JP2005052136A - Windmill pump type fishery facility and windmill marine ranch - Google Patents

Windmill pump type fishery facility and windmill marine ranch Download PDF

Info

Publication number
JP2005052136A
JP2005052136A JP2003436082A JP2003436082A JP2005052136A JP 2005052136 A JP2005052136 A JP 2005052136A JP 2003436082 A JP2003436082 A JP 2003436082A JP 2003436082 A JP2003436082 A JP 2003436082A JP 2005052136 A JP2005052136 A JP 2005052136A
Authority
JP
Japan
Prior art keywords
windmill
pump
fishing ground
floating
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003436082A
Other languages
Japanese (ja)
Inventor
Teruo Kinoshita
輝雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003436082A priority Critical patent/JP2005052136A/en
Publication of JP2005052136A publication Critical patent/JP2005052136A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/60Fishing; Aquaculture; Aquafarming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a windmill type marine ranch as a rich fishery, constituted with windmill pump type fishery facilities pumping up deep sea water containing high concentrations of nutritious salts by windmill pumps, and growing fishes and shellfishes by a food chain based on planktons and sea algae grown by the deep sea water. <P>SOLUTION: The facility is constituted by arranging/installing a windmill body at the upper end of a pump tube body penetrating through and supported by a hollow floating body exposed on the sea surface, and a pump and a discharging port under the water surface, also penetrating and connecting a temperature-elevating growing bed held in the sea at a level lower than the discharging port of the hollow floating body and arranging a water-receiving membrane at the lower part of a gap between the pumping tube body and the hollow floating body and joining its lower end with a sea bottom sinker. The windmill marine ranch is obtained by suitably arranging unit windmill marine ranches constituted by connecting/arranging many such facilities through a floor net. Also, a float type windmill marine ranch is obtained by suitably arranging the many unit float type windmill marine ranches constituted with many float type windmill type fishery facilities which are provided by joining hanging weights at the lower ends of the pump tube bodies. The method for growing marine organisms by these means is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、外洋上において風車動力ポンプにより海洋深層水を汲み上げ放流する漁場施設及びこの施設で構成する風車海洋牧場つまり新しい漁場の創成に関する。  The present invention relates to a fishing ground facility that draws and discharges deep ocean water by a windmill power pump on the open ocean, and a windmill marine ranch constituted by this facility, that is, the creation of a new fishing ground.

二百m以深の大陸棚斜面海域以遠における深層水大量汲上げ施設は、03年10月現在実用されておらず、試行施設としてはディーゼル発電電力駆動ポンプ式のものが稼動中である。この施設の実用型は、海洋の自然エネルギーである深層水の冷熱即ち温度差発電電力の電動ポンプ式が予定されている。
特開2002−370690号公報
Large-scale deep water pumping facilities beyond the continental shelf slopes below 200m have not been put into practical use as of October 2003, and diesel-powered pump-driven facilities are in operation as trial facilities. The practical type of this facility is planned to be an electric pump type that cools deep water, that is, natural energy of the ocean, that is, temperature difference generation power.
JP 2002-370690 A

上記実用施設に予定されている温度差発電機構は複雑であり、それなりのメンテナンスを要し、また、表層水と深層水の温度差を利用するので、温帯海域では前記温度差の夏と冬の差は略半分となり、しかも冬期表層水温の低下があり、冬期の発電能力即ちポンプ汲上げ能力は夏期の半分以下となる。このゆえに、温帯海域以北でのこの施設の実用性は低く、また、深層水の放流のみであり海藻の育成手段は備えていない。  The temperature difference power generation mechanism planned for the above-mentioned practical facilities is complicated, requires some maintenance, and uses the temperature difference between surface water and deep water. The difference is almost halved, and there is a drop in the surface water temperature in winter, and the power generation capacity in winter, that is, pumping capacity is less than half that in summer. For this reason, the utility of this facility in the north of the temperate sea area is low, and only the discharge of deep water is provided, and there is no means for growing seaweed.

そこで本発明は、上記施設のこのような問題を解決しようとするものであり、普遍的に賦存する風力エネルギーを風車を介して駆動源とし、かつ風車ポンプ体系とこれを海洋において安定的に保持するための分離浮体式の高安定性シンプル構成かつ海藻、魚介類の育成手段を備えた深層水汲上げ放流用の風車ポンプ式漁場施設及びこの施設の集合体で形成する風車海洋牧場つまり新規な漁場の提供であり、かつこの漁場における海洋生物育成の方法を提供することを目的とする。  Therefore, the present invention is intended to solve such a problem of the above facilities, and uses wind energy that is universally present as a drive source through the windmill, and stably uses the windmill pump system and this in the ocean. A windmill marine ranch formed by a collection of windmill pump-type fishing ground facilities for deep water pumping and discharge with a simple structure and high stability of a floating floating structure for holding, and seaweed and seafood breeding means. The purpose is to provide a fishing ground and to provide a method for breeding marine organisms in this fishing ground.

以上の目的を達成するため、海面露出の中抜円筒浮体に上下二箇所で複数の連結鎖を介して貫通保持された所定長さのポンプ管体であり、この管体の上端部に風車及び風向帆を設置し、水面下の管体部に汲上げ放流用ポンプ及び放流口を配設し、このポンプと風車が伝達軸を介して連動し、さらに前記円筒浮体の流出口より下位部に、海面浮状の浮体複数により海中に略水平保持された昇温育成床を貫通接合し、ポンプ管体と中抜円筒浮体の間隙に前記放流口と前記流出口の下位において軟質受水膜を配設し、管体下端に係留鎖を介して海底のシンカーに連結して構成し、深層海水を汲み上げ放流する風車ポンプ式漁場施設1Aである。  In order to achieve the above object, a pump pipe body of a predetermined length penetrating and holding through a plurality of connecting chains at two locations on the upper and lower sides of a hollow cylinder floating on the sea surface. A wind sail is installed, and a pump and outlet for pumping and discharging are arranged in the tube section below the surface of the water. This pump and the wind turbine are linked via a transmission shaft, and further below the outlet of the cylindrical floating body. The temperature rising and growing bed held substantially horizontally in the sea is penetrated and joined by a plurality of floating bodies floating in the sea surface, and a soft water-receiving film is formed below the outlet and the outlet in the gap between the pump pipe and the hollow cylindrical floating body. This is a windmill pump type fishing ground facility 1A that is arranged and connected to a sinker on the seabed via a mooring chain at the lower end of the pipe body, and pumps deep seawater and releases it.

また、第二の課題解決手段は、前記風車ポンプ式漁場施設1Aにおいて、ポンプ管体の上端に、対称部位に風車と風向帆を備えた風車体を回動可能に嵌載したことを特徴とする風車ポンプ式定置漁場施設1Cである。  Further, the second problem-solving means is characterized in that, in the windmill pump type fishing ground facility 1A, a wind vehicle body having a windmill and a wind sail at a symmetrical portion is rotatably mounted on the upper end of the pump pipe body. It is a windmill pump type stationary fishing ground facility 1C.

また、第三の課題解決手段は、前記風車ポンプ式漁場施設1Cにおいて、中抜円筒浮体に複数の支柱及び連結鎖を介して貫通保持されたポンプ管体の上端に、所定風速以上で風下側に傾斜する風車および風車より風下側に風向翼を備えるコーニング式風車体を回動可能に嵌載した風車ポンプ式定置漁場施設1CAである。  Further, the third problem solving means is that, in the windmill pump type fishing ground facility 1C, at the upper end of the pump pipe body penetrating and held in the hollow cylindrical floating body via a plurality of columns and connecting chains, the leeward side at a predetermined wind speed or higher. This is a windmill pump type stationary fishing ground facility 1CA in which a windmill inclined to the windmill and a Corning windbody having wind vanes on the leeward side of the windmill are rotatably mounted.

また、第四の課題解決手段は、漁場施設1C及び1CAにおいて、そのポンプ管体の下端に吊鎖を介して吊ウエイトを連結した風車ポンプ式浮遊漁場施設1F及び1FAである。  The fourth problem-solving means is the windmill pump type floating fishing ground facility 1F and 1FA in which the suspension weight is connected to the lower end of the pump pipe in the fishing ground facility 1C and 1CA via a suspension chain.

また、第五の課題解決手段は、漁場施設1C及び1CA夫々の複数基を所定間隔に配置し、それらのポンプ管体相互を昇温育成床の下位で網床を介して連結した単位定置式風車海洋牧場30C及び30Aを所定間隔に配置してなる定置式風車海洋牧場40C及び40Aである。  Further, the fifth problem solving means is a unit stationary type in which a plurality of each of the fishing ground facilities 1C and 1CA are arranged at predetermined intervals, and their pump pipes are connected to each other through a net floor at a lower level of the temperature raising and growing bed. This is a stationary windmill ocean ranch 40C and 40A formed by arranging windmill ocean ranches 30C and 30A at a predetermined interval.

また、第六の課題解決手段は、浮遊漁場施設1F及び1FA夫々の複数基を所定間隔に配置し、それらのポンプ管体相互を昇温育成床の下位で網床を介して連結した単位風車浮遊海洋牧場30G及び30Fを所定間隔に配置してなる浮遊式風車海洋牧場40G及び40Fである。  A sixth problem solving means is a unit wind turbine in which a plurality of floating fishing ground facilities 1F and 1FA are arranged at predetermined intervals, and their pump pipes are connected to each other through a net floor below the temperature raising and growing bed. These are floating windmill ocean ranches 40G and 40F in which floating ocean ranches 30G and 30F are arranged at predetermined intervals.

また、第七の課題解決手段は、漁場施設1A、1C、1CA、1F、1FAの昇温育成床を除去し、ポンプ管体の水面下所定の部位に表層水吸水口を設け、上下対称状ダブルインペラーの遠心ポンプを設置してなる定置および浮遊式風車ポンプ海洋肥沃化施設。  The seventh problem solving means is to remove the temperature-raising and raising floors of the fishing ground facilities 1A, 1C, 1CA, 1F, and 1FA, and to provide a surface water intake at a predetermined site below the water surface of the pump pipe body. Stationary and floating windmill pump marine fertilization facility with double impeller centrifugal pump installed.

また、第八の課題解決方法は、第一から第七の、漁場施設である1A、1C、1CA、1F、1FA及び風車海洋牧場40C、40A及び浮遊式風車海洋牧場40G、40F及び海洋肥沃化施設を単独又は混合して使用する海洋生物育成方法。  In addition, the eighth problem solving method is the first to seventh fishing ground facilities 1A, 1C, 1CA, 1F, 1FA, windmill marine ranches 40C, 40A, floating windmill marine ranches 40G, 40F and marine fertilization. Marine life breeding method that uses facilities alone or in combination.

上記第一の課題解決手段による作用は次の通りである。
即ち、水深数百mの海域において、海面露出の中抜円筒浮体に上下二箇所で連結鎖を介して貫通保持されて、上端部に風車及び風向帆を設置する長さ数百mのポンプ管体は、海洋に直立状に保持され、毎秒数m以上の風による風車の回転力で作動するポンプにより管体下端より大量の深層水を汲上げ放流口より放流し、円筒浮体の流出口を経由して昇温育成床に流下するこの深層水が拡流し表層水と混合しつつ昇温し、その周端より所定水深範囲へ流出拡散する。また、風向帆に生じる風圧力によりポンプ管体付きの風車は風上に向き、風車ポンプ式漁場施設1Aは波浪の影響の少ない安定作動を継続する。
The operation of the first problem solving means is as follows.
That is, in a water area of several hundreds of meters in depth, a pump pipe with a length of several hundreds of meters is installed by penetrating and holding through a connecting chain at two locations above and below the hollow cylinder floating on the sea surface and installing a windmill and wind sail at the upper end. The body is held upright in the ocean, pumped by the rotational force of the windmill with a wind of several meters per second, pumps a large amount of deep water from the lower end of the tube, and discharges it from the discharge port. This deep layer water flowing down to the temperature-raising and growing bed spreads, rises in temperature while mixing with the surface layer water, and flows out and diffuses from the peripheral edge to a predetermined water depth range. Further, the wind turbine with the pump pipe body is directed upward by the wind pressure generated in the wind direction sail, and the wind turbine pump type fishing ground facility 1A continues stable operation with little influence of waves.

また、第二の課題解決手段による作用は次の通りである。即ち、風車ポンプ式定置漁場施設1Cは、回動式風車体の方位制御により、高効率安定作動を継続する。  The operation of the second problem solving means is as follows. In other words, the wind turbine pump-type stationary fishing ground facility 1C continues the highly efficient and stable operation by controlling the direction of the rotating wind vehicle body.

また、第三の課題解決手段による作用は次の通りである。即ち、風車ポンプ式漁場施設1CAは、中抜円筒浮体に複数の支柱及び連結鎖を介して貫通保持されたポンプ管体の浮心が高く、また管体の上端に嵌載したコーニング式風車体は、風向翼に生じる風圧力により風車は風上に向くとともにき、その可傾翼式風車により、強風時に可傾風車翼が風下側に後傾斜して風推力を低減し、ポンプ管体の後傾を所定範囲に抑制し、より高い効率安定作動を継続する。  The operation of the third problem solving means is as follows. That is, the windmill pump type fishing ground facility 1CA has a high buoyancy of a pump pipe body that is penetrating and held in a hollow cylinder floating body through a plurality of columns and connecting chains, and is a coning type wind body fitted on the upper end of the pipe body. The wind turbine moves toward the wind due to the wind pressure generated on the wind vane, and the tilting vane wind turbine reduces the wind thrust by tilting the tilting wind turbine blade rearward to the leeward side when the wind is strong. The backward tilt is suppressed within a predetermined range, and higher efficiency and stable operation is continued.

上記第四の課題解決手段による作用は次の通りである。即ち、風車ポンプ式浮游漁場施設1F及び1FAは、水深千m以上の風波の厳しい海域においても、大量の深層水を浮游しながらより高い安定的に汲上げ放流することを継続する。  The operation of the fourth problem solving means is as follows. In other words, the windmill pump type floating fishing ground facilities 1F and 1FA continue to pump and discharge a large amount of deep water more stably while floating a large amount of deep water even in a severe sea area with a wind wave of 1000 m or more.

上記第五の課題解決手段による作用は次の通りである。即ち、漁場施設1C及び1CA夫々の集合体である定置式風車海洋牧場40C及び40Aは、水深数百mの海域において大量の深層水を大面積に亘り安定的に汲上げ放流することを継続する。  The operation of the fifth problem solving means is as follows. That is, the stationary windmill ocean farms 40C and 40A, which are aggregates of the fishing ground facilities 1C and 1CA, continue to pump and discharge a large amount of deep water stably over a large area in a sea area of several hundreds of meters. .

上記第六の課題解決手段による作用は次の通りである。即ち、浮游漁場施設1F及び1FA夫々の集合体である浮游式風車海洋牧場40G及び40Fは、水深千m以上の海域において大面積に亘り大量の深層水を浮游しながら安定的に汲上げ放流することを継続する。  The operation of the sixth problem solving means is as follows. That is, the floating windmill marine ranches 40G and 40F, which are aggregates of the floating fishing ground facilities 1F and 1FA, stably pump and discharge a large amount of deep water over a large area in a sea area of a depth of 1000 m or more. To continue.

上記第七の課題解決手段による作用は次の通りである。即ち、表層水吸水口を設け、ダブルインペラーの遠心ポンプを設置してなる定置および浮遊式風車ポンプ海洋肥沃化施設は、深層水と表層水の混合水を放流する。  The operation of the seventh problem solving means is as follows. That is, the stationary and floating wind turbine pump marine fertilization facility, which is provided with a surface water intake and a double impeller centrifugal pump, discharges the mixed water of deep water and surface water.

上記第八の課題解決方法による作用は次の通りである。即ち、前記第一から第七の、漁場施設である1A、1C、1CA、1F、1FA及び風車海洋牧場40C、40A及び浮遊式風車海洋牧場40G、40F及び海洋肥沃化施設の作用と同様である。  The operation of the eighth problem solving method is as follows. That is, it is the same as the first to seventh fishing ground facilities 1A, 1C, 1CA, 1F, 1FA, windmill marine ranches 40C, 40A, floating windmill marine ranches 40G, 40F, and marine fertilization facilities. .

上述したように本発明のシンプル構成の風車ポンプ式漁場施設1Aは、水深数百mの海域において、所定範囲の温度と比重の混合深層水を、所定水深範囲に放流拡散し肥沃化し、含まれる高濃度の栄養塩分を基に、その海域における光合成によるプランクトンが成育し、また昇温育成床には海藻が成育し、これらプランクトンと海藻を基盤とする大型魚を頂点とする食物連鎖と成育が展開され、中核施設として豊かな漁場の生成を果たす。さらに、シンプル構成ゆえ耐久性が高く、維持費が低く、総合コストは低いのである。  As described above, the windmill pump type fishing ground facility 1A of the simple configuration of the present invention includes a mixed deep water having a predetermined range of temperature and specific gravity discharged into a predetermined depth range and fertilized in a water area of several hundreds of meters. Based on the high concentration of nutrients, plankton grows by photosynthesis in the sea area, and seaweed grows on the heated bed, and the food chain and growth centered on these plankton and large fish based on seaweed It will be deployed to create a rich fishing ground as a core facility. Furthermore, the simple configuration provides high durability, low maintenance costs, and low overall costs.

第二の課題解決手段の風車ポンプ式漁場施設1Cは、風車体をポンプ管体の上端に嵌載した方位制御式の風車体により、安定性の高く効率良い汲み上げ放流作動をし、中核施設として豊かな漁場の生成を果たす。  The wind turbine pump fishing ground facility 1C, which is the second means for solving problems, is a highly stable and efficient pumping and discharging operation by a direction-controlled wind vehicle with the wind vehicle mounted on the upper end of the pump tube. It will produce a rich fishing ground.

第三の課題解決手段の風車ポンプ式漁場施設1CAは、海面露出の中抜浮体に複数の支柱及び連結鎖を介して貫通保持された浮心の高いポンプ管体の上端に嵌載した風推力低減可傾翼式のコーニング式風車体の方向制御により、より安定性の高く効率良い汲み上げ放流作動をし、中核施設として豊かな漁場の生成を果たす。  The wind turbine pump type fishing ground facility 1CA of the third problem solving means is a wind thrust fitted on the upper end of a pump body having a high float that is penetrated and held through a plurality of struts and connecting chains in a floating body exposed on the sea surface. By controlling the direction of the reduced tilting wing type coning wind body, the pumping and discharging operation is more stable and efficient, and a rich fishing ground is created as a core facility.

第四の課題解決手段の浮游漁場施設1F及び1FAは、水深千m以上の海域において、漁場施設1C及び1CAと同様に、中核施設として豊かな浮游漁場の生成を果たす。  Floating fishing ground facilities 1F and 1FA, which are the fourth means for solving problems, generate abundant floating fishing grounds as core facilities in the sea area with a depth of 1000 m or more, like fishing ground facilities 1C and 1CA.

第五の課題解決手段の定置式風車海洋牧場40C及び40Aは、水深数百mの海域において、大面積の豊かな定置漁場を形成する。  The stationary windmill marine ranches 40C and 40A, which are the fifth problem solving means, form a large stationary fishing ground with a large area in a sea area with a depth of several hundred meters.

第六の課題解決手段の浮游式風車海洋牧場40G及び40Fは、水深略千m以上の海域において、風車海洋牧場40C及び40Aと同様に大面積の豊かな浮游漁場を形成する。  Floating type windmill marine ranches 40G and 40F, which are the sixth means for solving problems, form a rich floating fishing ground with a large area in the sea area with a water depth of about 1000 m or more, similar to windmill marine ranches 40C and 40A.

第七の課題解決手段の定置および浮遊式風車ポンプ海洋肥沃化施設は、深層水と表層水の混合水を放流し、所定水域を肥沃化し魚類の蝟集と育成をもたらす。  The seventh problem solving means stationary and floating windmill pump ocean fertilization facility releases mixed water of deep and surface water, fertilizes predetermined water area, and brings about the collection and breeding of fish.

第八の課題解決方法は、定海域ないし浮遊準定海域漁場における海洋生物育成であり、特に魚類をその場で定期的に漁獲可能な農場的安定漁業の成立となる。  The eighth problem solving method is marine life breeding in a constant sea area or a floating semi-constant sea area fishing ground, and in particular, it establishes a stable farming fishery that can catch fish regularly on the spot.

以下、本発明の実施の形態を図1から図7に基ついて説明する。
風車ポンプ式漁場施設1A[図1]はマカロニ状の円筒中抜浮体、風車ポンプ体係、昇温育成床及び海底シンカーを主要な構成物としており、即ち二百m以深の海域において、直径1m以上の、長さ二百m以上の鋼製ポンプ管体2が上下二箇所で、外径10m、内径8m、長さ30mの海面露出浮状深喫水の円筒形中抜浮体3の中央貫通部の上部と下部と、この円筒浮体の内径とポンプ管体直径の差以下かつその差の半分以上の複数の連結鎖4を介して吊り下げられ、略鉛直に貫通保持され、上部連結鎖は下部連結鎖より短いので上部連結鎖の連結部は管体への円筒中抜浮体の浮力の作用点即ち浮心となり、
ポンプ管体2の、海面上高さ25mの風車タワー部2aの上端閉部に、このタワー部の中心線に直交して、一端がこのタワー部内面で回転摩擦の少ない環状ベアリング及び軸端面ベアリングにより担持され、タワー側面貫通部でベアリングに担持され、外部に延伸した他端に二以上の長さ略10mのブレード即ち羽根5aでなる直径20mのプロペラ型風車5aが剛接合されハブをなし、中間に大型傘歯歯車5cが付設された風車回転軸5bが設置されてあり、回転軸系の風車装置5をなしており、
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
The windmill pump type fishing ground facility 1A [Fig. 1] has a main component of a macaroni-shaped cylindrical hollow body, a windmill pump body, a heated bed and a seabed sinker, that is, a diameter of 1 m in a sea area deeper than 200 m. The above-described steel pump pipe body 2 having a length of 200 m or more is located in two upper and lower portions, and the central penetrating portion of the cylindrical hollow body 3 having an outer diameter of 10 m, an inner diameter of 8 m, and a length of 30 m. Are suspended through a plurality of connecting chains 4 that are less than the difference between the inner diameter of the cylindrical floating body and the diameter of the pump tube and more than half of the difference. Because it is shorter than the connecting chain, the connecting part of the upper connecting chain becomes the buoyant action point of the floating body in the cylinder, that is, the buoyancy center,
An annular bearing and a shaft end face bearing with a low rotational friction on the inner surface of the tower portion at the upper end closed portion of the wind turbine tower portion 2a having a height of 25 m above the sea surface of the pump tube 2 perpendicular to the center line of the tower portion. The propeller type windmill 5a with a diameter of 20m consisting of two or more blades, i.e., blades 5a, is rigidly joined to the other end extended to the outside and supported by the bearing at the tower side through portion, forming a hub, A windmill rotating shaft 5b provided with a large bevel gear 5c in the middle is installed, forming the windmill device 5 of the rotating shaft system,

ポンプ管体2の没水部である取水管部即ち汲上げ管部2b内に配置した逆円錐状の遮蔽板6bの下位に設けた複数の放流口6aと同レベル以下にかつ海面下2m以深に軸流ポンプまたは斜流ポンプまたは遠心ポンプ7を設置し、さらに管体下端に所定の所定水中重量の海底シンカー8またはアンカーに接合した所定長さの係留鎖9が繋がり、
さらに、直径20mの風車5aを連結する風車装置5の前記回転軸5bに固着の前記大型傘歯歯車5cと、タワー部内の前記遮蔽板を貫通する伝達軸10の上端に設置した小型傘歯歯車10aとが係合しており、この伝達軸の下端に前記ポンプ7が連結し、風車回転力がポンプ主軸を増速回転させる連動機構であり、風車、ポンプ、ポンプ管体等からなる風車ポンプ体系およびシンカーを主要構成要素とする海洋定置の取水装置を形成しており、
The intake pipe part that is the submerged part of the pump pipe body 2, that is, the same level as the plurality of outlets 6 a provided below the reverse conical shielding plate 6 b disposed in the pumping pipe part 2 b, and deeper than 2 m below the sea level. An axial flow pump, a diagonal flow pump or a centrifugal pump 7 is installed at the bottom, and a predetermined length of underwater weight seabed sinker 8 or a mooring chain 9 of a predetermined length joined to an anchor is connected to the lower end of the pipe body.
Furthermore, the large bevel gear 5c fixed to the rotating shaft 5b of the windmill device 5 that connects the windmill 5a having a diameter of 20 m, and the small bevel gear mounted on the upper end of the transmission shaft 10 that penetrates the shielding plate in the tower portion. 10a is engaged, the pump 7 is connected to the lower end of the transmission shaft, and the wind turbine rotational force is an interlocking mechanism that rotates the pump main shaft at an increased speed, and is a wind turbine pump comprising a wind turbine, a pump, a pump tube, and the like. Forming a stationary water intake system with system and sinker as main components,

さらに、複数の浮力区画を設け水中重量を小さく調整した、直径百mの、外径1mの鋼管製環状材12に合成素材製の綱複数本を略等分角で直径状に張り渡した全面に、合成素材製の軟質面材13を取付けて面状体とし、この面状体に海面浮状する複数の直径1mの浮体11を、20mの綱11aを介して全面にわたりほぼ均等に配置し、水深20mの海中に外周への下り少勾配の略水平に保持される昇温育成床14を形成し、かつこの面状体の中心を貫通する前記中抜浮体3と前記綱と面材を連接し、前記放流口6aと略同レベルの円筒浮体の複数の流出口6cの下位において、ポンプ管体との間隙に、表層水より重い深層水の沈降防止の軟質受水膜6dを配設し、さらに、前記風車が作動時に風上に緩慢に向ける方位制御のため、風車タワー部上部の風車と反対側に風向帆15を接合して、基本型としての波浪の影響の少ない風車ポンプ式漁場施設1Aが構成される。 作動時、放流口6aからの深層水は受水膜6dに流下し、さらに中抜浮体の流出口より昇温育成床に流下し、その外周部へ表層水と混合し昇温つつ拡流し、育成床より流離する。  Furthermore, the entire surface of the steel pipe annular material 12 having a diameter of 100 m and an outer diameter of 1 m, which is provided with a plurality of buoyancy compartments and is adjusted to a small diameter, with a plurality of synthetic steel ropes stretched in a diameter at substantially equal angles. In addition, a soft surface material 13 made of a synthetic material is attached to form a planar body, and a plurality of floating bodies 11 having a diameter of 1 m that float on the surface of the planar body are arranged almost uniformly over the entire surface via a 20 m rope 11a. In the sea having a water depth of 20 m, a heated and raised bed 14 is formed that is held substantially horizontally with a small gradient toward the outer periphery, and the hollow body 3, the rope and the face material passing through the center of the planar body are formed. A soft water receiving film 6d for preventing sedimentation of deep water heavier than the surface water is disposed in the gap with the pump pipe body below the plurality of outlets 6c of the cylindrical floating body that is connected and is substantially at the same level as the outlet 6a. Furthermore, the windmill turbine is used for controlling the direction in which the windmill is slowly directed to the windward when it is in operation. By joining the wind sail 15 to the wind turbine and the opposite side of the chromatography unit top wave of small wind turbine pump fisheries facilities 1A affected as a basic type is constituted. During operation, the deep water from the outlet 6a flows down to the water receiving film 6d, and further flows down from the outlet of the floating body to the temperature-raising and growing bed, mixes with the surface layer water to the outer periphery, and spreads while raising the temperature. Run away from the breeding floor.

また、風車を風上に向ける方位制御性を向上するため、風車設置の方法を風車体19[図2]構成とする方位制御風車ポンプ式漁場施設1C[図3]が構成される。
即ち、漁場施設1Aと略同様の構造であるが、上端開口のポンプ管体2のタワー部2aの上端外周およびこれより下方の外周に所定間隔でボールベアリング型滑り受18aが配設され、かつこの下方の滑り受の近傍外周に前記同様の滑り受18aを環状受板18bに配置した外周環状滑り受台18が接合されてあり、
Further, in order to improve the azimuth controllability for directing the windmill to the windward, the azimuth controlled windmill pump type fishing ground facility 1C [FIG. 3] having the windmill 19 [FIG. 2] configuration is configured.
That is, the structure is substantially the same as that of the fishing ground facility 1A, but ball bearing type slide receivers 18a are disposed at predetermined intervals on the outer periphery of the upper end of the tower portion 2a of the pump pipe body 2 at the upper end opening and on the outer periphery below the upper end. An outer peripheral annular slide receiving base 18 in which the same slide receiver 18a is disposed on the annular receiving plate 18b is joined to the outer periphery in the vicinity of the lower slide receiver,

そして、このポンプ管体2のタワー部2aの開口上端部と後記するように嵌合する所定長さかつ上端閉の円筒19aに、その上端近傍にその中心線に直交して、一端がその円筒内面で支持され、外部に延伸する他端に風車5aが接合され、中間に大型傘歯歯車5cが付設された風車回転軸5bが設置されてあり、風車と傘歯歯車と回転軸を主要構成要素とする風車装置5をなし、さらに前記円筒19aの、下端外周に細幅の環状当板18cがボルト接合され、風車と反対側に縦に所定面積の風向帆15が前記同様に接合されて、または枠材に所定面積の帆布を張った方位制御用風向翼を海面に垂直に棒材に接合して、風車体19[図2]を構成する。
この場合、風車体の鉛直方向支持部は後記のように、タワー部の下位の外周環状滑り受台18である。なお、タワー部2aの上端内周に滑り受と環状受板構成の内周環状滑り受台を付設しかつ風車部円筒19aの、風車回転軸5bより下位に内周環状当板cを付設してもよく、この場合、前記外周滑り受台と上端内周環状滑り受台の両方が鉛直方向支持部となる。
Then, a cylinder 19a having a predetermined length and closed at the upper end is fitted to the upper end of the opening of the tower portion 2a of the pump pipe body 2 as described later. A windmill 5a is joined to the other end that is supported on the inner surface and extends outward, and a windmill rotating shaft 5b with a large bevel gear 5c attached in the middle. The windmill, the bevel gear, and the rotating shaft are the main components. The wind turbine device 5 is used as an element, and a narrow annular abutment plate 18c is bolted to the outer periphery of the lower end of the cylinder 19a. A wind sail 15 having a predetermined area is vertically joined to the opposite side of the wind turbine in the same manner as described above. Alternatively, a wind vehicle body 19 [FIG. 2] is configured by joining a wind guide blade for azimuth control in which a canvas of a predetermined area is stretched on a frame member to a bar member perpendicular to the sea surface.
In this case, the vertical support portion of the wind vehicle body is an outer peripheral annular slide receiving base 18 below the tower portion as described later. In addition, a slip ring and an inner ring slide base having an annular receiving plate structure are attached to the inner periphery of the upper end of the tower portion 2a, and an inner ring contact plate c is attached to the wind turbine part cylinder 19a below the wind turbine rotating shaft 5b. In this case, both the outer peripheral slide cradle and the upper end inner peripheral annular slide cradle become vertical support portions.

この風車体の円筒19aとタワー部2a開口上端部とが、中心線を共有して前記環状当板18cが前記外周環状滑り受台18に当載しかつ前記小型傘歯歯車10aと大型歯車5cが係合して、嵌合することにより、回動可能な風車体19とポンプ管体2を主要構成要素とする風車ポンプ体系が形成され、かつポンプ管体の一部である前記汲上げ管部2bに前記同様の昇温育成床14および海底シンカー8が接合連結されて、汲上げ効率の高い方位制御風車ポンプ式漁場施設1Cが構成される。
風速や風向の変動する状況下、この漁場施設が作動すると、風向帆15に水平回動力を生じ、前記外周環状滑り受台18に下端が当載している風車体19の円筒19aが、開口上端部の上下外周の滑り受18aとも当接することで回動し、また大型傘歯歯車も小型の歯車の上を回動し、即ち風車体の風車が風上に向く方位制御がなされ、高効率で深層水汲上げ作動をする。なお、風車回転速度の制動装置をタワー部内に設置してもよい。
The cylindrical body 19a and the upper end of the opening of the tower portion 2a share the center line, and the annular abutment plate 18c rests on the outer peripheral annular slide cradle 18 and the small bevel gear 10a and the large gear 5c. Are engaged, and a wind turbine pump system having the rotatable wind vehicle body 19 and the pump pipe body 2 as main components is formed, and the pumping pipe which is a part of the pump pipe body The same temperature rising growth floor 14 and the seabed sinker 8 are joined and connected to the part 2b, and the direction control windmill pump type fishing ground facility 1C with high pumping efficiency is configured.
When this fishing ground facility is operated under conditions where the wind speed and the wind direction fluctuate, the cylinder 19a of the wind vehicle body 19 that generates horizontal turning power in the wind sail 15 and has the lower end resting on the outer peripheral annular slide base 18 is opened. The upper and lower outer periphery slide bearings 18a are rotated to contact with each other, and the large bevel gear is also rotated on the small gear. In other words, the direction control of the windmill toward the windward is performed. Efficiently pumps deep water. In addition, you may install the braking device of a windmill rotational speed in a tower part.

風波と海流に対する汲上げ作動中の漁場施設は、これらの外因によるこの施設の各部に生じる水平力による前記海底シンカーを略支点とする傾斜化モーメントによりポンプ管体が傾斜する。しかし、この傾斜によりポンプ管体に新たに生じるモーメントとして、ポンプ管体の中間点付近の風車ポンプ体系の重量重心の略水平横回動に起因する水中重量モーメントと、中抜浮体の小下降を伴う横回動に起因する、この中抜浮体との支柱連結点即ち前記浮心に作用する増加浮力および初期固有浮力による復原モーメントとがあり、前記傾斜化モーメントと水中重量モーメントに対しこの復原モーメントが対抗することにより、漁場施設はポンプ管体の傾斜が所定範囲に止まる安定性機構を具備する。即ち、一定範囲の外因により漁場施設の作動が妨げられることはない。
また、ポンプ管体の長いほど、また円筒中抜浮体の水平断面積が大きいほど、大型風車を高く設置可能になり、汲上げ能力が向上する。
In a fishing ground facility that is being pumped up against wind waves and ocean currents, the pump body is inclined by an inclination moment with the seabed sinker as a fulcrum due to the horizontal force generated in each part of the facility due to these external factors. However, as a new moment generated in the pump pipe body due to this inclination, there is a submerged weight moment caused by a substantially horizontal lateral rotation of the weight center of gravity of the wind turbine pump system near the intermediate point of the pump pipe body and a small descent of the hollow floating body. There is a strut connection point with the hollow floating body, that is, the increased buoyancy acting on the buoyancy and the restoring moment due to the initial intrinsic buoyancy, and the restoring moment with respect to the tilting moment and the underwater weight moment. The fishing ground facility has a stability mechanism that keeps the inclination of the pump pipe body within a predetermined range. That is, the operation of the fishing ground facility is not hindered by a certain range of external factors.
In addition, the longer the pump tube and the larger the horizontal cross-sectional area of the floating body in the cylinder, the higher the large wind turbine can be installed, and the pumping capacity is improved.

また、強風時の風車の損傷防止と風車ポンプ施設の一層の安定性向上は、上記安定性機構に適合する、前記中抜浮体に作用する浮力をポンプ管体のより上部に伝達し、この中抜浮体がポンプ管体を吊るのでなく上方部分で支持すること、即ちポンプ管体の前記浮心を最大限高めることである。
この方法は、前記連結鎖4の上部のものを支柱に替えること、つまり海面露出浮状の中抜浮体の上面部とポンプ管体即ちタワー部2aの所定部位とを、リングないし短鎖を両端に備えた各支柱を、タワー部との連結角度を小さくつまり急傾斜状に非剛連結し、浮心位置を高め、かつ中抜浮体がポンプ管体に対し振子のように可動とし、さらにこの中抜浮体とポンプ管体の直接接触を避けるため、中抜浮体の内径面上下二箇所とポンプ管体を複数の連結鎖4を介して連結する振子式連結の中抜浮体である。
この場合、連結鎖の長さを、円筒形の中抜浮体内径とポンプ管体直径の差以下かつその差の半分以上とし、また支柱の座屈防止の中間相互連結材の付設もよい。
In addition, to prevent wind turbine damage during strong winds and to further improve the stability of the wind turbine pump facility, the buoyancy acting on the hollow body that matches the stability mechanism is transmitted to the upper part of the pump tube, The floating body does not suspend the pump pipe body but supports it at the upper portion, that is, maximizes the floating center of the pump pipe body.
In this method, the upper part of the connecting chain 4 is replaced with a support, that is, the upper surface part of the floating floating body with the sea surface exposed and the predetermined part of the pump tube, that is, the tower part 2a, are connected to both ends of the ring or short chain. Each strut provided for is connected non-rigidly with a small angle of connection with the tower section, that is, steeply inclined to increase the floating center position, and the hollow body is movable like a pendulum with respect to the pump pipe. In order to avoid direct contact between the hollow body and the pump tube body, this is a pendulum-type hollow body that connects the upper and lower inner surface of the hollow body and the pump tube body via a plurality of connecting chains 4.
In this case, the length of the connecting chain may be set to be equal to or less than the difference between the inner diameter of the cylindrical floating body and the pump tube diameter, and more than half of the difference, and an intermediate interconnection material for preventing buckling of the support may be provided.

また、他の安定性向上方法には、強風時に風車羽根が風下側に後傾斜し円形状風車が円錐形状に変形して、風推力を低減する既存類似の風車によるコーニング式風車体19b[図4]がある。この風車体は前記風車体19の風車の各羽根5aを反円筒側に傾斜可能に設置し、かつ回転軸延長端部に風向翼を付設するが、風車装置の基本構造は前記風車装置5と同じであり、三羽根風車の場合、雨傘の開閉骨組み機構と類似して、羽根基端部が二枚の有孔連結板25aに挟まれ、連結ピン25bを介して回転軸5bにヒンジ連結され、この回転軸の貫通する滑環体25cが連結板から所定位置にあり、この滑環体に接して連結板側に、滑環体受け小突起25dを付設し、滑環体から回転軸後端側の所定位置にバネ受け25eを配設し、連結板と滑環体の間に予伸の戻しコイルバネ25fを、滑環体とバネ受けの間に予縮の戻しコイルバネ25fを、配設し、前記滑環体と前記各羽根とが各連動棒25gを介して非剛連結され、羽根が回転軸に小後傾略直交状に設定されて、可傾風車羽根を構成し、  In addition, other stability improvement methods include a coning wind vehicle 19b by an existing similar wind turbine that reduces wind thrust by wind turbine blades tilting backward toward the leeward side in a strong wind and the circular wind turbine is deformed into a conical shape. 4]. In this wind turbine body, each blade 5a of the wind turbine of the wind vehicle body 19 is installed so as to be able to incline toward the non-cylindrical side, and a wind vane is attached to the end of the rotating shaft, but the basic structure of the wind turbine device is the same as that of the wind turbine device 5. In the case of a three-blade windmill, similar to the opening and closing framework mechanism of an umbrella, the blade base end is sandwiched between two perforated connecting plates 25a and hinged to the rotating shaft 5b via a connecting pin 25b. The sliding body 25c through which the rotating shaft passes is located at a predetermined position from the connecting plate, and a sliding body receiving small protrusion 25d is provided on the connecting plate side in contact with the sliding body, and the rotating shaft is connected to the rear side of the rotating shaft. A spring receiver 25e is disposed at a predetermined position on the end side, a pre-stretching return coil spring 25f is disposed between the connecting plate and the slide ring, and a pre-retraction return coil spring 25f is disposed between the slide body and the spring receiver. The sliding body and the blades are non-rigidly connected via the interlocking rods 25g so that the blades rotate. Is set to a small rear 傾略 perpendicularly to the axis, it constitutes a variable 傾風 wheel blade,

さらに、前記同様に風車の風向制御のため、上下対称形の下端部に錘15eを付加した所定形状の風向翼15dが、回転軸延伸部つまり風向翼軸15cに、この翼軸の回転の風向翼への伝達を抑制するため複数のベアリングを介して回動的に配設され、錘のため海面に対し略垂直に保持される。なお、回転軸のバネ受け25e以後の部分を分離した風向翼軸とし、これらを回動的に嵌合連結し、この風向翼軸に補強を風向翼まで付設して剛性を上げるのもよい。また、風車の反対側の円筒外側に風車や風向翼等に対する所定のバランサ15fがその支持材とともに付設され、風車体円筒の風向翼による回転を円滑にするのである。また、作動時の風車に作用する風の推力による回転軸の後退止めとして、回転軸に付設した環状盤25hが風車体円筒内面に付設した受けベアリングに当接する。  Further, in order to control the wind direction of the windmill as described above, a wind direction blade 15d having a predetermined shape with a weight 15e added to the lower end portion of the vertically symmetrical shape is provided on the rotating shaft extending portion, that is, the wind direction blade shaft 15c. In order to suppress transmission to the wing, it is rotatably arranged through a plurality of bearings, and is held substantially perpendicular to the sea surface due to the weight. The portion of the rotating shaft after the spring receiver 25e may be separated from the wind direction blade shaft, and these may be rotationally fitted and connected, and reinforcement may be attached to the wind direction blade shaft up to the wind direction blade to increase the rigidity. In addition, a predetermined balancer 15f for the windmill, wind direction blades, and the like is attached to the outside of the cylinder on the opposite side of the windmill together with its support material, so that the wind body cylinder is smoothly rotated by the wind direction blades. Further, an annular disk 25h attached to the rotating shaft comes into contact with a receiving bearing attached to the inner surface of the wind body cylinder as a retraction stop of the rotating shaft by the thrust of the wind acting on the windmill during operation.

こうして所定風速以上で傾斜を開始し、前記滑環体25cが前記二の戻しコイルバネの一方を伸ばし他方を縮めて前記バネ受け25e近くまで移動し、各羽根の傾斜限度に至りすぼんだ円錐状風車となり、風推力を低減し、強風から弱風に変わるとその状態から、両戻しバネの収縮力と反発力により滑環体が初期の位置の受け小突起25dへ戻り、風車も元の開いた状態に復帰するコーニング式つまり可傾斜の風車であり、各羽根の損傷を抑制し安定性の向上に寄与し、この風車が風をポンプ管体の後側で受けるダウンウインド型の方位制御コーニング式風車体19bを構成する。  In this manner, the conical wind turbine starts tilting at a predetermined wind speed or more, and the circular ring body 25c extends one of the two return coil springs and contracts the other to move closer to the spring receiver 25e, and reaches the tilt limit of each blade. When the wind thrust is reduced and the wind changes from strong wind to weak wind, the sliding body returns to the receiving small projection 25d at the initial position by the contraction force and repulsion force of the two return springs, and the windmill is also opened. This is a coning type that returns to the state, that is, a tiltable windmill that contributes to improving stability by suppressing damage to each blade, and this windmill receives the wind at the rear side of the pump pipe body. A wind body 19b is configured.

また、羽根の円筒側への前傾斜を防ぐための前記滑環体受け25cの代わりに、ヒンジ連結部である羽根基端部と回転軸の間に、その基端部の円筒側半分に傾斜止めを配置してもよく、羽根基端部を傾斜止めを兼ねる形状としてもよい。なお、風車羽根の回転軸との連結方法は、羽根の連結部を二叉構造にして一枚の連結板を挟み込む、ヒンジ連結するのもよい。
また、ダウンウインド型ゆえ、風車の重量によるポンプ管体全体の傾斜及び作動時の風推力等による傾斜とを見越して、風車回転軸の風車側高位とする前傾斜配設もよく、この場合、回転軸と伝達軸の中心線は所定の非直角に交わるので、伝達軸の所定にユニバーサル継手を配設する。なお、風車体はポンプ管体に前記同様、滑動嵌載している。
Moreover, instead of the said ring-shaped body receptacle 25c for preventing the front inclination | tilt to the cylinder side of a blade | wing, it inclines in the cylinder side half of the base end part between the blade | wing base end part which is a hinge connection part, and a rotating shaft. Stops may be arranged, and the blade base end portion may have a shape also serving as a tilt stop. In addition, the connection method with the rotating shaft of a windmill blade is good also as a hinge connection which pinches | interposes one connection board by making the connection part of a blade into a bifurcated structure.
In addition, because of the downwind type, it is also possible to arrange the front slope to be high on the windmill side of the windmill rotating shaft in anticipation of the inclination of the entire pump tube due to the weight of the windmill and the inclination due to the wind thrust during operation, in this case, Since the center line of the rotation shaft and the transmission shaft intersects at a predetermined non-right angle, a universal joint is disposed at a predetermined transmission shaft. In addition, the wind vehicle body is slidingly mounted on the pump pipe body as described above.

さらに、強風海域では、各羽根が前記回転軸に対して予め後傾斜剛接合する風車又は前記同様に可傾羽根のコーニング式の風車の初期後退付き羽根式風車体[図省略]もよく、この場合、後退羽根自体が方位制御を果たし風向翼は不要である。
勿論ガバナー制御式の羽根は、強風の場合ピッチ角が増加して風を後方へ逃し、風車回転速度と風車の受ける風推力の増加を抑制する。
また、前記風向帆または風向翼に作用する力での風車体の回動により風車は常時風上にほぼ向かい、前記のように汲上げ効率を向上する。なお、方位制御性の向上を図るため、
風向帆の後端を左右に分離して風車体の回動を容易にすることもよい。また、風向帆後端に風向帆面に垂直に小型風車の設置もよく、また、風向翼の代わりに、風向翼軸に直行して方位制御用の小型風車を付設してもよい。
Further, in a strong wind sea area, a wind turbine in which each blade is rigidly joined to the rotating shaft in a backward inclined manner or a wind turbine body with an initial retreat of a coning wind turbine having a tiltable blade as described above [not shown] may be used. In this case, the retreating blade itself performs azimuth control, and the wind vane is unnecessary.
Of course, the governor-controlled blades increase the pitch angle in the case of strong winds and escape the wind to the rear, thereby suppressing the increase in wind turbine rotational speed and wind thrust received by the wind turbine.
Further, the wind turbine is almost always directed to the wind by the rotation of the wind vehicle body with the force acting on the wind sail or wind wing, and the pumping efficiency is improved as described above. In order to improve the azimuth controllability,
The rear end of the wind sail may be separated into left and right to facilitate the rotation of the wind body. In addition, a small windmill may be installed at the rear end of the wind direction sail perpendicularly to the wind direction sail surface, or a small windmill for controlling the direction may be attached directly to the wind direction blade axis instead of the wind direction blade.

また、漁場施設が超高波の谷に入っても、中抜円筒浮体が完全に露出せず、施設はその全浮力を失うことはなく安定性を大きく損なうことはない。
この場合、昇温育成床が施設の不安定動作である傾斜と下降の抑制に寄与するが、さらなる抑制するため、円筒浮体の下部ポンプ管体の外周に、所定外径の下がり勾配付きの鋼製笠とこの下に四の長鋼板を等間隔に管体に沿わせてかつその笠にも当接して一体接合することもよい。
Moreover, even if a fishing ground facility enters a super high wave valley, the hollow cylindrical floating body is not completely exposed, and the facility does not lose its buoyancy and does not significantly impair its stability.
In this case, the temperature-raised and raised floor contributes to the suppression of the inclination and descent, which is an unstable operation of the facility, but in order to further suppress, the steel with a downward gradient of a predetermined outer diameter is provided on the outer periphery of the lower pump pipe body of the cylindrical floating body. It is also possible to integrally bond the cap and the four long steel plates below it along the pipe body at equal intervals and in contact with the cap.

また、略千m以深の深海域における非定置の浮遊漁場施設もよい。方位制御式の前記風車ポンプ式漁場施設1Cの汲上げ管部下端[図5]に、吊鎖17を介して所定重量の吊ウエイト16を連結する方位制御式の風車ポンプ式浮遊漁場施設1Fがあり、同様に前記風車ポンプ式漁場施設1Aを改造した浮遊漁場施設1Bもある[図省略]。
このように構成されたこれら浮遊漁場施設は、海面に露出浮状する円筒中抜浮体3および風車ポンプ体系の浮力が吊ウエイトの重量及び風車ポンプ体系全体の重量と釣り合って、ポンプ管体2、2cが略直立に保持されることになる。なお、浮遊漁場施設は水深略千mまでの海域での適用もよく、浮遊減速のため海底を曳かれる所定長さの海底鎖を接合した細鎖を、前記ポンプ管体の傾斜抑制を兼ね、汲上げ管部に接合してもよく、この海底鎖は浮遊範囲を狭くする作用もする。
A non-stationary floating fishing ground facility in a deep sea area of about 1000 m or more is also good. An azimuthally controlled windmill pump type floating fishing ground facility 1F in which a suspension weight 16 having a predetermined weight is connected to a lower end [FIG. 5] of the pumping pipe portion of the azimuthally controlled windmill pump type fishing ground facility 1C. There is also a floating fishing ground facility 1B which is a modification of the windmill pump type fishing ground facility 1A [not shown].
These floating fishing ground facilities constructed in this manner are configured such that the buoyancy of the cylindrical hollow body 3 and the wind turbine pump system exposed and floated on the sea surface is balanced with the weight of the suspension weight and the weight of the entire wind turbine pump system, 2c is held substantially upright. In addition, the floating fishing ground facility can be applied in the sea area up to a depth of about 1000 m, and the fine chain that joins the seabed chain of a predetermined length to be sown for floating deceleration is also used to suppress the inclination of the pump pipe, It may be joined to the pumping pipe, and this submarine chain also acts to narrow the floating range.

また、風車ポンプ式浮遊漁場施設1B、1Fは、汲上げ作動をしながら風下方向に多少傾斜してその方向へ浮遊するが、漁場施設としての機能を果たす。そして、下端の吊錘が海底に接触した場合、その場にほぼ定着し汲上げを継続することになるが、この漁場施設を適宜深海域に曳航すれば浮遊施設に復帰する。
なお、浮遊漁場施設は、ポンプ管体の中抜浮体の連結部つまり浮心を支点とする前記同様の傾斜化モーメントと、ポンプ管体の略中間点に作用する風車ポンプ体系と吊錘の水中重量の前記支点に対するモーメントである復原モーメントとが平衡し、ポンプ管体は所定の傾斜に止まるので、安定である。勿論、前記の諸安定化方法は有効である。
Moreover, although the windmill pump type floating fishing ground facilities 1B and 1F are slightly inclined in the leeward direction and floating in that direction while performing the pumping operation, they function as fishing ground facilities. And when the suspended weight at the lower end comes into contact with the seabed, it will almost settle in place and continue pumping, but if this fishing ground facility is appropriately towed to the deep sea area, it will return to the floating facility.
The floating fishing ground facility has the same tilting moment as described above with the connecting part of the floating body of the pump body, that is, the floating center as a fulcrum, and the windmill pump system and suspension weight underwater acting at the approximate midpoint of the pump body. The restoring moment, which is the moment of the weight with respect to the fulcrum, is balanced, and the pump tube body remains stable at a predetermined inclination. Of course, the various stabilization methods described above are effective.

上記のごとく、漁場施設1Bを除けば、風車ポンプ式の定置漁場施設と浮游漁場施設は、円筒形の中抜浮体の連結方法と風車体が各二種あるので、定置と浮游夫々四種となる。そして、振り子式の中抜浮体とコーニング式風車体19bとの定置漁場施設1CA[図6]と浮游漁場施設1FA[図省略]がより安定的であり、従って、前者1CAは、複数の連結鎖及び支柱を介して中抜浮体に貫通保持されて浮心上位の長さ数百mのポンプ管体の上端部に強風推力低減の可傾羽根のコーニング式風車体を回動可能に嵌載し、他部分は前記1Cと同様に構成され、後者1FAは、前者のポンプ管体の下端に吊鎖を介して吊ウエイトを連結して構成される。
なお、漁場施設1C及び1CA以外の、二種を漁場施設1C等と、浮游漁場施設1F及び1FA以外の、二種を漁場施設1F等と、称する。
As described above, except for the fishing ground facility 1B, there are two types of connection methods of the cylindrical floating body and the wind body in the fixed wind farm facility and the floating fishing ground facility of the windmill pump type. Become. And the stationary fishing ground facility 1CA [FIG. 6] and the floating fishing ground facility 1FA [not shown] of the pendulum type floating body and the coning wind body 19b are more stable. Therefore, the former 1CA has a plurality of connecting chains. And a coning wind vehicle with tiltable blades for reducing the strong wind thrust is rotatably mounted on the upper end of a pump tube with a length of several hundreds of meters above the floating center. The other parts are configured in the same manner as 1C, and the latter 1FA is configured by connecting a suspension weight to the lower end of the former pump pipe body through a suspension chain.
Two types other than fishing ground facility 1C and 1CA are referred to as fishing ground facility 1C and the like, and two types other than floating fishing ground facility 1F and 1FA are referred to as fishing ground facility 1F and the like.

そして、これら各種の漁場施設は、数m以上の風による風車5aの回転力を動力源とする風車動力ポンプ体係により二百m以深の深層水を、そのポンプ管体2の下端から汲上げ、遮蔽板下位の複数の前記放流口6aから又は遠心ポンプの場合、そのインペラー直近の放流口から、重く低温の深層水が周囲の表層海中に平均日量10万m以上放流され、略平面状の前記昇温育成床14に流落し面状軟質材上を拡流しつつ、より温暖な軽い表層水との混合と軟質材からの吸熱昇温により中間の温度と重さの混合海水の密度流となり、昇温体外周より所定水深範囲に拡散する機能を、厳しい風波の海域において果たすことになる。
この結果、深層水に含まれる高濃度の栄養成分を基に、その海域での光合成によるプランクトンが育成し、さらに前記昇温育成床には海藻が成育し、これらプランクトンと海藻を基盤とする食物連鎖が促進され、単位の豊かな漁場が形成される。なお、風任せの不規則作動でも漁場形成に大きな支障はない。
These various fishing ground facilities pump deep water of more than 200 m deep from the lower end of the pump tube 2 by a wind turbine power pump body that uses the rotational force of the wind turbine 5a caused by wind of several meters or more as a power source. If from the shielding plate several underlying the discharge port 6a, or centrifugal pumps, from the impeller immediate discharge port, heavy cold deep water is discharged average daily weight of 100,000 m 3 or more on the surface layer ocean surrounding, substantially plane The density of the mixed seawater with intermediate temperature and weight by mixing with warmer lighter surface water and endothermic temperature rising from the soft material while flowing down on the heated warm-up bed 14 and spreading on the surface soft material The function of diffusing into the predetermined water depth range from the outer periphery of the temperature raising body is performed in the severe wind wave sea area.
As a result, based on the high-concentration nutrients contained in the deep water, plankton is grown by photosynthesis in the sea area, and seaweed grows on the heated growth bed, and food based on these plankton and seaweed Chains are promoted and fishing grounds rich in units are formed. It should be noted that there is no major hindrance to fishery formation even with irregular operation.

また、海面露出浮状の振子式の前記中抜浮体を、支柱のポンプ管体接合部を海面下とする海中振子式中抜浮体もよく、この場合、この中抜浮体の上端部に軟質受水膜と昇温育成床は連接され、
また、ポンプ管体外周に、中抜浮体を剛材を介して剛接合又はこの中抜浮体に相当する浮体空間体を密着接合する一体のスパー型風車ポンプ式漁場施設もよい。この場合、浮体空間体の重量が付加され、全体重心の上昇とこの空間体への波浪の影響増加により、この施設は多少傾斜しやすくなる。
また、汲上げのみの前記シングルインペラーの遠心ポンプに替えて、上下対称状のダブルインペラーの遠心ポンプにより下から深層水を汲み上げ、海面下から表層水を吸い込み混合放流部より混合水を放流する混合放流式風車ポンプ式漁場施設もよい。
この場合、昇温育成床は不要となるが、略平面の昇温育成床に配置した浮体の綱の長さを調整して小勾配の逆傘状育成床としてもよい。なお、同様の方法により、育成床に多様の凹凸変形を付加して、例えば、中心部から外周環状材へ螺旋状流路を形成するのもよい。
Also, the pendulum type floating body with the floating surface exposed to the sea surface may be a pendulum type hollow body with the pump tube joint portion of the support below the sea level. The water film and the heated and raised bed are connected,
Further, an integral spar type windmill pump type fishing ground facility may be used in which the hollow body is rigidly joined to the outer periphery of the pump body via a rigid member or the floating body space corresponding to the hollow body is tightly joined. In this case, the weight of the floating space body is added, and the facility is slightly inclined due to the rise of the overall center of gravity and the increased influence of waves on the space body.
Also, instead of the single-impeller centrifugal pump that only pumps up, the deep-bed water is pumped up from below by a centrifugal pump of symmetrical double impeller, and the mixed water is discharged from the mixing discharge section by sucking surface water from below the sea surface. A discharge windmill pump type fishing ground facility is also good.
In this case, the temperature-raising and growing floor is not required, but the length of the floating rope disposed on the substantially flat temperature-raising and growing bed may be adjusted to form a small-gradient inverted umbrella-shaped growing bed. In addition, it is also possible to add various irregular deformations to the growing floor by the same method, and form a spiral flow path from the central portion to the outer peripheral annular material, for example.

また、前記のように、各型別毎および混在する漁場施設の集合体としての多様な風車海洋牧場つまり大型漁場の造成が可能であり、その内の所定数の漁場施設1C又は1CAのみの集合体において、風向により風下となる施設風車の作動低下抑制のため、隣り合う施設の間隔を風車直径の所定倍数以上かつ直近の第三番目の施設を非直線的に定置しただけの、相互非連結の単位定置風車海洋牧場30C、及びこれらの単位風車海洋牧場の各漁場施設の汲上げ管部2b相互を昇温育成床の下で太綱粗目の網床21を介して連結して単位定置風車海洋牧場30A[図7]を造成し、さらにこれらの連結単位定置海洋牧場毎に、所定間隔に群配置して風車海洋牧場40C又は40A[図省略]を造成し、  In addition, as described above, it is possible to construct various windmill marine ranches, that is, large fishing grounds as a collection of each type and mixed fishing ground facilities, and a set of only a predetermined number of fishing ground facilities 1C or 1CA among them. In the body, in order to suppress the decrease in operation of the facility windmill that is leeward due to the wind direction, the mutual connection between the adjacent facilities is more than a predetermined multiple of the diameter of the windmill and the nearest third facility is placed non-linearly Unit stationary windmill 30C, and the pumping pipes 2b of the fishing ground facilities of these unit windmills marine ranch are connected to each other via a coarse-mesh net floor 21 under a heated heating floor. A marine ranch 30A [FIG. 7] is created, and a windmill marine ranch 40C or 40A [not shown] is created by grouping them at predetermined intervals for each of these coupled unit stationary marine ranches.

また、所定数の漁場施設1F毎または1FA毎を同様の所定間隔に群配置し、前記同様それらのポンプ管体相互を昇温育成床の下位で網床21を介して連結してなる単位浮遊式風車海洋牧場30G又は30Fとし、さらにこれらの同一の単位浮遊式海洋牧場毎に所定間隔で群配置して広大な風車浮遊海洋牧場40G又は40F[図省略]が造成される。
なお、単位浮遊式風車海洋牧場はその配置形状保持のため、昇温育成床の環状材に複数本の直径綱を均等に張渡し、小浮体複数で保持された環状スペーサを、各施設の昇温育成床間に連結してもよい。
また、定置、浮遊式の単位海洋牧場は、前記のごとく施設風車相互の風向による影響を抑制するため、各漁場施設を環状に配設して内部に一定の空間のある環状単位海洋牧場もよい。さらに、浮遊式のこの環状単位海洋牧場では、その内部空間に前記環状スペーサ複数を配置し各昇温育成床の環状材に連結してもよい。なお、風車海洋牧場は異型漁場施設の単位風車海洋牧場の混合で造成してもよい。
そして、これら風車海洋牧場を造成する海域は、極地海域と無風海域および黒潮や大西洋湾岸流等の速流海域を除くほぼ全海域であり、地球的規模での適用が可能である。
In addition, a unit floating structure in which a predetermined number of fishing ground facilities 1F or 1FA are arranged in groups at the same predetermined intervals, and the pump pipes are connected to each other via a net floor 21 below the heating and raising bed as described above. A large windmill floating marine ranch 40G or 40F [not shown] is formed by grouping the wind turbine marine ranch 30G or 30F at a predetermined interval for each of these same unit floating marine ranches.
In order to maintain the arrangement shape of the unit floating windmill marine ranch, multiple diameter ropes are evenly stretched around the annular material of the heated and raised floor, and the annular spacer held by multiple small floating bodies is attached to each facility. You may connect between warm cultivation beds.
Moreover, in order to suppress the influence of the wind direction between the facility windmills as described above, the stationary unit and floating unit ocean ranch may be an annular unit ocean ranch where each fishing ground facility is annularly arranged and has a certain space inside. . Further, in this floating unit marine ranch of floating type, a plurality of the annular spacers may be arranged in the internal space and connected to the annular material of each temperature raising and growth bed. The windmill marine ranch may be constructed by mixing the unit windmill marine ranches of the unusual fishing ground facilities.
These windmill marine ranches are almost all sea areas except polar sea areas, windless sea areas, and fast-flow sea areas such as the Kuroshio Current and the Gulf Stream, and can be applied on a global scale.

また、風車動力を空気圧縮に利用して深層水汲み上げ等をする方法として、風車体の風車と回転型空気圧縮機を、回転軸と多段増速歯車係と伝達軸を介して前記同様のポンプ管体タワー部内に縦に連結し、かつ遮蔽板を除去し海面以上の所定高さに放流口を配設し、圧縮空気をポンプ管体内海面下数10mに達する送気管より放出して、気泡ポンプ作用により放流口より放水する風車エアリフトポンプ式漁場施設もよい。この場合、圧縮空気と太陽電池電力を動力源とするサーボモーターと風向センサー等で構成する方位制御装置を付設する。  In addition, as a method of pumping deep water by using wind turbine power for air compression, a wind turbine of a wind vehicle body and a rotary type air compressor are connected to a pump similar to the above through a rotary shaft, a multistage speed increasing gear mechanism, and a transmission shaft. Connected vertically in the tube tower, removed the shielding plate, provided a discharge port at a predetermined height above the sea level, and released compressed air from the air supply pipe reaching several tens of meters below the sea level in the pump tube, A windmill airlift pump type fishing ground facility that discharges water from the outlet by a pumping action is also good. In this case, an azimuth control device including a servo motor that uses compressed air and solar cell power as a power source and a wind direction sensor is additionally provided.

また、風力発電式漁場施設もよく、既存の風力発電機装置をポンプ管体開口上端部ないし水面レベルまでの管体内に設置し、その発電電力により汲上げポンプを駆動する漁場施設である。発電能力に余裕があれば、タワー部や風車体を除いた別の電動汲上げポンプ施設と電力ケーブルで連結するのもよい。
この電動ポンプ漁場施設は、前記の平面状混合昇温体式の他、汲上げ電動ポンプと表層水電動ポンプを備えた混合放流管より放流するダブルポンプ強制混合昇温式および前記上下両面インペラー電動遠心ポンプにより放流する強制混合昇温式もよい。これら強制式の場合、逆傘状に変形した昇温育成床を連接してもよい。
また、前記同様に施設の集合体としての風車発電式海洋牧場の造成もよい。
In addition, a wind power generation fishing ground facility is also a fishing ground facility in which an existing wind power generator device is installed in a pipe body from the upper end of a pump pipe body to a water surface level, and a pump is driven by the generated power. If there is a margin in power generation capacity, it may be connected to another electric pumping pump facility excluding the tower and wind body with a power cable.
This electric pump fishing ground facility includes the above-mentioned flat mixed temperature raising type, a double pump forced mixing temperature raising type that discharges from a mixed discharge pipe equipped with a pumping electric pump and a surface water electric pump, and the upper and lower double-sided impeller electric centrifugal A forced-mixing temperature rising type that is discharged by a pump may be used. In the case of these forced types, a temperature-raising and growing bed deformed into an inverted umbrella shape may be connected.
Similarly to the above, it is also possible to create a windmill power generation type ocean ranch as a collection of facilities.

さらに、沖合定置風力発電施設もよく、水深略百mの水域において、海底のシンカーに非剛接合した略百mの管体または骨組体に、前記支柱付き中抜浮体と、前記同様の直径50mのコーニング式翼の方位制御風車体をハブ高さ50mに設置し、水面より10m以下の水中容器内の発電機及び回転数調整機と風車を伝達軸等を介して連結して構成する沖合定置の風力発電施設もよい。この場合、発電機等の前記容器内の気圧を、吸気管からの大気を圧縮する電動コンプレッサーに繋がる気蓄器の高圧空気を減圧バルブから放出して略周囲水圧に保持し、伝達軸の水中容器貫通部からの海水侵入を防止するのもよい。
なお、送電線は管体内を通り海底に達し、海底を陸岸に達する。
また、30〜50m浅海において、海底のシンカーに非剛接合した管体に、前記同様に風車体、遠心ポンプ、支柱付きの中抜浮体、昇温育成床と同様構成の直径50mの海藻育成床等を付設して、海底水の汲み上げ放流を行う大型浮魚礁としてもよい。なお、この浮魚礁は湖水に設置してもよい。
In addition, offshore stationary wind power generation facilities are also good. In a water area of about 100 m in depth, an approximately 100 m tube or skeleton that is non-rigidly joined to a sinker on the sea floor, the hollow body with a column, and the same diameter 50 m as above. An offshore stationary installation with a conical wing direction control wind vehicle body installed at a hub height of 50 m and a generator and rotation speed adjuster in a submersible container 10 m or less from the water surface and a windmill connected via a transmission shaft. Another wind power generation facility is good. In this case, the atmospheric pressure in the container such as the generator is kept at a substantially ambient water pressure by releasing the high-pressure air of the air reservoir connected to the electric compressor that compresses the atmosphere from the intake pipe from the pressure reducing valve, It is also possible to prevent seawater intrusion from the container penetration part.
The transmission line passes through the pipe and reaches the seabed, and the seabed reaches the shore.
In addition, in a 50-50 m shallow water, a 50 m diameter seaweed breeding bed having the same structure as a wind body, a centrifugal pump, a hollow body with a column, and a temperature raising breeding bed, as described above, on a tube body non-rigidly joined to a sinker on the seabed. A large floating fish reef that pumps and discharges submarine water. This floating fish reef may be installed in the lake water.

さらに、各構成部位の別様式として、風圧力低減と軽量化のため風車タワー部の骨組構造化もよく、また遠心ポンプの外径寸法がポンプ管体のそれより大きい場合、ポンプ管体はポンプ設置部を界に上下の分割され、補強剛接合構造となり、周状の放流ガイドを付設するものとする。また、軸流または斜流ポンプの場合、ポンプ管体内の遮蔽板を除去し、海面上所定高さに配設した放流口に、先端が円筒中抜浮体の外周に至る軟管を付設して海面上より放流してもよく、この場合、昇温育成床を外せば風車ポンプ体系は專用取水装置となる。  In addition, as another form of each component part, the structure of the wind turbine tower can be structured to reduce the wind pressure and reduce the weight, and when the outer diameter of the centrifugal pump is larger than that of the pump pipe, the pump pipe is the pump The installation part is divided into upper and lower parts, a reinforced rigid joint structure is provided, and a circumferential discharge guide is attached. In the case of an axial flow or mixed flow pump, the shielding plate in the pump pipe is removed, and a soft pipe with the tip reaching the outer periphery of the hollow cylinder is attached to the discharge port arranged at a predetermined height above the sea surface. It may be discharged from the sea surface. In this case, the wind turbine pump system becomes a dredging water intake device if the temperature raising and raising floor is removed.

また、風車の縦軸型ダリウス型への変更、さらに、風車がタワー部より風上となる漁業施設1C等にレシプロポンプの装備もよく、つまりクランク風車軸と吸入逆止弁付きポンプピストンとが連結棒を介して連結し、シリンダ上部に直接又は間接に放流逆止弁が付く概略構造であり、また、風車回転速度の複数段増速歯車の設置してもよい。
また、超高波の予想されない海域においては、昇温育成床を、喫水の浅いより短い中抜円筒浮体または外径大きく高さの小さい海面浮状の環状浮体より下位の所定水深でポンプ管体に連接してよい。この場合、放流口より放流された深層水は昇温育成床に直接流落することになる。また、マカロニ状の円筒中抜浮体は、上下の複数区画やその下端部を太くするなどの変形があり、下端の内外径を大きい円錐台形状に変えてよく、また前記環状浮体複数を上下に接合一体化した円筒中抜浮体もよく、この場合、下方の環状浮体ほど内外径を大きくした中抜浮体もよく、水深に合わせ内部加圧してよい。また、複数本の長パイプを等間隔に一体化したパイプ式角錐台状浮体もよく、この場合、汲み上げた深層水の沈降防止のため、パイプ式浮体に連結した昇温育成床のこの浮体近傍下側に円周状に接合した軟面材をパイプ式浮体の下位のポンプ管体部に接合して受水部を付設する。
In addition, the wind turbine is changed to the vertical Darrieus type, and the reciprocating pump is well equipped in the fishing facility 1C where the wind turbine is upwind from the tower, that is, the crank wind turbine shaft and the pump piston with the suction check valve are provided. It is connected through a connecting rod and has a schematic structure in which a discharge check valve is attached directly or indirectly to the upper part of the cylinder, and a multi-stage speed-up gear with a windmill rotational speed may be installed.
Also, in the sea area where ultra high waves are not expected, the heated and heated bed is connected to the pump tube at a predetermined depth below the hollow cylindrical floating body with a shorter draft or the outer surface with a large outer diameter and a small floating surface. You can connect them. In this case, the deep water discharged from the outlet will flow directly to the temperature-raised bed. In addition, the macaroni-shaped cylindrical hollow body has deformations such as a plurality of upper and lower sections and a thickened lower end portion, and the inner and outer diameters of the lower end may be changed to a large truncated cone shape. A cylindrical hollow body that is joined and integrated may be used. In this case, a hollow body having a larger inner and outer diameter may be used as the lower annular floating body, and internal pressurization may be performed according to the water depth. In addition, a pipe-type truncated pyramid floating body in which a plurality of long pipes are integrated at equal intervals is also preferable. A soft surface material joined circumferentially on the lower side is joined to the lower pump tube part of the pipe type floating body, and a water receiving part is provided.

さらに、汲上げ管部の海面下二百m以深の部分を、内面にスパイラル材で補強したプラスチック製軟管とし、汲上げ管部下端に錘を下げかつシンカーと連結する鎖を併設してもよく、また、球状浮体複数を汲上げ管部の上部に付設してポンプ管体の安定性を向上することもよく、また昇温育成床の環状材の浮力を自重より多少大きく調整して、逆に複数の小おもりにより海中に水平に保持するのもよく、同心複数の環状材としてもよい。また前記網床に設定水深の調整用浮体を綱を介して配設してもよい。  Furthermore, the part of the pumping pipe section below 200m below the sea level is a plastic soft pipe reinforced with spiral material on the inner surface, and a chain that lowers the weight and connects to the sinker is attached to the lower end of the pumping pipe section. Well, it is also possible to improve the stability of the pump pipe by attaching a plurality of spherical floating bodies to the upper part of the pumping pipe part, and to adjust the buoyancy of the annular material of the temperature-raising growth bed slightly larger than its own weight, Conversely, it may be held horizontally in the sea by a plurality of small weights, or a plurality of concentric annular materials. Moreover, you may arrange | position the floating body for adjustment of the set water depth to the said mesh floor through a rope.

なお、蓄電池を含む、太陽電池のタワー部に設置および補助発電装置を風車の回転軸に連結し、警告灯や警告電波、浮遊位置等の各種データの送信用の、ポンプ軸受や歯車や滑り受等の潤滑用ポンプの電源としてもよい。
また、滑り受のボールベアリングの耐塩セラミック製円筒型化、回転部の潤滑用具の取り付け、伝達軸に長さ調整部や自在継手を設けること、各部位および接合部に適宜補強材の取付けもよく、例えば中抜浮体等内部に板材や型材、ポンプ管体内外面に複数本の縦通補強等の付設処置である。
In addition, a solar battery tower, including a storage battery, and an auxiliary power generator are connected to the rotating shaft of the windmill to transmit various data such as warning lights, warning radio waves, and floating positions. A power source for a lubricating pump such as the above may be used.
In addition, the ball bearings of the sliding bearings are made of salt-resistant ceramics, the rotating parts are lubricated, the transmission shaft is provided with a length adjuster and a universal joint, and appropriate reinforcements are attached to each part and joint. For example, a plate material or mold material is provided inside the hollow body or the like, and a plurality of longitudinal reinforcements are provided on the outer surface of the pump pipe.

また、各部の各種接合、連結、繋ぎの方法及び各部材の詳細構造を省略し、前記各漁場施設の洋上設置方法も、ポンプ管体をその上端部まで海中に沈めることにより、風車等の連結接合に大型クレーン船を必要としないことを記し、他は省略する。また、上記の各数値は一例示であり、状況に応じて適宜大型化および変更されうること、また、異なる構成要素の組合せによる上記以外の多様な漁場施設が可能なことを了解されるべきである。
上記の風車ポンプ式漁場施設の構成は簡易であり、風車または温度差発電式より製作コストが低く、耐久性が高く、維持費が低く、総合コストが低いことも特徴である。
また、上記諸風車漁場施設、風車海洋牧場による海洋生物育成方法は、定海域ないし浮遊準定海域漁場における海洋生物育成であり、特に魚類をその場で定期的に漁獲可能とする農場的漁業の成立させることになる。
In addition, various joints, connections, connection methods and detailed structures of each member of each part are omitted, and the offshore installation method of each fishing ground facility is also connected to wind turbines, etc. by sinking the pump pipe body to its upper end. Note that a large crane ship is not required for joining, and others are omitted. In addition, it should be understood that each of the above numerical values is an example, and that it can be appropriately enlarged and changed according to the situation, and that various other fishing ground facilities are possible by combining different components. is there.
The structure of the above windmill pump type fishing ground facility is simple, and is characterized by lower production costs, higher durability, lower maintenance costs, and lower overall cost than windmills or temperature difference power generation.
In addition, the marine organism breeding method using the above windmill fishing ground facility and windmill marine ranch is marine organism breeding in a constant sea area or floating semi-constant sea area fishing ground, especially in a farm-like fishery where fish can be caught regularly on the spot. It will be established.

風車ポンプ式漁場施設1Aの断面図Cross section of windmill pump type fishing ground facility 1A 風車ポンプ式漁場施設1Cの嵌載風車体の部分断面図Partial cross-sectional view of the fitted wind vehicle body of the windmill pump type fishing ground facility 1C 風車ポンプ式漁場施設1Cの断面図Cross section of windmill pump type fishing ground facility 1C コーニング式風車体19bの翼を上下対称に表した部分断面図Partial sectional view showing the wings of the Corning wind vehicle body 19b symmetrically in the vertical direction 風車ポンプ式浮遊漁場施設1Fの汲上げ管下端部の部分図Partial view of the lower end of the pumping pipe of the windmill pump type floating fishing ground facility 1F 風車ポンプ式漁場施設1CAの断面図Cross section of windmill pump type fishing ground facility 1CA 単位定置風車海洋牧場30Aの概略斜視図Schematic perspective view of unit stationary windmill ocean ranch 30A

符号の説明Explanation of symbols

1A風車ポンプ式漁場施設 1C風車ポンプ式漁場施設
1B、1F風車ポンプ式浮游漁場施設 2 ポンプ管体 2aタワー部
2b汲上げ管部 3中抜浮体 4 連結鎖 4a支柱
5 風車装置 5a風車又は羽根 5b回転軸 5c大型傘歯歯車
6a放流口 6b遮蔽 板 6c流出口 6d軟質受水膜
7ポンプ 8シンカー 9 係留鎖 10伝達軸
10a小型傘歯歯車 11浮体 11a綱 12環状材
13軟質面材 14昇温育成床 15風向帆 15c風向翼軸
15d風向翼 15e錘 15fバランサ 16吊錘
17吊鎖 18環状滑り受台 18a滑り受 18b環状受板
18c環状当板 19風車体 19a円筒
19bコーニング式風車体 21網床 25a連結板 25b連結ピン
25c滑環体 25d滑環体受け小突起 25eバネ受け
25f戻しコイルバネ 25g連動棒 25h環状盤 25jベアリング
30A単位定置風車海洋牧場 30F単位浮遊式風車海洋牧場
40A風車海洋牧場 40F風車浮遊海洋牧場
1A windmill pump type fishing ground facility 1C windmill pump type fishing ground facility 1B, 1F windmill pump type floating fishing ground facility 2 pump pipe body 2a tower section 2b pumping pipe section 3 floating body 4 connecting chain 4a prop 5 windmill device 5a windmill or blade 5b Rotating shaft 5c Large bevel gear 6a Outlet 6b Shield plate 6c Outlet 6d Soft water-receiving film 7 Pump 8 Sinker 9 Mooring chain 10 Transmission shaft 10a Small bevel gear 11 Floating body 11a rope 12 Annular material 13 Soft face material 14 Temperature rise Raising floor 15 wind direction sail 15c wind direction blade shaft 15d wind direction blade 15e weight 15f balancer 16 suspension weight 17 suspension chain 18 ring slide support 18a slide support 18b ring support plate 18c ring contact plate 19 wind body 19a cylinder 19b Corning wind body 21 network Floor 25a connecting plate 25b connecting pin 25c slide body 25d slide body receiving small protrusion 25e spring receiver 25f return coil spring 25g interlocking rod 2 h annular panel 25j bearing 30A unit stationary windmill mariculture 30F unit floating windmill mariculture 40A windmill mariculture 40F windmill floating mariculture

Claims (8)

海面露出の中抜円筒浮体(3)に上下二箇所で複数の連結鎖を介して貫通保持された所定長さのポンプ管体(2)であり、この管体の上端部に風車(5a)及び風向帆(15)を設置し、水面下に放流口及び汲上げ放流用ポンプ(7)を配設し、このポンプと風車が伝達軸を介して連動し、さらに前記円筒浮体の流出口より下位部に、海中に保持された昇温育成床(14)を貫通連接し、ポンプ管体と円筒浮体の間隙に前記放流口と前記流出口の下位において受水膜(6d)を配設し、ポンプ管体下端に係留鎖を介してシンカー(8)と連結して構成することを特徴とする風車ポンプ式定置漁場施設(1A)。  A pump pipe body (2) having a predetermined length that is penetratingly held in a hollow cylindrical floating body (3) exposed at the sea surface through a plurality of connecting chains at two locations, upper and lower, and a windmill (5a) at the upper end of the pipe body And a wind sail (15), a discharge port and a pump for pumping discharge (7) are arranged below the surface of the water, and this pump and the windmill are linked via a transmission shaft, and further from the outlet of the cylindrical floating body In the lower part, a temperature-raising bed (14) held in the sea is connected through, and a water-receiving film (6d) is disposed in the gap between the pump pipe and the cylindrical floating body below the outlet and the outlet. A windmill pump type stationary fishing ground facility (1A), characterized in that the pump pipe body is connected to the sinker (8) via a mooring chain at the lower end of the pump body. 請求項1記載の漁場施設(1A)において、ポンプ管体の上端部に風車体を嵌載したことを特徴とする風車ポンプ式定置漁場施設(1C)。  The fishing ground facility (1A) according to claim 1, wherein the wind turbine body is fitted on the upper end portion of the pump pipe body. 請求項2記載の漁場施設(1C)において、中抜円筒浮体により上下二箇所でそれぞれ複数の支柱及び連結鎖を介して貫通保持されたポンプ管体の上端部にコーニング式風車体を嵌載したことを特徴とする風車ポンプ式定置漁場施設(1CA)。  In the fishing ground facility (1C) according to claim 2, the Corning wind vehicle body is fitted on the upper end portion of the pump pipe that is penetrated and held through the plurality of support columns and the connecting chain in two places at the top and bottom by the hollow cylindrical floating body. Windmill pump type stationary fishing ground facility (1CA) characterized by this. 請求項2及び3記載の漁場施設(1C)及び(1CA)において、そのポンプ管体の下端に吊鎖を介して吊錘を連結したことを特徴とする風車ポンプ式浮遊漁場施設(1F)及び(1FA)。  In the fishing ground facilities (1C) and (1CA) according to claim 2 and 3, a windmill pump type floating fishing ground facility (1F), wherein a suspension weight is connected to a lower end of the pump pipe body through a suspension chain, and (1FA). 請求項2及び3に記載の漁場施設(1C)及び(1CA)夫々の複数基を所定間隔に配置し、それらのポンプ管体相互を昇温育成床の下位で網床を介して連結した単位定置式風車海洋牧場(30C)及び(30A)を所定間隔に配置してなることを特徴とする定置式風車海洋牧場(40C)及び(40A)。  A unit in which a plurality of each of the fishing ground facilities (1C) and (1CA) according to claim 2 and 3 are arranged at a predetermined interval, and their pump pipes are connected to each other through a net floor below the temperature-raising bed. Stationary windmill marine ranches (40C) and (40A), characterized in that stationary windmill marine ranches (30C) and (30A) are arranged at predetermined intervals. 請求項4記載の浮遊漁場施設(1F)及び(1FA)夫々の複数基を所定間隔に配置し、それらのポンプ管体相互を昇温育成床の下位で網床を介して連結した単位風車浮遊海洋牧場(30G)及び(30F)を所定間隔に配置してなることを特徴とする浮遊式風車海洋牧場(40G)及び(40F)。  Unit windmill floating in which a plurality of each of the floating fishing ground facilities (1F) and (1FA) according to claim 4 are arranged at predetermined intervals and their pump pipes are connected to each other through a net floor below the temperature raising and breeding floor A floating windmill ocean ranch (40G) and (40F), wherein the ocean ranches (30G) and (30F) are arranged at predetermined intervals. 請求項1から4記載の漁場施設(1A)、(1C)、(1CA)、(1F)、(1FA)の昇温育成床を除去し、ポンプ管体の水面下所定の部位に吸水口を設け、上下対称状ダブルインペラーの遠心ポンプを設置してなることを特徴とする風車ポンプ海洋肥沃化施設。  5. The fishing ground facility (1A), (1C), (1CA), (1F), (1FA) of the fishing ground facility according to claim 1 is removed, and a water inlet is provided at a predetermined site below the surface of the pump pipe. A windmill pump marine fertilization facility, which is provided with a centrifugal pump with a symmetrical vertical double impeller. 請求項1から7記載の漁場施設(1A)、(1C)、(1CA)、(1F)、(1FA)及び風車海洋牧場(40C)、(40A)及び浮遊式風車海洋牧場(40G)、(40F)及び海洋肥沃化施設を単独又は混合して使用することを特徴とする海洋生物育成方法。  The fishing ground facility (1A), (1C), (1CA), (1F), (1FA) and the windmill marine ranch (40C), (40A) and the floating windmill marine ranch (40G) according to claims 1 to 7, 40F) and marine fertilization facilities are used alone or in combination.
JP2003436082A 2003-04-18 2003-12-01 Windmill pump type fishery facility and windmill marine ranch Pending JP2005052136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003436082A JP2005052136A (en) 2003-04-18 2003-12-01 Windmill pump type fishery facility and windmill marine ranch

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003146982 2003-04-18
JP2003297936 2003-07-18
JP2003436082A JP2005052136A (en) 2003-04-18 2003-12-01 Windmill pump type fishery facility and windmill marine ranch

Publications (1)

Publication Number Publication Date
JP2005052136A true JP2005052136A (en) 2005-03-03

Family

ID=34381738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436082A Pending JP2005052136A (en) 2003-04-18 2003-12-01 Windmill pump type fishery facility and windmill marine ranch

Country Status (1)

Country Link
JP (1) JP2005052136A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142995A1 (en) 2007-05-11 2008-11-27 M Hikari & Energy Laboratory Co., Ltd. On-site integrated production plant
JP2009189308A (en) * 2008-02-15 2009-08-27 Marukan:Kk Filtering apparatus for water tank for aquarium fish
CN105230539A (en) * 2015-10-28 2016-01-13 杭州电子科技大学 Device and method for lifting nutritive salt of seabed by utilizing wind energy
CN107439448A (en) * 2017-09-12 2017-12-08 浙江海洋大学 A kind of net cage for sea farming
CN107711656A (en) * 2017-11-29 2018-02-23 唐山海之都海洋牧场有限公司 A kind of wind and wave resistance aquafarm cultivation apparatus
CN108739575A (en) * 2018-05-03 2018-11-06 青岛博鲁泽海洋科技有限公司 A kind of tower-type liftable fish culture cage system
WO2018223840A1 (en) * 2017-06-06 2018-12-13 大连理工大学 In-situ novel energy source-driven plankton collecting device
WO2019054307A1 (en) * 2017-09-15 2019-03-21 株式会社ベルシオン Horizontal-shaft windmill
CN111226858A (en) * 2020-01-19 2020-06-05 戴双杰 Breed pond wind-force pumping device based on buoyancy self-closing is intake
CN112219766A (en) * 2020-10-13 2021-01-15 刘应国 Artificial automatic marine ranch
CN117617166A (en) * 2024-01-25 2024-03-01 中国水产科学研究院黄海水产研究所 Deep-open-sea large-scale tubular pile fence truss open-air linking device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142995A1 (en) 2007-05-11 2008-11-27 M Hikari & Energy Laboratory Co., Ltd. On-site integrated production plant
US8197664B2 (en) 2007-05-11 2012-06-12 M Hikari & Energy Laboratory Co., Ltd. Onsite integrated production factory
US8277632B2 (en) 2007-05-11 2012-10-02 M Hikari & Energy Laboratory Co., Ltd. Onsite integrated production factory
JP2009189308A (en) * 2008-02-15 2009-08-27 Marukan:Kk Filtering apparatus for water tank for aquarium fish
CN105230539A (en) * 2015-10-28 2016-01-13 杭州电子科技大学 Device and method for lifting nutritive salt of seabed by utilizing wind energy
WO2018223840A1 (en) * 2017-06-06 2018-12-13 大连理工大学 In-situ novel energy source-driven plankton collecting device
US11026410B2 (en) 2017-06-06 2021-06-08 Dalian University Of Technology Energy-driven in-situ plankton collecting device
CN107439448A (en) * 2017-09-12 2017-12-08 浙江海洋大学 A kind of net cage for sea farming
CN107439448B (en) * 2017-09-12 2020-02-04 浙江海洋大学 Mariculture net cage
WO2019054307A1 (en) * 2017-09-15 2019-03-21 株式会社ベルシオン Horizontal-shaft windmill
CN107711656A (en) * 2017-11-29 2018-02-23 唐山海之都海洋牧场有限公司 A kind of wind and wave resistance aquafarm cultivation apparatus
CN107711656B (en) * 2017-11-29 2023-02-17 唐山海都水产食品有限公司 Anti-wave marine ranch breeding device
CN108739575A (en) * 2018-05-03 2018-11-06 青岛博鲁泽海洋科技有限公司 A kind of tower-type liftable fish culture cage system
CN111226858A (en) * 2020-01-19 2020-06-05 戴双杰 Breed pond wind-force pumping device based on buoyancy self-closing is intake
CN112219766A (en) * 2020-10-13 2021-01-15 刘应国 Artificial automatic marine ranch
CN117617166A (en) * 2024-01-25 2024-03-01 中国水产科学研究院黄海水产研究所 Deep-open-sea large-scale tubular pile fence truss open-air linking device
CN117617166B (en) * 2024-01-25 2024-04-26 中国水产科学研究院黄海水产研究所 Deep-open-sea large-scale tubular pile fence truss open-air linking device

Similar Documents

Publication Publication Date Title
CN110050740B (en) Deep-open sea floating wind, light and fish comprehensive equipment
CN108739576B (en) A combined type box with a net for deep sea fish is bred
CN101326898B (en) Self-reducing flow low-shape change off land deep water net cage
WO2019227925A1 (en) High-efficiency wave, tide, current, wind and light power generation, marine ranching, and purification platform
JP2007002721A (en) Lever type marine windmill pump device, windmill artificial fishery, and marine floating wind power station
CN107878698A (en) A kind of offshore floating type Wind turbines and the integration unit of fishery cage culture
JP2009030586A (en) Sea windmill pump device, windmill pump artificial fisheries, and mooring type wind power station
CN105557572A (en) Semi-submersible single-column marine engineering fishery
JP2006510524A (en) Floating base for generating wind energy and its construction and method of use
KR101312605B1 (en) An Hybrid Aeration System
CN204802038U (en) Many function combination formula ocean power generation platform that can gather and gather crowd
JP5977108B2 (en) Water purification device
CN108739575A (en) A kind of tower-type liftable fish culture cage system
JP2005052136A (en) Windmill pump type fishery facility and windmill marine ranch
CN112243917A (en) Assembled type stable sinking and floating deep sea aquaculture net cage and use method thereof
GB2471492A (en) Floating cultivation device for algae
CN207607612U (en) A kind of offshore floating type Wind turbines and the integration unit of fishery cage culture
CN111557260A (en) Net cage structure and over-and-under type net cage structure based on fan single pile basis carries out net cage culture
CN102230445A (en) Water wheel type tidal power bidirectional generating device floating on water
US6533496B1 (en) Water circulation
WO1994024058A1 (en) Equipment for circulating of water
CN107801627B (en) Method for culturing laver in shallow water area of outside island reef sea area
JP2006132514A (en) Sea wind mill pump device and wind mill pump type artificial fishing ground
CN202181982U (en) Waterwheel type tide energy double-direction generating device floating on water
CN112106709A (en) Deep and open sea development platform combining Spar type floating fan and vertical cultivation net cage