JP2005054038A - Surface-treated magnesium hydroxide, fire-resistant composition using the same and extrudate obtained from the composition - Google Patents

Surface-treated magnesium hydroxide, fire-resistant composition using the same and extrudate obtained from the composition Download PDF

Info

Publication number
JP2005054038A
JP2005054038A JP2003285529A JP2003285529A JP2005054038A JP 2005054038 A JP2005054038 A JP 2005054038A JP 2003285529 A JP2003285529 A JP 2003285529A JP 2003285529 A JP2003285529 A JP 2003285529A JP 2005054038 A JP2005054038 A JP 2005054038A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
acid ester
retardant composition
treated magnesium
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285529A
Other languages
Japanese (ja)
Inventor
Kenichi Kumaki
研一 熊木
Tadashi Terajima
忠司 寺島
Nobutaka Yuzawa
伸貴 湯澤
Takeshi Tachikawa
毅 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NUC Corp
Original Assignee
Nippon Unicar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Unicar Co Ltd filed Critical Nippon Unicar Co Ltd
Priority to JP2003285529A priority Critical patent/JP2005054038A/en
Publication of JP2005054038A publication Critical patent/JP2005054038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Fireproofing Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new surface-treated magnesium hydroxide which can provide excellent mechanical properties to a fire-resistant composition and has excellent performance in water resistance, resistance to carbon-dioxide whitening and visual evaluation of the precipitation of magnesium carbonate crystals on the surface, and to provide a fire-resistant composition using the surface-treated magnesium hydroxide and an extrudate obtained from the fire-resistant composition. <P>SOLUTION: The surface-treated magnesium hydroxide is surface-treated with a polyhydric-alcohol higher-fatty-acid ester, wherein the percentage of the surface treatment with the polyhydric-alcohol higher-fatty-acid ester is 0.5-5.0 wt% based on magnesium hydroxide, or the degree of esterification of the polyhydric-alcohol higher-fatty-acid ester is 40-90%. The surface-treated magnesium hydroxide is mixed with a resin or rubber to obtain a fire-resistant composition. The fire-resistant composition is extruded to obtain an extrudate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規の表面処理水酸化マグネシウム、それを用いた難燃性組成物、及びそれより得られる押出成形品に関し、更に詳しくは多価アルコールの高級脂肪酸エステルで表面処理された水酸化マグネシウム、それを用いた優れた機械特性、耐水性耐及び炭酸ガス白化性を持つ難燃性組成物、並びに特に電線・ケーブルの被覆層として好適なそれより得られる押出成形品に関する。   The present invention relates to a novel surface-treated magnesium hydroxide, a flame retardant composition using the same, and an extruded product obtained therefrom, and more specifically, magnesium hydroxide surface-treated with a higher fatty acid ester of a polyhydric alcohol Further, the present invention relates to a flame retardant composition having excellent mechanical properties, water resistance and carbon dioxide whitening using the same, and an extruded product obtained from it particularly suitable as a coating layer for electric wires and cables.

従来、樹脂やゴムの難燃剤としては、ハロゲン含有化合物やこれとリン含有化合物等を組み合わせて使用するものが用いられてきたが、環境負荷や廃棄物処理の問題が提起され、天然にも産し、安全な水酸化マグネシウムの使用が多く提案されている。
しかしながら、水酸化マグネシウムは、比較的多量に配合しなければ難燃性が得られず、しかも、オレフィン系樹脂等の樹脂やゴムと水酸化マグシウムとの相溶性も悪く、得られる難燃性組成物中での水酸化マグネシウムの分散性や、水酸化マグネシウムが空気中の水及び二酸化炭素と反応して、炭酸マグネシウムに変質し、耐炭酸ガス白化性や吸湿性(耐水性)に問題があり、これが押出成形品として電線・ケーブルの被覆層として使用されると電気特性の著しい低下を招くという問題があった。
Conventionally, as flame retardants for resins and rubbers, halogen-containing compounds and those using a combination of these with phosphorus-containing compounds have been used, but problems with environmental burden and waste disposal have been raised, and they are naturally produced. However, many uses of safe magnesium hydroxide have been proposed.
However, if the magnesium hydroxide is not compounded in a relatively large amount, flame retardancy cannot be obtained, and the compatibility between the resin such as olefin resin and rubber and magnesium hydroxide is poor, and the resulting flame retardant composition is obtained. Dispersibility of magnesium hydroxide in the material, magnesium hydroxide reacts with water and carbon dioxide in the air, transforms into magnesium carbonate, there is a problem in carbon dioxide whitening resistance and moisture absorption (water resistance) When this is used as a coating layer for electric wires / cables as an extrusion-molded product, there is a problem in that the electrical characteristics are remarkably deteriorated.

特許文献1では、水酸化マグネシウムの表面を、脂肪酸、脂肪酸金属塩、チタネートカップリング剤またはシランカップリング剤のいずれかで表面処理した特定の粒子径を持つ水酸化マグネシウムを配合する難燃性電気絶縁組成物が提案されているが、機械特性について充分な効果がなく、また、炭酸マグネシウムが難燃性組成物の表面に析出し、見た目が悪くなる問題があった。
一方、特許文献2では、機械強度を得るために、難燃性組成物に酸変性樹脂を更に配合することを提案しているが、機械強度は強まるが、コストアップになり、かつ押出加工性が悪化し、問題となっていた。
In patent document 1, the surface of magnesium hydroxide is blended with flame retardant electricity containing magnesium hydroxide having a specific particle diameter obtained by surface treatment with either a fatty acid, a fatty acid metal salt, a titanate coupling agent, or a silane coupling agent. Insulating compositions have been proposed, but there was a problem that the mechanical properties were not sufficient, and magnesium carbonate was deposited on the surface of the flame retardant composition, resulting in poor appearance.
On the other hand, Patent Document 2 proposes that an acid-modified resin is further added to the flame retardant composition in order to obtain mechanical strength, but the mechanical strength is increased, but the cost is increased and the extrusion processability is increased. Became worse and problematic.

特開昭60−100302号公報(特許請求の範囲等)JP 60-100302 (Claims etc.) 特開昭62−10151号公報(特許請求の範囲等)Japanese Patent Laid-Open No. Sho 62-10151 (Claims etc.)

本発明の目的は、上記の従来技術の問題点に鑑み、難燃性組成物として優れた機械特性を得ることができ、かつ耐水性、耐炭酸ガス白化性及び表面への炭酸マグネシウムの目視による結晶析出評価にも優れた性能を持つ新規の表面処理水酸化マグネシウム、それを用いた難燃性組成物、及びそれより得られる押出成形品を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to obtain excellent mechanical properties as a flame retardant composition, and to be water resistance, whitening resistance to carbon dioxide gas, and visual observation of magnesium carbonate on the surface. It is an object of the present invention to provide a novel surface-treated magnesium hydroxide having excellent performance for crystal precipitation evaluation, a flame retardant composition using the same, and an extruded product obtained therefrom.

本発明者らは、上記課題を解決すべく、水酸化マグネシウムのための各種の表面処理剤を検討し、本発明を完成させた。   In order to solve the above problems, the present inventors have studied various surface treatment agents for magnesium hydroxide and completed the present invention.

すなわち、本発明の第1の発明によれば、多価アルコール高級脂肪酸エステルで表面処理されることを特徴とする表面処理水酸化マグネシウムが提供される。
また、本発明の第2の発明によれば、第1の発明において、多価アルコール高級脂肪酸エステルによる表面処理量が0.5〜5.0重量%であることを特徴とする表面処理水酸化マグネシウムが提供される。
That is, according to the first aspect of the present invention, there is provided surface-treated magnesium hydroxide characterized in that it is surface-treated with a polyhydric alcohol higher fatty acid ester.
According to the second invention of the present invention, in the first invention, the surface treatment hydroxylation is characterized in that the amount of surface treatment with the higher fatty acid ester of polyhydric alcohol is 0.5 to 5.0% by weight. Magnesium is provided.

また、本発明の第3の発明によれば、第1又は2の発明において、多価アルコール高級脂肪酸エステルは、エステル化率が40〜90%であることを特徴とする表面処理水酸化マグネシウムが提供される。
さらに、本発明の第4の発明によれば、第1〜3のいずれかの発明において、多価アルコール高級脂肪酸エステルは、グリセリン−ステアリン酸エステルであることを特徴とする表面処理水酸化マグネシウムが提供される。
According to the third invention of the present invention, in the first or second invention, the polyhydric alcohol higher fatty acid ester is a surface-treated magnesium hydroxide characterized by having an esterification rate of 40 to 90%. Provided.
Furthermore, according to the fourth invention of the present invention, there is provided the surface-treated magnesium hydroxide according to any one of the first to third inventions, wherein the polyhydric alcohol higher fatty acid ester is glycerin-stearic acid ester. Provided.

また、本発明の第5の発明によれば、樹脂又はゴムに、第1〜4のいずれかの発明の表面処理水酸化マグネシウムを配合することを特徴とする難燃性組成物が提供される。
さらに、本発明の第6の発明によれば、第5の発明において、樹脂又はゴム100重量部に対して、表面処理水酸化マグネシウム50〜250重量部を配合することを特徴とする難燃性組成物が提供される。
Moreover, according to 5th invention of this invention, the flame retardant composition characterized by mix | blending the surface treatment magnesium hydroxide of any one of 1st-4th invention with resin or rubber | gum is provided. .
Furthermore, according to the sixth invention of the present invention, in the fifth invention, 50 to 250 parts by weight of surface-treated magnesium hydroxide is blended with 100 parts by weight of resin or rubber. A composition is provided.

また、本発明の第7の発明によれば、第5又は6の発明において、樹脂又はゴムは、エチレン系樹脂であることを特徴とする難燃性組成物が提供される。
さらに、本発明の第8の発明によれば、第7の発明において、エチレン系樹脂は、直鎖状低密度エチレン−α−オレフィン共重合体、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エチル共重合体からなる群から選ばれた1種以上であることを特徴とする難燃性組成物が提供される。
According to a seventh aspect of the present invention, there is provided the flame retardant composition according to the fifth or sixth aspect, wherein the resin or rubber is an ethylene resin.
Furthermore, according to an eighth invention of the present invention, in the seventh invention, the ethylene-based resin is a linear low density ethylene-α-olefin copolymer, an ethylene-vinyl acetate copolymer, and an ethylene-acrylic acid. There is provided a flame retardant composition which is one or more selected from the group consisting of ethyl copolymers.

また、本発明の第9の発明によれば、第5〜8のいずれかの発明の難燃性組成物を押出成形して得られることを特徴とする押出成形品が提供される。
さらに、本発明の第10の発明によれば、第5〜8のいずれかの発明の難燃性組成物を押出成形して得られた被覆層を有する電線・ケーブルが提供される。
According to a ninth aspect of the present invention, there is provided an extruded product obtained by extrusion molding the flame retardant composition according to any one of the fifth to eighth aspects.
Furthermore, according to the 10th invention of this invention, the electric wire and cable which have a coating layer obtained by extrusion-molding the flame-retardant composition of any one of the 5th-8th invention are provided.

上記のように、本発明は、多価アルコール高級脂肪酸エステルで表面処理したことを特徴とする表面処理水酸化マグネシウム、それを用いた難燃性組成物、及びそれより得られる押出成形品であるので、多価アルコール高級脂肪酸エステルでの表面処理により、得られる表面処理水酸化マグネシウムは、無極性あるいは弱い極性しか持たない樹脂又はゴムと、多価アルコール高級脂肪酸エステルを介して優れた相溶性をもち、よって、優れた分散性をもち、得られる難燃性組成物の機械特性、特に引張破壊応力が強まるとともに、優れた耐水性、耐炭酸ガス白化性、及び炭酸マグネシウムが難燃性組成物の表面に析出し見た目が悪くなることも大きく軽減する効果を持つ。
さらに、本発明によれば、多価アルコール高級脂肪酸エステルのエステル化率を調整することにより、機械特性と耐水性、耐炭酸ガス白化性のバランスを調整ことも可能となり、機械特性を強めるために、押出加工性に対して悪影響のある酸変性樹脂等の配合も、不必要となり、押出加工性を確保することができる。
As described above, the present invention is a surface-treated magnesium hydroxide characterized by being surface-treated with a polyhydric alcohol higher fatty acid ester, a flame retardant composition using the same, and an extrusion-molded article obtained therefrom. Therefore, the surface-treated magnesium hydroxide obtained by the surface treatment with the polyhydric alcohol higher fatty acid ester has excellent compatibility with the resin or rubber having nonpolarity or weak polarity and the polyhydric alcohol higher fatty acid ester. Therefore, it has excellent dispersibility, mechanical properties of the obtained flame retardant composition, particularly tensile fracture stress, and excellent water resistance, carbon dioxide whitening resistance, and magnesium carbonate flame retardant composition. It also has the effect of greatly reducing the appearance of the material deposited on the surface of the material.
Furthermore, according to the present invention, by adjusting the esterification rate of the polyhydric alcohol higher fatty acid ester, it becomes possible to adjust the balance between mechanical properties, water resistance, and carbon dioxide whitening resistance, in order to enhance the mechanical properties. Further, it is unnecessary to add an acid-modified resin or the like having an adverse effect on the extrusion processability, and the extrusion processability can be ensured.

以下、本発明の表面処理水酸化マグネシウム、それを用いた難燃性組成物、及びそれより得られる押出成形品について、各項目毎に詳細に説明する。   Hereinafter, the surface-treated magnesium hydroxide of the present invention, a flame retardant composition using the same, and an extruded product obtained therefrom will be described in detail for each item.

1.多価アルコール高級脂肪酸エステル
本発明の表面処理水酸化マグネシウムは、多価アルコール高級脂肪酸エステルで表面処理されることを特徴とする。
本発明において、使用される多価アルコール高級脂肪酸エステルを構成する多価アルコールとしては、トリメチロールエタン(3価)、グリセリン(3価)、トリメチロールプロパン(3価)、エリスリトール(4価)、ペンタエリスリトール(4価)等が挙げられる。多価アルコールの中では、グリセリンが好適に使用される。
1. Polyhydric alcohol higher fatty acid ester The surface-treated magnesium hydroxide of the present invention is characterized by being surface-treated with a polyhydric alcohol higher fatty acid ester.
In the present invention, the polyhydric alcohol constituting the polyhydric alcohol higher fatty acid ester used is trimethylolethane (trivalent), glycerin (trivalent), trimethylolpropane (trivalent), erythritol (tetravalent), Examples include pentaerythritol (tetravalent). Among the polyhydric alcohols, glycerin is preferably used.

また、本発明において使用される多価アルコール高級脂肪酸エステルを構成する高級脂肪酸としては、ステアリン酸、オレイン酸、パルミチン酸、リノール酸、ラウリン酸、カプリル酸、ベヘニン酸、モンタン酸等が挙げられる。高級脂肪酸の中では、ステアリン酸が好適に使用される。   In addition, examples of the higher fatty acid constituting the polyhydric alcohol higher fatty acid ester used in the present invention include stearic acid, oleic acid, palmitic acid, linoleic acid, lauric acid, caprylic acid, behenic acid, and montanic acid. Among the higher fatty acids, stearic acid is preferably used.

多価アルコール高級脂肪酸エステルのエステル化率とは、多価アルコールの複数の水酸基の中で、エステル化がなされた基の%を意味する。例えば、グリセリン−モノステアリン酸エステルのエステル化率は、33.3%となる。
本発明において使用される多価アルコール高級脂肪酸エステルのエステル化率は、40〜90%が望ましく、好ましくは50〜85%が望ましい。エステル化率が50%辺りにおいて、機械特性、特に引張破壊応力が向上する。また、エステル化率が上がると、わずかに機械特性の低下が認められるが、実用上問題となるものではない。一方、エステル化率が上がるとともに、耐水性、耐炭酸ガス白化性が強まる。他方、特にエステル化率が40%未満の多価アルコール高級脂肪酸エステルを用いた場合、表面被覆しない水酸化マグネシウムの場合と比べては優れているが、耐水性、耐炭酸ガス白化性が劣り始める。
この様に、本発明では、エステル化率を調整することにより、所望の機械特性と耐水性、耐炭酸ガス白化性のものを調製することができる。
The esterification rate of the higher fatty acid ester of a polyhydric alcohol means the percentage of the group that has been esterified among a plurality of hydroxyl groups of the polyhydric alcohol. For example, the esterification rate of glycerin-monostearic acid ester is 33.3%.
The esterification rate of the polyhydric alcohol higher fatty acid ester used in the present invention is desirably 40 to 90%, preferably 50 to 85%. When the esterification rate is around 50%, mechanical properties, particularly tensile fracture stress, are improved. Further, when the esterification rate increases, a slight decrease in mechanical properties is recognized, but this is not a problem in practical use. On the other hand, the esterification rate increases and the water resistance and carbon dioxide gas whitening resistance increase. On the other hand, particularly when a higher fatty acid ester of polyhydric alcohol having an esterification rate of less than 40% is used, it is superior to the case of magnesium hydroxide without surface coating, but water resistance and carbon dioxide whitening resistance begin to deteriorate. .
Thus, in the present invention, by adjusting the esterification rate, desired mechanical properties, water resistance, and carbon dioxide whitening resistance can be prepared.

多価アルコール高級脂肪酸エステルの、水酸化マグネシウムに対する表面処理量は、0.5〜5.0重量%が望ましく、好ましくは1.0〜4.0重量%、更に好ましくは1.5〜3.5重量%である。
表面処理量が0.5重量%未満であると、水酸化マグネシウムの表面全体を覆うことが困難となり、機械特性、耐水性、耐炭酸ガス白化性のいずれも低下し、これが5.0重量%を超えると、水酸化マグネシウムの難燃剤として効果が低下する。
なお、本発明においては2種以上の多価アルコール高級脂肪酸エステルを使用でき、かつ、1種の多価アルコールと1種の高級脂肪酸によるエステルに加えて、1種以上の多価アルコールと1種以上の高級脂肪酸によるエステルを多価アルコール高級脂肪酸エステルとして、使用することもできる。
The surface treatment amount of the polyhydric alcohol higher fatty acid ester with respect to magnesium hydroxide is desirably 0.5 to 5.0% by weight, preferably 1.0 to 4.0% by weight, and more preferably 1.5 to 3. 5% by weight.
When the surface treatment amount is less than 0.5% by weight, it becomes difficult to cover the entire surface of the magnesium hydroxide, and all of the mechanical properties, water resistance, and carbon dioxide whitening resistance are lowered, and this is 5.0% by weight. If it exceeds 1, the effect as a flame retardant for magnesium hydroxide is reduced.
In the present invention, two or more polyhydric alcohol higher fatty acid esters can be used, and in addition to one polyhydric alcohol and one higher fatty acid ester, one or more polyhydric alcohols and one kind are used. The ester by the above higher fatty acid can also be used as a polyhydric alcohol higher fatty acid ester.

2.水酸化マグネシウム
本発明において、使用される水酸化マグネシウムとしては、海水等から製造された合成水酸化マグネシウム及び天然産ブルーサイト鉱石を粉砕して製造された水酸化マグネシウムを主成分とする天然鉱石(以下、天然産水酸化マグネシウムとも言う。)のいずれも好適に用いることができ、その平均粒径は、分散性、難燃性の効果から40μm以下が好ましく、特に0.2〜6μmのものが好ましい。
2. Magnesium hydroxide In the present invention, the magnesium hydroxide used is a natural ore composed mainly of magnesium hydroxide produced by pulverizing synthetic magnesium hydroxide produced from seawater or the like and natural brucite ore ( (Hereinafter also referred to as natural magnesium hydroxide) can be suitably used, and the average particle size thereof is preferably 40 μm or less from the viewpoint of dispersibility and flame retardancy, and particularly 0.2 to 6 μm. preferable.

3.表面処理水酸化マグネシウムの調製
本発明の表面処理水酸化マグネシウムは、公知の表面処理法で表面処理すればよく、特に限定されない。
例えば、海水から製造する合成水酸化マグネシウムの場合、水溶液中で水酸化マグネシウムの結晶析出が行われるので、この水溶液中に所望量の多価アルコール高級脂肪酸エステルを、必要ならばアルコール等の溶媒に希釈して配合し、析出後乾燥させて、多価アルコール高級脂肪酸エステルで表面処理された表面処理水酸化マグネシウムを製造することができる。
また、合成水酸化マグネシウム及び天然産水酸化マグネシウムとも、例えば多価アルコール高級脂肪酸エステルの有機溶媒液を加え混合するスラリー法を採用して、製造することができる。
3. Preparation of surface-treated magnesium hydroxide The surface-treated magnesium hydroxide of the present invention may be surface-treated by a known surface treatment method and is not particularly limited.
For example, in the case of synthetic magnesium hydroxide produced from seawater, magnesium hydroxide crystallizes in an aqueous solution, so a desired amount of a polyhydric alcohol higher fatty acid ester is added to this aqueous solution in a solvent such as alcohol if necessary. It is possible to produce a surface-treated magnesium hydroxide that has been diluted and blended, dried after precipitation, and surface-treated with a polyhydric alcohol higher fatty acid ester.
Synthetic magnesium hydroxide and natural magnesium hydroxide can be produced by employing a slurry method in which an organic solvent liquid of, for example, a polyhydric alcohol higher fatty acid ester is added and mixed.

更に、上述のいわゆる湿式法に加えて、以下に説明する乾式法で表面処理することもできる。
すでに、使用目的に応じた粒径を持つ合成水酸化マグネシウム又は天然産水酸化マグネシウムに、所望量の多価アルコール高級脂肪酸エステルを加え、これが溶融する温度以上、例えば100〜120℃に加熱しながら攪拌混合することにより、製造することができる。この場合は、コンティニュアスミキサー、バンバリーミキサー、ニーダー、スーパーミキサー、ボールミル等公知の混合機を用いればよい。
また、天然産水酸化マグネシウムの場合は、粉砕して使用するので、粗粉砕の天然産水酸化マグネシウムと所望量の多価アルコール高級脂肪酸エステルをボールミル等に入れ、必要ならば外部から多価アルコール高級脂肪酸エステルが溶解する温度に加熱しながら、粉砕と同時に表面処理を行ってもよい。
Furthermore, in addition to the so-called wet method described above, surface treatment can also be performed by a dry method described below.
Already added a desired amount of a higher fatty acid ester of a polyhydric alcohol to synthetic magnesium hydroxide or natural magnesium hydroxide having a particle size according to the purpose of use, while heating to a temperature above which it melts, for example, 100 to 120 ° C. It can manufacture by stirring and mixing. In this case, a known mixer such as a continuous mixer, a Banbury mixer, a kneader, a super mixer, or a ball mill may be used.
In the case of natural magnesium hydroxide, since it is used after pulverization, coarsely pulverized natural magnesium hydroxide and a desired amount of a higher fatty acid ester of a polyhydric alcohol are placed in a ball mill or the like. The surface treatment may be performed simultaneously with the pulverization while heating to a temperature at which the higher fatty acid ester is dissolved.

4.樹脂又はゴム
本発明で使用される樹脂としては、例えば、ポリオレフィン系樹脂、メタクリル系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、飽和ポリエステル系樹脂等の熱可塑性樹脂を挙げることができる。
これらの中では、無極性あるいは弱い極性しか持たないオレフィン系樹脂を好適に使用することができる。
4). Resin or rubber Examples of the resin used in the present invention include thermoplastic resins such as polyolefin resins, methacrylic resins, acrylic resins, vinyl acetate resins, and saturated polyester resins.
In these, the olefin resin which has only nonpolarity or a weak polarity can be used conveniently.

オレフィン系樹脂としては、エチレン系樹脂及びプロピレン系樹脂が挙げられる。
エチレン系樹脂としては、高圧法ポリエチレン、エチレン−α−オレフィン(炭素数2〜12)共重合体、エチレン−α,β−不飽和カルボン酸アルキルエステル共重合体、エチレン−カルボン酸ビニルエステル共重合体が挙げられ、具体的には、高圧法低密度ポリエチレン、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸ブチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−酢酸ビニル共重合体、エチレン−ブテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−オクテン−1共重合体等を挙げることができる。
Examples of olefin resins include ethylene resins and propylene resins.
Examples of the ethylene resin include high-pressure polyethylene, ethylene-α-olefin (carbon number 2 to 12) copolymer, ethylene-α, β-unsaturated carboxylic acid alkyl ester copolymer, and ethylene-carboxylic acid vinyl ester copolymer. Specifically, high pressure method low density polyethylene, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer Examples thereof include a copolymer, an ethylene-vinyl acetate copolymer, an ethylene-butene-1 copolymer, an ethylene-hexene-1 copolymer, and an ethylene-octene-1 copolymer.

本発明では、それ自体水酸化マグネシウムとの相溶性がある、メルトマスフローレート0.05〜50g/10分及びコモノマー含有量が5〜40重量%のエチレン−アクリル酸エチル共重合体又はエチレン−酢酸ビニル共重合体、並びにメルトマスフローレート0.05〜50g/10分及び密度0.86〜0.92g/cmの直鎖状低密度エチレン−α−オレフィン共重合体を好適に使用することができる。 In the present invention, an ethylene-ethyl acrylate copolymer or ethylene-acetic acid having a melt mass flow rate of 0.05 to 50 g / 10 min and a comonomer content of 5 to 40% by weight is compatible with magnesium hydroxide. It is preferable to use a vinyl copolymer and a linear low-density ethylene-α-olefin copolymer having a melt mass flow rate of 0.05 to 50 g / 10 min and a density of 0.86 to 0.92 g / cm 3. it can.

プロピレン系樹脂としては、具体的にはプロピレンホモポリマー、エチレン−プロピレン共重合体、エチレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1三元共重合体等を例示できる。   Specific examples of the propylene-based resin include a propylene homopolymer, an ethylene-propylene copolymer, an ethylene-butene-1 copolymer, and an ethylene-propylene-butene-1 terpolymer.

ゴムとしては、エチレン−プロピレンゴム、エチレン−プロピレン−ジエンゴム、アクリルゴム、スチレン−エチレン−ブタジエン−スチレンブロック共重合体、スチレン−エチレン−スチレンブロック共重合体等を例示できる。
なお、樹脂又はゴムは、1種あるいは2種以上組み合わせて使用することができる。
Examples of rubber include ethylene-propylene rubber, ethylene-propylene-diene rubber, acrylic rubber, styrene-ethylene-butadiene-styrene block copolymer, and styrene-ethylene-styrene block copolymer.
In addition, resin or rubber | gum can be used 1 type or in combination of 2 or more types.

5.難燃性組成物
本発明の難燃性組成物は、それぞれ所定量の樹脂又はゴム、本発明の表面処理水酸化マグネシウム及び必要に応じて適当量のその他の配合物(安定剤、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、核剤、滑剤、加工性改良剤、充填剤、分散剤、銅害防止剤、中和剤、発泡剤、気泡防止剤、着色剤、カーボンブラック、その他の難燃剤)を配合して、一般的な方法、例えば、ニーダー、バンバリーミキサー、コンティニュアスミキサー、ロールミルあるいは押出機を用いて均一に溶融混合することによって製造することができる。
製造した本発明の難燃性組成物は、次いで粒径2〜7mm程度のペレットに造粒し、これを成形に用いることが望ましい。
5). Flame retardant composition The flame retardant composition of the present invention comprises a predetermined amount of resin or rubber, the surface-treated magnesium hydroxide of the present invention, and an appropriate amount of other compounds (stabilizer, antioxidant) as required. UV absorbers, light stabilizers, antistatic agents, nucleating agents, lubricants, processability improvers, fillers, dispersants, copper damage inhibitors, neutralizing agents, foaming agents, antifoaming agents, colorants, carbon black And other flame retardants), and can be produced by uniformly melting and mixing using a general method such as a kneader, a Banbury mixer, a continuous mixer, a roll mill or an extruder.
The produced flame-retardant composition of the present invention is then preferably granulated into pellets having a particle size of about 2 to 7 mm and used for molding.

なお、本発明の難燃性組成物においては、表面処理水酸化マグネシウムの配合量は、樹脂又はゴム100重量部に対して、50〜250重量部、好ましくは60〜200重量部、更に好ましくは75〜180重量部である。
配合量が50重量部未満では、難燃性が低下し、かつ、難燃性樹脂組成物の引張破壊応力の低下それ自体が小さい。一方、250重量部を超えると、機械特性、押出加工性が落ちる。
In the flame retardant composition of the present invention, the amount of the surface-treated magnesium hydroxide is 50 to 250 parts by weight, preferably 60 to 200 parts by weight, more preferably 100 parts by weight of the resin or rubber. 75 to 180 parts by weight.
When the blending amount is less than 50 parts by weight, the flame retardancy is lowered and the decrease in the tensile fracture stress of the flame retardant resin composition itself is small. On the other hand, if it exceeds 250 parts by weight, the mechanical properties and extrudability deteriorate.

6.押出成形品
本発明の押出成形品は、上記の難燃性組成物を、公知の方法で押出成形機を用い、これに投入し加熱溶融させた後、金型から押出成形して製造することができる。
押出成形品が電線・ケーブルの被覆層である場合は、電線・ケーブルの芯線上に絶縁層やシース層として同様に押出成形して被覆することにより製造することができる。
6). Extruded product The extruded product of the present invention is manufactured by using the above-mentioned flame retardant composition by an extrusion molding machine in a known manner, heating and melting it, and then extruding from a mold. Can do.
When the extruded product is an electric wire / cable coating layer, it can be produced by similarly extruding and covering the core wire of the electric wire / cable as an insulating layer or a sheath layer.

次に実施例に基づいて、本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、本明細書中で用いられた評価は、それぞれ以下の方法によるものである。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples. In addition, evaluation used in this specification is based on the following methods, respectively.

「評価」
I.機械特性
I−1.引張破壊応力
得られた難燃性組成物をプレス成形(温度160℃、予熱圧力0.5MPa*5分間、加圧圧力15MPa*3分間)し、次いでJIS K6251の4.1に規定する3号ダンベルで打ち抜いた試験片につき、JIS C3005に準拠して行った。3試験片を測定し平均値で評価した。
"Evaluation"
I. Mechanical properties I-1. Tensile fracture stress The obtained flame-retardant composition was press-molded (temperature: 160 ° C., preheating pressure: 0.5 MPa * 5 minutes, pressure pressure: 15 MPa * 3 minutes), then No. 3 as defined in 4.1 of JIS K6251 The test piece punched out with a dumbbell was performed according to JIS C3005. Three test pieces were measured and evaluated by average value.

I−2.引張破壊歪
引張破壊応力試験と同様の試験片を用いて、JIS C3005に準拠して行った。3試験片を測定し平均値で評価した。
I-2. Tensile Fracture Strain Using a test piece similar to the tensile fracture stress test, it was performed in accordance with JIS C3005. Three test pieces were measured and evaluated by average value.

II.耐水性
機械特性評価で作成したと同様のプレス成形品約2.5gの四角形に切取り、試験片とした。
試験片を、温度50℃の温水中に浸漬し、4日放置後、試験片を23℃で2時間乾燥し、重量増加率を測定し評価した。
II. Water resistance About 2.5 g of a press-molded product similar to that prepared in the mechanical property evaluation was cut into a square and used as a test piece.
The test piece was immersed in warm water at a temperature of 50 ° C. and allowed to stand for 4 days, and then the test piece was dried at 23 ° C. for 2 hours, and the weight increase rate was measured and evaluated.

III.耐炭酸ガス白化性
耐炭酸ガス白化性は、重量増加率及び表面目視評価の2方法で行った。
III−1.重量増加率
耐水性で用いた同様の試験片を使用して、これを温度30℃、相対湿度95%の二酸化炭素雰囲気中に入れ、4日放置後、試験片を1.3kPa以下の減圧下で、80℃で12時間乾燥し、重量増加率を測定し評価した。この重量増加率は、必ずしも表面目視評価と一致するものではない。
III. Carbon dioxide gas whitening resistance Carbon dioxide gas whitening resistance was measured by two methods: weight increase rate and visual surface evaluation.
III-1. Weight increase rate Using the same test piece used for water resistance, put it in a carbon dioxide atmosphere at a temperature of 30 ° C. and a relative humidity of 95%, and after leaving it for 4 days, put the test piece under a reduced pressure of 1.3 kPa or less. Then, it was dried at 80 ° C. for 12 hours, and the weight increase rate was measured and evaluated. This rate of weight increase does not necessarily coincide with the visual surface evaluation.

III−2.表面目視評価
耐炭酸ガス白化性試験後の試験片の表面を、目視で観察し、以下の5段階で評価した。
5=表面に平滑な光沢が認められ、結晶析出がほとんど認められない。
4=表面の光沢は残っているが、結晶析出が認められる。
3=結晶析出が、容易に認められる。
2=表面に光沢がほとんど残っていず、全体に結晶析出が認められる。
1=表面が結晶に覆われ、激しい結晶析出が認められる。
III-2. Surface visual evaluation The surface of the test piece after the carbon dioxide whitening resistance test was visually observed and evaluated in the following five stages.
5 = Smooth gloss is observed on the surface and almost no crystal precipitation is observed.
4 = Glossy surface remains but crystal precipitation is observed.
3 = crystal precipitation is easily observed.
2 = Gloss is hardly left on the surface, and crystal precipitation is observed throughout.
1 = The surface is covered with crystals, and intense crystal precipitation is observed.

[比較例1−0、1−1]
メルトマスフローレート0.7g/10分、密度0.920g/cmの直鎖状エチレン−ブテン−1共重合体(日本ユニカー製、NUCG−7101)100重量部に対して、酸化防止剤のテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン(チバスペシャルティケミカル製、イルガノックス1010)2重量部をバンバリーミキサーで160℃で10分間混合し、これを粒径約4mmのペレットにし、ベース樹脂として使用した。
ベース樹脂から上記プレス成形で試験片を調製し、比較例1−0とした。
[Comparative Examples 1-0, 1-1]
Tetrakis, an antioxidant, per 100 parts by weight of a linear ethylene-butene-1 copolymer (manufactured by Nihon Unicar, NUCG-7101) having a melt mass flow rate of 0.7 g / 10 min and a density of 0.920 g / cm 3 [Methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] 2 parts by weight of methane (manufactured by Ciba Specialty Chemicals, Irganox 1010) was mixed with a Banbury mixer at 160 ° C. for 10 minutes. This was made into pellets having a particle size of about 4 mm and used as a base resin.
A test piece was prepared from the base resin by the above press molding, and was designated as Comparative Example 1-0.

天然産水酸化マグネシウム(平均粒径3.4μm、神島化学製、マグシーズ−W)に、ステアリン酸を表面処理水酸化マグネシウムとして1重量%となるように配合し、約110℃に加熱しながらスーパーミキサーを用いて10分間混合し、表面処理量1重量%のステアリン酸表面処理水酸化マグネシウムを得た。
得られた表面処理水酸化マグネシウム100重量部を、直鎖状エチレン−ブテン−1共重合体100重量部に相当する上記ベース樹脂と混合し、バンバリーミキサーで180℃で10分間混合し、比較例1−1の難燃性組成物を得、比較例1−0と同様にして試験片を調製し、比較例1−1とした。
In natural magnesium hydroxide (average particle size 3.4 μm, manufactured by Kamishima Chemical Co., Ltd., Magsees-W), stearic acid was blended to 1 wt% as surface-treated magnesium hydroxide and heated to about 110 ° C. The mixture was mixed for 10 minutes using a mixer to obtain stearic acid surface-treated magnesium hydroxide having a surface treatment amount of 1% by weight.
100 parts by weight of the surface-treated magnesium hydroxide thus obtained was mixed with the above base resin corresponding to 100 parts by weight of a linear ethylene-butene-1 copolymer, and mixed at 180 ° C. for 10 minutes with a Banbury mixer. A flame retardant composition of 1-1 was obtained, and a test piece was prepared in the same manner as in Comparative Example 1-0, which was designated as Comparative Example 1-1.

これら比較例の評価結果を表1に示したが、比較例1−0では、良好な引張破壊応力を有していたが、引張破壊歪は低く、機械特性のバランスが不良であった。また、耐水性は良好であったが、耐炭酸ガス白化性は、重量増加率及び表面目視評価とも非常に不良であった。
また、比較例1−1では、引張破壊歪の向上が認められたが、試験片間の大きなばらつきあった。更に、引張破壊応力がかえって比較例1−0より悪化し、機械特性の悪いものであったが、耐水性及び耐炭酸ガス白化性のうち重量増加率は良好であった。しかしながら、表面目視評価では、表面処理のない比較例1−0と同じ悪い結果を示したが、実際の目視では更に悪い傾向が認められた。
総合評価として、これらの比較例は、機械特性、耐水性及び耐炭酸ガス白化性のすべてでは良好な結果は示さなかった。
The evaluation results of these comparative examples are shown in Table 1. Comparative Example 1-0 had good tensile fracture stress, but the tensile fracture strain was low and the balance of mechanical properties was poor. Further, the water resistance was good, but the carbon dioxide whitening resistance was very poor in both the weight increase rate and the surface visual evaluation.
In Comparative Example 1-1, an improvement in tensile fracture strain was observed, but there was a large variation between test pieces. Further, the tensile fracture stress was worse than that of Comparative Example 1-0, and the mechanical properties were poor, but the weight increase rate was good among the water resistance and carbon dioxide whitening resistance. However, in the surface visual evaluation, the same bad results as in Comparative Example 1-0 without surface treatment were shown, but a worse tendency was observed in actual visual observation.
As a comprehensive evaluation, these comparative examples did not show good results in all of mechanical properties, water resistance and carbon dioxide whitening resistance.

[実施例1−1、1−2]
表面処理剤として、グリセリン−ステアリン酸モノエステルとグリセリン−ステアリン酸ジエステルの等量混合物からなるグリセリン−ステアリン酸エステル(平均エステル化率50%、理研ビタミン製、S−200)及びグリセリン−ステアリン酸ジエステルとグリセリン−ステアリン酸トリエステルの等量混合物からなるグリセリン−ステアリン酸エステル(平均エステル化率83%、理研ビタミン製、S−95)を用いて、比較例1−1と同様にして、それぞれの表面処理水酸化マグネシウムを得て難燃性組成物を得、同様にして評価した。
評価結果を表1に示したが、表面処理量1重量%のこれらは、比較例1−1より良好な引張破壊応力及び引張破壊歪を示し、機械特性が改善されていた。しかも、優れた耐水性を持ち、耐炭酸ガス白化性においても表面目視評価で、明らかに比較例1−1より優れていた。
なお、表1には示していないが、これらの実施例は、すべて良好な押出加工性であることも確認した。
[Examples 1-1 and 1-2]
As surface treatment agents, glycerin-stearic acid ester (average esterification rate 50%, manufactured by Riken Vitamin, S-200) and glycerin-stearic acid diester consisting of an equal mixture of glycerin-stearic acid monoester and glycerin-stearic acid diester Glycerin-stearic acid ester (average esterification rate 83%, manufactured by Riken Vitamin, S-95) consisting of a mixture of equal amounts of glycerin and stearic acid triester in the same manner as in Comparative Example 1-1. Surface-treated magnesium hydroxide was obtained to obtain a flame retardant composition and evaluated in the same manner.
The evaluation results are shown in Table 1. These samples having a surface treatment amount of 1% by weight showed better tensile fracture stress and tensile fracture strain than Comparative Example 1-1, and mechanical properties were improved. Moreover, it has excellent water resistance, and in terms of carbon dioxide whitening resistance, it was clearly superior to Comparative Example 1-1 in the visual surface evaluation.
Although not shown in Table 1, it was also confirmed that all of these examples had good extrudability.

[比較例2−1、実施例2−1、2−2]
表面処理量を2重量%に換えた以外は、比較例1−1、実施例1−1及び1−2と同様にして、それぞれの表面処理水酸化マグネシウムを得て難燃性組成物を得、同様にして評価した。
評価結果を表1に示したが、表面処理量2重量%のこれらは、即ち比較例2−1は、機械特性が低く、耐炭酸ガス白化性も、表面目視評価で悪いものであったが、実施例2−1及び2−2は、すべての比較例に比べて、良好な機械特性をもち、かつ耐水性も好適で、しかも耐炭酸ガス白化性において良好な評価結果を示し、これらは、実用価値のある優れた表面処理水酸化マグネシウム及び難燃性組成物であった。
なお、表1には示していないが、これらの実施例は、すべて良好な押出加工性であることも確認した。
[Comparative Example 2-1, Examples 2-1, 2-2]
Except for changing the surface treatment amount to 2% by weight, each surface-treated magnesium hydroxide was obtained in the same manner as in Comparative Example 1-1, Examples 1-1 and 1-2 to obtain a flame retardant composition. The evaluation was made in the same manner.
Although the evaluation results are shown in Table 1, those having a surface treatment amount of 2% by weight, that is, Comparative Example 2-1, had low mechanical properties, and the carbon dioxide whitening resistance was also poor in the surface visual evaluation. Examples 2-1 and 2-2 have favorable mechanical properties and favorable water resistance as compared with all comparative examples, and also show good evaluation results in carbon dioxide whitening resistance. It was an excellent surface-treated magnesium hydroxide and flame retardant composition with practical value.
Although not shown in Table 1, it was also confirmed that all of these examples had good extrudability.

[比較例3−1、実施例3−1、3−2]
表面処理量を3重量%に換えた以外は、比較例1−1、実施例1−1及び1−2と同様にして、それぞれの表面処理水酸化マグネシウムを得て難燃性組成物を得、同様にして評価した。
評価結果を表1に示したが、表面処理量3重量%のこれらは、即ち比較例3−1は、機械特性が低く、耐炭酸ガス白化性も、比較例2−1よりは改善され表面目視評価では3であったが、実施例3−1及び3−2は、実施例2−1及び2−2に比べても、更に良好な機械特性をもち、かつ耐水性は、若干の低下が認められたが好適なものであり、しかも耐炭酸ガス白化性において良好な評価結果を示し、これらは、実用価値のある優れた表面処理水酸化マグネシウム及び難燃性組成物であった。また、エステル化率に関しては、耐水性及び耐炭酸ガス白化性の両方の重量増加率がより小さく、実施例3−2(83%)が実施例3−1(50%)より更に優れた表面処理水酸化マグネシウム及び難燃性組成物であることも示した。
なお、表1には示していないが、これらの実施例は、すべて良好な押出加工性であることも確認した。
[Comparative Example 3-1, Examples 3-1, 3-2]
Except for changing the surface treatment amount to 3% by weight, each surface-treated magnesium hydroxide was obtained in the same manner as in Comparative Example 1-1, Examples 1-1 and 1-2 to obtain a flame retardant composition. The evaluation was made in the same manner.
The results of the evaluation are shown in Table 1. These samples having a surface treatment amount of 3% by weight, that is, Comparative Example 3-1, have lower mechanical properties, and the carbon dioxide whitening resistance is also improved compared to Comparative Example 2-1. Although the visual evaluation was 3, Examples 3-1 and 3-2 had better mechanical properties than those of Examples 2-1 and 2-2, and the water resistance slightly decreased. However, it was suitable, and also showed good evaluation results in whitening resistance to carbon dioxide gas. These were excellent surface-treated magnesium hydroxide and flame-retardant composition having practical value. Moreover, regarding the esterification rate, the weight increase rate of both water resistance and carbon dioxide gas whitening resistance is smaller, and Example 3-2 (83%) is a surface more excellent than Example 3-1 (50%). It was also shown to be treated magnesium hydroxide and a flame retardant composition.
Although not shown in Table 1, it was also confirmed that all of these examples had good extrudability.

[比較例4−1、実施例4−1、4−2]
表面処理量を4重量%に換えた以外は、比較例1−1、実施例1−1及び1−2と同様にして、それぞれの表面処理水酸化マグネシウムを得て難燃性組成物を得、同様にして評価した。
評価結果を表1に示したが、表面処理量4重量%のこれらは、即ち比較例4−1は、表面処理量3重量%の比較例3−1と同レベルの評価結果を示し、実施例4−1、4−2もほぼ同様であったが、実施例は、機械特性、表面目視評価に優れ、耐水性に関しては、十分実用価値を持つものであった。
また、エステル化率に関しては、耐水性及び耐炭酸ガス白化性の両方の重量増加率がより小さく、実施例4−2(83%)が、実施例4−1(50%)より更に優れた表面処理水酸化マグネシウム及び難燃性組成物であることも示した。
更に、これまでの試験から、水酸化マグネシウムに対する表面処理量は、0.5〜5.0重量%が望ましく、好ましくは1.0〜4.0重量%、更に好ましくは1.5〜3.5重量%であることが導かれた。
なお、表1には示していないが、これらの実施例は、すべて良好な押出加工性であることも確認した。
[Comparative Example 4-1, Examples 4-1, 4-2]
Except for changing the surface treatment amount to 4% by weight, each surface-treated magnesium hydroxide was obtained in the same manner as Comparative Example 1-1, Examples 1-1 and 1-2 to obtain a flame retardant composition. The evaluation was made in the same manner.
Although the evaluation results are shown in Table 1, those having a surface treatment amount of 4% by weight, that is, Comparative Example 4-1, showed the evaluation results at the same level as Comparative Example 3-1 having a surface treatment amount of 3% by weight. Examples 4-1 and 4-2 were substantially the same, but the examples were excellent in mechanical properties and surface visual evaluation, and sufficiently practical in terms of water resistance.
Moreover, regarding the esterification rate, the weight increase rate of both water resistance and carbon dioxide whitening resistance was smaller, and Example 4-2 (83%) was further superior to Example 4-1 (50%). It was also shown to be surface treated magnesium hydroxide and a flame retardant composition.
Furthermore, from the tests so far, the surface treatment amount for magnesium hydroxide is desirably 0.5 to 5.0% by weight, preferably 1.0 to 4.0% by weight, and more preferably 1.5 to 3. It was derived to be 5% by weight.
Although not shown in Table 1, it was also confirmed that all of these examples had good extrudability.

Figure 2005054038
Figure 2005054038

[実施例5−1、実施例5−2]
表面処理量を10重量%に換えた以外は、実施例1−1及び1−2と同様にして、それぞれの表面処理水酸化マグネシウムを得て難燃性組成物を得、同様にして耐炭酸ガス白化性を評価した。
評価結果を表2に示したが、実施例5−1(表面処理剤エステル化率50%)及び実施例5−2(表面処理剤エステル化率83%)の耐炭酸ガス白化性の重量増加率及び表面目視評価は、それぞれ、2.50重量%と3、及び0.49重量%と5であり、無表面処理の比較例1−0の4.23重量%と2より優れており、本発明の効果が認められた。
[Example 5-1 and Example 5-2]
Except for changing the surface treatment amount to 10% by weight, in the same manner as in Examples 1-1 and 1-2, each surface-treated magnesium hydroxide was obtained to obtain a flame retardant composition. The gas whitening property was evaluated.
The evaluation results are shown in Table 2. The weight increase in whitening resistance of carbon dioxide gas in Example 5-1 (surface treatment agent esterification rate: 50%) and Example 5-2 (surface treatment agent esterification rate: 83%) The rate and surface visual evaluation are 2.50% by weight and 3, and 0.49% by weight and 5, respectively, which are superior to 4.23% by weight and 2 of Comparative Example 1-0 without surface treatment, The effect of the present invention was recognized.

Figure 2005054038
Figure 2005054038

[比較例5、実施例6、7]
天然産水酸化マグネシウムを合成水酸化マグネシウム(平均粒径1.9μm、神島化学製、マグシーズ−N4)に換えた以外は、比較例1−0、実施例2−2及び実施例4−2と同様にして、それぞれの表面処理水酸化マグネシウムを得て難燃性組成物を得、同様にして耐水性、耐炭酸ガス白化性を評価した。
評価結果を表3に示したが、表面処理量2重量%及び4重量%の実施例6及び実施例7は、耐水性は好適な範囲であり、かつ比較例5に比べて優れた耐炭酸ガス白化性(重量増加率及び表面目視評価)を示し、特に、表面目視評価で、本発明が優れていた。
[Comparative Example 5, Examples 6 and 7]
Comparative Example 1-0, Example 2-2 and Example 4-2, except that natural magnesium hydroxide was replaced with synthetic magnesium hydroxide (average particle size 1.9 μm, manufactured by Kamishima Chemical Co., Ltd., Magsees-N4) Similarly, each surface-treated magnesium hydroxide was obtained to obtain a flame retardant composition. Similarly, water resistance and carbon dioxide whitening resistance were evaluated.
The evaluation results are shown in Table 3. In Example 6 and Example 7 with the surface treatment amount of 2% by weight and 4% by weight, the water resistance is in a suitable range, and the carbonation resistance is superior to that of Comparative Example 5. The gas whitening property (weight increase rate and surface visual evaluation) was exhibited, and the present invention was particularly excellent in surface visual evaluation.

Figure 2005054038
Figure 2005054038

本発明の表面処理水酸化マグネシウム、それを用いた難燃性組成物、及びそれより得られる押出成形品は、本発明の表面処理水酸化マグネシウムが樹脂又はゴムとの相溶性に優れ、これを配合した難燃性組成物は、優れた機械強度と、優れた耐水性、耐炭酸ガス白化性及び炭酸マグネシウムの析出による外観の劣化も大きく軽減され、かつ押出成形性も確保されているので、難燃性カバー、パイプ、シート、フィルム、電線・ケーブルの被覆層等の押出成形品として有効に使用することができる。   The surface-treated magnesium hydroxide of the present invention, the flame-retardant composition using the same, and the extrusion-molded product obtained therefrom are excellent in compatibility with the resin or rubber of the surface-treated magnesium hydroxide of the present invention. Since the blended flame retardant composition has excellent mechanical strength, excellent water resistance, carbon dioxide whitening resistance and appearance deterioration due to precipitation of magnesium carbonate are greatly reduced, and extrusion moldability is also ensured, It can be effectively used as an extruded product such as a flame retardant cover, pipe, sheet, film, electric wire / cable coating layer, and the like.

Claims (10)

多価アルコール高級脂肪酸エステルで表面処理されることを特徴とする表面処理水酸化マグネシウム。   A surface-treated magnesium hydroxide which is surface-treated with a polyhydric alcohol higher fatty acid ester. 多価アルコール高級脂肪酸エステルによる表面処理量が0.5〜5.0重量%であることを特徴とする請求項1に記載の表面処理水酸化マグネシウム。   2. The surface-treated magnesium hydroxide according to claim 1, wherein the surface treatment amount with a polyhydric alcohol higher fatty acid ester is 0.5 to 5.0% by weight. 多価アルコール高級脂肪酸エステルは、エステル化率が40〜90%であることを特徴とする請求項1又は2に記載の表面処理水酸化マグネシウム。   The surface-treated magnesium hydroxide according to claim 1 or 2, wherein the polyhydric alcohol higher fatty acid ester has an esterification rate of 40 to 90%. 多価アルコール高級脂肪酸エステルは、グリセリン−ステアリン酸エステルであることを特徴とする請求項1〜3のいずれかに記載の表面処理水酸化マグネシウム。   The surface-treated magnesium hydroxide according to any one of claims 1 to 3, wherein the polyhydric alcohol higher fatty acid ester is glycerin-stearic acid ester. 樹脂又はゴムに、請求項1〜4のいずれかに記載の表面処理水酸化マグネシウムを配合することを特徴とする難燃性組成物。   A flame-retardant composition comprising the resin or rubber and the surface-treated magnesium hydroxide according to any one of claims 1 to 4. 樹脂又はゴム100重量部に対して、表面処理水酸化マグネシウム50〜250重量部を配合することを特徴とする請求項5に記載の難燃性組成物。   The flame retardant composition according to claim 5, wherein 50 to 250 parts by weight of surface-treated magnesium hydroxide is blended with 100 parts by weight of resin or rubber. 樹脂又はゴムは、エチレン系樹脂であることを特徴とする請求項5又は6に記載の難燃性組成物。   Resin or rubber | gum is ethylene resin, The flame-retardant composition of Claim 5 or 6 characterized by the above-mentioned. エチレン系樹脂は、直鎖状低密度エチレン−α−オレフィン共重合体、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エチル共重合体からなる群から選ばれた1種以上であることを特徴とする請求項7に記載の難燃性組成物。   The ethylene-based resin is at least one selected from the group consisting of a linear low density ethylene-α-olefin copolymer, an ethylene-vinyl acetate copolymer, and an ethylene-ethyl acrylate copolymer. The flame retardant composition according to claim 7. 請求項5〜8のいずれかに記載の難燃性組成物を押出成形して得られることを特徴とする押出成形品。   An extrusion-molded product obtained by extrusion-molding the flame-retardant composition according to any one of claims 5 to 8. 請求項5〜8のいずれかに記載の難燃性組成物を押出成形して得られた被覆層を有する電線・ケーブル。   The electric wire and cable which have a coating layer obtained by extrusion-molding the flame-retardant composition in any one of Claims 5-8.
JP2003285529A 2003-08-04 2003-08-04 Surface-treated magnesium hydroxide, fire-resistant composition using the same and extrudate obtained from the composition Pending JP2005054038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285529A JP2005054038A (en) 2003-08-04 2003-08-04 Surface-treated magnesium hydroxide, fire-resistant composition using the same and extrudate obtained from the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285529A JP2005054038A (en) 2003-08-04 2003-08-04 Surface-treated magnesium hydroxide, fire-resistant composition using the same and extrudate obtained from the composition

Publications (1)

Publication Number Publication Date
JP2005054038A true JP2005054038A (en) 2005-03-03

Family

ID=34365129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285529A Pending JP2005054038A (en) 2003-08-04 2003-08-04 Surface-treated magnesium hydroxide, fire-resistant composition using the same and extrudate obtained from the composition

Country Status (1)

Country Link
JP (1) JP2005054038A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016152A (en) * 2005-07-08 2007-01-25 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant having high heat resistance, flame retardant resin composition and molded article
JP2007161927A (en) * 2005-12-15 2007-06-28 Nippon Unicar Co Ltd Flame-retardant resin composition, its extruded molding and electric wire or cable having coated layer obtained by extrusion molding the composition
JP2007238855A (en) * 2006-03-10 2007-09-20 Toyo Ink Mfg Co Ltd Resin composition
JP2011137184A (en) * 2011-04-15 2011-07-14 Nippon Unicar Co Ltd Blooming restraining method for flame-retardant resin composition
JP2014177379A (en) * 2013-03-14 2014-09-25 New Japan Chem Co Ltd Magnesium-based composite fine particle and production method thereof
JP2015232073A (en) * 2014-06-10 2015-12-24 株式会社フジクラ Flame-retardant resin composition and molded body using the same
EP2861675B1 (en) 2012-06-13 2018-09-05 Amril AG Dispersing agent comprising fillers or pigments

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016152A (en) * 2005-07-08 2007-01-25 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant having high heat resistance, flame retardant resin composition and molded article
JP2007161927A (en) * 2005-12-15 2007-06-28 Nippon Unicar Co Ltd Flame-retardant resin composition, its extruded molding and electric wire or cable having coated layer obtained by extrusion molding the composition
JP2007238855A (en) * 2006-03-10 2007-09-20 Toyo Ink Mfg Co Ltd Resin composition
JP2011137184A (en) * 2011-04-15 2011-07-14 Nippon Unicar Co Ltd Blooming restraining method for flame-retardant resin composition
EP2861675B1 (en) 2012-06-13 2018-09-05 Amril AG Dispersing agent comprising fillers or pigments
JP2014177379A (en) * 2013-03-14 2014-09-25 New Japan Chem Co Ltd Magnesium-based composite fine particle and production method thereof
JP2015232073A (en) * 2014-06-10 2015-12-24 株式会社フジクラ Flame-retardant resin composition and molded body using the same

Similar Documents

Publication Publication Date Title
JP3495629B2 (en) Flame retardant resin composition and use thereof
CN105713377A (en) Flame-Retardant Polyolefin / Thermoplastic Polyurethane Composition
US5191004A (en) Flame retardant crosslinkable polymeric compositions having improved processability
JP6344200B2 (en) Flame retardant resin composition and flame retardant insulated wire / cable
KR20080040758A (en) Flame-retardant resin composition
TWI619756B (en) Flame retardant resin composition and metal cable, optical fiber cable and molded article using the same
JP2005054038A (en) Surface-treated magnesium hydroxide, fire-resistant composition using the same and extrudate obtained from the composition
KR100627512B1 (en) Composition for production flame retardant insulating material of halogen free type with low temperature resistance properties
JP5524897B2 (en) Method for suppressing blooming of flame retardant resin composition
JP3955765B2 (en) Color masterbatch composition, colored flame retardant ethylene resin composition and molded product using the same
JPWO2018034174A1 (en) Flame retardant resin composition, insulated wire, metal cable, optical fiber cable and molded product using the same
JP2002226641A (en) Flexible flame-retardant resin composition of non- halogen type and its application product
US11807742B2 (en) Flame retardant polymeric compositions
KR100688643B1 (en) Composition for production flame retardant insulating material of halogen free type
JP4686156B2 (en) Whitening-resistant flame-retardant resin composition, extruded product thereof, and electric wire / cable having a coating layer obtained by extrusion molding
KR100688642B1 (en) Composition for production flame retardant insulating material of halogen free type
JP2004189905A (en) Flame-retardant resin composition and extrusion molding obtained from the same
EP0472035A2 (en) Flame retardant crosslinkable polymeric compositions
JP2008007723A (en) Flame-retardant resin composition, electric wire and cable using the same
JP2006096843A (en) Whitening-resistant and flame-retardant resin composition, extrusion molded product thereof, and electric wire and cable having the covering layer obtained by extruding the composition
JP4070571B2 (en) Highly flame-retardant resin composition and electric wires / cables coated therewith
JP4861614B2 (en) Surface-treated magnesium hydroxide, whitening-resistant flame-retardant resin composition containing the same, and extruded product obtained therefrom
JP2007016152A (en) Magnesium hydroxide-based flame retardant having high heat resistance, flame retardant resin composition and molded article
JP7140028B2 (en) Flame-retardant resin composition, electric wire and cable
JP2007284702A (en) Method for improving flexibility of flame retardant resin composition and extrusion-molded product improved in flexibility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120