JP2005049217A - Rusting time estimating method, reinforcing steel corrosion rate estimating method and reinforcing steel corrosion estimating method of reinforcing steel in reinforced concrete, and durability diagnosing method of reinforced concrete - Google Patents
Rusting time estimating method, reinforcing steel corrosion rate estimating method and reinforcing steel corrosion estimating method of reinforcing steel in reinforced concrete, and durability diagnosing method of reinforced concrete Download PDFInfo
- Publication number
- JP2005049217A JP2005049217A JP2003281485A JP2003281485A JP2005049217A JP 2005049217 A JP2005049217 A JP 2005049217A JP 2003281485 A JP2003281485 A JP 2003281485A JP 2003281485 A JP2003281485 A JP 2003281485A JP 2005049217 A JP2005049217 A JP 2005049217A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- concrete
- reinforcing steel
- reinforced concrete
- neutralization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 134
- 238000005260 corrosion Methods 0.000 title claims abstract description 134
- 239000011150 reinforced concrete Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 31
- 229910001294 Reinforcing steel Inorganic materials 0.000 title claims abstract description 25
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 83
- 239000004567 concrete Substances 0.000 claims abstract description 65
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 59
- 230000004580 weight loss Effects 0.000 claims description 26
- 238000009826 distribution Methods 0.000 claims description 9
- 241000221535 Pucciniales Species 0.000 claims description 5
- 238000003745 diagnosis Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 238000007689 inspection Methods 0.000 claims 3
- 238000002425 crystallisation Methods 0.000 claims 1
- 230000008025 crystallization Effects 0.000 claims 1
- 230000008439 repair process Effects 0.000 claims 1
- 238000011179 visual inspection Methods 0.000 claims 1
- 238000002474 experimental method Methods 0.000 abstract description 18
- 230000007613 environmental effect Effects 0.000 abstract description 12
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000004568 cement Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
本発明は鉄筋コンクリート中にある鉄筋の腐食評価に関するもので、特に腐食減量比に基づいて鉄筋コンクリートの耐久性評価に関するものである。 The present invention relates to corrosion evaluation of reinforcing steel in reinforced concrete, and more particularly to durability evaluation of reinforced concrete based on the corrosion weight loss ratio.
従来から鉄筋コンクリートの耐久性評価を行っている手法は存在した。 There has been a method for evaluating the durability of reinforced concrete.
ある時刻での中性化深さと腐食速度を実測するか2つの時刻で腐食速度を実測し、あらかじめ想定しておいた腐食量の時刻暦関数にあてはめて未知定数を決定し腐食量の時刻暦関数を得て推定を行っている。(例えば特許文献1)しかし、腐食量の時刻暦関数を決定するためには、鉄筋が錆び始めた後に中性化深さや腐食速度を実測するしか方法がなく適用上の制約が大きい。鉄筋の腐食が進行し、ひび割れが生じた後に水分や酸素が供給されやすくなり腐食速度が速くなる現象については評価できない。部位によって腐食速度は異なり、建物全体としての影響を評価することができない。腐食量は推定しているが、耐久年数を評価するには至っていない。 Measure the neutralization depth and corrosion rate at a certain time, or measure the corrosion rate at two times, and apply an estimated time constant to the corrosion amount time calendar function in advance to determine an unknown constant. A function is obtained and estimation is performed. (For example, Patent Document 1) However, in order to determine the time calendar function of the corrosion amount, there is only a method of actually measuring the neutralization depth and the corrosion rate after the reinforcing bar starts to rust, and there are great restrictions on application. It is not possible to evaluate the phenomenon in which the corrosion rate of the reinforcing bars is increased and the corrosion rate is increased after moisture and oxygen are easily supplied after cracks are generated. The corrosion rate varies depending on the site, and the impact of the entire building cannot be evaluated. Although the amount of corrosion is estimated, the durability has not been evaluated.
鉄筋のコンクリートかぶり深さ・中性化深さ・鉄筋位置全塩化物量・ひび割れ・温度・年間降水量・湿度などのパラメータを用いて実測値から得た計算式を用い、鉄筋の腐食度を推定する評価方法がある。(例えば特許文献2)ニューラルネットワークを利用していることから、実測データを多数集めなければ精度が確保できず、特に推定を行う係数が示されていない。つまり統計データで推定を行う方法であるが、鉄筋コンクリートの寿命は50年から200年と非常に長く、現存している建築物での統計データを収集すること自体が困難なためすぐに実施することができない。 Estimate the degree of corrosion of reinforcing bars by using formulas obtained from actual measurements using parameters such as concrete cover depth, neutralization depth, total chloride content, cracks, temperature, annual precipitation, and humidity. There is an evaluation method to do. (For example, Patent Document 2) Since a neural network is used, accuracy cannot be ensured unless a large number of actual measurement data is collected, and no coefficient for estimation is shown. In other words, it is a method of estimating with statistical data, but the life of reinforced concrete is very long from 50 to 200 years, and it is difficult to collect statistical data on existing buildings itself, so it should be implemented immediately I can't.
コンクリートの自然電位・塩分量・含水率・炭酸化深さから鉄筋の腐食度を評価する方法及び診断装置がある。(例えば特許文献3)腐食量の測定はできるが将来的な腐食速度を推定したり鉄筋コンクリートの寿命を推定したりすることはできない。 There are methods and diagnostic devices for evaluating the corrosion degree of reinforcing bars from the natural potential, the salt content, the moisture content, and the carbonation depth of concrete. Although the amount of corrosion can be measured (for example, Patent Document 3), it is impossible to estimate the future corrosion rate or the life of reinforced concrete.
中性化によるコンクリート中の鉄筋腐食速度について検討するため2種類の水セメント比の試験体を制作し、促進中性化試験と散水促進中性化試験を行って鉄筋の腐食量を検討し、中性化による鉄筋腐食モデルを構築して中性化進行予測手法を組み合わせることにより中性化の進行に伴う鉄筋腐食の進行を予測している。(例えば非特許文献1)コンクリートの中性化速度はコンクリートの含水率が高いほど中性化速度が遅くなることが実験により分かっている。腐食速度については試験体の大きさが小さすぎたため構造物との条件が一致せず腐食モデルとしては一般的な構造物に適応できない。 In order to investigate the corrosion rate of reinforcing steel in concrete due to neutralization, two types of water-cement ratio specimens were produced, and the accelerated neutralization test and the watering accelerated neutralization test were conducted to examine the amount of corrosion of the reinforcing bar. The progress of rebar corrosion with the progress of neutralization is predicted by building a model of rebar corrosion due to neutralization and combining the method for predicting the progress of neutralization. (For example, Non-Patent Document 1) It has been experimentally known that the neutralization rate of concrete becomes slower as the moisture content of the concrete increases. As for the corrosion rate, the size of the specimen was too small, so the conditions with the structure did not match, and the corrosion model could not be applied to a general structure.
従来から鉄筋コンクリート中にある鉄筋の腐食確率を用いて寿命評価を行う方法は存在していた。(例えば非特許文献2)建物の実態調査から、鉄筋のさび評点の平均値が3(腐食グレードIII、鉄筋が面錆びを起こしている相当)となるときの、かぶり厚さと中性化深さの関係を屋内、屋外について把握している。かぶり厚さと中性化深さはそれぞれ正規分布とみなせるのでこれらの差の正規分布を求め、マイナス無限大から鉄筋の錆び評点が3となるかぶり厚さと中性化深さの差まで積分することで腐食確率を求め耐久性評価を行っている。この方法は地上構造物の広範な調査結果に基づいており、地上構造物については妥当性が高いが、地下躯体の湿潤部のように環境条件で発錆時のかぶり厚さと中性化深さの関係(発錆条件)や腐食速度が異なってくる場合については大きな誤差を生み出してしまう。さらに、腐食を腐食確率すなわち腐食面積で捉えているため、鉄筋の腐食量については評価することができない。
従来鉄筋コンクリート中の鉄筋発錆はかぶり深さまで中性化が進行した時に起こるとされていた。しかしながら計算上の基準としては中性化深さの差を10mmとしている場合もある。(例えば非特許文献3)中性化残りを10mmとした根拠は、腐食しても構造物の機能を失うような重大な腐食が生じた例がほとんどないためであったが、本件の実験により条件によって5mmまで発錆しないことが分かった。しかし、かぶり厚さや中性化深さにばらつきがあるため、かぶり厚さが平均より小さく中性化深さが平均値より大きい部位では、早い時期に発錆して環境条件で決まる腐食速度でどんどん腐食が進行してゆく。腐食速度が速い場合はかなりの腐食量になり危険側の評価をしてしまう。
一般的なコンクリートよりも錆の発生しやすい水セメント比70%で試験体を制作して、中性化による鉄筋腐食限界をフェノールフタレイン法によって計測した中性化深さと比較している研究結果も存在している。(例えば非特許文献4)
塩化物を含んだコンクリート中の鉄筋腐食速度について実験を行い、腐食速度の推定式を導いている研究もある。(例えば非特許文献5)塩化物による鉄筋腐食速度は速い段階で起こるが、一般的な環境で起こるコンクリートの中性化による鉄筋腐食速度の推定式は求めていない。
塩分に起因する鉄筋腐食に関して海洋環境下で鉄筋コンクリート構造物を調査し、寿命予測式を導いている研究もある。(例えば非特許文献6)海洋環境などではない通常の場所で起こるコンクリートの中性化による鉄筋腐食についてのコンクリート寿命予測は行ってはいない。
Conventionally, there has been a method for evaluating the life using the corrosion probability of reinforcing steel in reinforced concrete. (For example, Non-Patent Document 2) From the survey of the building, the cover thickness and neutralization depth when the average value of the rust rating of the reinforcing bar is 3 (corrosion grade III, equivalent to the surface rusting of the reinforcing bar) To understand the relationship between indoors and outdoors. Cover thickness and neutralization depth can be regarded as normal distributions, so obtain the normal distribution of these differences and integrate from minus infinity to the difference between the cover thickness and neutralization depth at which the rust rating of the reinforcing bar is 3. The corrosion probability is obtained and the durability is evaluated. This method is based on extensive survey results of ground structures, and is highly relevant for ground structures, but the cover thickness and neutralization depth at the time of rusting under environmental conditions such as wet parts of underground structures. If the relationship (rusting conditions) and the corrosion rate differ, a large error will be produced. Furthermore, since the corrosion is captured by the corrosion probability, that is, the corrosion area, the corrosion amount of the reinforcing bars cannot be evaluated.
Conventionally, rusting in reinforced concrete was supposed to occur when neutralization progressed to the cover depth. However, there is a case where the difference in neutralization depth is 10 mm as a calculation standard. (For example, Non-Patent Document 3) The reason for setting the neutralization residue to 10 mm was that there were almost no examples of serious corrosion that would cause the structure to lose its function even if it was corroded. It was found that it did not rust up to 5mm depending on the conditions. However, since the cover thickness and the neutralization depth vary, at sites where the cover thickness is smaller than the average and the neutralization depth is greater than the average value, rusting occurs early and the corrosion rate is determined by the environmental conditions. Corrosion progresses more and more. If the corrosion rate is high, the amount of corrosion becomes considerable and the risk side is evaluated.
Research results of making a specimen with a 70% water cement ratio, which is more likely to rust than general concrete, and comparing the corrosion limit of rebar due to neutralization with the neutralization depth measured by the phenolphthalein method Also exist. (For example, Non-Patent Document 4)
Some studies have conducted experiments on the corrosion rate of reinforcing steel in concrete containing chlorides, and derived an equation for estimating the corrosion rate. (For example, Non-Patent Document 5) Although the corrosion rate of reinforcing steel bars due to chloride occurs at a high stage, an estimation formula for the corrosion rate of reinforcing steel bars due to the neutralization of concrete that occurs in a general environment is not obtained.
Some studies have investigated the reinforced concrete structures in the marine environment regarding the corrosion of reinforcing steel bars caused by salinity, and derived the life prediction formula. (For example, Non-Patent Document 6) Concrete life prediction is not performed for reinforcing steel corrosion due to neutralization of concrete that occurs in a normal place other than the marine environment.
鉄筋の腐食がRC構造物の耐久性・水密性に与える影響を評価することを目的として、電食試験により鉄筋の腐食を促進して腐食量と透水係数の関係について研究を行った例もある。(例えば非特許文献7)この結果ひび割れ発生限界腐食量が調べられている。 In order to evaluate the effects of corrosion of reinforcing bars on the durability and water tightness of RC structures, there are cases where the corrosion of reinforcing bars was promoted by an electric corrosion test to study the relationship between the amount of corrosion and the hydraulic conductivity. . (For example, Non-Patent Document 7) As a result, the cracking limit corrosion amount has been investigated.
コンクリート中の鉄筋腐食を促進する要因の一つである中性化を様々な環境条件で実験を行っている例もある。(例えば非特許文献8) コンクリートの中性化について詳細な実験が行われているが、鉄筋腐食に関しては実験されていない。
地上建築物などの比較的調査の行いやすい場所での鉄筋コンクリート中の鉄筋表面腐食面積等を推定する方法は存在したが、地下構造物など様々な環境条件下にある鉄筋コンクリート中の鉄筋腐食量を精度よく推定する方法、および鉄筋腐食量に基づいて鉄筋コンクリートの耐久性診断を行うことができる手段がなかった。 Although there was a method for estimating the surface corrosion area of reinforced concrete in reinforced concrete in places where surveys are relatively easy to perform, such as underground buildings, the amount of reinforced corrosion in reinforced concrete under various environmental conditions such as underground structures is accurate. There was no method to estimate well and to make a durability diagnosis of reinforced concrete based on the amount of corrosion of reinforcing bars.
本発明は、実際には時間のかかる鉄筋コンクリートの中性化を促進処理した後、鉄筋コンクリートの寿命に対して重要な要因となる「温度」「湿度」「鉄筋のコンクリートかぶり深さ」の3点について実験を行った。本実験から湿度が高いほどコンクリートの中性化が進んでいなくてもコンクリート中にある鉄筋は発錆する事を発見し、湿度による発錆するコンクリート中性化深さの差をパラメータαとして実験より求めて鉄筋コンクリート中にある鉄筋の発錆時期を計算する方法を見つけ出した。更に、コンクリート中の鉄筋位置での相対湿度が高いほど鉄筋コンクリート中にある鉄筋の腐食速度が速くなることを発見し、コンクリート中の鉄筋位置での相対湿度による腐食速度を実験より求め、腐食開始後の腐食減量比を計算する方法を見つけ出した。
本発明は、この結果に基づいて竣工後の時間経過において鉄筋腐食減量比の推定を基に鉄筋コンクリートの耐久性診断を行う方法である。
In the present invention, after accelerating the neutralization of reinforced concrete, which actually takes time, the three factors of "temperature", "humidity" and "reinforced concrete cover depth" are important factors for the life of reinforced concrete. The experiment was conducted. From this experiment, we found that the rebar in the concrete rusts even when the concrete is not neutralized as the humidity increases, and the difference in the neutralization depth of the rusted concrete due to the humidity is parameter α. We found out a method to calculate the rusting time of reinforcing steel in reinforced concrete obtained from experiments. Furthermore, it was discovered that the higher the relative humidity at the reinforcing bar position in the concrete, the faster the corrosion rate of the reinforcing bar in the reinforced concrete, and the corrosion rate due to the relative humidity at the reinforcing bar position in the concrete was determined by experiment. I found a way to calculate the corrosion weight loss ratio.
The present invention is a method for diagnosing the durability of reinforced concrete based on the estimation of the rebar corrosion weight loss ratio over time after completion based on this result.
本発明を用いることによって、今までのような測定を行わずに設計資料から得られるコンクリートかぶり深さとコンクリート中の湿度推定データからコンクリート中の鉄筋腐食量推定と鉄筋コンクリートの耐久性診断が可能となり、地下構造物のようなコンクリートの外側からの詳細な測定が困難な場所でも、コンクリート中の鉄筋腐食量の推定と鉄筋コンクリートの耐久性診断が可能になった。 By using the present invention, it becomes possible to estimate the amount of corrosion of reinforcing steel in the concrete and the durability diagnosis of reinforced concrete from the concrete cover depth obtained from design data and the humidity estimation data in the concrete without performing measurement as in the past, Even in places where detailed measurements from the outside of concrete such as underground structures are difficult, it is possible to estimate the amount of corrosion of reinforcing steel in the concrete and diagnose the durability of reinforced concrete.
湿度によるコンクリートの中性化速度については非特許文献1において既に示されているので、コンクリートの中性化については実験期間を短縮するため促進試験を行った。コンクリートの調合は一般構造物と同程度(水セメント比60%)とした。試験体の形状および寸法を図1に示す。試験体形状は15×13.5×50cm、コンクリート中にみがき棒鋼Φ12mmをコンクリートかぶり深さが5〜35mmまで5mm刻みで埋め込んでいる。試験体は気中乾燥養生終了後、20℃・60%RH・CO25%の中性化促進チャンバーに入れ、中性化深さ25mmまで中性化を促進した。
Since the neutralization rate of concrete due to humidity has already been shown in Non-Patent Document 1, an acceleration test was conducted on the neutralization of concrete in order to shorten the experimental period. The concrete mix was the same as that of general structures (60% water cement ratio). The shape and dimensions of the specimen are shown in FIG. The shape of the specimen is 15 × 13.5 × 50 cm, and the polished steel bar Φ12 mm is embedded in the concrete with a concrete cover depth of 5 to 35 mm in 5 mm increments. The test specimens were placed in a neutralization promotion chamber at 20 ° C, 60% RH,
中性化の促進試験終了後、試験体を中性化促進チャンバーから取り出し、冬季を想定した10℃・30%RH、春秋季を想定した20℃・60%RH、夏季を想定した35℃・80%RH、及び湿潤部を想定した20℃・100%RH(水中浸漬)の4つの環境条件で暴露した。暴露は12ヶ月間行い、中性化前・中性化12mm・中性化25mm・暴露後3ヶ月・暴露後12ヶ月の時点で、JIS A 1152(2002)のフェノールフタレイン法によるコンクリート中性化深さの測定・画像解析による鉄筋腐食面積率の測定・鉄筋の錆を薬品で取り除いた後の重量減少率を測定した。試験体に図2のような細孔を設け、センサーを挿入してコンクリート中の鉄筋位置での相対湿度を測定した。重量減少率の結果を図3のグラフに示す。コンクリート中の鉄筋位置での相対湿度と鉄筋の腐食面積率の関係は、コンクリート中性化深さは同じあっても、コンクリート中の鉄筋腐食は湿度が高いほどかぶり深さの深い鉄筋が発錆していることが発見された。つぎに、環境湿度を湿度85、90、95%で暴露してコンクリート中の鉄筋位置での相対湿度と鉄筋の発錆深さに及ぼす影響を調べた。その結果、環境湿度とコンクリート中の鉄筋位置での相対湿度はおおむね一致しており、コンクリート中の鉄筋位置での相対湿度85%、90%では中性化深さから5mm深い鉄筋が腐食していたが、コンクリート中の鉄筋位置での相対湿度95%では中性化深さより10mm深い鉄筋が錆びていることが判明した。
After completion of the neutralization promotion test, the specimen is removed from the neutralization promotion chamber, and 10 ° C / 30% RH assuming winter, 20 ° C / 60% RH assuming spring / autumn, and 35 ° C assuming summer Exposure was performed under four environmental conditions of 80% RH and 20 ° C. and 100% RH (immersion in water) assuming a wet part. Exposure is carried out for 12 months, before neutralization, neutralization 12mm, neutralization 25mm, 3 months after exposure, 12 months after exposure, neutrality of concrete by phenolphthalein method of JIS A 1152 (2002) We measured the rate of weight loss after removing the rust of the reinforcing bars with chemicals. The test specimen was provided with pores as shown in FIG. 2, and a sensor was inserted to measure the relative humidity at the position of the reinforcing bar in the concrete. The result of the weight loss rate is shown in the graph of FIG. The relationship between the relative humidity at the position of the reinforcing bar in the concrete and the corrosion area ratio of the reinforcing bar is the same as the neutralization depth of the concrete, but the corrosion of the reinforcing bar in the concrete rusts when the humidity increases. It was discovered that Next, the environmental humidity was exposed at 85, 90, and 95%, and the effects on the relative humidity at the position of the reinforcing bar in the concrete and the rusting depth of the reinforcing bar were investigated. As a result, the environmental humidity and the relative humidity at the position of the reinforcing bar in the concrete are almost the same, and at a relative humidity of 85% and 90% at the reinforcing bar position in the concrete, the reinforcing bar 5mm deep from the neutralization depth is corroded. However, it was found that the reinforcing
鉄筋の発錆条件については、非特許文献4では中性化で鉄筋の発錆が決まる場合、フェノールフタレイン法による中性化深さより6〜8mm深い部分が鉄筋の発錆限界であることを報告されており、非特許文献1では、気中および散水しながら中性化した試験体中の鉄筋腐食状況を調べ、いずれの条件でもかぶり厚さの5mm手前まで中性化が進行した時点で発錆していると報告されている。このように中性化深さが鉄筋位置に到達する前から鉄筋は腐食が開始していることは周知の事実である。しかし、コンクリート中の鉄筋位置での相対湿度が95%以上と非常に高い場合は、湿度95%未満の場合より発錆する鉄筋位置は深くなることが実験により発見された。図4はその一例を示しており、中性化深さが同じでも、湿度100%の場合は、湿度80%、60%、30%の場合と比べて深い鉄筋まで発錆している。鉄筋の発錆条件は、中性化深さと鉄筋のかぶり厚さの関係に加えて、コンクリート中の鉄筋位置での相対湿度も加味して決定する必要がある。 Regarding the rusting condition of reinforcing bars, in Non-Patent Document 4, when rusting of reinforcing bars is determined by neutralization, the portion 6 to 8 mm deeper than the neutralization depth by the phenolphthalein method is the rusting limit of reinforcing bars. In Non-Patent Document 1, the corrosion status of the reinforcing bar in the test specimen neutralized while in the air and watering was investigated, and when neutralization progressed to 5 mm before the cover thickness under any conditions. Rust has been reported. As described above, it is a well-known fact that corrosion of a reinforcing bar starts before the neutralization depth reaches the reinforcing bar position. However, when the relative humidity at the rebar position in concrete is as high as 95% or more, it was found by experiments that the position of the rebar that rusts becomes deeper than when the humidity is less than 95%. Fig. 4 shows an example. Even when the neutralization depth is the same, when the humidity is 100%, it rusts to deeper reinforcing bars than when the humidity is 80%, 60%, and 30%. It is necessary to determine the rusting condition of the reinforcing bar in consideration of the relative humidity at the reinforcing bar position in the concrete in addition to the relationship between the neutralization depth and the covering thickness of the reinforcing bar.
コンクリートの中性化の進行に関しては、乾燥部での中性化速度の計算式は中性化深さをCd、中性化速度係数をA、期間をTdとすると Cd=A√Td となる。Aを中性化速度係数と呼び、一般的には中性化の進行程度を現地調査で確認する場合が多いことから、調査時の築年数Tと実測中性化深さの平均値Cを用いてA=C/√Tで求めることができる。現地調査を実施しない場合は、各種の予測式が示されており、これを活用して推定することができる。 Regarding the progress of neutralization of concrete, the calculation formula for the neutralization rate in the dry section is Cd = A√Td, where Cd is the neutralization depth, A is the neutralization rate coefficient, and Td is the duration. . A is called the neutralization rate coefficient, and in general, the progress of neutralization is often confirmed by field surveys, so the age T at the time of survey and the average value C of the measured neutralization depth are And can be obtained by A = C / √T. When the field survey is not conducted, various prediction formulas are shown, which can be used for estimation.
ただし、環境湿度やコンクリートの含水状態が高いと中性化は進行しにくいことを考慮して中性化速度係数を低減する必要があり、屋内などの乾燥部を基準として高含水状態での低減係数をβ(0<β<1)、とすると、中性化深さCw、期間をTw とすると以下になる。 However, it is necessary to reduce the neutralization rate coefficient in consideration of the fact that neutralization does not proceed easily when the environmental humidity and the moisture content of concrete are high. If the coefficient is β (0 <β <1), the neutralization depth Cw and the period Tw are as follows.
係数βの値は、以下の様々な報告例があり、構造物の状況や実測データに基づいて設定すると良く、非特許文献1によれば、1日3時間散水し続け乾湿繰り返しとなる場合はβ=0.3〜0.5と報告されている。片面乾燥の場合はβ=0.5〜0.7と実験により求められている。 The value of the coefficient β has the following various report examples, and should be set based on the state of the structure and actual measurement data. According to Non-Patent Document 1, when the water is continuously wet and dry for 3 hours a day, β = 0.3 to 0.5 is reported. In the case of single-sided drying, β = 0.5 to 0.7 is obtained by experiments.
非特許文献2によると屋外で風雨にさらされる場合を1.0とすると屋内は1.7(屋内を1とすると屋外は0.59)が得られている。 According to Non-Patent Document 2, if the outdoor exposure to wind and rain is 1.0, 1.7 indoors (0.51 indoors if indoors 1) is obtained.
環境湿度が中性化速度係数に及ぼす影響係数は、非特許文献8でも示されており、湿度60%の中性化速度係数を基準とし、環境湿度Hu%では比率βをβ=Hu(100-Hu)(140-Hu)/192000 を示している。環境湿度80%でβ=0.5となる。環境湿度90,95%を外挿(実験範囲は湿度40〜80%)して推定するとβ=0.23、0.11となる。
The influence coefficient that the environmental humidity has on the neutralization rate coefficient is also shown in Non-Patent Document 8, where the neutralization rate coefficient of 60% humidity is used as a reference, and the ratio β is β = Hu (100 -Hu) (140-Hu) / 192000. Β = 0.5 at 80% environmental humidity. When extrapolating the
コンクリート中の鉄筋位置での相対湿度による発錆する中性化深さの差αは本実験により
湿度95%未満 :中性化深さ+5mm
湿度95%以上 :中性化深さ+10mm
と表せる。従ってコンクリート中にある鉄筋の発錆時期は
Difference in neutralization depth of rusting due to relative humidity at the location of reinforcing bars in concrete is less than 95% humidity by this experiment: Neutralization depth + 5 mm
Humidity 95% or more: Neutralization depth + 10mm
It can be expressed. Therefore, the rusting time of the reinforcing bars in the concrete is
鉄筋の腐食速度に関しては、コンクリート中の鉄筋位置での相対湿度RHが高いほど早く、かぶり厚さCに反比例し、鉄筋径φ比例することが実験から判明した。腐食速度vを目的変数として、説明変数をφ/C、RHおよびφ/CとRHの交互作用φ/C×RHとして重回帰分析を行った結果を図5に示した。説明変数としては、φ/Cとφ/C×RHが選択され、重回帰式から、湿度が高いほど、かぶり厚さが小さいほど腐食速度が高くなることを示す次式が得られた。 As for the corrosion rate of the reinforcing bar, it was found from experiments that the higher the relative humidity RH at the reinforcing bar position in the concrete, the higher the rate, which is inversely proportional to the cover thickness C and proportional to the reinforcing bar diameter φ. The results of multiple regression analysis with the corrosion rate v as the objective variable and the explanatory variables as φ / C, RH, and the interaction φ / C × RH between φ / C and RH are shown in FIG. As explanatory variables, φ / C and φ / C × RH were selected, and from the multiple regression equation, the following equation was obtained indicating that the higher the humidity and the smaller the cover thickness, the higher the corrosion rate.
基準コンクリートに対する温度・材料・調合の影響係数γについては、水セメント比が60%以外のときは、森永式などを活用して水セメント比が60%に対する腐食速度の比を計算して(2)式に乗じて反映すると良い。温度が特に高い場合はアレニウス式により基準とする温度(20℃程度)に対する反応速度定数比を計算して(2)式に温度の影響を反映すると更に良い。 Regarding the influence coefficient γ of temperature, material, and blending for the reference concrete, when the water cement ratio is other than 60%, use the Morinaga formula to calculate the corrosion rate ratio for the water cement ratio of 60% (2 It is good to reflect by multiplying the formula. When the temperature is particularly high, it is better to calculate the reaction rate constant ratio with respect to the reference temperature (about 20 ° C) by the Arrhenius equation and to reflect the influence of the temperature in the equation (2).
統計学を用いて腐食量を算出する方法を示す。 The method of calculating the amount of corrosion using statistics will be shown.
図6は経年により中性化が進行してゆくときの(3)式で求められる腐食確率の変化を示したもので、腐食面積の面から評価すると中性化が進行しやすい乾燥部は湿潤部より腐食確率はかなり大きくなる。
図7に腐食確率と腐食減量比の関係を示す。腐食を腐食減量で評価するには以下のように考えると良い。ある時刻tiから時間増分Δtの間に新たにΔPiだけ発錆し、この発錆した部位は経年とともに腐食速度viで腐食してゆく。時刻TAある時間増分の腐食量は
Fig. 6 shows the change in the probability of corrosion obtained by equation (3) when neutralization progresses over time, and the dry part where neutralization is likely to progress is wet when evaluated from the aspect of the corrosion area. Corrosion probability is considerably larger than the part.
Figure 7 shows the relationship between the corrosion probability and the corrosion weight loss ratio. To evaluate corrosion by corrosion weight loss, the following should be considered. Rust is newly rusted by ΔP i during a time increment Δt from a certain time t i , and the rusted portion corrodes at a corrosion rate v i with the passage of time. Corrosion of the time T A is the time increment
一般的なコンクリート(水セメント比60%)で、コンクリート中の湿度が60〜100%の場合について、鉄筋の腐食量を推定する。 For general concrete (60% water cement ratio) and the humidity in the concrete is 60 to 100%, the corrosion amount of the reinforcing bars is estimated.
60%RHにおける中性化速度係数Aを平均値4.0 mm√年、
変動係数30%、かぶり厚さの平均値40mm、標準偏差10mm、
Neutralization rate coefficient A at 60% RH, average value 4.0 mm√year,
Coefficient of
時間経過とともに中性化が√T則で進行するとして、腐食確率は(3)式により時間ステップで求めると結果は図8-Aとなる。 Assuming that neutralization proceeds according to the √T rule over time, the corrosion probability is determined in time steps using equation (3), and the result is shown in FIG. 8-A.
各時間ステップの腐食確率増分ΔPiに年数を乗じ、さらに新たに発錆した鉄筋の平均的なかぶり厚さから逐次求める腐食速度を乗じてすべての時間ステップについて総和すると(4)式より腐食減量比を求めることができる。結果は図8-Bとなる。 Multiply the corrosion probability increment ΔPi of each time step by the number of years, and then multiply by the corrosion rate obtained sequentially from the average cover thickness of the newly rusted reinforcing bar. Can be requested. The result is shown in Figure 8-B.
湿度100%では、中性化の進行は遅く腐食確率(腐食面積率)は小さいが、腐食減量比は最大となっており、部分的な鉄筋が大きな欠損を生じている状況を推定できる。各時間ステップにおいて、腐食減量比を腐食確率で除して腐食部の平均腐食減量を求め、横軸に腐食確率をとると図8-Cとなり、鉄筋の腐食確率が同じでも腐食部の平均腐食減量は大きく異なることが明瞭に把握できる。すなわち、腐食確率のみにより耐久性評価は困難であることを示しており、鉄筋の腐食の進行すなわち腐食減量で評価する必要がある。本発明により、精度良く腐食減量を推定することにより、構造物の耐久性を直接的に評価することが可能となった。耐久性評価について計算を行った結果の推定年数を表2に示す。 At a humidity of 100%, the progress of neutralization is slow and the corrosion probability (corrosion area rate) is small, but the corrosion weight loss ratio is the maximum, and it can be estimated that the partial rebar has a large defect. At each time step, the average corrosion weight loss of the corroded part is obtained by dividing the corrosion weight loss ratio by the corrosion probability, and the horizontal axis shows the corrosion probability. It can be clearly seen that the weight loss varies greatly. That is, the durability evaluation is difficult only by the corrosion probability, and it is necessary to evaluate the progress of corrosion of the reinforcing bars, that is, the corrosion weight loss. According to the present invention, it is possible to directly evaluate the durability of the structure by accurately estimating the corrosion weight loss. Table 2 shows the estimated years of the results of calculations for durability evaluation.
水セメント比が55%のコンクリートについて実施例1と同じ条件で腐食量を推定する。 The amount of corrosion is estimated under the same conditions as in Example 1 for concrete with a water-cement ratio of 55%.
中性化速度係数に関しては、実測値があれば実測値より中性化速度係数を求めて使用すればよい。ここでは、既往の中性化予測式の1つである岸谷式を活用して水セメント比60%に対する水セメント比55%の中性化速度係数の比を求めると、 Regarding the neutralization rate coefficient, if there is an actual measurement value, the neutralization rate coefficient may be obtained from the actual measurement value and used. Here, using the Kishitani formula, which is one of the existing neutralization prediction formulas, the ratio of the neutralization rate coefficient of 55% water cement ratio to 60% water cement ratio is calculated.
腐食速度についても、従来のコンクリートの調合が腐食速度に及ぼす影響に関する知見を用いてγを設定すれば良い。例えば、非特許文献6に示されている式をグラフにすると図9のようになる。図9のグラフから0.8程度を用いると良い。腐食速度の推定式(2)に0.8を乗じて、 As for the corrosion rate, γ may be set by using knowledge about the influence of the mixing of conventional concrete on the corrosion rate. For example, if the equation shown in Non-Patent Document 6 is graphed, it is as shown in FIG. It is better to use about 0.8 from the graph of FIG. Multiplying the corrosion rate estimation formula (2) by 0.8,
耐久性評価について計算を行った結果の推定年数を表3に示す。 Table 3 shows the estimated years of the results of the durability evaluation.
Claims (5)
In claim 4, when the corrosion weight loss ratio is 0.1% or more and less than 0.5%, it is judged as “a state that is confirmed by visual inspection or simple inspection”, and when it is 0.5% or more and less than 2%, “inspection diagnosis is performed and appropriate Durability of reinforced concrete characterized in that it is judged as “necessary to extend the life” and when it is 2% or more, it is judged as “a state that requires detailed inspection and extensive repairs to extend the life” Diagnosis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003281485A JP4108568B2 (en) | 2003-07-29 | 2003-07-29 | Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003281485A JP4108568B2 (en) | 2003-07-29 | 2003-07-29 | Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005049217A true JP2005049217A (en) | 2005-02-24 |
JP4108568B2 JP4108568B2 (en) | 2008-06-25 |
Family
ID=34266972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003281485A Expired - Fee Related JP4108568B2 (en) | 2003-07-29 | 2003-07-29 | Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4108568B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224405A (en) * | 2007-03-13 | 2008-09-25 | Tokyo Electric Power Co Inc:The | Corrosion rate evaluating method |
JP2009162609A (en) * | 2008-01-07 | 2009-07-23 | Shimizu Corp | Surface contamination degree evaluation method and surface contamination degree evaluation device |
JP2010249545A (en) * | 2009-04-10 | 2010-11-04 | Central Res Inst Of Electric Power Ind | Method and device for estimating corrosion quantity of reinforcing rod, and estimation program |
JP2017142095A (en) * | 2016-02-08 | 2017-08-17 | 東京電力ホールディングス株式会社 | Method and program for determining corrosion of reinforcing bar |
CN109187323A (en) * | 2018-09-18 | 2019-01-11 | 广东电网有限责任公司 | Coastal area iron tower foundation structure reinforcing bars corrode diagnostic equipment |
JP2020106332A (en) * | 2018-12-26 | 2020-07-09 | 太平洋セメント株式会社 | Measuring method of relative humidity in concrete |
CN111693447A (en) * | 2020-05-26 | 2020-09-22 | 中冶建筑研究总院有限公司 | Method for evaluating durability residual life of concrete roof panel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09329568A (en) * | 1996-06-12 | 1997-12-22 | Railway Technical Res Inst | Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure |
JPH1021211A (en) * | 1996-06-28 | 1998-01-23 | Taisei Corp | Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure |
JP2002098660A (en) * | 2000-09-25 | 2002-04-05 | Non-Destructive Inspection Co Ltd | Quantitative evaluation method of amount of corrosion of reinforced bar |
JP2003161693A (en) * | 2001-11-27 | 2003-06-06 | Kajima Corp | System and method for deterioration evaluation and lifecycle cost, of concrete structure considering meteorological environment, program for the method, and recording medium |
-
2003
- 2003-07-29 JP JP2003281485A patent/JP4108568B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09329568A (en) * | 1996-06-12 | 1997-12-22 | Railway Technical Res Inst | Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure |
JPH1021211A (en) * | 1996-06-28 | 1998-01-23 | Taisei Corp | Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure |
JP2002098660A (en) * | 2000-09-25 | 2002-04-05 | Non-Destructive Inspection Co Ltd | Quantitative evaluation method of amount of corrosion of reinforced bar |
JP2003161693A (en) * | 2001-11-27 | 2003-06-06 | Kajima Corp | System and method for deterioration evaluation and lifecycle cost, of concrete structure considering meteorological environment, program for the method, and recording medium |
Non-Patent Citations (1)
Title |
---|
内川祐一郎 他7名: ""RC地下躯体の耐久性診断手法に関する研究"", 2002年度大会(北陸) 学術講演梗概集 A−1分冊 材料施行, JPN6008005892, 30 June 2002 (2002-06-30), JP, pages 595 - 596, ISSN: 0000977395 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224405A (en) * | 2007-03-13 | 2008-09-25 | Tokyo Electric Power Co Inc:The | Corrosion rate evaluating method |
JP2009162609A (en) * | 2008-01-07 | 2009-07-23 | Shimizu Corp | Surface contamination degree evaluation method and surface contamination degree evaluation device |
JP2010249545A (en) * | 2009-04-10 | 2010-11-04 | Central Res Inst Of Electric Power Ind | Method and device for estimating corrosion quantity of reinforcing rod, and estimation program |
JP2017142095A (en) * | 2016-02-08 | 2017-08-17 | 東京電力ホールディングス株式会社 | Method and program for determining corrosion of reinforcing bar |
CN109187323A (en) * | 2018-09-18 | 2019-01-11 | 广东电网有限责任公司 | Coastal area iron tower foundation structure reinforcing bars corrode diagnostic equipment |
JP2020106332A (en) * | 2018-12-26 | 2020-07-09 | 太平洋セメント株式会社 | Measuring method of relative humidity in concrete |
JP7245046B2 (en) | 2018-12-26 | 2023-03-23 | 太平洋セメント株式会社 | Method for measuring relative humidity inside concrete |
CN111693447A (en) * | 2020-05-26 | 2020-09-22 | 中冶建筑研究总院有限公司 | Method for evaluating durability residual life of concrete roof panel |
Also Published As
Publication number | Publication date |
---|---|
JP4108568B2 (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Neves et al. | Field assessment of the relationship between natural and accelerated concrete carbonation resistance | |
Ahmad | Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review | |
JP4873472B2 (en) | Prediction method of corrosion deterioration of reinforced concrete structures | |
Bayuaji et al. | Corrosion damage assessment of a reinforced concrete canal structure of power plant after 20 years of exposure in a marine environment: A case study | |
Wang et al. | Semi-empirical prediction model of chloride-induced corrosion rate in uncracked reinforced concrete exposed to a marine environment | |
JP4108568B2 (en) | Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete | |
Ramón et al. | Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete | |
JP5137270B2 (en) | Prediction method of corrosion deterioration of reinforced concrete structures | |
JP4521066B2 (en) | Prediction method of corrosion occurrence time of steel in concrete | |
JP2011257245A (en) | Corrosion amount estimation method, corrosion amount estimation device, and management method for reinforced concrete | |
Manzur et al. | Application of corrosion potential as a tool to assess sustainability of indigenous concrete mixes in Bangladesh | |
Verma et al. | In-situ condition monitoring of reinforced concrete structures | |
Xia et al. | Prediction of corrosion-induced crack width of corroded reinforced concrete structures | |
JP7101380B2 (en) | How to monitor the corrosive environment in concrete structures | |
Andrade | Model for prediction of reinforced concrete service life based on electrical resistivity | |
Nasser et al. | The relation between concrete crack width and rebar corrosion level validated on a large set of experimental data | |
Martínez et al. | Corrosion characterization of reinforced concrete slabs with different devices | |
Amleh et al. | Corrosion response of a decommissioned deteriorated bridge deck | |
JP2009236763A (en) | Method and program for estimating reinforcement corrosion rate inside concrete | |
Michel et al. | Experimental determination of the penetration depth of corrosion products and time to corrosion-induced cracking in reinforced cement based materials | |
Duchesne et al. | Study of the deterioration of concrete incorporating sulfide-bearing aggregates | |
Wilson et al. | Accelerated artificial corrosion monitoring of reinforced concrete slabs using the half-cell potential method | |
Busba | Effect of localized corrosion of steel on chloride-induced concrete cover cracking in reinforced concrete structures | |
Andrade et al. | The use of corrosion rates for the identification of damaged zones in a football stadium and efficacy of surface inhibitors as repair method | |
Di Benedetti | Acoustic emission in structural health monitoring of reinforced concrete structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080402 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |