JP2005055450A - 光ファイバ式ひずみゲージ - Google Patents

光ファイバ式ひずみゲージ Download PDF

Info

Publication number
JP2005055450A
JP2005055450A JP2004345003A JP2004345003A JP2005055450A JP 2005055450 A JP2005055450 A JP 2005055450A JP 2004345003 A JP2004345003 A JP 2004345003A JP 2004345003 A JP2004345003 A JP 2004345003A JP 2005055450 A JP2005055450 A JP 2005055450A
Authority
JP
Japan
Prior art keywords
optical fiber
strain gauge
gauge
fiber strain
tensile force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004345003A
Other languages
English (en)
Inventor
Isamu Nemoto
勇 根本
Taro Uesugi
太郎 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Original Assignee
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Electronic Instruments Co Ltd filed Critical Kyowa Electronic Instruments Co Ltd
Priority to JP2004345003A priority Critical patent/JP2005055450A/ja
Publication of JP2005055450A publication Critical patent/JP2005055450A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】
簡単且つ低コストな構成で温度補償の問題を解決し得る上に、供試体に溶接・接着する等によりその供試体に加わる引張力等を検出し得るコンパクトな構成の光ファイバ式ひずみゲージを提供すること
【解決手段】
ゲージベースに空隙部を介して連続的に形成した第1及び第2の溝に固定される光ファイバの前記空隙部内に位置する部分にブラッグ回折格子(FBG)を形成し、第1及び第2の溝内の光ファイバの軸方向と直交する方向に沿った溶着部を有する光ファイバ式ひずみゲージにおいて、ゲージベースの材料の線膨張係数と測定対象物の線膨張係数との差を利用して温度補償を行う。FBGに圧縮力が付与されると座屈してしまう虞れを解消するため、プリテンション装置を用いて予めFBGに引張力を付与した状態で溶着部を測定対象物に溶接等して用いる。
【選択図】 図2

Description

本発明は、工業プロセス計測、リニアモータカー・送電線・発電機等におけるひずみ測定等、強電磁界ノイズ環境下の計測、落雷環境下の土木関連計測等に用いられる光ファイバ式ひずみゲージに関し、特に、FBG[Fiber Bragg Grating(光ファイバブラッグ回折格子)]法を用いた光ファイバ式ひずみゲージに関する。
従来、FBG法を用いた光ファイバ式ひずみゲージ等の光ファイバ式センサが種々提案されている(特許文献1、特許文献2、特許文献3等参照)。FBG法は、通信用シングルモード型光ファイバのコア部の屈折率をファイバ軸方向に周期的に変化させた光ファイバブラッグ回折格子を検出素子として用い、該回折格子への入射光のうち屈折率の周期に対応した特定の波長(ブラッグ波長)のみが選択的に反射される現象を利用したものである。即ち、検出素子に歪みが加えられると、回折格子の周期が変化することから、反射光の波長にシフトを生じるので、この波長のシフト量から加えられた歪み量を測定できる。
しかしながら、このFBG法を用いた光ファイバ式センサでは、上述したブラッグ波長が温度によって変化する性質があるため、FBG法を用いた光ファイバ式センサを歪みの検出に用いる場合には、検出する歪みのレベル(例えば、数百マイクロストレイン)が周辺の温度変化(例えば、−20〜70℃)に基づくファイバ自身の歪みのレベルと同程度であり、温度変化の影響を除外する方法(温度補償)が必要である。
従来のFBG法を用いた光ファイバ式センサのうち、特許文献1には、FBGを2個用い、一方のFBGを用いて当該FBG型光ファイバと略等しい線膨張係数を有する基板に固着した歪み検出用センサを構成し、他方のFBGを用いて両側で変位が拘束されないように基板に固着した温度補償用センサを構成し、これら2つのセンサを光ファイバで直列或いは並列に接続した例(以下、第1の従来例と称する)が記載されている。
また、特許文献2には、引張力或いは温度変化が加わるとFBGの屈折率及び格子間隔が変化する結果、ブラッグ波長も変化するが、格子の数は変化しないので、反射波の帯域幅は変化しない性質を利用して上述した温度補償の問題を解決する例(以下、第2の従来例と称する)が記載されている。即ち、この第2の従来例は、長さ方向の一部に格子間隔の均一なFBG部分を有する光ファイバと、引張力が加わると不均一な歪みを発生する部分を有する引張部材とから成り、光ファイバのFBG部分を引張部材の上記不均一な歪みを発生する部分に接着固定した構成を備え、引張力が加わるとFBG部分の格子間隔が不均一になり、反射波の帯域幅が広がるので、帯域幅の変化で引張力を測定できる。
更に、特許文献3には、菱形の枠部材と、この枠部材の一組の対角線上に当該枠部材の内側に突出するように設けられた一対の光ファイバ支持部材と、この一対の光ファイバ支持部材にそれらの間にFBG部分が位置するように支持された光ファイバと、枠部材を弾性変形させて光ファイバに張力を付与するねじ式張力調整部とを備え、上記一対の光ファイバ支持部材を枠部材より熱膨張率の大きい材料で構成したFBGの温度補償装置(以下、第3の従来例と称する)が記載されている。
特許第2983018号公報 特開2000−97786号公報 特開2000−121844号公報
しかしながら、上記第1の従来例は、それぞれFBGを用いた2つのセンサを光ファイバで直列或いは並列に接続するため、FBGが2個必要になり、コストが高くなる。また、2つのセンサをそれぞれ接着する工程が必要となるため、組立工数が増加し、この点からもコストが高くなる。また、2個のFBGについて予め較正が必要になるので繁雑である等の問題がある。
また、上記第2の従来例は、引張部材に不均一な歪みを発生する部分を形成するので構成が複雑となり、また、力学的力センサとして引張力等の測定は可能であるが、供試体に貼り付ける等によりその供試体に加わる引張力等を検出し得るひずみゲージ等のようなコンパクトな構成のものではない。
更に、上記第3の従来例は、菱形の枠部材と、一対の光ファイバ支持部材と、ねじ式張力調整部とを備える等、装置の構成も比較的大型となり、上記第2の従来例と同様に、供試体に貼り付ける等によりその供試体に加わる引張力等を検出し得るひずみゲージ等のようなコンパクトな構成のものではない。
本発明の課題は、簡単且つ低コストな構成で温度補償の問題を解決し得る上に、供試体に溶接・接着する等によりその供試体に加わる引張力等を検出し得るコンパクトな構成の光ファイバ式ひずみゲージを提供することにある。
上記課題を解決するため、本発明では、空隙部が形成されたゲージベースと、前記ゲージベースの一方面において前記空隙部を介して連続的に形成された第1及び第2の溝と、前記第1及び第2の溝に固定されて延びる光ファイバと、該光ファイバの前記空隙部内に位置する部分に形成されたブラッグ回折格子から成るセンシング素子と、前記ゲージベースと測定対象物とを固定する固定手段により前記光ファイバ及び前記センシング素子の軸方向と直交する方向に沿って固着力を加えられる溶着部とを有する光ファイバ式ひずみゲージを構成し、前記ゲージベースの材料の線膨張係数と測定対象物の線膨張係数との差を利用して温度補償を行うようにした。
このような発明によれば、FBGを1個のみ用いる場合でも、温度補償が可能であるコンパクトな構成の光ファイバ式ひずみゲージを低コストに得ることができる。
また、前記センシング素子としてのFBGに圧縮力が付与されると座屈してしまう虞れを解消するため、本発明の光ファイバ式ひずみゲージは、前記センシング素子に予め引張力を付与した状態で用いるようにした。
これにより、測定レンジは狭まるが、座屈の虞れなく、圧縮ひずみの測定も可能となる。更に、本発明では、前記センシング素子に予め引張力を付与するために、前記光ファイバ式ひずみゲージに装着するための装着手段と、前記センシング素子に引張力を付与するためのテンション付与手段と、該テンション付与手段により付与される引張力を調整するための調整手段とを有するプリテンション装置を用い、光ファイバ式ひずみゲージのゲージベースに前記プリテンション装置を取り付けるための取付部を設けるようにした。
これにより、測定現場で大変作業性良く、座屈防止のために予め引張力を付与した状態で、光ファイバ式ひずみゲージを測定対象物に取り付けて用いることができる。
以上の説明から明らかなように、本発明によれば以下の効果を奏することができる。すなわち、本発明によれば、FBGを用いた光ファイバ式ひずみゲージでありながら、温度補償用のFBGを設けることなく、1つのFBGで温度補償をした歪み計測が可能である。
また、歪み拡大機能により、微小歪みを検出可能である(換言すれば、見かけ上のゲージ率を増加し得る)。更に、起歪部の応力を低く押さえられ、剛性の高いセンサを実現できるだけでなく、起歪部構造の単純化を図れるので、コスト低減にも結び付く。
一方また、本発明によれば、温度補償用のFBGが不要となるので、温度補償用のFBGを別個に製作する必要が無くなり、高価であるFBG費用を削減できる。
以下、本発明の実施の形態を、図面を参照しつつ具体的に説明する。ここで、添付図面において同一の部材には同一の符号を付しており、また、重複した説明は省略されている。なお、発明の実施の形態は、本発明が実施される特に有用な形態としてのものであり、本発明がその実施の形態に限定されるものではない。
図1は、本発明の一実施の形態である光ファイバ式ひずみゲージを示す平面図である。図1に示すように、本実施の形態の光ファイバ式ひずみゲージは、H型の空隙部13が形成されて全体として矩形状を有するゲージベース10と、ゲージベース10の一方面において空隙部13を介して連続的に形成された第1及び第2の溝14,15と、例えば、接着剤によりこれらの溝に固定されて延びる光ファイバ11とを備えている。光ファイバ11は、空隙部13内に浮いた状態でセンシング素子としてのFBG(光ファイバブラッグ回折格子)111を有している。
また、ゲージベース10には、第1及び第2の溝14,15内における光ファイバ11の軸方向と直交する方向に延びて空隙部13の両側に形成された段差16A,16Bにより、空隙部13の周囲に位置する薄肉部17と、この薄肉部17より厚さの厚い厚肉部18A,18Bとが区画形成されている。更に、ゲージベース10の薄肉部17にはくびれ部20が形成されている。これにより、薄肉部17の剛性が低下され、鋼材などの測定対象物(図示せず)のひずみに応じてゲージベース10が変形し易くなっている。
厚肉部18A側には、ゲージベース10と測定対象物(図示せず)とを、例えば、スポット溶接により固定するための溶着部12A,12Aが、それぞれ第1の溝14の近傍からゲージベース10の短手方向両側まで形成されている。また、厚肉部18B側には、同様に、ゲージベース10と測定対象物(図示せず)とを、例えば、スポット溶接により固定するための溶着部12B,12Bが、それぞれ第2の溝15の近傍からゲージベース10の短手方向両側まで形成されている。尚、ここで、溶着部12A,12Bは、後述するように、スポット溶接し易いように、薄肉状に形成されている。なお、ゲージベース10と測定対象物とを固定するための溶着には種々の形態を採用することができ、本実施の形態のスポット溶接の他、接着剤による接着、更に、ガス圧接のような圧接のみならず、種々の融接およびろう付け技術等で両者を固定することが可能である。
厚肉部18Aのそれぞれ溶着部12A,12Aよりも内側(薄肉部17側)には、後述するように、プリテンション治具のピン部を挿入して取り付けるための孔22A,22Aが形成されている。また、厚肉部18Bのそれぞれ溶着部12B,12Bよりも内側(薄肉部17側)には、同様に、プリテンション治具のピン部を挿入して取り付けるための孔22B,22Bが形成されている。
さて、本実施の形態の光ファイバ式ひずみゲージを使用する場合、測定対象物のひずみを、検出部として設けた光ファイバ11のFBG111に伝えて検出する。即ち、本実施の形態の光ファイバ式ひずみゲージを用いるには、測定対象物(図示せず)にゲージベース10を固定し、光ファイバ11の一端を光源側(図示せず)に接続し、他端を光検出手段(図示せず)に接続して用いる。測定対象物に応力が作用してひずみが生じると、ゲージベース10も同じように引っ張り又は圧縮される。この結果、空隙部13の間隔Gが、引っ張りの場合には増加し、圧縮の場合には減少する。そして、空隙部13の間隔Gが増減することにより空隙部13におけるFBG111に歪みが加えられる。これにより、FBG111における回折格子の周期が変化することから、反射光の波長にシフトを生じる。従って、この波長のシフト量を光検出手段にて検出することにより、ひずみ量を計測することができる。
このように、本実施の形態の光ファイバ式ひずみゲージによれば、引っ張りひずみだけでなく圧縮ひずみの測定も可能である。また、検出感度の比較的高いFBG(光ファイバブラッグ回折格子)をセンシング素子として用いているので、測定対象物がひずみの大きい鉄の場合は勿論、ひずみの小さいコンクリートの場合でも、高精度な検出が可能である。ここで、本実施の形態の光ファイバ式ひずみゲージでは、図1に示すように、第1及び第2の溝14,15内における光ファイバ11の軸方向と直交する方向に延びて形成された各溶着部12A,12B内に2列に亘ってスポット溶接を行うことによりゲージベース10と測定対象物とが固定される。このように、光ファイバ11の軸方向と直交する方向に沿って働く固着力によって光ファイバ式ひずみゲージと測定対象物とが固定されると、ゲージ長が光ファイバ11の軸方向における固着部間距離となる。従って、ゲージ長が光ファイバ11の軸方向における固着部間距離となるので、後述する線膨張を用いた温度補償におけるゲージ長の不確実さがなくなる。
更に、薄肉状に形成された溶着部12A,12Bのそれぞれ厚肉部18A,18Bとの段差12a,12bに、例えば、スポット溶接機を沿わせて動かすだけで第1及び第2の溝14,15内における光ファイバ11の軸方向と直交する方向に沿った溶着部12A,12Bを測定対象物に溶着できるので、光ファイバ式ひずみゲージ取り付け作業の容易化を図ることが可能になる。
次に、本実施の形態の光ファイバ式ひずみゲージにおける温度変化の影響を除外する方法(温度補償)について説明する。
再び図1を参照して、本実施の形態の光ファイバ式ひずみゲージについて、温度補償方法を説明する。図1に示す光ファイバ式ひずみゲージにおいては、上述したように、第1及び第2の溝14,15内における光ファイバ11の軸方向と直交する方向に延びて形成された溶着部12A,12B内にスポット溶接等によりゲージベース10と測定対象物とが固定される結果、光ファイバ11の軸方向と直交する方向に沿って働く固着力によって光ファイバ式ひずみゲージと測定対象物とが固定され、ゲージ長が光ファイバ11の軸方向における固着部間距離Lとなっている。
図示の光ファイバ式ひずみゲージにおいて、例えば、温度の上昇により測定対象物に固定されたゲージベース10全体が伸長した場合には、厚肉部18Aと厚肉部18Bもそれに伴って伸長する分、間隔Gが増加してFBG111における回折格子の周期が長くなることから、反射光の波長にシフトを生じるが、厚肉部18Aと厚肉部18Bそれぞれの自由端側も間隔G内で伸長する結果、その分だけ間隔Gを減少させる方向に作用する。このため間隔Gの増加がその分だけ相殺されるので、温度変化による影響を減少させ得る構造となっている。
ここで、上記光ファイバ式ひずみゲージにおいて、かかる温度変化による影響を可及的に小さくするための条件等につき、図1を参照しつつ、説明する。ここでは、説明を簡単にするために、測定対象物のひずみが接合部(図示せず)上の図1に示すゲージベース10に100%伝達し、ゲージベース10のひずみは光ファイバ11に100%伝達するものとして説明する。
[前提条件]
αf(=αg):ファイバ及びFBGの線膨張係数<<αa,bここで、αa:測定対象物の線膨張係数、αb:ゲージベース10の線膨張係数とする。即ち、ファイバの線膨張係数αf(=FBGの線膨張係数αg)は、測定対象物の線膨張係数αaやゲージベース10の線膨張係数αbよりも十分小さいものとする。また、厚肉部18A,18Bに比して薄肉部17及びFBG111の引張り・圧縮剛性が十分低いものとする。
従って、測定対象物に歪みを付加した場合、厚肉部18A,18Bの歪みは略0、また、ゲージベース10のP部(厚肉部18A,18Bと薄肉部17の境界線付近)は、温度を加えた場合、Q部を始点に自由膨張し、伸びを中央の薄肉部17が吸収するものとする。各部の寸法を図1に示すものとすると、
Figure 2005055450
Figure 2005055450
Figure 2005055450
Figure 2005055450
例えば、図1において、αa:測定対象物の線膨張係数(図示の例では、11e−6)、αb:ゲージベース10’の線膨張係数(図示の例では、16e−6)、間隔G=11mmとすると、FBG111’においては、λB=2n0Λが成り立つ。ここで、λB:ブラッグ波長、n0:FBG111’のコアの実効平均屈折率、Λ:屈折率の変化を与えた周期である。1/λB・δΛB/δε=7.80e−7(με-1) ∴δλB=1.21e−3/1με1/λB・δλB/δT=0.00000667(℃-1) ∴δλB=1.03e−2/1℃となり、1℃あたりの相当ひずみは、1.03e−2/1.21e−3=8.55(με/℃)となる。
従って、温度による影響を消すには、
Figure 2005055450
Figure 2005055450
Figure 2005055450
Figure 2005055450
Figure 2005055450
すなわち、上記条件下において、間隔G=11mmに対しL=54.01mmとすれば、温度変化による影響を可及的に小さくし得ることが判明した。L/G=54.01/11となり、従って、G=11mmとすれば、L=54.01mm、一方、G=3mmとすれば、L=14.73mm、G=5mmとすれば、L=24.55mmとなる。かかる寸法に形成することにより、温度影響が少ない光ファイバ式ひずみゲージを実現できる。
実際の設計にあたっては、上記で前提としたひずみの伝達は100%でないため、各部材間での伝達効率を実測またはFEM(有限要素法)等で求め、それらのひずみ伝達効率を考え合わせることにより最適形状を求めれば良い。
ところで、約10mmのFBGを用いた光ファイバ式ひずみゲージの場合、圧縮力が加わると、FBG部分が座屈してしまう虞れがある。このようにFBG部分が座屈してしまうと、正確な歪み検出が困難となるばかりか、以後、その光ファイバ式ひずみゲージは使用できなくなる。そこで、かかる座屈を防止する手段として、本発明者は、以下のような実施例につき検討した。
[実施例]本実施例では、プリテンション治具を用いて所定のプリテンションを与えることにより圧縮(実際は引張り状態)及び引張り状態で、座屈を有効に防止しつつ温度補償が可能となる。尚、この場合、FBGの力計測に使用し得る範囲は狭まるが、温度補償は可能となる。
尚、ここでの温度補償は、本実施形態の光ファイバ式ひずみゲージをスポット溶接等により歪み測定対象物に取り付けた場合、例えば、ゲージを取り付けるセンサ(変位計等)の起歪部鋼材又は歪み計測を行う橋梁等構造物の鋼材に取り付けた場合に、鋼材の外気温等による温度変化に伴う見かけ歪みを無くするための補償法であり、ゲージを取り付ける前のゲージ単体での温度補償ではない。
温度補償のための所定のプリテンションを与えるプリテンション治具の使い方を含め、本実施の形態の光ファイバ式ひずみゲージの使用方法について、図2および図3を用いて説明する。
まず、本実施の形態の光ファイバ式ひずみゲージと共に使用するプリテンション治具の構成について説明する。
このプリテンション治具50は、図2および図3に示すように、治具本体52と、テンション調整棒54とを有している。治具本体52は、弾性材から成り、長手方向断面がコ字状の押圧力調整部56と、長手方向両端側に形成された押圧部58A,58Bとを含んでいる。押圧力調整部56は、図3に示すように、くびれ部20,20のくびれ部分に達する程度の幅に形成され、押圧部58A,58Bは、ゲージベース10の幅と略等しい幅に形成されている。押圧部58A,58Bの長手方向両端側下面には、それぞれ仮固定部58a,58bが設けられており、これら仮固定部58a,58bには、それぞれ仮固定用ピン58a1及び58a2,58b1及び58b2が圧入されている。テンション調整棒54は、中央につまみ部54Aが圧入され、両端側はボールねじ状に切られている。治具本体52の押圧力調整部56におけるテンション調整棒54が挿通する対応位置はボールナット状に形成されている。これにより、このプリテンション治具50は、テンション調整棒54のつまみ部54Aを、例えば、図示矢印M方向に回せば、押圧力調整部56の面56Aと56Bが相互に離反する方向(図示矢印M’方向)に移動し、反対に、図示矢印N方向に回せば、押圧力調整部56の面56Aと56Bが相互に接近する方向(図示矢印N’方向)に移動するようになっている。従って、仮固定部58a,58bの仮固定用ピン58a1及び58a2,58b1及び58b2を前述したゲージベース10の孔22A,22Aと22B,22Bにそれぞれ挿入した状態で、テンション調整棒54のつまみ部54Aを図示矢印M方向に回せば、押圧部58A,58Bそれぞれの仮固定部58a,58b及び仮固定用のピン58a1及び58a2,58b1及び58b2を介してゲージベース10(光ファイバ11)に長手方向の引張力を与えることができる。反対に、同様の状態で、テンション調整棒54のつまみ部54Aを図示矢印N方向に回せば、ゲージベース10(光ファイバ11)に長手方向の圧縮力を与えることが可能である。
本実施の形態の光ファイバ式ひずみゲージの温度補償を可能とする使用方法について詳説する。まず、本実施の形態の光ファイバ式ひずみゲージを測定対象物19(図2参照)に取り付け、溶着部12A,12Aのそれぞれ厚肉部18Aとの段差に、例えば、スポット溶接機を沿わせて動かすことにより、溶着部12A,12Aを測定対象物19に溶着する(ステップ1)。次に、仮固定部58a,58bの仮固定用ピン58a1及び58a2,58b1及び58b2をゲージベース10の孔22A,22Aと22B,22Bにそれぞれ挿入することにより、プリテンション治具50を光ファイバ式ひずみゲージに装着する(ステップ2)。この状態で、所定のプリテンション(引張力)になるように、テンション調整棒54のつまみ部54Aを図示矢印M方向に回して調整する。この場合、つまみ部54Aを図示矢印N方向に戻す等して調整することが可能である(ステップ3)。所定のプリテンション(引張力)への調整が完了したら、今度は、溶着部12B,12Bのそれぞれ厚肉部18Bとの段差に、例えば、スポット溶接機を沿わせて動かすことにより、溶着部12B,12Bを測定対象物19に溶着する(ステップ4)。これにより、ゲージベース10(光ファイバ11)に長手方向の引張力を印加した状態で、光ファイバ式ひずみゲージを測定対象物19に取り付けることができる。尚、光ファイバ式ひずみゲージを測定対象物19に取り付けた後は、テンション調整棒54のつまみ部54Aを図示矢印N方向に回して、押圧部58A,58Bの押圧力を緩めた上で、プリテンション治具50を光ファイバ式ひずみゲージから取り外す(ステップ5)のは勿論である。このように、本実施の形態の光ファイバ式ひずみゲージを測定対象物19に固定したら、光ファイバ11の一端を光源側(図示せず)に接続し、他端を光検出手段(図示せず)に接続して計測する。測定対象物19に応力が作用してひずみが生じると、ゲージベース10も同じように引っ張り又は圧縮される。この結果、空隙部13の間隔Gが、引っ張りの場合には増加し、圧縮の場合には減少する。そして、空隙部13の間隔Gが増減することにより空隙部13におけるFBG111に歪みが加えられる。これにより、FBG111における回折格子の周期が変化することから、反射光の波長にシフトを生じる。従って、この波長のシフト量を光検出手段にて検出することにより、ひずみ量を計測し得る(ステップ6)。
本実施の形態では、ゲージベース10における薄肉部17とくびれ部20とによって厚肉部18A,18Bに比べてよりフレキシブルな部分が形成されている。このため、第1に、引っ張り剛性が低下して内力が小さくなるので、測定対象物に取り付けられた場合に、測定対象物との固着部におけるせん断応力が抑制される結果、ゲージ特性のばらつきが低減されるので、信頼性の高いひずみ量の計測が可能になる。第2に、測定対象物に取り付ける場合に、プリテンション治具50の押圧部58A,58Bによる引張又は圧縮力が作用しても、この引張又は圧縮力は、このフレキシブルな部分に吸収されるので、取り付けの際に溶着部12A,12Bに作用する剪断応力を低下させることが可能となる。
一方、上述した如き構成のプリテンション治具50によれば、微小ではない、略1kgf前後のプリテンション力を付加できるので、テンション調整棒54等によりプリテンション力を手動で調整することができる。尚、ゲージベース10の薄肉部17にはくびれ部20を予め設けず、ゲージベース10の長手方向両側の溶着部12A,12Bを両方とも測定対象物19に溶接等した後に、当該薄肉部を一部切断分離することにより、くびれ部を形成してもよい。或いは、ゲージベース10の長手方向両側の溶着部12A,12Bを両方とも測定対象物19に溶接等した後に、図1及び図3に示すようなくびれ部20を予め有する薄肉部17を、更に、一部切断分離するようにしても良い。これにより、溶着部12A,12Bに対する剪断応力を更に低下させ、薄肉部17やくびれ部20等によるフレキシビリティをより完全にすることも可能である。
本発明者等は、座屈防止手段としての他の様々な可能性につき検討してみた。例えば、図4(a)に示すように、FBG111部分を管状の座屈防止スリーブ70で覆うことも考えてみた。そして、ある程度の座屈防止効果は得られたが、上記実施例のように、機械的にプリテンションを与える方がより有効に座屈を防止することができると認められた。また、機械的にプリテンションを与える手段として、例えば、図4(b)に示すように、光ファイバ式ひずみゲージを作製後、ゲージベース10を測定対象物19に接着・固定した上で、光ファイバ11の一端をプーリ42を介して台44に固定し、一方、光ファイバ11の他端をプーリ46を介しておもり48に固定し、おもり48に作用する重力を利用して、光ファイバ11(FBG111)にプリテンションを与えることも考えてみた。プリテンションを与えるという目的では、上記実施例と同様の効果は得られたが、実験室等では別論、現場での作業性という点では、上記実施例の方がはるかに優れていることが容易に判明した。
以上、本発明について実施の形態をもとに説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更することができる。例えば、上記実施形態では、プリテンション治具の取付部を(貫通)孔22A,22Bとして形成したが、プリテンション治具のピン部を挿入して取り付けられるものであれば非貫通孔でも良く、更に、プリテンション治具側に貫通又は非貫通孔を設け、ゲージベース10には、プリテンション治具の取付部をピン或いは突起として形成しても良い。
また、例えば、くびれ部20や段差部16A,16Bに区画された薄肉部17及び厚肉部18A,18Bは形成されていなくてもよい。但し、これらが形成されていれば、測定対象物19のひずみに伴ってゲージベース10が変形しやすくなるので、より精度の高いひずみ量の計測を行うことができる。
また、本明細書において光ファイバ11の軸方向と直交する方向とは、光ファイバ11の軸方向と厳密な意味で直角に交わる方向のみを指すのではない。すなわち、測定対象物19で発生したひずみに伴う内力がゲージベース10に発生しない角度内であれば、光ファイバ11の軸方向と直角に近い角度で交わる方向も含まれる。
更に、本実施の形態においては、ゲージベース10には連続的な第1及び第2の溝14,15を形成しているが、本発明において溝数は本実施の形態に限定されるものではない。すなわち、空隙部13を介して他の連続的に形成された溝を更に設け、光ファイバ11を複数本配置するようにしてもよい。
本発明の一実施の形態である光ファイバ式ひずみゲージを示す平面図である。 図1の光ファイバ式ひずみゲージをプリテンション治具とともに示す断面図である。 図1の光ファイバ式ひずみゲージをプリテンション治具とともに示す平面図である。 座屈防止手段の他の例を示す図であり、(a)は、座屈防止スリーブを用いる例、(b)は、おもりを利用してプリテンションを与える例をそれぞれ示す。
符号の説明
10 ゲージベース 11 光ファイバ 12A,12B 溶着部 13 空隙部
14 第1の溝 15 第2の溝 16A,16B 段差部 17 薄肉部
18A,18B 厚肉部 19 測定対象物 20 くびれ部 G 間隔
L 固着部間距離 111 FBG 22A,22B 孔 50 プリテンション治具
52 治具本体 54 テンション調整棒 54A つまみ部 56 押圧力調整部
58A,58B 押圧部 58a,58b 仮固定部
58a1,58a2 仮固定用ピン 58b1,58b2 仮固定用ピン

Claims (7)

  1. 空隙部が形成されたゲージベースと、前記ゲージベースの一方面において前記空隙部を介して連続的に形成された第1及び第2の溝と、前記第1及び第2の溝に固定されて延びる光ファイバと、該光ファイバの前記空隙部内に位置する部分に形成されたブラッグ回折格子から成るセンシング素子と、前記ゲージベースと測定対象物とを固定する固定手段により前記光ファイバ及び前記センシング素子の軸方向と直交する方向に沿って固着力を加えられる溶着部とを有することを特徴とする光ファイバ式ひずみゲージ。
  2. 請求項1記載の光ファイバ式ひずみゲージにおいて、更に、前記光ファイバ及び前記センシング素子の軸方向と直交する方向に延びて前記空隙部の両側に形成された段差部により前記ゲージベースに区画形成され、前記空隙部の周囲に位置する薄肉部と、該薄肉部より厚さの厚い厚肉部とを有することを特徴とする光ファイバ式ひずみゲージ。
  3. 請求項2記載の光ファイバ式ひずみゲージにおいて、更に、前記ゲージベースの前記薄肉部に形成されたくびれ部を有することを特徴とする光ファイバ式ひずみゲージ。
  4. 請求項1乃至3記載の光ファイバ式ひずみゲージにおいて、前記ゲージベースは、第1の線膨張係数を有する材料から成り、該光ファイバ式ひずみゲージは、第2の線膨張係数を有する材料から成る前記測定対象物に固定され、前記第1の線膨張係数と前記第2の線膨張係数の差を利用して温度補償を行うものであることを特徴とする光ファイバ式ひずみゲージ。
  5. 請求項1乃至4記載の光ファイバ式ひずみゲージは、前記センシング素子に予め引張力を付与した状態で用いられることを特徴とする光ファイバ式ひずみゲージ。
  6. 請求項5記載の前記センシング素子に予め引張力を付与するためのプリテンション装置であって、前記光ファイバ式ひずみゲージに装着するための装着手段と、前記センシング素子に引張力を付与するためのテンション付与手段と、該テンション付与手段により付与される引張力を調整するための調整手段とを有することを特徴とするプリテンション装置。
  7. 請求項6記載のプリテンション装置を用いて前記センシング素子に予め引張力を付与した状態で用いられる光ファイバ式ひずみゲージであって、前記ゲージベースの一方面に前記プリテンション装置を取り付けるための取付部を有していることを特徴とする光ファイバ式ひずみゲージ。
JP2004345003A 2004-11-29 2004-11-29 光ファイバ式ひずみゲージ Pending JP2005055450A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345003A JP2005055450A (ja) 2004-11-29 2004-11-29 光ファイバ式ひずみゲージ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345003A JP2005055450A (ja) 2004-11-29 2004-11-29 光ファイバ式ひずみゲージ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001094059A Division JP2002286563A (ja) 2001-03-28 2001-03-28 光ファイバ式ひずみゲージ

Publications (1)

Publication Number Publication Date
JP2005055450A true JP2005055450A (ja) 2005-03-03

Family

ID=34373943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345003A Pending JP2005055450A (ja) 2004-11-29 2004-11-29 光ファイバ式ひずみゲージ

Country Status (1)

Country Link
JP (1) JP2005055450A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134155A (ja) * 2006-11-28 2008-06-12 Kyowa Electron Instr Co Ltd 光ファイバ式ひずみゲージ
JP2009192409A (ja) * 2008-02-15 2009-08-27 Ihi Inspection & Instrumentation Co Ltd ひずみ計測装置及びその計測方法
CN102183292A (zh) * 2011-03-17 2011-09-14 武汉理工大学 大型机械装备光纤光栅震动检测方法及检测传感器
KR101064390B1 (ko) 2011-03-03 2011-09-14 강원대학교산학협력단 주입기용 부품의 마모 시험 장치
JP2011217599A (ja) * 2010-03-31 2011-10-27 General Electric Co <Ge> コンポーネントの相対変位をモニタするためのシステム
JP2012523561A (ja) * 2009-04-10 2012-10-04 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド 歪みを測定するための装置及び方法
JP2013250120A (ja) * 2012-05-31 2013-12-12 Ttes Inc 構造物の損傷検出方法
CN104330043A (zh) * 2014-10-23 2015-02-04 燕山大学 一种温度自补偿光纤光栅大应变量传感器
WO2015136652A1 (ja) * 2014-03-12 2015-09-17 中国電力株式会社 距離測定装置、距離測定方法
CN105890532A (zh) * 2014-12-25 2016-08-24 中国计量学院 一种二级杠杆传递的光纤光栅应变增敏器件
CN105890533A (zh) * 2015-01-19 2016-08-24 中国计量学院 一种材料表面应变光纤光栅反向差动检测传感器件
WO2016186054A1 (ja) * 2015-05-15 2016-11-24 株式会社シミウス 歪みセンサ及び歪みセンサの取付治具
CN110296675A (zh) * 2019-07-23 2019-10-01 大连交通大学 一种土木工程用光纤光栅伸缩缝测试装置
CN111006600A (zh) * 2019-10-31 2020-04-14 中国空间技术研究院 一种利用光纤光栅对卫星温度及形变量进行测量的系统
CN112880579A (zh) * 2017-09-22 2021-06-01 泰雷兹管理与服务德国股份有限公司 特别是用于计轴器的应变测量设备

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134155A (ja) * 2006-11-28 2008-06-12 Kyowa Electron Instr Co Ltd 光ファイバ式ひずみゲージ
JP2009192409A (ja) * 2008-02-15 2009-08-27 Ihi Inspection & Instrumentation Co Ltd ひずみ計測装置及びその計測方法
JP2012523561A (ja) * 2009-04-10 2012-10-04 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド 歪みを測定するための装置及び方法
KR101840874B1 (ko) 2010-03-31 2018-03-21 제너럴 일렉트릭 캄파니 부품의 상대 변위를 모니터링하기 위한 시스템
JP2011217599A (ja) * 2010-03-31 2011-10-27 General Electric Co <Ge> コンポーネントの相対変位をモニタするためのシステム
KR101064390B1 (ko) 2011-03-03 2011-09-14 강원대학교산학협력단 주입기용 부품의 마모 시험 장치
CN102183292A (zh) * 2011-03-17 2011-09-14 武汉理工大学 大型机械装备光纤光栅震动检测方法及检测传感器
CN102183292B (zh) * 2011-03-17 2012-07-04 武汉理工大学 大型机械装备光纤光栅震动检测方法
JP2013250120A (ja) * 2012-05-31 2013-12-12 Ttes Inc 構造物の損傷検出方法
WO2015136652A1 (ja) * 2014-03-12 2015-09-17 中国電力株式会社 距離測定装置、距離測定方法
US10048062B2 (en) 2014-03-12 2018-08-14 The Chugoku Electric Power Co., Inc. Distance measuring apparatus and distance measuring method
CN104330043A (zh) * 2014-10-23 2015-02-04 燕山大学 一种温度自补偿光纤光栅大应变量传感器
CN105890532A (zh) * 2014-12-25 2016-08-24 中国计量学院 一种二级杠杆传递的光纤光栅应变增敏器件
CN105890532B (zh) * 2014-12-25 2019-01-15 中国计量学院 一种二级杠杆传递的光纤光栅应变增敏器件
CN105890533A (zh) * 2015-01-19 2016-08-24 中国计量学院 一种材料表面应变光纤光栅反向差动检测传感器件
CN105890533B (zh) * 2015-01-19 2019-01-29 中国计量学院 一种材料表面应变光纤光栅反向差动检测传感器件
WO2016186054A1 (ja) * 2015-05-15 2016-11-24 株式会社シミウス 歪みセンサ及び歪みセンサの取付治具
CN112880579A (zh) * 2017-09-22 2021-06-01 泰雷兹管理与服务德国股份有限公司 特别是用于计轴器的应变测量设备
CN112880579B (zh) * 2017-09-22 2022-12-13 泰雷兹管理与服务德国股份有限公司 特别是用于计轴器的应变测量设备
CN110296675A (zh) * 2019-07-23 2019-10-01 大连交通大学 一种土木工程用光纤光栅伸缩缝测试装置
CN111006600A (zh) * 2019-10-31 2020-04-14 中国空间技术研究院 一种利用光纤光栅对卫星温度及形变量进行测量的系统

Similar Documents

Publication Publication Date Title
JP4897445B2 (ja) 光ファイバ式ひずみゲージ
EP1816432B1 (en) Fiber optic strain gage
JP2005055450A (ja) 光ファイバ式ひずみゲージ
US7628079B2 (en) Method for measuring shear load of fastening tool
US7068869B1 (en) Passive athermal fiber bragg grating strain gage
US6776049B2 (en) System and method for measuring stress at an interface
US20060285813A1 (en) Fiber anchoring method for optical sensors
JP4690030B2 (ja) トンネル内空変位計測システムおよびトンネル内空変位計測方法
CN101701860B (zh) 一种光纤光栅冰力传感器
EP3312556A1 (en) Mechanical strain amplifying transducer
KR100992628B1 (ko) 광섬유 격자센서를 이용한 압력변위센서
JP2002286563A (ja) 光ファイバ式ひずみゲージ
JP2006194704A (ja) 溶接型光ひずみゲージとその製造方法および溶接型光ひずみゲージユニット
JP6301963B2 (ja) 歪みセンサ及び歪みセンサの設置方法
JP2008107295A (ja) 光学式圧力センサおよびその製造方法
JP6864375B2 (ja) 光ファイバセンサ
JP2005091151A (ja) Fbgひずみゲージ
JP2000028456A (ja) 圧力検知ユニット
JP4868593B2 (ja) 光ファイバセンサ
JP2010249705A (ja) 土木用圧力変換器
JP2000097786A (ja) 力学的力センサ
CN105659059A (zh) 应变隔离式光纤布拉格光栅传感器
CN115371582B (zh) 光纤f-p应变计及其组装方法
KR20140088416A (ko) 광섬유 압력변위센서
JP6736044B2 (ja) 歪みセンサ及び歪みセンサの取付治具