JP7245046B2 - Method for measuring relative humidity inside concrete - Google Patents

Method for measuring relative humidity inside concrete Download PDF

Info

Publication number
JP7245046B2
JP7245046B2 JP2018243619A JP2018243619A JP7245046B2 JP 7245046 B2 JP7245046 B2 JP 7245046B2 JP 2018243619 A JP2018243619 A JP 2018243619A JP 2018243619 A JP2018243619 A JP 2018243619A JP 7245046 B2 JP7245046 B2 JP 7245046B2
Authority
JP
Japan
Prior art keywords
concrete
relative humidity
specimen
measured
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243619A
Other languages
Japanese (ja)
Other versions
JP2020106332A (en
Inventor
拓也 大野
裕二 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018243619A priority Critical patent/JP7245046B2/en
Publication of JP2020106332A publication Critical patent/JP2020106332A/en
Application granted granted Critical
Publication of JP7245046B2 publication Critical patent/JP7245046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンクリート内部の相対湿度を簡易に精度よく測定する方法に関する。 The present invention relates to a method for simply and accurately measuring the relative humidity inside concrete.

コンクリートの乾燥収縮ひずみはコンクリート中の水分移動により、コンンクリート内部に相対湿度の分布が生じた結果発生するため、乾燥収縮ひずみと相対湿度の間には高い相関がある(非特許文献1の図4~7)。
従来、コンクリート内部の相対湿度の測定方法は、
(i)湿度センサー(電気湿度計)をコンクリート内部に埋め込んで測定する方法(後述の比較例2、非特許文献1~3)
(ii)湿度センサーを防水・透湿素材でコーティングして、コンクリート内部に埋め込んで測定する方法
(iii)コンクリートが硬化した後に、コンクリートに穴を開けて湿度センサー挿入して測定する方法(特許文献1)
(iv)型枠内に防水・透湿素材で覆ったパイプを設置してコンクリートを打設して脱型した後、該パイプ内に湿度センサーを挿入して測定する方法(後述の比較例1)
などがある。
Since the drying shrinkage strain of concrete is generated as a result of the distribution of relative humidity inside the concrete due to the movement of water in the concrete, there is a high correlation between the drying shrinkage strain and the relative humidity (Figure in Non-Patent Document 1 4-7).
Conventional methods for measuring the relative humidity inside concrete include:
(i) A method of measuring by embedding a humidity sensor (electric hygrometer) inside concrete (Comparative Example 2 described later, Non-Patent Documents 1 to 3)
(ii) A method in which the humidity sensor is coated with a waterproof/permeable material and embedded in concrete for measurement.
(iii) A method of making a hole in the concrete after the concrete has hardened and inserting a humidity sensor for measurement (Patent Document 1)
(iv) A method in which a pipe covered with a waterproof/permeable material is installed in a formwork, concrete is cast and removed from the mold, and a humidity sensor is inserted into the pipe to measure (Comparative Example 1 described later) )
and so on.

しかし、前記従来の測定方法には、以下の課題があった。すなわち、
(i)一般に湿度センサーは静電容量方式(水蒸気量と電気抵抗値から湿度に換算する方式)を採用しているため、湿度センサーが水に接すると相対湿度が100%を示すなど、正しく測定できない場合があり、コンクリート内部は硬化するまでは多くの水を含むから、コンクリートは湿度センサーの測定対象として必ずしも適切ではない。
(ii)湿度センサーをコーティングすると、測定精度が低下する。
(iii)コンクリートの硬化後に穿孔すると、乾燥や振動の影響で測定精度が低下する。
(iv)コンクリートは極表層から速やかに乾燥が始まるため、事前に湿度センサーを設置することが難しい。
However, the conventional measurement methods have the following problems. i.e.
(i) Humidity sensors generally use the capacitance method (a method that converts the amount of water vapor and electrical resistance into humidity), so when the humidity sensor comes into contact with water, the relative humidity shows 100%, etc. Concrete is not always a good target for humidity sensors because it contains a lot of water until it hardens.
(ii) Coating the humidity sensor reduces measurement accuracy.
(iii) If the concrete is drilled after hardening, drying and vibration affect the measurement accuracy.
(iv) Concrete begins to dry quickly from the very surface layer, so it is difficult to install a humidity sensor in advance.

「コンクリートの乾燥収縮によるひずみと応力の解析」、コンクリート工学年次論文集、pp.441-446、Vol.24、No.1、2002"Analysis of Strain and Stress Due to Drying Shrinkage of Concrete", Concrete Engineering Annual Proceedings, pp. 441-446, Vol. 24, No. 1, 2002 「コンクリートの湿気移動解析に関する基礎的研究」、コンクリート工学年次論文集、pp.655-660、Vol.22、No.2、2000"Fundamental Research on Moisture Transport Analysis of Concrete", Concrete Engineering Annual Proceedings, pp. 655-660, Vol. 22, No. 2, 2000 「コンクリート中の含水率および湿度の測定値と乾燥収縮率の関係」、コンクリート工学年次論文集、pp.433-438、Vol.37、No.1、2015"Relationship between measured values of moisture content and humidity in concrete and drying shrinkage", Concrete Engineering Annual Proceedings, pp. 433-438, Vol. 37, No. 1, 2015

特開2005-49217号公報JP-A-2005-49217

そこで、前記課題に鑑み、本発明は、コンクリート内部の相対湿度を簡易に精度よく測定する方法を提供することを目的とする。 Therefore, in view of the above problems, an object of the present invention is to provide a method for simply and accurately measuring the relative humidity inside concrete.

本発明者は、前記目的にかなう測定方法を検討した結果、薄くスライスしたコンクリート板を、密閉した型枠内に複数枚設置してコンクリート内部を模した、コンクリート板の間の空間の相対湿度を測定すれば、湿度センサーが水分に接することなく相対湿度を測定できることを見出し、本発明を完成させた。
すなわち、本発明は、下記の構成を有するコンクリート内部の相対湿度の測定方法である。
As a result of studying a measurement method that meets the above-mentioned purpose, the inventors of the present invention set a plurality of thinly sliced concrete plates in a closed mold to simulate the inside of concrete, and measured the relative humidity in the space between the concrete plates. For example, the inventors found that the humidity sensor can measure the relative humidity without coming into contact with moisture, and completed the present invention.
That is, the present invention is a method for measuring relative humidity inside concrete having the following configuration.

[1]下記(A)~(C)工程を少なくとも含む、コンクリート内部の相対湿度の測定方法。
(A)コンクリートの円柱または角柱成形体からコンクリート板を複数切り出した後、該板の周囲をラバーリング(ゴム輪)で封止して供試体を作製する、供試体作製工程
(B)型枠の内側に円周方向に設けた複数の溝に、前記供試体を設置した後、該供試体の間に湿度センサーを配置する、供試体設置工程
(C)前記設置した供試体の上から、同じく内側に円周方向に複数の溝を設けた対となる型枠でもって蓋をした後、相対湿度を測定する、相対湿度測定工程
[2]前記コンクリート板は厚さが0.5~5cmである、前記[1]に記載のコンクリート内部の相対湿度の測定方法。
[1] A method for measuring relative humidity inside concrete, including at least the following steps (A) to (C).
(A) A test piece preparation step in which a plurality of concrete plates are cut from a concrete cylindrical or prismatic molded body, and then the circumference of the plate is sealed with a rubber ring (rubber ring) to prepare a test piece. (B) Formwork After installing the specimen in a plurality of grooves provided in the circumferential direction on the inside of the specimen installation step (C), placing a humidity sensor between the specimens, from above the installed specimen, Relative humidity measurement step [2] The concrete plate has a thickness of 0.5 to 5 cm. The method for measuring the relative humidity inside concrete according to [1] above.

本発明のコンクリート内部の相対湿度の測定方法は、コンクリート内部の相対湿度を簡易に精度よく測定できる。 The method for measuring the relative humidity inside concrete of the present invention can measure the relative humidity inside concrete easily and accurately.

(a)はコンクリート板を切り出した状態の模式図の一例を示し、(b)は型枠内に供試体と湿度センサーを設置した状態の模式図の一例を示す。(a) shows an example of a schematic diagram of a state in which a concrete plate is cut out, and (b) shows an example of a schematic diagram of a state in which a specimen and a humidity sensor are installed in a mold. (a)は円筒形の型枠を開いた状態の一例を示し、(b)は型枠内に形成された、供試体を設置するための溝の一例を示し、(c)はコンクリート板(左の写真)と、コンクリート板の周囲を被覆するためのラバーリング(右の写真)の一例を示し、(d)はラバーリングで周囲を被覆したコンクリート板(供試体)を型枠の溝に設置した状態の一例を示し、(e)は型枠の溝に設置したコンクリート板(供試体)の上から、対となる型枠で蓋をして密封した状態の一例を示し、(f)は相対湿度を測定する状態の一例を示す。(a) shows an example of an open cylindrical formwork, (b) shows an example of a groove for installing a specimen formed in the formwork, and (c) shows a concrete plate ( Left photo) and an example of a rubber ring (right photo) for covering the circumference of a concrete plate. An example of the installed state is shown, (e) shows an example of a state in which the concrete plate (specimen) installed in the groove of the formwork is covered with a pair of formwork and sealed, (f) shows an example of a state in which relative humidity is measured. 普通ポルトランドセメントを用いたコンクリートの乾燥期間と、本発明の方法で測定した該コンクリート内部の相対湿度の関係を示す図である。ただし、水/セメント比は(a)が40%、(b)が50%、(c)が60%であり、図中の1~5cmは供試体の厚さの乾燥面からの累積を表す。FIG. 4 is a diagram showing the relationship between the drying period of concrete using ordinary Portland cement and the relative humidity inside the concrete measured by the method of the present invention. However, the water/cement ratio is 40% for (a), 50% for (b), and 60% for (c). . 各種セメントを用いたコンクリートの乾燥期間と、本発明の方法で測定した該コンクリート内部の相対湿度の関係を示す図である。ただし、水/セメント比は50%で、用いたセメントは(a)が中庸熱ポルトランドセメント、(b)が低熱ポルトランドセメント、(c)高炉セメントB種であり、図中の1~5cmは供試体の厚さの乾燥面からの累積を示す。FIG. 4 is a diagram showing the relationship between the drying period of concrete using various cements and the relative humidity inside the concrete measured by the method of the present invention. However, the water/cement ratio was 50%, and the cements used were (a) moderate heat Portland cement, (b) low heat Portland cement, and (c) Blast furnace cement. The cumulative thickness of specimens from the dry surface is shown. 膨張材および収縮低減剤を添加したコンクリートの乾燥期間と、本発明の方法で測定した該コンクリート内部の相対湿度の関係を示す図である。ただし、水/セメント比は50%で、(a)は膨張材を添加したコンクリート、(b)は収縮低減剤を添加したコンクリートであり、図中の1~5cmは供試体の厚さの乾燥面からの累積を示す。FIG. 4 is a diagram showing the relationship between the drying period of concrete to which expansive agents and shrinkage reducing agents are added and the relative humidity inside the concrete measured by the method of the present invention. However, the water/cement ratio is 50%, (a) is concrete to which expansive agent is added, (b) is concrete to which shrinkage reducing agent is added, and 1 to 5 cm in the figure is the dry thickness of the specimen. Shows the accumulation from the surface. 普通ポルトランドセメントを用いたコンクリートの乾燥期間と、本発明の相対湿度の測定方法を用いて測定した、供試体の厚さの乾燥面からの累積1cm、2cm、および5cmにおける実施例1の相対湿度(図a、b)、乾燥面からコンクリート内部の深さ1cm、および5cmに設置したパイプ内に湿度センサーを挿入して測定した比較例1の相対湿度(図a)、および、乾燥面からコンクリート内部の深さ2cmに湿度センサーを直接埋め込んで測定した比較例2の相対湿度(図b)の関係を示す図である。ただし、水セメント比は50%である。The drying period of concrete using ordinary Portland cement and the relative humidity of Example 1 at cumulative 1 cm, 2 cm, and 5 cm from the dry surface of the specimen thickness measured using the method of measuring relative humidity of the present invention (Figures a, b), the relative humidity of Comparative Example 1 measured by inserting a humidity sensor into a pipe installed at a depth of 1 cm and 5 cm from the dry surface into the concrete (Figure a), and the relative humidity from the dry surface to the concrete. It is a figure which shows the relationship of the relative humidity (FIG. b) of the comparative example 2 measured by embedding a humidity sensor directly in the depth of 2 cm inside. However, the water-cement ratio is 50%. 本発明の相対湿度の測定方法を用いて測定した、供試体の厚さの乾燥面からの累積1cm、3cm、および5cmにおける実施例1の相対湿度と、乾燥面からコンクリート内部の深さ1cm、3cm、および5cmに設置したパイプ内に湿度センサーを挿入して測定した比較例1の相対湿度の間の相関性を示す図である。The relative humidity of Example 1 at cumulative 1 cm, 3 cm, and 5 cm from the dry surface of the specimen measured using the method of measuring relative humidity of the present invention, and the depth of 1 cm inside the concrete from the dry surface, FIG. 3 shows the correlation between the relative humidity of Comparative Example 1 measured by inserting a humidity sensor into a pipe installed at 3 cm and 5 cm.

本発明は、前記(A)供試体作製工程、(B)供試体設置工程、および(C)相対湿度測定工程を少なくとも含むコンクリート内部の相対湿度の測定方法である。以下、前記各工程に分けて説明する。 The present invention is a method for measuring the relative humidity inside concrete including at least the (A) test piece preparation step, (B) test piece placement step, and (C) relative humidity measurement step. Hereinafter, each step will be described separately.

(A)供試体作製工程
該工程は、コンクリートの円柱または角柱成形体からコンクリート板を複数切り出した後、該板の周囲をラバーリング(ゴム輪)で封止して供試体を作製する工程である。
ここで、前記コンクリートに用いるセメントや混和材は、特に限定されず、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、エコセメント、速硬セメント、膨張材、および収縮低減剤等が挙げられる。
前記コンクリート板の大きさは、特に限定されないが、その厚さは、割れ難さと乾燥の速さの兼ね合いから、0.5~5cmが適切である。前記ラバーリングは、型枠と供試体が接した位置から湿気が漏れないために用いる。さらに湿気の漏洩を完全に防止するために、上下の型枠の溝をシリコンオイル等の油で埋めるとよい。
(A) Specimen preparation step In this step, a plurality of concrete plates are cut out from a concrete cylindrical or prismatic molded body, and then the periphery of the plates is sealed with a rubber ring to prepare a specimen. be.
Here, the cement and admixture used for the concrete are not particularly limited, and ordinary Portland cement, high-early-strength Portland cement, moderate-heat Portland cement, low-heat Portland cement, blast-furnace cement, ecocement, fast-hardening cement, expansive agent, and Shrinkage reducing agents and the like can be mentioned.
The size of the concrete plate is not particularly limited, but the appropriate thickness is 0.5 to 5 cm in view of the balance between crack resistance and drying speed. The rubber ring is used to prevent moisture from leaking from the contact point between the mold and the specimen. Furthermore, in order to completely prevent leakage of moisture, it is recommended to fill the grooves of the upper and lower molds with oil such as silicone oil.

(B)供試体設置工程
該工程は、型枠の内側に円周方向に設けた複数の溝に、前記供試体を設置した後、該供試体の間に湿度センサーを配置する工程である。
型枠の材質は、特に限定されないが、溝切り等の加工が容易なことから、好ましくはアクリル樹脂や塩化ビニル樹脂等の樹脂である。本発明の技術的特徴は、コンクリート板を、密閉した型枠内に複数枚設置して構成した複数の区間(空間)内を、コンクリート板中の湿気や水分が拡散移動する現象を、コンクリート内部での湿気や水分の拡散移動に喩えて、このコンクリート内部を模擬した空間(模擬空間)内の相対湿度を測定すれば、湿度センサーが水分に接することなく相対湿度を測定できる点にある。
(B) Specimen installation step This step is a step of placing a humidity sensor between the specimens after the specimens are installed in a plurality of grooves provided in the inner side of the mold in the circumferential direction.
Although the material of the formwork is not particularly limited, it is preferably made of resin such as acrylic resin or vinyl chloride resin because processing such as grooving is easy. The technical feature of the present invention is that the phenomenon in which moisture and moisture in a concrete plate diffuses and moves in a plurality of sections (spaces) configured by placing a plurality of concrete plates in a closed formwork can be controlled inside the concrete. If the relative humidity is measured in a space simulating the interior of concrete (the simulated space), the relative humidity can be measured without the humidity sensor coming into contact with the water.

(C)相対湿度測定工程
該工程は、前記設置した供試体の上から、同じく内側に円周方向に複数の溝を設けた型枠を被せて密封した後、相対湿度を連続的に、または間欠的に測定する工程である。
前記湿度センサーは、一般のセンサーでよく、例えば、IST HYT939(シスコム社製)を用いることができる。
(C) Relative humidity measurement step In this step, a mold having a plurality of grooves in the same circumferential direction is placed on the installed test piece and sealed, and then the relative humidity is measured continuously or This is a step of measuring intermittently.
The humidity sensor may be a general sensor such as IST HYT939 (manufactured by Syscom).

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)セメント
(i)普通ポルトランドセメント(略号:NC)
(ii)高炉セメントB種(略号:BB)
(iii)中庸熱ポルトランドセメント(略号:MC)
(iv)低熱ポルトランドセメント(略号:LC)
前記セメントは、すべて太平洋セメント社製である。
(2)膨張材(略号:EX)
太平洋ハイパーエクスパン(太平洋マテリアル社製)
(3)収縮低減剤(略号:SR)
テトラガードAS21(太平洋マテリアル社製)
(4)細骨材(略号:S)
山砂、表乾密度2.56g/cm
(5)粗骨材
砂岩砕石、表乾密度2.61g/cm(略号:G)
(6)水(略号:W)
水道水
(7)減水剤(略号:LS)
リグニンスルホン酸系AE減水剤、商品名:ポゾリスNo.70[登録商標]、BASF社製
(8)AE剤
商品名:マスターエア404[登録商標]、BASF社製
EXAMPLES The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.
1. Materials used (1) Cement (i) Ordinary Portland cement (abbreviation: NC)
(ii) Blast furnace cement type B (abbreviation: BB)
(iii) Moderate heat Portland cement (abbreviation: MC)
(iv) Low heat Portland cement (abbreviation: LC)
All of the above cements are manufactured by Taiheiyo Cement Co., Ltd.
(2) Expansive material (abbreviation: EX)
Taiheiyo Hyper Expan (manufactured by Taiheiyo Materials Co., Ltd.)
(3) Shrinkage reducing agent (abbreviation: SR)
Tetraguard AS21 (manufactured by Taiheiyo Materials Co., Ltd.)
(4) Fine aggregate (abbreviation: S)
Mountain sand, surface dry density 2.56 g/cm 3
(5) Coarse aggregate sandstone crushed stone, surface dry density 2.61 g/cm 3 (abbreviation: G)
(6) Water (abbreviation: W)
Tap water (7) water reducing agent (abbreviation: LS)
Lignin sulfonic acid-based AE water reducing agent, trade name: Pozzolith No. 70 [registered trademark], manufactured by BASF (8) AE agent Product name: Master Air 404 [registered trademark], manufactured by BASF

2.コンクリート板の作製
表1に示す配合に従い、前記の各材料を容量50リッターのパン型ミキサに一括して投入し、2分間混練した後、混練物を内径10cm、高さ20cmの型枠に打設して成形しコンクリートを得た。次に、該コンクリートを20℃で7日間湿空養生した後に脱型し、図1の(A)に示すように、コンクリートの底面(打設面とは反対の面)側から切り出して、厚さ1cmのコンクリート板を5枚作製した。
2. Preparation of concrete plate According to the formulation shown in Table 1, each of the above materials was put into a pan-type mixer with a capacity of 50 liters and mixed for 2 minutes. It was set and molded to obtain concrete. Next, the concrete was cured in wet air for 7 days at 20° C., then removed from the mold, and as shown in FIG. Five concrete plates with a thickness of 1 cm were produced.

Figure 0007245046000001
Figure 0007245046000001

3.相対湿度の測定とその結果
次に、前記コンクリート板の円周をラバーリングで被覆してなる5枚の供試体と、5個の湿度センサー(IST HYT939:シスコム社製)をアクリル製型枠内に、図1の(b)や図2の(d)に示すように設置して、残りのアクリル製型枠を、図2の(e)に示すように被せて全体を封印し、コンクリート内部の模擬空間を5つ構成した。そして、これら5つの模擬空間内の相対湿度を所定の材齢毎に測定した。
また、比較のために、コンクリート中に設置した(埋込んだ)パイプ内に湿度センサーを挿入して(比較例1)、また、湿度センサーを直接コンクリート中に埋め込んで(比較例2)コンクリート中の相対湿度を測定した。
これらの結果を図3~6に示す。また、供試体の厚さの乾燥面からの累積1cm、3cm、および5cmにおける実施例1の相対湿度と、乾燥面からコンクリートの深さ1cm、3cm、および5cmにおける比較例1の相対湿度の間の相関性を図7に示す。
本発明の測定方法を用いて測定した相対湿度と、湿度センサーをパイプ内に挿入して測定する従来の方法(比較例1)を用いて測定した相対湿度の間で、その差は5%に過ぎないことから、本発明の測定方法はコンクリート内部の相対湿度を正確に模擬していて、コンクリート内部の相対湿度を簡易に精度よく測定することができる。
3. Measurement of Relative Humidity and Results Next, five specimens made by covering the circumference of the concrete plate with a rubber ring and five humidity sensors (IST HYT939: Syscom Co., Ltd.) were placed in an acrylic formwork. 1 (b) and FIG. 2 (d), and the remaining acrylic formwork is covered as shown in FIG. 2 (e) to seal the entire inside of the concrete 5 simulated spaces were constructed. Then, the relative humidity in these five simulated spaces was measured for each predetermined material age.
For comparison, a humidity sensor was inserted into a pipe installed (embedded) in concrete (Comparative Example 1), and a humidity sensor was directly embedded in concrete (Comparative Example 2). was measured.
These results are shown in Figures 3-6. Also, between the relative humidity of Example 1 at cumulative 1 cm, 3 cm, and 5 cm from the dry surface of the specimen thickness and the relative humidity of Comparative Example 1 at 1 cm, 3 cm, and 5 cm of concrete depth from the dry surface is shown in FIG.
The difference between the relative humidity measured using the measuring method of the present invention and the relative humidity measured using the conventional method (Comparative Example 1) in which a humidity sensor is inserted into a pipe for measurement is 5%. Therefore, the measuring method of the present invention accurately simulates the relative humidity inside the concrete, and can easily and accurately measure the relative humidity inside the concrete.

Claims (2)

下記(A)~(C)工程を少なくとも含む、コンクリート内部の相対湿度の測定方法。
(A)コンクリートの円柱または角柱成形体からコンクリート板を複数切り出した後、該板の周囲をラバーリング(ゴム輪)で封止して供試体を作製する、供試体作製工程
(B)型枠の内側に円周方向に設けた複数の溝に、前記供試体を設置した後、該供試体の間に湿度センサーを配置する、供試体設置工程
(C)前記設置した供試体の上から、同じく内側に円周方向に複数の溝を設けた対となる型枠でもって蓋をした後、相対湿度を測定する、相対湿度測定工程
A method for measuring relative humidity inside concrete, comprising at least the following steps (A) to (C).
(A) A test piece preparation step in which a plurality of concrete plates are cut from a concrete cylindrical or prismatic molded body, and then the circumference of the plate is sealed with a rubber ring (rubber ring) to prepare a test piece. (B) Formwork After installing the specimen in a plurality of grooves provided in the circumferential direction on the inside of the specimen installation step (C), placing a humidity sensor between the specimens, from above the installed specimen, A relative humidity measurement process in which the relative humidity is measured after covering with a pair of molds having a plurality of circumferential grooves on the inside.
前記コンクリート板は厚さが0.5~5cmである、請求項1に記載のコンクリート内部の相対湿度の測定方法。
The method for measuring relative humidity inside concrete according to claim 1, wherein the concrete plate has a thickness of 0.5 to 5 cm.
JP2018243619A 2018-12-26 2018-12-26 Method for measuring relative humidity inside concrete Active JP7245046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243619A JP7245046B2 (en) 2018-12-26 2018-12-26 Method for measuring relative humidity inside concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243619A JP7245046B2 (en) 2018-12-26 2018-12-26 Method for measuring relative humidity inside concrete

Publications (2)

Publication Number Publication Date
JP2020106332A JP2020106332A (en) 2020-07-09
JP7245046B2 true JP7245046B2 (en) 2023-03-23

Family

ID=71450755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243619A Active JP7245046B2 (en) 2018-12-26 2018-12-26 Method for measuring relative humidity inside concrete

Country Status (1)

Country Link
JP (1) JP7245046B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365180B2 (en) 2019-10-02 2023-10-19 太平洋セメント株式会社 Methods for measuring relative humidity, drying shrinkage strain, and relative moisture content inside concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049217A (en) 2003-07-29 2005-02-24 Tokyo Electric Power Co Inc:The Rusting time estimating method, reinforcing steel corrosion rate estimating method and reinforcing steel corrosion estimating method of reinforcing steel in reinforced concrete, and durability diagnosing method of reinforced concrete
JP2009222509A (en) 2008-03-14 2009-10-01 Dic Corp Concrete evaluation device and concrete evaluation method
JP2013195186A (en) 2012-03-19 2013-09-30 Fujita Corp Method and apparatus for evaluating water content of cement-based material during hardening process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE501991C2 (en) * 1992-08-17 1995-07-10 Nicklas Sahlen Measuring probe for moisture measurement in building materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049217A (en) 2003-07-29 2005-02-24 Tokyo Electric Power Co Inc:The Rusting time estimating method, reinforcing steel corrosion rate estimating method and reinforcing steel corrosion estimating method of reinforcing steel in reinforced concrete, and durability diagnosing method of reinforced concrete
JP2009222509A (en) 2008-03-14 2009-10-01 Dic Corp Concrete evaluation device and concrete evaluation method
JP2013195186A (en) 2012-03-19 2013-09-30 Fujita Corp Method and apparatus for evaluating water content of cement-based material during hardening process

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
片平博 ;古賀裕久 ;渡辺博志,コンクリート中の含水率および湿度の測定値と乾燥収縮率の関係,コンクリート工学年次論文集,2015年,Vol.37 No.1,433-438,URL: http://data.jci-net.or.jp/data_pdf/37/037-02-1067.pdf
篭橋忍 ;伊藤佑樹 ;堀部謙 ;森本博昭,コンクリートの乾燥収縮によるひずみと応力の解析,コンクリート工学年次論文集,2002年,Vol.24 No.1,441-446,URL: https://dl.ndl.go.jp/info:ndljp/pid/10637313
篭橋忍 ;小澤満津雄 ;森本博昭,コンクリートの湿気移動解析に関する基礎的研究,コンクリート工学年次論文集,2000年,Vol.22 No.2,655-660,URL: http://data.jci-net.or.jp/data_pdf/22/022-01-2110.pdf

Also Published As

Publication number Publication date
JP2020106332A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
Farzampour Compressive behavior of concrete under environmental effects
Bazant et al. Justification and refinements of model B3 for concrete creep and shrinkage 2. Updating and theoretical basis
Spiesz et al. Development of cement-based lightweight composites–Part 2: Durability-related properties
Subramanian et al. CSA-treated sand for geotechnical application: microstructure analysis and rapid strength development
Dittmer et al. The effect of coarse aggregate content and size on the age at cracking of bonded concrete overlays subjected to restrained deformation
Samouh et al. Experimental and numerical study of size effect on long-term drying behavior of concrete: influence of drying depth
JP7245046B2 (en) Method for measuring relative humidity inside concrete
Pazderka et al. Underground air duct to control rising moisture in historic buildings: Improved design and its drying efficiency
JP7365180B2 (en) Methods for measuring relative humidity, drying shrinkage strain, and relative moisture content inside concrete
Vinkler et al. Drying concrete: experimental and numerical modeling
Woyciechowski et al. Shrinkage characteristics of cement stabilized rammed earth
Wilk et al. Shrinkage cracking in Roman cement pastes and mortars
Latifee et al. Effect of water to cement ratio and age on portland composite cement mortar porosity, strength and evaporation rate
Liu et al. Permeability of high-performance concrete incorporating presoaked lightweight aggregates for internal curing
Zheng et al. A three-step analytical scheme for estimating the steady-state chloride diffusion coefficient of mature cement paste
Jasiczak et al. Impact of moisture conditions on early shrinkage of ordinary concrete with changing w/c ratio
Wang et al. Progress of carbonation in chloride contaminated concrete
Tongyuan et al. Influences of environmental conditions on the cracking tendency of dry-mixed plastering mortar
Fjellström et al. Model for concrete strength development including strength reduction at elevated temperatures
Latha et al. Swell–shrink properties of stabilised earth products
Amin Effect of gypsum stabilization on mechanical properties of compressed earth blocks
Kropáček et al. Measurement of volume changes of cement concrete in large-dimensional samples
JP2022139391A (en) Humidity measuring device, humidity measurement method, and diffusion coefficient acquisition method
Hajibabaee et al. Impact of Early Formwork Removal on Concrete Drying and Chloride Ion Diffusion
Herki Concrete Capillarity under Different Curing Conditions Produced in Kurdistan-Iraq

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230310

R150 Certificate of patent or registration of utility model

Ref document number: 7245046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150