JP2005049217A - Rusting time estimating method, reinforcing steel corrosion rate estimating method and reinforcing steel corrosion estimating method of reinforcing steel in reinforced concrete, and durability diagnosing method of reinforced concrete - Google Patents

Rusting time estimating method, reinforcing steel corrosion rate estimating method and reinforcing steel corrosion estimating method of reinforcing steel in reinforced concrete, and durability diagnosing method of reinforced concrete Download PDF

Info

Publication number
JP2005049217A
JP2005049217A JP2003281485A JP2003281485A JP2005049217A JP 2005049217 A JP2005049217 A JP 2005049217A JP 2003281485 A JP2003281485 A JP 2003281485A JP 2003281485 A JP2003281485 A JP 2003281485A JP 2005049217 A JP2005049217 A JP 2005049217A
Authority
JP
Japan
Prior art keywords
corrosion
concrete
reinforcing steel
reinforced concrete
neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003281485A
Other languages
Japanese (ja)
Other versions
JP4108568B2 (en
Inventor
Kozo Ariizumi
浩蔵 有泉
Susumu Takigasaki
進 滝ヶ崎
Hideo Kinoshita
英雄 木ノ下
Toshio Kumagai
俊雄 熊谷
Hitoshi Kamiyama
等 上山
Masao Kojima
正朗 小島
Tateo Mitsui
健郎 三井
Toshio Sugiura
利生 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Tokyo Electric Power Services Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Takenaka Komuten Co Ltd
Tokyo Electric Power Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Takenaka Komuten Co Ltd, Tokyo Electric Power Services Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2003281485A priority Critical patent/JP4108568B2/en
Publication of JP2005049217A publication Critical patent/JP2005049217A/en
Application granted granted Critical
Publication of JP4108568B2 publication Critical patent/JP4108568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately estimating reinforcing steel corrosion in reinforced concrete on various environmental conditions such as an underground structure and a method for diagnosing durability of the reinforced concrete based on the reinforcing steel corrosion in comparison with an existing method for estimating a corroded area on a surface of the reinforcing steel in the reinforced concrete at a location such as an aboveground structure easily examined. <P>SOLUTION: In an experiment, the reinforcing steel is discovered to rust at high humidity even although neutralization of the concrete does not proceed. A method for calculating a rusting time of the reinforcing steel is discovered by determining a difference α between a neutralization depth of the concrete rusted by the humidity and a covering depth determined from the experiment. A method for estimating a loss rate in weight by the rust after a start of the rust is found by determining the fact that a reinforcing steel corrosion rate is high if the humidity is high and determining the corrosion rate from the experiment. The method diagnoses the durability of the reinforcing concrete based on the loss rate in weight by the rust in the concrete determined from the result. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は鉄筋コンクリート中にある鉄筋の腐食評価に関するもので、特に腐食減量比に基づいて鉄筋コンクリートの耐久性評価に関するものである。 The present invention relates to corrosion evaluation of reinforcing steel in reinforced concrete, and more particularly to durability evaluation of reinforced concrete based on the corrosion weight loss ratio.

従来から鉄筋コンクリートの耐久性評価を行っている手法は存在した。   There has been a method for evaluating the durability of reinforced concrete.

ある時刻での中性化深さと腐食速度を実測するか2つの時刻で腐食速度を実測し、あらかじめ想定しておいた腐食量の時刻暦関数にあてはめて未知定数を決定し腐食量の時刻暦関数を得て推定を行っている。(例えば特許文献1)しかし、腐食量の時刻暦関数を決定するためには、鉄筋が錆び始めた後に中性化深さや腐食速度を実測するしか方法がなく適用上の制約が大きい。鉄筋の腐食が進行し、ひび割れが生じた後に水分や酸素が供給されやすくなり腐食速度が速くなる現象については評価できない。部位によって腐食速度は異なり、建物全体としての影響を評価することができない。腐食量は推定しているが、耐久年数を評価するには至っていない。   Measure the neutralization depth and corrosion rate at a certain time, or measure the corrosion rate at two times, and apply an estimated time constant to the corrosion amount time calendar function in advance to determine an unknown constant. A function is obtained and estimation is performed. (For example, Patent Document 1) However, in order to determine the time calendar function of the corrosion amount, there is only a method of actually measuring the neutralization depth and the corrosion rate after the reinforcing bar starts to rust, and there are great restrictions on application. It is not possible to evaluate the phenomenon in which the corrosion rate of the reinforcing bars is increased and the corrosion rate is increased after moisture and oxygen are easily supplied after cracks are generated. The corrosion rate varies depending on the site, and the impact of the entire building cannot be evaluated. Although the amount of corrosion is estimated, the durability has not been evaluated.

鉄筋のコンクリートかぶり深さ・中性化深さ・鉄筋位置全塩化物量・ひび割れ・温度・年間降水量・湿度などのパラメータを用いて実測値から得た計算式を用い、鉄筋の腐食度を推定する評価方法がある。(例えば特許文献2)ニューラルネットワークを利用していることから、実測データを多数集めなければ精度が確保できず、特に推定を行う係数が示されていない。つまり統計データで推定を行う方法であるが、鉄筋コンクリートの寿命は50年から200年と非常に長く、現存している建築物での統計データを収集すること自体が困難なためすぐに実施することができない。   Estimate the degree of corrosion of reinforcing bars by using formulas obtained from actual measurements using parameters such as concrete cover depth, neutralization depth, total chloride content, cracks, temperature, annual precipitation, and humidity. There is an evaluation method to do. (For example, Patent Document 2) Since a neural network is used, accuracy cannot be ensured unless a large number of actual measurement data is collected, and no coefficient for estimation is shown. In other words, it is a method of estimating with statistical data, but the life of reinforced concrete is very long from 50 to 200 years, and it is difficult to collect statistical data on existing buildings itself, so it should be implemented immediately I can't.

コンクリートの自然電位・塩分量・含水率・炭酸化深さから鉄筋の腐食度を評価する方法及び診断装置がある。(例えば特許文献3)腐食量の測定はできるが将来的な腐食速度を推定したり鉄筋コンクリートの寿命を推定したりすることはできない。   There are methods and diagnostic devices for evaluating the corrosion degree of reinforcing bars from the natural potential, the salt content, the moisture content, and the carbonation depth of concrete. Although the amount of corrosion can be measured (for example, Patent Document 3), it is impossible to estimate the future corrosion rate or the life of reinforced concrete.

中性化によるコンクリート中の鉄筋腐食速度について検討するため2種類の水セメント比の試験体を制作し、促進中性化試験と散水促進中性化試験を行って鉄筋の腐食量を検討し、中性化による鉄筋腐食モデルを構築して中性化進行予測手法を組み合わせることにより中性化の進行に伴う鉄筋腐食の進行を予測している。(例えば非特許文献1)コンクリートの中性化速度はコンクリートの含水率が高いほど中性化速度が遅くなることが実験により分かっている。腐食速度については試験体の大きさが小さすぎたため構造物との条件が一致せず腐食モデルとしては一般的な構造物に適応できない。   In order to investigate the corrosion rate of reinforcing steel in concrete due to neutralization, two types of water-cement ratio specimens were produced, and the accelerated neutralization test and the watering accelerated neutralization test were conducted to examine the amount of corrosion of the reinforcing bar. The progress of rebar corrosion with the progress of neutralization is predicted by building a model of rebar corrosion due to neutralization and combining the method for predicting the progress of neutralization. (For example, Non-Patent Document 1) It has been experimentally known that the neutralization rate of concrete becomes slower as the moisture content of the concrete increases. As for the corrosion rate, the size of the specimen was too small, so the conditions with the structure did not match, and the corrosion model could not be applied to a general structure.

従来から鉄筋コンクリート中にある鉄筋の腐食確率を用いて寿命評価を行う方法は存在していた。(例えば非特許文献2)建物の実態調査から、鉄筋のさび評点の平均値が3(腐食グレードIII、鉄筋が面錆びを起こしている相当)となるときの、かぶり厚さと中性化深さの関係を屋内、屋外について把握している。かぶり厚さと中性化深さはそれぞれ正規分布とみなせるのでこれらの差の正規分布を求め、マイナス無限大から鉄筋の錆び評点が3となるかぶり厚さと中性化深さの差まで積分することで腐食確率を求め耐久性評価を行っている。この方法は地上構造物の広範な調査結果に基づいており、地上構造物については妥当性が高いが、地下躯体の湿潤部のように環境条件で発錆時のかぶり厚さと中性化深さの関係(発錆条件)や腐食速度が異なってくる場合については大きな誤差を生み出してしまう。さらに、腐食を腐食確率すなわち腐食面積で捉えているため、鉄筋の腐食量については評価することができない。
従来鉄筋コンクリート中の鉄筋発錆はかぶり深さまで中性化が進行した時に起こるとされていた。しかしながら計算上の基準としては中性化深さの差を10mmとしている場合もある。(例えば非特許文献3)中性化残りを10mmとした根拠は、腐食しても構造物の機能を失うような重大な腐食が生じた例がほとんどないためであったが、本件の実験により条件によって5mmまで発錆しないことが分かった。しかし、かぶり厚さや中性化深さにばらつきがあるため、かぶり厚さが平均より小さく中性化深さが平均値より大きい部位では、早い時期に発錆して環境条件で決まる腐食速度でどんどん腐食が進行してゆく。腐食速度が速い場合はかなりの腐食量になり危険側の評価をしてしまう。
一般的なコンクリートよりも錆の発生しやすい水セメント比70%で試験体を制作して、中性化による鉄筋腐食限界をフェノールフタレイン法によって計測した中性化深さと比較している研究結果も存在している。(例えば非特許文献4)
塩化物を含んだコンクリート中の鉄筋腐食速度について実験を行い、腐食速度の推定式を導いている研究もある。(例えば非特許文献5)塩化物による鉄筋腐食速度は速い段階で起こるが、一般的な環境で起こるコンクリートの中性化による鉄筋腐食速度の推定式は求めていない。
塩分に起因する鉄筋腐食に関して海洋環境下で鉄筋コンクリート構造物を調査し、寿命予測式を導いている研究もある。(例えば非特許文献6)海洋環境などではない通常の場所で起こるコンクリートの中性化による鉄筋腐食についてのコンクリート寿命予測は行ってはいない。
Conventionally, there has been a method for evaluating the life using the corrosion probability of reinforcing steel in reinforced concrete. (For example, Non-Patent Document 2) From the survey of the building, the cover thickness and neutralization depth when the average value of the rust rating of the reinforcing bar is 3 (corrosion grade III, equivalent to the surface rusting of the reinforcing bar) To understand the relationship between indoors and outdoors. Cover thickness and neutralization depth can be regarded as normal distributions, so obtain the normal distribution of these differences and integrate from minus infinity to the difference between the cover thickness and neutralization depth at which the rust rating of the reinforcing bar is 3. The corrosion probability is obtained and the durability is evaluated. This method is based on extensive survey results of ground structures, and is highly relevant for ground structures, but the cover thickness and neutralization depth at the time of rusting under environmental conditions such as wet parts of underground structures. If the relationship (rusting conditions) and the corrosion rate differ, a large error will be produced. Furthermore, since the corrosion is captured by the corrosion probability, that is, the corrosion area, the corrosion amount of the reinforcing bars cannot be evaluated.
Conventionally, rusting in reinforced concrete was supposed to occur when neutralization progressed to the cover depth. However, there is a case where the difference in neutralization depth is 10 mm as a calculation standard. (For example, Non-Patent Document 3) The reason for setting the neutralization residue to 10 mm was that there were almost no examples of serious corrosion that would cause the structure to lose its function even if it was corroded. It was found that it did not rust up to 5mm depending on the conditions. However, since the cover thickness and the neutralization depth vary, at sites where the cover thickness is smaller than the average and the neutralization depth is greater than the average value, rusting occurs early and the corrosion rate is determined by the environmental conditions. Corrosion progresses more and more. If the corrosion rate is high, the amount of corrosion becomes considerable and the risk side is evaluated.
Research results of making a specimen with a 70% water cement ratio, which is more likely to rust than general concrete, and comparing the corrosion limit of rebar due to neutralization with the neutralization depth measured by the phenolphthalein method Also exist. (For example, Non-Patent Document 4)
Some studies have conducted experiments on the corrosion rate of reinforcing steel in concrete containing chlorides, and derived an equation for estimating the corrosion rate. (For example, Non-Patent Document 5) Although the corrosion rate of reinforcing steel bars due to chloride occurs at a high stage, an estimation formula for the corrosion rate of reinforcing steel bars due to the neutralization of concrete that occurs in a general environment is not obtained.
Some studies have investigated the reinforced concrete structures in the marine environment regarding the corrosion of reinforcing steel bars caused by salinity, and derived the life prediction formula. (For example, Non-Patent Document 6) Concrete life prediction is not performed for reinforcing steel corrosion due to neutralization of concrete that occurs in a normal place other than the marine environment.

鉄筋の腐食がRC構造物の耐久性・水密性に与える影響を評価することを目的として、電食試験により鉄筋の腐食を促進して腐食量と透水係数の関係について研究を行った例もある。(例えば非特許文献7)この結果ひび割れ発生限界腐食量が調べられている。   In order to evaluate the effects of corrosion of reinforcing bars on the durability and water tightness of RC structures, there are cases where the corrosion of reinforcing bars was promoted by an electric corrosion test to study the relationship between the amount of corrosion and the hydraulic conductivity. . (For example, Non-Patent Document 7) As a result, the cracking limit corrosion amount has been investigated.

コンクリート中の鉄筋腐食を促進する要因の一つである中性化を様々な環境条件で実験を行っている例もある。(例えば非特許文献8) コンクリートの中性化について詳細な実験が行われているが、鉄筋腐食に関しては実験されていない。
特開2002-98660号公報 特開平10-21211号公報 特開平9-329568号公報 佐伯,「中性化によるモルタル中の鉄筋腐食の定量評価」,土木学会論文集,No.532/V-30,1996年2月,p.55-66 和泉他,「鉄筋のかぶり厚さの信頼性設計による耐久性向上技術の研究その1〜その3」,日本建築学会大会学術講演梗概集,昭和59年1月 土木学会 2002年制定 「コンクリート標準示方書[施工編]」 岸谷他,「コンクリート中の鉄筋の腐食に関する研究」,日本建築学会論文報告集,昭和54年9月,p.11-15 桝田他,「塩化物を含んだコンクリート中の鉄筋腐食速度に関する実験」,日本建築学会構造系論文報告集,第435号1992年5月,p.19-27 森永他,「腐食による鉄筋コンクリート構造物の寿命予測」,コンクリート工学論文集,第1巻第1号,1990年1月,p.177-188 坂口他,「電飾試験による鉄筋の腐食と透水性について」,土木学会第50回年次学術講演会,V-139,平成7年9月,p.278-279 阿部他,「コンクリートの促進中性化試験方法の評価に関する研究」,日本建築学会構造系論文報告集,第409号,1990年3月,p.1-10
There are also examples in which neutralization, which is one of the factors that promote reinforcement corrosion in concrete, is conducted under various environmental conditions. (For example, Non-Patent Document 8) Although detailed experiments have been conducted on the neutralization of concrete, no experiments have been conducted on rebar corrosion.
Japanese Patent Laid-Open No. 2002-98660 JP-A-10-21211 JP-A-9-329568 Saeki, “Quantitative evaluation of rebar corrosion in mortar by neutralization”, Journal of Japan Society of Civil Engineers, No.532 / V-30, February 1996, p.55-66 Izumi et al., "Study on durability improvement technology by reliability design of rebar cover thickness, part 1-part 3," Architectural Institute of Japan Annual Meeting Summary, January 1984 Japan Society of Civil Engineers Established in 2002 "Concrete Standard Specification [Construction]" Kishitani et al., "Study on corrosion of reinforcing steel in concrete," Architectural Institute of Japan Proceedings, September 1979, p.11-15 Hamada et al., “Experiment on Rebar Corrosion Rate in Concrete Containing Chloride”, Architectural Institute of Japan, 435 May 1992, p.19-27 Morinaga et al., “Life prediction of reinforced concrete structures due to corrosion”, Proceedings of Concrete Engineering, Vol. 1, No. 1, January 1990, p.177-188 Sakaguchi et al., “Corrosion and Permeability of Reinforcing Bars by Electrical Tests”, 50th Annual Conference of Japan Society of Civil Engineers, V-139, September 1995, p.278-279 Abe et al., "Study on evaluation of accelerated neutralization test method for concrete", Architectural Institute of Japan Structural Papers, No.409, March 1990, p.1-10

地上建築物などの比較的調査の行いやすい場所での鉄筋コンクリート中の鉄筋表面腐食面積等を推定する方法は存在したが、地下構造物など様々な環境条件下にある鉄筋コンクリート中の鉄筋腐食量を精度よく推定する方法、および鉄筋腐食量に基づいて鉄筋コンクリートの耐久性診断を行うことができる手段がなかった。   Although there was a method for estimating the surface corrosion area of reinforced concrete in reinforced concrete in places where surveys are relatively easy to perform, such as underground buildings, the amount of reinforced corrosion in reinforced concrete under various environmental conditions such as underground structures is accurate. There was no method to estimate well and to make a durability diagnosis of reinforced concrete based on the amount of corrosion of reinforcing bars.

本発明は、実際には時間のかかる鉄筋コンクリートの中性化を促進処理した後、鉄筋コンクリートの寿命に対して重要な要因となる「温度」「湿度」「鉄筋のコンクリートかぶり深さ」の3点について実験を行った。本実験から湿度が高いほどコンクリートの中性化が進んでいなくてもコンクリート中にある鉄筋は発錆する事を発見し、湿度による発錆するコンクリート中性化深さの差をパラメータαとして実験より求めて鉄筋コンクリート中にある鉄筋の発錆時期を計算する方法を見つけ出した。更に、コンクリート中の鉄筋位置での相対湿度が高いほど鉄筋コンクリート中にある鉄筋の腐食速度が速くなることを発見し、コンクリート中の鉄筋位置での相対湿度による腐食速度を実験より求め、腐食開始後の腐食減量比を計算する方法を見つけ出した。
本発明は、この結果に基づいて竣工後の時間経過において鉄筋腐食減量比の推定を基に鉄筋コンクリートの耐久性診断を行う方法である。
In the present invention, after accelerating the neutralization of reinforced concrete, which actually takes time, the three factors of "temperature", "humidity" and "reinforced concrete cover depth" are important factors for the life of reinforced concrete. The experiment was conducted. From this experiment, we found that the rebar in the concrete rusts even when the concrete is not neutralized as the humidity increases, and the difference in the neutralization depth of the rusted concrete due to the humidity is parameter α. We found out a method to calculate the rusting time of reinforcing steel in reinforced concrete obtained from experiments. Furthermore, it was discovered that the higher the relative humidity at the reinforcing bar position in the concrete, the faster the corrosion rate of the reinforcing bar in the reinforced concrete, and the corrosion rate due to the relative humidity at the reinforcing bar position in the concrete was determined by experiment. I found a way to calculate the corrosion weight loss ratio.
The present invention is a method for diagnosing the durability of reinforced concrete based on the estimation of the rebar corrosion weight loss ratio over time after completion based on this result.

本発明を用いることによって、今までのような測定を行わずに設計資料から得られるコンクリートかぶり深さとコンクリート中の湿度推定データからコンクリート中の鉄筋腐食量推定と鉄筋コンクリートの耐久性診断が可能となり、地下構造物のようなコンクリートの外側からの詳細な測定が困難な場所でも、コンクリート中の鉄筋腐食量の推定と鉄筋コンクリートの耐久性診断が可能になった。   By using the present invention, it becomes possible to estimate the amount of corrosion of reinforcing steel in the concrete and the durability diagnosis of reinforced concrete from the concrete cover depth obtained from design data and the humidity estimation data in the concrete without performing measurement as in the past, Even in places where detailed measurements from the outside of concrete such as underground structures are difficult, it is possible to estimate the amount of corrosion of reinforcing steel in the concrete and diagnose the durability of reinforced concrete.

湿度によるコンクリートの中性化速度については非特許文献1において既に示されているので、コンクリートの中性化については実験期間を短縮するため促進試験を行った。コンクリートの調合は一般構造物と同程度(水セメント比60%)とした。試験体の形状および寸法を図1に示す。試験体形状は15×13.5×50cm、コンクリート中にみがき棒鋼Φ12mmをコンクリートかぶり深さが5〜35mmまで5mm刻みで埋め込んでいる。試験体は気中乾燥養生終了後、20℃・60%RH・CO25%の中性化促進チャンバーに入れ、中性化深さ25mmまで中性化を促進した。 Since the neutralization rate of concrete due to humidity has already been shown in Non-Patent Document 1, an acceleration test was conducted on the neutralization of concrete in order to shorten the experimental period. The concrete mix was the same as that of general structures (60% water cement ratio). The shape and dimensions of the specimen are shown in FIG. The shape of the specimen is 15 × 13.5 × 50 cm, and the polished steel bar Φ12 mm is embedded in the concrete with a concrete cover depth of 5 to 35 mm in 5 mm increments. The test specimens were placed in a neutralization promotion chamber at 20 ° C, 60% RH, CO 2 5% after air-drying curing, and neutralization was promoted to a neutralization depth of 25 mm.

中性化の促進試験終了後、試験体を中性化促進チャンバーから取り出し、冬季を想定した10℃・30%RH、春秋季を想定した20℃・60%RH、夏季を想定した35℃・80%RH、及び湿潤部を想定した20℃・100%RH(水中浸漬)の4つの環境条件で暴露した。暴露は12ヶ月間行い、中性化前・中性化12mm・中性化25mm・暴露後3ヶ月・暴露後12ヶ月の時点で、JIS A 1152(2002)のフェノールフタレイン法によるコンクリート中性化深さの測定・画像解析による鉄筋腐食面積率の測定・鉄筋の錆を薬品で取り除いた後の重量減少率を測定した。試験体に図2のような細孔を設け、センサーを挿入してコンクリート中の鉄筋位置での相対湿度を測定した。重量減少率の結果を図3のグラフに示す。コンクリート中の鉄筋位置での相対湿度と鉄筋の腐食面積率の関係は、コンクリート中性化深さは同じあっても、コンクリート中の鉄筋腐食は湿度が高いほどかぶり深さの深い鉄筋が発錆していることが発見された。つぎに、環境湿度を湿度85、90、95%で暴露してコンクリート中の鉄筋位置での相対湿度と鉄筋の発錆深さに及ぼす影響を調べた。その結果、環境湿度とコンクリート中の鉄筋位置での相対湿度はおおむね一致しており、コンクリート中の鉄筋位置での相対湿度85%、90%では中性化深さから5mm深い鉄筋が腐食していたが、コンクリート中の鉄筋位置での相対湿度95%では中性化深さより10mm深い鉄筋が錆びていることが判明した。   After completion of the neutralization promotion test, the specimen is removed from the neutralization promotion chamber, and 10 ° C / 30% RH assuming winter, 20 ° C / 60% RH assuming spring / autumn, and 35 ° C assuming summer Exposure was performed under four environmental conditions of 80% RH and 20 ° C. and 100% RH (immersion in water) assuming a wet part. Exposure is carried out for 12 months, before neutralization, neutralization 12mm, neutralization 25mm, 3 months after exposure, 12 months after exposure, neutrality of concrete by phenolphthalein method of JIS A 1152 (2002) We measured the rate of weight loss after removing the rust of the reinforcing bars with chemicals. The test specimen was provided with pores as shown in FIG. 2, and a sensor was inserted to measure the relative humidity at the position of the reinforcing bar in the concrete. The result of the weight loss rate is shown in the graph of FIG. The relationship between the relative humidity at the position of the reinforcing bar in the concrete and the corrosion area ratio of the reinforcing bar is the same as the neutralization depth of the concrete, but the corrosion of the reinforcing bar in the concrete rusts when the humidity increases. It was discovered that Next, the environmental humidity was exposed at 85, 90, and 95%, and the effects on the relative humidity at the position of the reinforcing bar in the concrete and the rusting depth of the reinforcing bar were investigated. As a result, the environmental humidity and the relative humidity at the position of the reinforcing bar in the concrete are almost the same, and at a relative humidity of 85% and 90% at the reinforcing bar position in the concrete, the reinforcing bar 5mm deep from the neutralization depth is corroded. However, it was found that the reinforcing bar 10 mm deeper than the neutralization depth was rusted at 95% relative humidity at the reinforcing bar position in the concrete.

鉄筋の発錆条件については、非特許文献4では中性化で鉄筋の発錆が決まる場合、フェノールフタレイン法による中性化深さより6〜8mm深い部分が鉄筋の発錆限界であることを報告されており、非特許文献1では、気中および散水しながら中性化した試験体中の鉄筋腐食状況を調べ、いずれの条件でもかぶり厚さの5mm手前まで中性化が進行した時点で発錆していると報告されている。このように中性化深さが鉄筋位置に到達する前から鉄筋は腐食が開始していることは周知の事実である。しかし、コンクリート中の鉄筋位置での相対湿度が95%以上と非常に高い場合は、湿度95%未満の場合より発錆する鉄筋位置は深くなることが実験により発見された。図4はその一例を示しており、中性化深さが同じでも、湿度100%の場合は、湿度80%、60%、30%の場合と比べて深い鉄筋まで発錆している。鉄筋の発錆条件は、中性化深さと鉄筋のかぶり厚さの関係に加えて、コンクリート中の鉄筋位置での相対湿度も加味して決定する必要がある。   Regarding the rusting condition of reinforcing bars, in Non-Patent Document 4, when rusting of reinforcing bars is determined by neutralization, the portion 6 to 8 mm deeper than the neutralization depth by the phenolphthalein method is the rusting limit of reinforcing bars. In Non-Patent Document 1, the corrosion status of the reinforcing bar in the test specimen neutralized while in the air and watering was investigated, and when neutralization progressed to 5 mm before the cover thickness under any conditions. Rust has been reported. As described above, it is a well-known fact that corrosion of a reinforcing bar starts before the neutralization depth reaches the reinforcing bar position. However, when the relative humidity at the rebar position in concrete is as high as 95% or more, it was found by experiments that the position of the rebar that rusts becomes deeper than when the humidity is less than 95%. Fig. 4 shows an example. Even when the neutralization depth is the same, when the humidity is 100%, it rusts to deeper reinforcing bars than when the humidity is 80%, 60%, and 30%. It is necessary to determine the rusting condition of the reinforcing bar in consideration of the relative humidity at the reinforcing bar position in the concrete in addition to the relationship between the neutralization depth and the covering thickness of the reinforcing bar.

コンクリートの中性化の進行に関しては、乾燥部での中性化速度の計算式は中性化深さをCd、中性化速度係数をA、期間をTdとすると Cd=A√Td となる。Aを中性化速度係数と呼び、一般的には中性化の進行程度を現地調査で確認する場合が多いことから、調査時の築年数Tと実測中性化深さの平均値Cを用いてA=C/√Tで求めることができる。現地調査を実施しない場合は、各種の予測式が示されており、これを活用して推定することができる。   Regarding the progress of neutralization of concrete, the calculation formula for the neutralization rate in the dry section is Cd = A√Td, where Cd is the neutralization depth, A is the neutralization rate coefficient, and Td is the duration. . A is called the neutralization rate coefficient, and in general, the progress of neutralization is often confirmed by field surveys, so the age T at the time of survey and the average value C of the measured neutralization depth are And can be obtained by A = C / √T. When the field survey is not conducted, various prediction formulas are shown, which can be used for estimation.

ただし、環境湿度やコンクリートの含水状態が高いと中性化は進行しにくいことを考慮して中性化速度係数を低減する必要があり、屋内などの乾燥部を基準として高含水状態での低減係数をβ(0<β<1)、とすると、中性化深さCw、期間をTw とすると以下になる。   However, it is necessary to reduce the neutralization rate coefficient in consideration of the fact that neutralization does not proceed easily when the environmental humidity and the moisture content of concrete are high. If the coefficient is β (0 <β <1), the neutralization depth Cw and the period Tw are as follows.

Figure 2005049217
Aを中性化速度係数と呼び、一般的な乾燥条件(温度15〜25℃、湿度50〜70%)で様々な実験により、岸谷式、和泉式等の予測式が示されている。
Figure 2005049217
A is called the neutralization rate coefficient, and various experiments under typical drying conditions (temperature of 15 to 25 ° C. and humidity of 50 to 70%) have shown prediction formulas such as Kishitani and Izumi formulas.

係数βの値は、以下の様々な報告例があり、構造物の状況や実測データに基づいて設定すると良く、非特許文献1によれば、1日3時間散水し続け乾湿繰り返しとなる場合はβ=0.3〜0.5と報告されている。片面乾燥の場合はβ=0.5〜0.7と実験により求められている。   The value of the coefficient β has the following various report examples, and should be set based on the state of the structure and actual measurement data. According to Non-Patent Document 1, when the water is continuously wet and dry for 3 hours a day, β = 0.3 to 0.5 is reported. In the case of single-sided drying, β = 0.5 to 0.7 is obtained by experiments.

非特許文献2によると屋外で風雨にさらされる場合を1.0とすると屋内は1.7(屋内を1とすると屋外は0.59)が得られている。   According to Non-Patent Document 2, if the outdoor exposure to wind and rain is 1.0, 1.7 indoors (0.51 indoors if indoors 1) is obtained.

環境湿度が中性化速度係数に及ぼす影響係数は、非特許文献8でも示されており、湿度60%の中性化速度係数を基準とし、環境湿度Hu%では比率βをβ=Hu(100-Hu)(140-Hu)/192000 を示している。環境湿度80%でβ=0.5となる。環境湿度90,95%を外挿(実験範囲は湿度40〜80%)して推定するとβ=0.23、0.11となる。   The influence coefficient that the environmental humidity has on the neutralization rate coefficient is also shown in Non-Patent Document 8, where the neutralization rate coefficient of 60% humidity is used as a reference, and the ratio β is β = Hu (100 -Hu) (140-Hu) / 192000. Β = 0.5 at 80% environmental humidity. When extrapolating the environmental humidity 90,95% (experiment range is humidity 40-80%), β = 0.23 and 0.11.

コンクリート中の鉄筋位置での相対湿度による発錆する中性化深さの差αは本実験により
湿度95%未満 :中性化深さ+5mm
湿度95%以上 :中性化深さ+10mm
と表せる。従ってコンクリート中にある鉄筋の発錆時期は
Difference in neutralization depth of rusting due to relative humidity at the location of reinforcing bars in concrete is less than 95% humidity by this experiment: Neutralization depth + 5 mm
Humidity 95% or more: Neutralization depth + 10mm
It can be expressed. Therefore, the rusting time of the reinforcing bars in the concrete is

Figure 2005049217
となる。
Figure 2005049217
It becomes.

鉄筋の腐食速度に関しては、コンクリート中の鉄筋位置での相対湿度RHが高いほど早く、かぶり厚さCに反比例し、鉄筋径φ比例することが実験から判明した。腐食速度vを目的変数として、説明変数をφ/C、RHおよびφ/CとRHの交互作用φ/C×RHとして重回帰分析を行った結果を図5に示した。説明変数としては、φ/Cとφ/C×RHが選択され、重回帰式から、湿度が高いほど、かぶり厚さが小さいほど腐食速度が高くなることを示す次式が得られた。   As for the corrosion rate of the reinforcing bar, it was found from experiments that the higher the relative humidity RH at the reinforcing bar position in the concrete, the higher the rate, which is inversely proportional to the cover thickness C and proportional to the reinforcing bar diameter φ. The results of multiple regression analysis with the corrosion rate v as the objective variable and the explanatory variables as φ / C, RH, and the interaction φ / C × RH between φ / C and RH are shown in FIG. As explanatory variables, φ / C and φ / C × RH were selected, and from the multiple regression equation, the following equation was obtained indicating that the higher the humidity and the smaller the cover thickness, the higher the corrosion rate.

Figure 2005049217
(2)式は一般的な塩化物量の範囲で実験した結果得られた式であるため、塩化物量が非常に多い場合は正しく推定できない場合がある。
Figure 2005049217
Since equation (2) is an equation obtained as a result of experiments in a general chloride content range, it may not be able to be estimated correctly when the chloride content is very large.

基準コンクリートに対する温度・材料・調合の影響係数γについては、水セメント比が60%以外のときは、森永式などを活用して水セメント比が60%に対する腐食速度の比を計算して(2)式に乗じて反映すると良い。温度が特に高い場合はアレニウス式により基準とする温度(20℃程度)に対する反応速度定数比を計算して(2)式に温度の影響を反映すると更に良い。   Regarding the influence coefficient γ of temperature, material, and blending for the reference concrete, when the water cement ratio is other than 60%, use the Morinaga formula to calculate the corrosion rate ratio for the water cement ratio of 60% (2 It is good to reflect by multiplying the formula. When the temperature is particularly high, it is better to calculate the reaction rate constant ratio with respect to the reference temperature (about 20 ° C) by the Arrhenius equation and to reflect the influence of the temperature in the equation (2).

統計学を用いて腐食量を算出する方法を示す。   The method of calculating the amount of corrosion using statistics will be shown.

Figure 2005049217
となる。中性化深さのばらつきは正規分布であると考えられるので、材齢tの中性化深さの正規分布は
Figure 2005049217
It becomes. Since the variation in neutralization depth is considered to be a normal distribution, the normal distribution of the neutralization depth of the age t is

Figure 2005049217
で表される。同様に鉄筋のかぶり深さの正規分布は
Figure 2005049217
It is represented by Similarly, the normal distribution of rebar cover depth is

Figure 2005049217
で表される。従って鉄筋のかぶり深さと中性化深さの差の分布も正規分布となり
Figure 2005049217
It is represented by Therefore, the distribution of the difference between the cover depth and the neutralization depth of the reinforcing bar is also a normal distribution.

Figure 2005049217
で表される。よって鉄筋のかぶり深さと中性化深さの差の正規分布は
Figure 2005049217
It is represented by Therefore, the normal distribution of the difference between the cover depth and the neutralization depth is

Figure 2005049217
と表される。発錆する条件は(1)式のαと同じで鉄筋のかぶり深さと中性化深さの差がα以下になった部分が発錆することになる。従って分布関数のα以下の面積が鉄筋腐食確率P(t)となるので、
Figure 2005049217
It is expressed. The conditions for rusting are the same as α in the equation (1), and the portion where the difference between the cover depth of the reinforcing bar and the neutralization depth is less than α is rusted. Therefore, the area below α in the distribution function is the reinforcing bar corrosion probability P (t).

Figure 2005049217
と表される。
図6は経年により中性化が進行してゆくときの(3)式で求められる腐食確率の変化を示したもので、腐食面積の面から評価すると中性化が進行しやすい乾燥部は湿潤部より腐食確率はかなり大きくなる。
図7に腐食確率と腐食減量比の関係を示す。腐食を腐食減量で評価するには以下のように考えると良い。ある時刻tiから時間増分Δtの間に新たにΔPiだけ発錆し、この発錆した部位は経年とともに腐食速度viで腐食してゆく。時刻TAある時間増分の腐食量は
Figure 2005049217
It is expressed.
Fig. 6 shows the change in the probability of corrosion obtained by equation (3) when neutralization progresses over time, and the dry part where neutralization is likely to progress is wet when evaluated from the aspect of the corrosion area. Corrosion probability is considerably larger than the part.
Figure 7 shows the relationship between the corrosion probability and the corrosion weight loss ratio. To evaluate corrosion by corrosion weight loss, the following should be considered. Rust is newly rusted by ΔP i during a time increment Δt from a certain time t i , and the rusted portion corrodes at a corrosion rate v i with the passage of time. Corrosion of the time T A is the time increment

Figure 2005049217
で表される。各時間増分を総和することにより、全体の腐食減量比Q(TA)が求められる。
Figure 2005049217
It is represented by The total corrosion weight loss ratio Q (T A ) is obtained by summing up each time increment.

Figure 2005049217
一般的な構造物をモデルとして本発明を用いて腐食減量比を求め、腐食減量比による鉄筋コンクリートの劣化度評価を以下のように設定した(実施例1、2参照)。コンクリート中の鉄筋の腐食減量比が0.1%以上0.5%未満の時は、鉄筋の腐食減量としては比較的少なく、目視点検または簡易な点検により健全性の確認を行えばよい状況で「軽微」な劣化と判定できる。腐食減量比が0.5以上2%未満となると、鉄筋の腐食が進んでいるため、ひびが発生している可能性が高く鉄筋コンクリートへの延命処置が必要となるので、詳細な調査に基づいて延命処置を行うことが望ましい段階となる。この時点を劣化度評価「中」とした。腐食減量比が2%以上になった場合強度上重大な影響を及ぼすため補強策が必要になる。この時点を劣化度評価「大」すなわち鉄筋コンクリートの寿命とした。
Figure 2005049217
The corrosion weight loss ratio was determined using the present invention using a general structure as a model, and the deterioration evaluation of reinforced concrete based on the corrosion weight loss ratio was set as follows (see Examples 1 and 2). When the corrosion weight loss ratio of the reinforcing steel in the concrete is 0.1% or more and less than 0.5%, the corrosion weight loss of the reinforcing steel is relatively small. It can be determined as degradation. If the corrosion weight loss ratio is 0.5 or more and less than 2%, the corrosion of the reinforcing bars is progressing, so there is a possibility that cracks are likely to occur, and it is necessary to extend the life of the reinforced concrete. It is a desirable stage to perform. This point in time was evaluated as “medium”. If the corrosion weight loss ratio is 2% or more, it will have a significant effect on strength, so reinforcement measures will be required. This time point was regarded as the deterioration degree evaluation “large”, that is, the life of the reinforced concrete.

Figure 2005049217
Figure 2005049217

一般的なコンクリート(水セメント比60%)で、コンクリート中の湿度が60〜100%の場合について、鉄筋の腐食量を推定する。   For general concrete (60% water cement ratio) and the humidity in the concrete is 60 to 100%, the corrosion amount of the reinforcing bars is estimated.

60%RHにおける中性化速度係数Aを平均値4.0 mm√年、
変動係数30%、かぶり厚さの平均値40mm、標準偏差10mm、
Neutralization rate coefficient A at 60% RH, average value 4.0 mm√year,
Coefficient of variation 30%, cover thickness average value 40mm, standard deviation 10mm,

Figure 2005049217
鉄筋径12mm、αはコンクリート中の湿度95%未満5mm、95%以上10mm、βは既往のデータを参考に安全側の値として湿度60% RHを基準として、80%RHでβ=0.7、90%RHでβ=0.5、100%RHでβ=0.4として腐食量を推定する。
Figure 2005049217
Reinforcing bar diameter 12mm, α is less than 95% humidity in concrete 5mm, 95% to 10mm, β is a safe value with reference to past data, humidity is 60% RH, 80% RH, β = 0.7, 90 Estimate the amount of corrosion with β = 0.5 at% RH and β = 0.4 at 100% RH.

時間経過とともに中性化が√T則で進行するとして、腐食確率は(3)式により時間ステップで求めると結果は図8-Aとなる。   Assuming that neutralization proceeds according to the √T rule over time, the corrosion probability is determined in time steps using equation (3), and the result is shown in FIG. 8-A.

各時間ステップの腐食確率増分ΔPiに年数を乗じ、さらに新たに発錆した鉄筋の平均的なかぶり厚さから逐次求める腐食速度を乗じてすべての時間ステップについて総和すると(4)式より腐食減量比を求めることができる。結果は図8-Bとなる。   Multiply the corrosion probability increment ΔPi of each time step by the number of years, and then multiply by the corrosion rate obtained sequentially from the average cover thickness of the newly rusted reinforcing bar. Can be requested. The result is shown in Figure 8-B.

湿度100%では、中性化の進行は遅く腐食確率(腐食面積率)は小さいが、腐食減量比は最大となっており、部分的な鉄筋が大きな欠損を生じている状況を推定できる。各時間ステップにおいて、腐食減量比を腐食確率で除して腐食部の平均腐食減量を求め、横軸に腐食確率をとると図8-Cとなり、鉄筋の腐食確率が同じでも腐食部の平均腐食減量は大きく異なることが明瞭に把握できる。すなわち、腐食確率のみにより耐久性評価は困難であることを示しており、鉄筋の腐食の進行すなわち腐食減量で評価する必要がある。本発明により、精度良く腐食減量を推定することにより、構造物の耐久性を直接的に評価することが可能となった。耐久性評価について計算を行った結果の推定年数を表2に示す。   At a humidity of 100%, the progress of neutralization is slow and the corrosion probability (corrosion area rate) is small, but the corrosion weight loss ratio is the maximum, and it can be estimated that the partial rebar has a large defect. At each time step, the average corrosion weight loss of the corroded part is obtained by dividing the corrosion weight loss ratio by the corrosion probability, and the horizontal axis shows the corrosion probability. It can be clearly seen that the weight loss varies greatly. That is, the durability evaluation is difficult only by the corrosion probability, and it is necessary to evaluate the progress of corrosion of the reinforcing bars, that is, the corrosion weight loss. According to the present invention, it is possible to directly evaluate the durability of the structure by accurately estimating the corrosion weight loss. Table 2 shows the estimated years of the results of calculations for durability evaluation.

Figure 2005049217
Figure 2005049217

水セメント比が55%のコンクリートについて実施例1と同じ条件で腐食量を推定する。   The amount of corrosion is estimated under the same conditions as in Example 1 for concrete with a water-cement ratio of 55%.

中性化速度係数に関しては、実測値があれば実測値より中性化速度係数を求めて使用すればよい。ここでは、既往の中性化予測式の1つである岸谷式を活用して水セメント比60%に対する水セメント比55%の中性化速度係数の比を求めると、   Regarding the neutralization rate coefficient, if there is an actual measurement value, the neutralization rate coefficient may be obtained from the actual measurement value and used. Here, using the Kishitani formula, which is one of the existing neutralization prediction formulas, the ratio of the neutralization rate coefficient of 55% water cement ratio to 60% water cement ratio is calculated.

Figure 2005049217
となる。
Figure 2005049217
It becomes.

腐食速度についても、従来のコンクリートの調合が腐食速度に及ぼす影響に関する知見を用いてγを設定すれば良い。例えば、非特許文献6に示されている式をグラフにすると図9のようになる。図9のグラフから0.8程度を用いると良い。腐食速度の推定式(2)に0.8を乗じて、   As for the corrosion rate, γ may be set by using knowledge about the influence of the mixing of conventional concrete on the corrosion rate. For example, if the equation shown in Non-Patent Document 6 is graphed, it is as shown in FIG. It is better to use about 0.8 from the graph of FIG. Multiplying the corrosion rate estimation formula (2) by 0.8,

Figure 2005049217
とし、実施例1と同様に腐食減量比を求めた。腐食確率の経年変化、腐食減量比の経年変化および腐食確率と平均的な腐食量の関係が得られた。計算結果を図10A-Cに示した。
Figure 2005049217
The corrosion weight loss ratio was determined in the same manner as in Example 1. The relationship between the corrosion probability and the corrosion weight loss ratio and the correlation between the corrosion probability and the average corrosion amount was obtained. The calculation results are shown in FIGS. 10A-C.

耐久性評価について計算を行った結果の推定年数を表3に示す。   Table 3 shows the estimated years of the results of the durability evaluation.

Figure 2005049217
Figure 2005049217

試験体の形状及び寸法を説明する。The shape and dimensions of the test body will be described. コンクリート内部湿度測定の方法について説明する。A method for measuring the internal humidity of the concrete will be described. 鉄筋の重量減少率の経時変化に付いての実験結果を示す。The experimental result about the time-dependent change of the weight reduction rate of a reinforcing bar is shown. かぶり厚さと腐食速度の関係を示す。The relationship between the cover thickness and the corrosion rate is shown. かぶり厚さと湿度と腐食速度の関係を示す。The relationship between cover thickness, humidity and corrosion rate is shown. 腐食確率の経年変化の考え方を示す。The concept of the secular change of corrosion probability is shown. 腐食確率と全腐食量の関係の考え方を示す。The concept of the relationship between the corrosion probability and the total corrosion amount is shown. 実施例1の結果を示す。The result of Example 1 is shown. 実施例1の結果を示す。The result of Example 1 is shown. 実施例1の結果を示す。The result of Example 1 is shown. 水セメント比による腐食速度の比較を示す。The comparison of the corrosion rate by water cement ratio is shown. 実施例2の結果を示す。The result of Example 2 is shown. 実施例2の結果を示す。The result of Example 2 is shown. 実施例2の結果を示す。The result of Example 2 is shown.

Claims (5)

コンクリート中の湿度により発錆するコンクリートかぶり深さと中性化深さの差を示すパラメータαが、コンクリート中の鉄筋位置での相対湿度が0%以上95%未満の時5mmであり95%以上100%以下の時10mmであることを用いる次式(1)を用いて、鉄筋のコンクリート表面からのかぶり深さに応じた鉄筋コンクリート中にある鉄筋の発錆時期を算出することを特徴とする発錆時期推定方法。
Figure 2005049217
The parameter α, which indicates the difference between the concrete cover depth that rusts due to the humidity in the concrete and the neutralization depth, is 5 mm when the relative humidity at the rebar position in the concrete is 0% or more and less than 95%, and is 95% or more and 100%. Rusting is characterized by calculating the rusting time of reinforcing steel in reinforced concrete according to the depth of cover from the concrete surface using the following formula (1) using 10mm when% or less Time estimation method.
Figure 2005049217
コンクリート中の鉄筋位置での相対湿度と鉄筋径と鉄筋のかぶり厚さを用いる式(2)を用いて鉄筋の腐食速度を算出することを特徴とする鉄筋腐食速度推定方法。
Figure 2005049217
A method for estimating the corrosion rate of a reinforcing bar, comprising calculating the corrosion rate of the reinforcing bar using Equation (2) using the relative humidity at the position of the reinforcing bar in the concrete, the diameter of the reinforcing bar, and the cover thickness of the reinforcing bar.
Figure 2005049217
構造物の鉄筋かぶり深さと中性化深さの差の正規分布を考え、請求項1に記載のパラメータαとβを用いて中性化が進行する時の発錆時期を設定し、中性化が進行することにより発錆する確率P(t)を求める式(3)と請求項2における腐食速度と発錆時からの経過時間を用いて時間増分に応じた腐食減量比を(4)式を用いて算出することを特徴とする鉄筋コンクリート中にある鉄筋腐食量推定方法。
Figure 2005049217
Considering the normal distribution of the difference between the steel cover depth and the neutralization depth of the structure, set the rusting time when neutralization proceeds using the parameters α and β according to claim 1, Corrosion weight loss ratio according to time increment is calculated using equation (3) for calculating the probability P (t) of rusting due to the progress of crystallization, and the corrosion rate and elapsed time from the time of rusting in (2). A method for estimating the amount of corrosion of reinforcing steel in reinforced concrete, characterized by calculating using an equation.
Figure 2005049217
請求項3により得られた鉄筋の腐食減量比により、所定の腐食減量比に至るまでの年数で鉄筋コンクリートの耐久性を評価することを特徴とする鉄筋コンクリートの耐久性診断方法。 A method for diagnosing durability of a reinforced concrete, comprising evaluating the durability of the reinforced concrete based on the number of years until the predetermined corrosion weight loss ratio is obtained based on the corrosion weight loss ratio of the reinforcing bars obtained according to claim 3. 請求項4において腐食減量比が0.1%以上0.5%未満の時を「目視点検または簡易な点検により確認を行う状態」と判定し、0.5%以上2%未満の時を「調査診断を行い、適切な延命処置が必要な状態」と判定し、2%以上の時を「延命のためには詳細な点検と大規模な修繕を要す状態」と判定とすることを特徴とする鉄筋コンクリートの耐久性診断方法。


In claim 4, when the corrosion weight loss ratio is 0.1% or more and less than 0.5%, it is judged as “a state that is confirmed by visual inspection or simple inspection”, and when it is 0.5% or more and less than 2%, “inspection diagnosis is performed and appropriate Durability of reinforced concrete characterized in that it is judged as “necessary to extend the life” and when it is 2% or more, it is judged as “a state that requires detailed inspection and extensive repairs to extend the life” Diagnosis method.


JP2003281485A 2003-07-29 2003-07-29 Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete Expired - Fee Related JP4108568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281485A JP4108568B2 (en) 2003-07-29 2003-07-29 Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281485A JP4108568B2 (en) 2003-07-29 2003-07-29 Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete

Publications (2)

Publication Number Publication Date
JP2005049217A true JP2005049217A (en) 2005-02-24
JP4108568B2 JP4108568B2 (en) 2008-06-25

Family

ID=34266972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281485A Expired - Fee Related JP4108568B2 (en) 2003-07-29 2003-07-29 Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete

Country Status (1)

Country Link
JP (1) JP4108568B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224405A (en) * 2007-03-13 2008-09-25 Tokyo Electric Power Co Inc:The Corrosion rate evaluating method
JP2009162609A (en) * 2008-01-07 2009-07-23 Shimizu Corp Surface contamination degree evaluation method and surface contamination degree evaluation device
JP2010249545A (en) * 2009-04-10 2010-11-04 Central Res Inst Of Electric Power Ind Method and device for estimating corrosion quantity of reinforcing rod, and estimation program
JP2017142095A (en) * 2016-02-08 2017-08-17 東京電力ホールディングス株式会社 Method and program for determining corrosion of reinforcing bar
CN109187323A (en) * 2018-09-18 2019-01-11 广东电网有限责任公司 Coastal area iron tower foundation structure reinforcing bars corrode diagnostic equipment
JP2020106332A (en) * 2018-12-26 2020-07-09 太平洋セメント株式会社 Measuring method of relative humidity in concrete
CN111693447A (en) * 2020-05-26 2020-09-22 中冶建筑研究总院有限公司 Method for evaluating durability residual life of concrete roof panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329568A (en) * 1996-06-12 1997-12-22 Railway Technical Res Inst Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure
JPH1021211A (en) * 1996-06-28 1998-01-23 Taisei Corp Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure
JP2002098660A (en) * 2000-09-25 2002-04-05 Non-Destructive Inspection Co Ltd Quantitative evaluation method of amount of corrosion of reinforced bar
JP2003161693A (en) * 2001-11-27 2003-06-06 Kajima Corp System and method for deterioration evaluation and lifecycle cost, of concrete structure considering meteorological environment, program for the method, and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329568A (en) * 1996-06-12 1997-12-22 Railway Technical Res Inst Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure
JPH1021211A (en) * 1996-06-28 1998-01-23 Taisei Corp Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure
JP2002098660A (en) * 2000-09-25 2002-04-05 Non-Destructive Inspection Co Ltd Quantitative evaluation method of amount of corrosion of reinforced bar
JP2003161693A (en) * 2001-11-27 2003-06-06 Kajima Corp System and method for deterioration evaluation and lifecycle cost, of concrete structure considering meteorological environment, program for the method, and recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
内川祐一郎 他7名: ""RC地下躯体の耐久性診断手法に関する研究"", 2002年度大会(北陸) 学術講演梗概集 A−1分冊 材料施行, JPN6008005892, 30 June 2002 (2002-06-30), JP, pages 595 - 596, ISSN: 0000977395 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224405A (en) * 2007-03-13 2008-09-25 Tokyo Electric Power Co Inc:The Corrosion rate evaluating method
JP2009162609A (en) * 2008-01-07 2009-07-23 Shimizu Corp Surface contamination degree evaluation method and surface contamination degree evaluation device
JP2010249545A (en) * 2009-04-10 2010-11-04 Central Res Inst Of Electric Power Ind Method and device for estimating corrosion quantity of reinforcing rod, and estimation program
JP2017142095A (en) * 2016-02-08 2017-08-17 東京電力ホールディングス株式会社 Method and program for determining corrosion of reinforcing bar
CN109187323A (en) * 2018-09-18 2019-01-11 广东电网有限责任公司 Coastal area iron tower foundation structure reinforcing bars corrode diagnostic equipment
JP2020106332A (en) * 2018-12-26 2020-07-09 太平洋セメント株式会社 Measuring method of relative humidity in concrete
JP7245046B2 (en) 2018-12-26 2023-03-23 太平洋セメント株式会社 Method for measuring relative humidity inside concrete
CN111693447A (en) * 2020-05-26 2020-09-22 中冶建筑研究总院有限公司 Method for evaluating durability residual life of concrete roof panel

Also Published As

Publication number Publication date
JP4108568B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
Neves et al. Field assessment of the relationship between natural and accelerated concrete carbonation resistance
Ahmad Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review
JP4873472B2 (en) Prediction method of corrosion deterioration of reinforced concrete structures
Bayuaji et al. Corrosion damage assessment of a reinforced concrete canal structure of power plant after 20 years of exposure in a marine environment: A case study
Wang et al. Semi-empirical prediction model of chloride-induced corrosion rate in uncracked reinforced concrete exposed to a marine environment
JP4108568B2 (en) Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete
Ramón et al. Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete
JP5137270B2 (en) Prediction method of corrosion deterioration of reinforced concrete structures
JP4521066B2 (en) Prediction method of corrosion occurrence time of steel in concrete
JP2011257245A (en) Corrosion amount estimation method, corrosion amount estimation device, and management method for reinforced concrete
Manzur et al. Application of corrosion potential as a tool to assess sustainability of indigenous concrete mixes in Bangladesh
Verma et al. In-situ condition monitoring of reinforced concrete structures
Xia et al. Prediction of corrosion-induced crack width of corroded reinforced concrete structures
JP7101380B2 (en) How to monitor the corrosive environment in concrete structures
Andrade Model for prediction of reinforced concrete service life based on electrical resistivity
Nasser et al. The relation between concrete crack width and rebar corrosion level validated on a large set of experimental data
Martínez et al. Corrosion characterization of reinforced concrete slabs with different devices
Amleh et al. Corrosion response of a decommissioned deteriorated bridge deck
JP2009236763A (en) Method and program for estimating reinforcement corrosion rate inside concrete
Michel et al. Experimental determination of the penetration depth of corrosion products and time to corrosion-induced cracking in reinforced cement based materials
Duchesne et al. Study of the deterioration of concrete incorporating sulfide-bearing aggregates
Wilson et al. Accelerated artificial corrosion monitoring of reinforced concrete slabs using the half-cell potential method
Busba Effect of localized corrosion of steel on chloride-induced concrete cover cracking in reinforced concrete structures
Andrade et al. The use of corrosion rates for the identification of damaged zones in a football stadium and efficacy of surface inhibitors as repair method
Di Benedetti Acoustic emission in structural health monitoring of reinforced concrete structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees