7の接触角をθとすると、γ、γ、γSL、θの間には以下の式が成立する。
γ=γSL+γ・cosθ
後述するようにマイクロレンズとなるレンズ材料7は、その曲率が、前記の式によって決定される接触角θにより制限を受ける。すなわち、レンズ材料7を硬化させた後に得られるレンズの曲率は、最終的なマイクロレンズの形状を決定する要素の一つである。したがって、本発明においては、得られるマイクロレンズの形状がより球状に近くなるよう、撥液処理によって土台部材材料層4とレンズ材料7との間の界面張力をγSLを大きくすることで、前記接触角θを大きく、すなわち20°以上とするのが好ましいのである。
このように、図7に示した接触角θが20°以上となるような条件による撥液処理を、土台部材4bの上面に施すことにより、後述するようにこの土台部材4bの上面に吐出配置されるレンズ材料7の、土台部材4b上面に対する接触角θ’が確実に大きくなる。したがって、土台部材4b上面に載るレンズ材料の量をより多くすることができ、これによりその形状を吐出量(吐出ドット量)で制御することが容易になる。
次に吐出工程(S3)について説明する。
このようにして土台部材4bの上面に撥液処理を施したら、この土台部材4b上に液滴吐出法によってレンズ材料7を複数ドット吐出する。ここで、液滴吐出法としては、ディスペンサ法やインクジェット法などが採用可能である。ディスペンサ法は、液滴を吐出する方法として一般的な方法であり、比較的広い領域に液滴を吐出するのに有効な方法である。インクジェット法は、液滴吐出ヘッドを用いて液滴を吐出する方法であり、液滴を吐出する位置についてμmオーダーの単位で制御することができ、また、吐出する液滴の量もピコリットルオーダーの単位で制御できるため、特に微細なレンズ(マイクロレンズ)の製造に適している。
そこで、本実施形態では、液滴吐出法としてインクジェット法を用いることにする。このインクジェット法は、液滴吐出ヘッド34として、例えば図3(a)に示すようにステンレス製のノズルプレート12と振動板13とを備え、両者を仕切部材(リザーバプレート)14を介して接合したものを用いる。ノズルプレート12と振動板13との間には、仕切部材14によって複数のキャビティ15…とリザーバ16とが形成されており、これらキャビティ15…とリザーバ16とは流路17を介して連通している。
各キャビティ15とリザーバ16の内部とは吐出するための液状体(レンズ材料)で満たされるようになっており、これらの間の流路17はリザーバ16からキャビティ15に液状体を供給する供給口として機能するようになっている。また、ノズルプレート12には、キャビティ15から液状体を噴射するための孔状のノズル18が縦横に整列した状態で複数形成されている。一方、振動板13には、リザーバ16内に開口する孔19が形成されており、この孔19には液状体タンク(図示せず)がチューブ(図示せず)を介して接続されるようになっている。
また、振動板13のキャビティ15に向く面と反対の側の面上には、図3(b)に示すように圧電素子(ピエゾ素子)20が接合されている。この圧電素子20は、一対の電極21、21間に挟持され、通電により外側に突出するようにして撓曲するよう構成されたもので、本発明における吐出手段として機能するものである。
このような構成のもとに圧電素子20が接合された振動板13は、圧電素子20と一体になって同時に外側へ撓曲し、これによりキャビティ15の容積を増大させる。すると、キャビティ15内とリザーバ16内とが連通しており、リザーバ16内に液状体が充填されている場合には、キャビティ15内に増大した容積分に相当する液状体が、リザーバ16から流路17を介して流入する。
そして、このような状態から圧電素子20への通電を解除すると、圧電素子20と振動板13はともに元の形状に戻る。よって、キャビティ15も元の容積に戻ることから、キャビティ15内部の液状体の圧力が上昇し、ノズル18から液状体の液滴22が吐出される。
なお、液滴吐出ヘッドの吐出手段としては、前記の圧電素子(ピエゾ素子)20を用いた電気機械変換体以外でもよく、例えば、エネルギー発生素子として電気熱変換体を用いた方式や、帯電制御型、加圧振動型といった連続方式、静電吸引方式、さらにはレーザなどの電磁波を照射して発熱させ、この発熱による作用で液状体を吐出させる方式を採用することもできる。
また、吐出するレンズ材料7、すなわちマイクロレンズとなるレンズ材料7としては、光透過性樹脂が用いられる。具体的には、ポリメチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリシクロヘキシルメタクリレートなどのアクリル系樹脂、ポリジエチレングリコールビスアリルカーボネート、ポリカーボネートなどのアリル系樹脂、メタクリル樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、ポリアミド系樹脂、フッ素系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂などの熱可塑性または熱硬化性の樹脂が挙げられ、これらのうちの一種が用いられ、あるいは複数種が混合されて用いられる。
また、レンズ材料7として用いる光透過性樹脂の表面張力としては、0.02N/m以上0.07N/m以下の範囲内であることが好ましい。液滴吐出法によりインクを吐出する際、表面張力が0.02N/m未満であると、インクのノズル面に対する濡れ性が増大するため飛行曲りが生じやすくなる。また、表面張力が0.07N/mを超えるとノズル先端でのメニスカスの形状が安定しないため吐出量や吐出タイミングの制御が困難になる。表面張力を調整するため、上記光透過性樹脂の分散液には、基板との接触角を大きく低下させず、屈折率などの光学的特性に影響を与えない範囲で、フッ素系、シリコーン系、ノニオン系などの表面張力調節剤を微量添加するとよい。ノニオン系表面張力調節剤は、インクの基板への濡れ性を向上させ、膜のレベリング性を改良し、膜の微細な凹凸の発生などの防止に役立つものである。上記表面張力調節剤は、必要に応じて、アルコール、エーテル、エステル、ケトン等の有機化合物を含んでもよい。
さらに、レンズ材料7として用いる光透過性樹脂の粘度としては1mPa・s以上200mPa・s以下であることが好ましい。液滴吐出法を用いてインクを液滴として吐出する際、粘度が1mPa・sより小さい場合にはノズル周辺部がインクの流出により汚染されやすい。また粘度が50mPa・sより大きい場合は、ヘッドもしくは液滴吐出装置にインク加熱機構を設けることで吐出が可能となるが、常温においてはノズル孔での目詰まり頻度が高くなり円滑な液滴の吐出が困難となる。200mPa・s以上の場合、加熱しても液滴を吐出できる程度に粘度を落とすことが難しい。
また、本発明においては、上記光透過性樹脂として、特に非溶剤系のものが好適に用いられる。この非溶剤系の光透過性樹脂は、有機溶剤を用いて光透過性樹脂を溶解し、液状体とすることなく、例えばこの光透過性樹脂をそのモノマーで希釈することによって液状化し、液滴吐出ヘッド34からの吐出を可能にしたものである。また、この非溶剤系の光透過性樹脂では、ビイミダゾール系化合物などの光重合開始剤を配合することにより、放射線照射硬化型のものとして使用できるようにしている。すなわち、このような光重合開始剤を配合することにより、前記光透過性樹脂に放射線照射硬化性を付与することができるのである。ここで、放射線とは可視光線、紫外線、遠紫外線、X線、電子線等の総称であり、特に紫外線が一般的に用いられる。
なお、上記光透過性樹脂としては非溶剤系のものに限られることなく、溶剤系の上記光透過性樹脂も用いることができる
このようなレンズ材料7を、上記構成からなる液滴吐出ヘッド34によって図4(a)に示すように土台部材4b上に複数ドット吐出し、土台部材4b上にマイクロレンズ前駆体8を形成する。
このとき、土台部材4bは液滴吐出ヘッド34の下方で停止しており、液滴吐出ヘッド34からマイクロレンズ8aを形成するのに必要な量(例えば20ドット)のレンズ材料を一度に連続して吐出する。1つの土台部材4b上に20ドットのレンズ材料7を吐出し終えると、土台部材4bが移動して、レンズ材料7が載っていない土台部材4bが液滴吐出ヘッド34の下方に配置され、20ドットのレンズ材料7が吐出される。
なお、土台部材4bの進行方向に対して液滴吐出ヘッド34の角度を調節することにより、ノズル18のピッチと土台部材4bのピッチとを略同一にして、同時に複数のノズル18から複数の土台部材4b上にレンズ材料7を吐出してもよい。このように、複数の土台部材4b上にレンズ材料7を吐出できると複数のマイクロレンズを同時に形成することができ、複数のマイクロレンズを形成するのに必要な時間を短縮させることができる。
また、前述したように土台部材4bの上面を撥液処理していることにより、吐出されたレンズ材料7の液滴は土台部材4bの上面上で濡れ広がりにくくなっており、したがって土台部材4b上に配されたレンズ材料7は、土台部材4bからこぼれ落ちることなく、土台部材4b上に安定した状態で保持されるようになっている。
また、一度に連続して20ドットが吐出されることにより、この吐出されたレンズ材料7からなるマイクロレンズ前駆体8は、その横断面(土台部材4bの上面と平行な水平面)がついには土台部材4bの上面より大きくなる。
すなわち、レンズ材料7の吐出の初期においては、レンズ材料7の吐出量が少ないため、図5(a)に示すように土台部材4bの上面全体に広がった状態では全体としては大きく盛り上がらず、土台部材4bの上面に対する接触角θ’は鋭角となる。
この状態からさらにレンズ材料7の吐出を続けると、後から吐出されたレンズ材料7は当然先に吐出されたレンズ材料7に対する密着性が高いことから、図5(b)に示すようにこれからこぼれ落ちることなく一体化する。すると、この一体化されたレンズ材料7はその体積が大きくなって盛り上がり、これによって土台部材4bの上面に対する接触角θ’が大きくなり、ついには直角を越えるようになる。
さらにこの状態からレンズ材料7の吐出を続けると、特にインクジェット法で吐出していることからドットごとでは大きな量とならないことにより、土台部材4b上での全体としてのバランスが保たれ、結果として図5(c)に示すように接触角θ’が大きな鈍角となり、結果として球に近い状態になる。
次に紫外線硬化工程(S4)について説明する。
このようにして所望形状(本実施形態では図5(c)に示したような球形に近い形状とする)のマイクロレンズ前駆体8を形成したら、図4(b)に示すようにこれらマイクロレンズ前駆体8を硬化させ、マイクロレンズ8aを形成する。マイクロレンズ前駆体8の硬化処理としては、前述したようにレンズ材料7として有機溶剤が加えられておらず、放射線照射硬化性が付与されたものを用いることから、特に紫外線(波長λ=365nm)の照射による処理方法が好適に用いられる。
そしてキュア工程(S5)について説明する。
このような紫外線照射による硬化処理の後、例えば100℃で1時間程度の熱処理を行うのが好ましい。このような熱処理を行うことにより、紫外線照射による硬化処理の段階で硬化むらが生じてしまっても、この硬化むらを減少させて全体としてほぼ均一な硬化度にすることができる。
このようにしてマイクロレンズ8aを形成したら、必要に応じて基体3を切断し、個片化しあるいはアレイ状に形成することなどにより、所望の形態に作製する。
なお、このようにして製造されたマイクロレンズ8aと、基体3に予め形成した前記面発光レーザ2とから、本発明の一実施形態となる光学装置が得られる。
このようなマイクロレンズ8aの製造方法にあっては、土台部材4bと液滴吐出ヘッド34とが相対的に止まった状態でレンズ材料7を一度に連続して20ドット吐出している。そのため、レンズ材料7を土台部材4b上のほぼ中心部に精度良く配すること、つまり着弾位置精度を向上させることができる。着弾位置精度を向上させることができる。
また、土台部材4bの上面を撥液処理しているので、吐出配置されたレンズ材料7の土台部材4b上面に対する接触角θ’を大きくすることができ、これにより土台部材4b上面に載るレンズ材料7の量を多くすることができる。
すなわち、マイクロレンズ8aの大きさを大きくすることができ、図6(a)〜(c)に示したように、マイクロレンズ8aの大きさが大きくなると、上面側のレンズに相当する曲面の焦点位置が基体3に形成した面発光レーザ2の出射面に近づく。上記焦点位置が上記出射面に近づくとマイクロレンズ8aの上面側から出射される光をより平行な光とすることができる。
また、逆に面発光レーザ2などの発光源からの光が放射性を有することなく、直進性を有する場合、マイクロレンズ8aを透過させることでこの透過光に放射性を持たせることができる。
また、このようにして製造されたマイクロレンズ8aと基体3に形成した前記面発光レーザ2とからなる光学装置にあっては、前述したように大きさや形状が良好に制御されたマイクロレンズ8aを前記面発光レーザ2の出射側に配設しているので、このマイクロレンズ8aによって面発光レーザ2からの出射光の平行光化を良好に行うことができ、したがって良好な発光特性(光学特性)を有するものとなる。
なお、前記実施形態では、基体3上に土台部材材料層4を形成してこの土台部材材料層4から土台部材4bを形成するようにしたが、本発明はこれに限定されることなく、例えば基体3の表層部が透光性材料によって形成されている場合などでは、この表層部に土台部材を直接形成するようにしてもよい。
また、土台部材4bの形成方法についても、前述したフォトリソグラフィー法に限定されることなく、他の形成方法、例えば選択成長法や転写法等を採用することができる。
また、土台部材4bの上面形状についても、形成するマイクロレンズに要求される特性に応じて、三角形や四角形など種々の形状にすることが可能であり、さらに土台部材4b自体の形状についても、テーパ型や逆テーパ型など種々の形状にすることが可能である。
また、前記実施形態では、マイクロレンズ8aが、土台部材4b上に形成された状態のままでレンズとして用いられ、機能するようにしたが、本発明はこれに限定されることなく、土台部材4bから適宜な方法で切離しあるいは剥離し、マイクロレンズ8aを単独の光学部品として用いるようにしてもよい。その場合、製造に用いる土台部材4bについては、当然ながら透光性を有する必要はない。
また、本発明においては、前記の面発光レーザ2とマイクロレンズ8aとからなる光学装置に加えて、この光学装置からの出射光を伝送する光ファイバや光導波路等からなる光伝送手段と、この光伝送手段で伝送された光を受光する受光素子とを備えることにより、光伝送装置として機能させることができる。
このような光伝送装置にあっては、前述したように良好な発光特性(光学特性)を有する光学装置を備えているので、この光伝送装置も良好な伝送特性を有するものとなる。
また、本発明のレーザプリンタ用ヘッドは、前記光学装置を備えてなるものである。すなわち、このレーザプリンタ用ヘッドに用いられた光学装置は、図8に示すように多数の面発光レーザ2を直線的に配してなる面発光レーザアレイ2aと、この面発光レーザアレイ2aを構成する個々の面発光レーザ2に対して配設されたマイクロレンズ8aと、を備えてなるものである。なお、面発光レーザ2に対してはTFT等の駆動素子(図示せず)が設けられており、また、このレーザプリンタ用ヘッドには温度補償回路(図示せず)が設けられている。
さらに、このような構成のレーザプリンタ用ヘッドを備えることにより、本発明のレーザプリンタが構成される。
このようなレーザプリンタ用ヘッドにあっては、前述したように良好な発光特性(光学特性)を有する光学装置を備えているので、描画特性が良好なレーザプリンタ用ヘッドとなる。
また、このレーザプリンタ用ヘッドを備えたレーザプリンタにあっても、前述したように描画特性が良好なレーザプリンタ用ヘッドを備えているので、このレーザプリンタ自体が描画特性に優れたものとなる。
〔第2の実施の形態〕
次に、本発明の第2の実施形態について図9および図10を参照して説明する。
本実施の形態のマイクロレンズの製造方法は、第1の実施の形態と概略同様であるが、第1の実施の形態とは、レンズ材料を吐出する工程の部分が異なっている。よって、本実施の形態においては、レンズ材料を吐出する工程の部分周辺のみを説明し、土台形成工程等の説明を省略する。
図9は、本実施の形態のマイクロレンズの製造方法の工程フローの概略を示す図である。
まず、本実施の形態のマイクロレンズの製造方法について説明する。本発明のマイクロレンズの製造方法は、図9に示すように、基体上に土台部材を形成する土台形成工程(S1)と、土台部材の上面を撥液処理する基材撥液化工程(S2)と、前記撥液処理した土台部材の上面上に液滴吐出法によってレンズ材料を複数ドット吐出し、土台部材上にマイクロレンズを形成する吐出工程(S13)と、紫外線をレンズ材料に照射して仮硬化させる紫外線硬化工程(S14)と、硬化したマイクロレンズに熱処理を施すキュア工程(S5)と、を備えている。
なお、土台形成工程(S1)と、基材撥液化工程(S2)と、キュア工程(S5)と、は第1の実施の形態と同じ工程であるので図9に示すに留め、その説明を省略する。
したがって、まず吐出工程(S13)について説明する。
図10は本実施の形態におけるマイクロレンズの製造工程図である。
土台部材4bの上面に撥液処理を施したら、この土台部材4b上にレンズ材料7を、上記構成からなる液滴吐出ヘッド34によって図10(a)に示すように土台部材4b上にまず複数ドット吐出する。例えば20ドット(形成しようとするマイクロレンズ8aに必要なレンズ材料量は100ドット)を一度に連続して吐出し、土台部材4b上にマイクロレンズ前駆体8を形成する。また、レンズ材料7を吐出する際には、土台部材4bと液滴吐出ヘッド34とは相対的に停止している。
次に紫外線硬化工程(S14)について説明する。
レンズ材料7を20ドット吐出してマイクロレンズ前駆体8を形成したら、図10(b)に示すようにマイクロレンズ前駆体8を仮硬化させる。仮硬化の程度としては、仮硬化したマイクロレンズ前駆体8にレンズ材料7が着弾してもその形状が崩れ、土台部材4bから崩れ落ちない程度の粘性をレンズ材料7が持つ程度に硬化されていればよい。
マイクロレンズ前駆体8の仮硬化処理としては、前述したようにレンズ材料7として有機溶剤が加えられておらず、放射線照射硬化性が付与されたものを用いることから、特に紫外線(波長λ=365nm)の照射による処理方法が好適に用いられる。
マイクロレンズ前駆体8の仮硬化処理が終了すると、再び吐出工程(S13)に戻って、仮硬化されたマイクロレンズ前駆体8の上にレンズ材料7が20ドット吐出される。その後、紫外線硬化工程(S14)の仮硬化が行われ、このサイクルが土台部材4b上に100ドットのレンズ材料からなるマイクロレンズ前駆体8が形成されるまで繰り返される(本実施の形態においては5回繰り返される)。
なお、本実施の形態においては、100ドットのマイクロレンズを製造する例を挙げて説明したが、100ドットのマイクロレンズを製造する方法に限られることなくより多くまたはより少ないドット数からなるマイクロレンズを製造する方法に用いてもよい。また、一回の吐出工程(S13)において吐出されるレンズ材料7のドット数は20ドット以外のドット数でもよいが、形成されたマイクロレンズ前駆体8の形状が崩れ落ちないドット数が望ましい。
また、これらの工程は1つの土台部材4b上に1つのマイクロレンズが完成するまで土台部材4bと液滴吐出ヘッドとの相対位置関係を一定にして行われてもよいし、紫外線硬化工程(S14)の間に他の土台部材4b上にレンズ材料を吐出してもよい。
上記の工程が1つの土台部材4b上に1つのマイクロレンズが完成するまで土台部材4bと液滴吐出ヘッドとの相対位置関係を一定にして行われる場合には、マイクロレンズが完成するまでレンズ材料7の着弾位置がばらつくのを抑えることができ、形状精度の良いマイクロレンズを形成することができる。
また、紫外線硬化工程(S14)の間に他の土台部材4b上にレンズ材料7を吐出する場合には、レンズ材料7の吐出工程(S13)と紫外線硬化工程(S14)とを平行して行うことができ、マイクロレンズを形成するのに必要な時間を短縮させることができる。
上記の構成によれば、土台部材4b上に着弾したレンズ材料7を仮硬化してから、再びレンズ材料7を仮硬化したレンズ材料上に吐出している。着弾したレンズ材料7の仮硬化を行うことにより、多くのレンズ材料液滴をマイクロレンズの形状を損なうことなく土台部材4b上に吐出させることができる。そのため、より大きなマイクロレンズを土台部材4b上に形成することができる。
具体的には、仮硬化を行わないとレンズ材料7が崩れて土台部材4bから崩れ落ちるような大量なレンズ材料を要する大きなマイクロレンズでも、精度の良い球状形状のマイクロレンズとして形成することができる。
また、レンズ材料7の仮硬化に紫外線を用いているため、所定のタイミングで、レンズ材料7が所定の粘度になるように仮硬化させることができる。そのため、マイクロレンズの製造にかかる時間を短縮させることができるとともに、形状精度の良いマイクロレンズを形成することができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
(パターン1)なお、上記の実施の形態においては、Aより構成されているものに適応して説明したが、このAより構成されているものに限られることなく、B等、その他各種のB+に適応することができるものである。
(パターン2)なお、上記の実施の形態においては、この発明を圧縮機に適応して説明したが、この発明は圧縮機に限られることなく、その他各種の回転機械に適応できるものである。
〔第2の実施の形態の変形例〕
次に、本発明における第2の実施の形態の変形例について図11を参照して説明する。
本実施の形態のマイクロレンズの製造方法は、第1の実施の形態と概略同様であるが、第1の実施の形態とは、レンズ材料を吐出する工程の部分が異なっている。よって、本実施の形態においてはレンズ材料を吐出する工程の部分周辺のみを説明し、土台形成工程等の説明を省略する。
図11は、本実施の形態のマイクロレンズの製造方法の工程フローの概略を示す図である。
まず、本実施の形態のマイクロレンズの製造方法について説明する。本発明のマイクロレンズの製造方法は、図11に示すように、基体上に土台部材を形成する土台形成工程(S1)と、前記土台部材の上面を撥液処理する基材撥液化工程(S2)と、前記撥液処理した土台部材の上面上に液滴吐出法によってレンズ材料を複数ドット吐出し、土台部材上にマイクロレンズを形成する吐出工程(S23)と、着弾したレンズ材料を放置して仮硬化させる待機工程(S24)と、硬化したマイクロレンズに熱処理を施すキュア工程(S5)と、を備えている。
なお、土台形成工程(S1)と、基材撥液化工程(S2)と、キュア工程(S5)と、は第1の実施の形態と同じ工程であるので図11に示すに留め、その説明を省略する。
したがって、まず吐出工程(S23)について説明する。
本変形例の吐出工程(S23)は第2の実施の形態の吐出工程(S13)と概略同じであるが、使用されるレンズ材料7において異なる。第2の実施の形態においてレンズ材料7は、特に非溶剤系のものが好適とされたが、本変形例では溶剤系のレンズ材料7を好適に用いることができる。
そのため溶剤系のレンズ材料7を用いる点を除いては、第2の実施の形態と同じであるためその説明を省略する。
次に待機工程(S24)について説明する。
レンズ材料7を20ドット吐出してマイクロレンズ前駆体8を形成したら、マイクロレンズ前駆体8を所定時間放置して仮硬化させる。マイクロレンズ前駆体8を所定時間放置すると、レンズ材料7の溶剤が蒸発してその粘性が増加し仮硬化状態となる。また、放置する所定時間としては、マイクロレンズ前駆体8にレンズ材料7がさらに着弾してもその形状が崩れ、土台部材4bから崩れ落ちない程度の粘性をレンズ材料7が持つ程度の時間であればよい。
なお、待機工程(S24)中は、土台部材4bと液滴吐出ヘッドとの相対位置関係を一定にして(動かさないで)レンズ材料7を放置してもよいし、他の土台部材4b上にレンズ材料7を吐出してもよい。
待機工程(S24)中に土台部材4bと液滴吐出ヘッドとの相対位置関係を一定にしている場合には、次の吐出工程(S23)でのレンズ材料7の着弾位置が前回の吐出工程における着弾位置からばらつくのを抑えることができ、形状精度の良いマイクロレンズを形成することができる。
また、待機工程(S24)の間に他の土台部材4b上にレンズ材料7を吐出する場合には、レンズ材料7の吐出工程(S23)と待機工程(S24)とを平行して行うことができ、マイクロレンズを形成するのに必要な時間を短縮させることができる。
マイクロレンズ前駆体8の仮硬化処理が終了すると、再び吐出工程(S23)に戻って、仮硬化されたマイクロレンズ前駆体8の上にレンズ材料7が20ドット吐出される。その後、待機工程(S24)の仮硬化が行われ、このサイクルが土台部材4b上に100ドットのレンズ材料からなるマイクロレンズ前駆体8が形成されるまで繰り返される(本実施の形態においては5回繰り返される)。
上記の構成によれば、土台部材上に着弾した溶剤系のレンズ材料7を所定時間放置することで、レンズ材料7の粘度を増加させ仮硬化を行っている。そのため、レンズ材料7を仮硬化させるための装置を使用する必要がなく、マイクロレンズを製造する装置の構成を簡略化することができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、本発明のマイクロレンズは、前記した用途以外にも種々の光学装置に適用可能であり、例えば固体撮像装置(CCD)の受光面や光ファイバの光結合部などに設けられる光学部品としても使用可能である。
第1の実施の形態の工程フローを示す図である。 (a)〜(e)は、同、マイクロレンズの製造工程図である。 (a)、(b)は、同、液滴吐出ヘッドの概略構成図である。 (a)、(b)は、同、マイクロレンズの製造工程図である。 (a)〜(c)は、同、マイクロレンズを示す図である。 (a)〜(c)はマイクロレンズの平行光化機能を示す図である。 撥液処理によるレンズ材料の接触角を説明するための図である。 本発明のレーザプリンタ用ヘッドの概略構成図である。 第2の実施の形態の工程フローを示す図である。 (a)、(b)は、同、マイクロレンズの製造工程図である。 第2の実施の形態の変形例の工程フローを示す図である。
符号の説明
2・・・面発光レーザ、 3・・・基体、 4b・・・土台部材、 7・・・レンズ材料、 8a・・・マイクロレンズ、 34・・・液滴吐出ヘッド

Claims (13)

  1. 基体上に形成された土台部材上に、液滴吐出ヘッドからレンズ材料である所定滴数の液滴を吐出してマイクロレンズを形成するマイクロレンズの製造方法であって、
    前記基体と前記液滴吐出ヘッドとの相対移動を止めて、前記液滴吐出ヘッドから前記基体上の所定の位置に前記液滴を複数個吐出することを特徴とするマイクロレンズの製造方法。
  2. 前記液滴吐出ヘッドから一度に連続して吐出される前記液滴滴数が、前記所定滴数と等しいことを特徴とする請求項1記載のマイクロレンズの製造方法。
  3. 前記液滴吐出ヘッドから一度に連続して吐出される前記液滴滴数が前記所定滴数より少なく、
    次に同一土台部材上に前記液滴が吐出されるまでに、前記土台部材上に着弾したレンズ材料の仮硬化が行われることを特徴とする請求項1記載のマイクロレンズの製造方法。
  4. 同一土台部材上に吐出された前記液滴の合計数が前記所定滴数と等しくなるまで、前記相対移動を止めたままの状態で、同一土台部材上に前記液滴の吐出を繰り返すことを特徴とする請求項3記載のマイクロレンズの製造方法。
  5. 一つの土台部材上に液滴を吐出した後に、他の土台部材の少なくとも1つの土台部材上に前記液滴を吐出し、再び前記一つの土台部材上に液滴を吐出することを特徴とする請求項3記載のマイクロレンズの製造方法。
  6. 前記液滴吐出ヘッドから、一度に複数の前記土台部材上に前記液滴を吐出することを特徴とする請求項1から5のいずれかに記載のマイクロレンズの製造方法。
  7. 前記レンズ材料が、揮発性溶剤によって希釈された材料であって、
    前記仮硬化が、着弾したレンズ材料を所定時間放置することで行われることを特徴とする請求項3から6のいずれかに記載のマイクロレンズの製造方法。
  8. 前記レンズ材料が、紫外線に反応して硬化する材料であって、
    前記仮硬化が、着弾した前記レンズ材料に紫外線を照射することで行われることを特徴とする請求項3から6のいずれかに記載のマイクロレンズの製造方法。
  9. 請求項1から8のいずれかに記載のマイクロレンズの製造方法で製造されたことを特徴とするマイクロレンズ。
  10. 面発光レーザと、請求項1から8のいずれかに記載のマイクロレンズの製造方法で得られたマイクロレンズとを備え、前記マイクロレンズを前記面発光レーザの出射側に配設したことを特徴とする光学装置。
  11. 請求項10記載の光学装置と、受光素子と、前記光学装置からの出射光を前記受光素子に伝送する光伝送手段とを備えたことを特徴とする光伝送装置。
  12. 請求項10記載の光学装置を備えたことを特徴とするレーザプリンタ用ヘッド。
  13. 請求項12記載のレーザプリンタ用ヘッドを備えたことを特徴とするレーザプリンタ。
JP2003288031A 2003-08-06 2003-08-06 マイクロレンズの製造方法 Expired - Fee Related JP4241259B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003288031A JP4241259B2 (ja) 2003-08-06 2003-08-06 マイクロレンズの製造方法
KR1020040060327A KR100615934B1 (ko) 2003-08-06 2004-07-30 마이크로 렌즈의 제조 방법 및 마이크로 렌즈, 광학 장치,광전송 장치, 레이저 프린터용 헤드, 레이저 프린터
US10/902,175 US20050058773A1 (en) 2003-08-06 2004-07-30 Method of manufacturing micro lens, micro lens, optical device, optical transmitting device, laser printer head, and laser printer
CNB2004100559214A CN1295521C (zh) 2003-08-06 2004-08-03 微透镜及制法、光学装置、光传送装置、激光打印机用头
TW093123391A TWI244973B (en) 2003-08-06 2004-08-04 Micro lens and making method thereof, optical device, optical transmitting device, head for laser printer and laser printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288031A JP4241259B2 (ja) 2003-08-06 2003-08-06 マイクロレンズの製造方法

Publications (2)

Publication Number Publication Date
JP2005055759A true JP2005055759A (ja) 2005-03-03
JP4241259B2 JP4241259B2 (ja) 2009-03-18

Family

ID=34269038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288031A Expired - Fee Related JP4241259B2 (ja) 2003-08-06 2003-08-06 マイクロレンズの製造方法

Country Status (5)

Country Link
US (1) US20050058773A1 (ja)
JP (1) JP4241259B2 (ja)
KR (1) KR100615934B1 (ja)
CN (1) CN1295521C (ja)
TW (1) TWI244973B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025150A (ja) * 2005-07-14 2007-02-01 Seiko Epson Corp 光学シート、バックライトユニット、電気光学装置、電子機器、および光学シートの製造方法
JP2013534728A (ja) * 2010-06-22 2013-09-05 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 半導体素子および半導体素子の製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906921B2 (ja) * 2003-06-13 2007-04-18 セイコーエプソン株式会社 バンプ構造体およびその製造方法
JP4239750B2 (ja) * 2003-08-13 2009-03-18 セイコーエプソン株式会社 マイクロレンズ及びマイクロレンズの製造方法、光学装置、光伝送装置、レーザプリンタ用ヘッド、並びにレーザプリンタ
KR100698099B1 (ko) * 2005-09-13 2007-03-23 동부일렉트로닉스 주식회사 씨모스 이미지 센서 및 그 제조방법
US7639426B2 (en) * 2007-12-05 2009-12-29 Eastman Kodak Company Micro-lens enhanced element
KR101020060B1 (ko) * 2008-03-20 2011-03-09 주식회사 마크애니 가상 머신을 이용한 전자 뱅킹 서비스 제공 방법 및 가상머신
JP2010223975A (ja) * 2009-03-19 2010-10-07 Dhs:Kk レンズアレイの製造方法及びレンズアレイ
US8417662B2 (en) * 2010-02-18 2013-04-09 The University Of Utah Research Foundation Adjustable alert rules for medical personnel
KR101218133B1 (ko) * 2010-04-27 2013-01-18 엘지디스플레이 주식회사 마이크로 렌즈의 제조방법 및 마이크로 렌즈를 구비한 태양전지
US9891346B2 (en) * 2013-01-10 2018-02-13 Luxexcel Holding B.V. Method of printing an optical element
WO2015069283A1 (en) * 2013-11-08 2015-05-14 Empire Technology Development Llc Printed ball lens and methods for their fabrication
US11888002B2 (en) 2018-12-17 2024-01-30 Meta Platforms Technologies, Llc Dynamically programmable image sensor
US11962928B2 (en) 2018-12-17 2024-04-16 Meta Platforms Technologies, Llc Programmable pixel array
CN110756986A (zh) * 2019-10-21 2020-02-07 华南理工大学 一种通过激光诱导前向转移制备微透镜阵列的方法与装置
US11935291B2 (en) 2019-10-30 2024-03-19 Meta Platforms Technologies, Llc Distributed sensor system
US11948089B2 (en) 2019-11-07 2024-04-02 Meta Platforms Technologies, Llc Sparse image sensing and processing
US11458699B2 (en) * 2019-12-09 2022-10-04 Meta Platforms Technologies, Llc Fabricating a lens assembly
US11825228B2 (en) 2020-05-20 2023-11-21 Meta Platforms Technologies, Llc Programmable pixel array having multiple power domains
CN117254341B (zh) * 2022-08-31 2024-05-10 嘉兴微瑞光学有限公司 制备激光器组件的方法及激光器组件
CN116885547A (zh) * 2023-07-10 2023-10-13 苏州苏纳光电有限公司 一种半导体微球的制备方法
CN117019578B (zh) * 2023-10-10 2024-01-09 芯体素(杭州)科技发展有限公司 微透镜基板及其制备方法、涂胶装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498444A (en) * 1994-02-28 1996-03-12 Microfab Technologies, Inc. Method for producing micro-optical components
US5758950A (en) * 1996-03-05 1998-06-02 Ricoh Company, Ltd. Light source device for an image forming apparatus
JP2000280367A (ja) * 1999-03-30 2000-10-10 Seiko Epson Corp マイクロレンズの製造装置及び製造方法
US6625351B2 (en) * 2000-02-17 2003-09-23 Microfab Technologies, Inc. Ink-jet printing of collimating microlenses onto optical fibers
JP3840058B2 (ja) * 2000-04-07 2006-11-01 キヤノン株式会社 マイクロレンズ、固体撮像装置及びそれらの製造方法
JP2001297470A (ja) * 2000-04-14 2001-10-26 Sony Corp 光学素子及びこれを用いた光学ヘッド、信号再生方法
CN1203367C (zh) * 2000-07-03 2005-05-25 精工爱普生株式会社 穿透型屏幕的制造方法及穿透型屏幕
JP2002120230A (ja) * 2000-10-13 2002-04-23 Canon Inc マイクロ構造体、及びその作製方法
JP2002122707A (ja) * 2000-10-13 2002-04-26 Canon Inc 非球面マイクロ構造体、及びその作製方法
US6909554B2 (en) * 2000-12-27 2005-06-21 Finisar Corporation Wafer integration of micro-optics
KR20030017674A (ko) * 2001-08-21 2003-03-04 대우전자주식회사 적외선 흡수 볼로메터 제조 방법
US6642068B1 (en) * 2002-05-03 2003-11-04 Donald J. Hayes Method for producing a fiber optic switch
JP3719431B2 (ja) * 2002-09-25 2005-11-24 セイコーエプソン株式会社 光学部品およびその製造方法、表示装置および撮像素子
JP4239750B2 (ja) * 2003-08-13 2009-03-18 セイコーエプソン株式会社 マイクロレンズ及びマイクロレンズの製造方法、光学装置、光伝送装置、レーザプリンタ用ヘッド、並びにレーザプリンタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025150A (ja) * 2005-07-14 2007-02-01 Seiko Epson Corp 光学シート、バックライトユニット、電気光学装置、電子機器、および光学シートの製造方法
JP2013534728A (ja) * 2010-06-22 2013-09-05 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 半導体素子および半導体素子の製造方法
US9634207B2 (en) 2010-06-22 2017-04-25 Osram Opto Semiconductors Gmbh Semiconductor component and method of producing a semiconductor component

Also Published As

Publication number Publication date
KR20050016060A (ko) 2005-02-21
JP4241259B2 (ja) 2009-03-18
TWI244973B (en) 2005-12-11
CN1580824A (zh) 2005-02-16
TW200508021A (en) 2005-03-01
US20050058773A1 (en) 2005-03-17
CN1295521C (zh) 2007-01-17
KR100615934B1 (ko) 2006-08-28

Similar Documents

Publication Publication Date Title
JP4241259B2 (ja) マイクロレンズの製造方法
KR100695792B1 (ko) 마이크로 렌즈의 제조 방법
JP4239750B2 (ja) マイクロレンズ及びマイクロレンズの製造方法、光学装置、光伝送装置、レーザプリンタ用ヘッド、並びにレーザプリンタ
US7375893B2 (en) Method of manufacturing microlens, microlens, optical film, screen for projection, projector system, electrooptical device and electronic equipment
US20060012060A1 (en) Method for manufacturing microlens
JP3800199B2 (ja) マイクロレンズの製造方法
JP4155099B2 (ja) マイクロレンズの製造方法
JP4345388B2 (ja) マイクロレンズの製造方法
JP4239745B2 (ja) マイクロレンズの製造方法およびマイクロレンズ、光学装置、光伝送装置、レーザプリンタ用ヘッド、レーザプリンタ
JP2015212098A (ja) 三次元造形装置、三次元造形方法、及び三次元造形装置の制御用プログラム
JP5609259B2 (ja) 造形方法
JP2006178139A (ja) 光学部材の製造方法、光学部材の製造装置、および、電気光学素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees