JP2009162609A - Surface contamination degree evaluation method and surface contamination degree evaluation device - Google Patents

Surface contamination degree evaluation method and surface contamination degree evaluation device Download PDF

Info

Publication number
JP2009162609A
JP2009162609A JP2008000429A JP2008000429A JP2009162609A JP 2009162609 A JP2009162609 A JP 2009162609A JP 2008000429 A JP2008000429 A JP 2008000429A JP 2008000429 A JP2008000429 A JP 2008000429A JP 2009162609 A JP2009162609 A JP 2009162609A
Authority
JP
Japan
Prior art keywords
amount
adsorbed
contamination
humidity
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008000429A
Other languages
Japanese (ja)
Other versions
JP4936186B2 (en
Inventor
Rei Suzuki
令 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2008000429A priority Critical patent/JP4936186B2/en
Publication of JP2009162609A publication Critical patent/JP2009162609A/en
Application granted granted Critical
Publication of JP4936186B2 publication Critical patent/JP4936186B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface contamination degree evaluation method and a surface contamination degree evaluation device capable of evaluating a surface contamination degree even in a case where surface texture of analytes changes due to the nature of adsorbed contaminant. <P>SOLUTION: The surface contamination degree evaluation method evaluates a contamination degree of a surface 1a of an analyte 1 due to adsorption of contaminant in air for the analyte required to maintain a predetermined cleanliness degree, in which the adsorbed moisture amount at the surface 1a due to adsorption of water vapor in air is measured and the contamination degree at the surface 1a is evaluated based on the difference from the adsorbed moisture amount adsorbed at the surface 1a of a reference analyte 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、所定の清浄度を保持することが求められる例えば半導体ウエハやガラス基板などの被検体に対し、空気中の汚染物質が吸着することによる被検体の表面の汚染度を評価するための表面汚染度評価方法及び表面汚染度評価装置に関する。   The present invention is for evaluating the degree of contamination of the surface of an object due to adsorption of contaminants in the air on an object such as a semiconductor wafer or a glass substrate that is required to maintain a predetermined cleanliness. The present invention relates to a surface contamination degree evaluation method and a surface contamination degree evaluation apparatus.

従来、半導体素子や液晶ディスプレイなどを製造する際に、クリーンルームや保管庫の空気中の化学物質等(汚染物質)が半導体ウエハやガラス基板(基板、被検体)の表面に吸着し、リーク電流の増大や絶縁耐圧の低下など電気的特性に悪影響を及ぼすことが知られている。このため、半導体素子や液晶ディスプレイなどの製造プロセスでは、製品不良発生による歩留まりの低下や製品の信頼性の低下を阻止するために、基板表面の汚染度評価を行っている。   Conventionally, when manufacturing semiconductor devices and liquid crystal displays, chemical substances (contaminants) in the air of clean rooms and storages are adsorbed on the surface of semiconductor wafers and glass substrates (substrates, specimens), and leakage current It is known to adversely affect electrical characteristics such as an increase and a decrease in dielectric strength. For this reason, in the manufacturing process of semiconductor elements, liquid crystal displays, etc., the degree of contamination of the substrate surface is evaluated in order to prevent a decrease in yield and a decrease in product reliability due to product defects.

そして、この基板表面の汚染度を評価する際には、昇温脱離ガス分析法(TDS)、表面洗浄法、拭き取り法などが用いられている。   Then, when evaluating the degree of contamination of the substrate surface, a temperature programmed desorption gas analysis method (TDS), a surface cleaning method, a wiping method, or the like is used.

昇温脱離ガス分析法は、密閉容器内に基板を収容するとともに昇温して基板表面に吸着した汚染物質を脱離させ、脱離ガス中の汚染物質をガスクロマトグラフ(GC)や質量分析装置(マススペクトル装置(MS))で同定、定量することによって、基板表面の汚染度評価を行う方法である(例えば、特許文献1参照)。   Thermal desorption gas analysis is a method in which a substrate is housed in a sealed container and the temperature is increased to desorb contaminants adsorbed on the substrate surface, and the contaminants in the desorbed gas are analyzed by gas chromatography (GC) or mass spectrometry. In this method, the contamination level of the substrate surface is evaluated by identification and quantification using an apparatus (mass spectrum apparatus (MS)) (see, for example, Patent Document 1).

表面洗浄法は、基板表面を有機溶媒や純水で洗浄し、洗浄液中の汚染物質をGCやMS、イオンクロマトグラフ(IC)で同定、定量することによって、基板表面の汚染度評価を行う方法である。   In the surface cleaning method, the substrate surface is cleaned with an organic solvent or pure water, and contaminants in the cleaning solution are identified and quantified by GC, MS, or ion chromatograph (IC) to evaluate the contamination level of the substrate surface. It is.

また、拭き取り法は、基板表面を不織布や石英ウールなどで拭き取った後、有機溶媒で不織布や石英ウールなどから汚染物質を溶出させ、溶出液中の汚染物質をGCやMS、ICで同定、定量することによって、基板表面の汚染度評価を行う方法である。   In the wiping method, the substrate surface is wiped with a nonwoven fabric or quartz wool, and then the contaminants are eluted from the nonwoven fabric or quartz wool with an organic solvent. In this way, the contamination level of the substrate surface is evaluated.

このように、これらの汚染度評価方法は、いずれもGCやMSなどの高価な分析装置を必要とする。また、他の汚染度評価方法として、フーリエ変換型赤外分光装置(FT−IR)などを用いた光学的な方法や、二次イオン質量分析法(SIMS)を用いた方法の開発も進められているが、やはり高価な装置が必要になる。   Thus, all of these pollution degree evaluation methods require expensive analyzers such as GC and MS. In addition, as other pollution degree evaluation methods, an optical method using a Fourier transform infrared spectrometer (FT-IR) and a method using secondary ion mass spectrometry (SIMS) are being developed. However, expensive equipment is still necessary.

一方、基板表面に純水などの液滴を滴下し、液滴の接触角を測定することによって、基板表面の汚染度評価を行う方法がある(例えば、特許文献2参照)。この汚染度評価方法は、拡大鏡などを用いて液滴を拡大し、基板表面の汚染物質の吸着量が増加するに従って変化する液滴の接触角を液滴の拡大像から測定することによって、基板表面の汚染度を評価する方法である。このため、GCやMSなどの高価な装置を用いることなく、簡便に基板表面の汚染度を評価することが可能である。
特開2006−337031号公報 特開平8−338822号公報
On the other hand, there is a method for evaluating the degree of contamination of the substrate surface by dropping a droplet of pure water or the like on the substrate surface and measuring the contact angle of the droplet (see, for example, Patent Document 2). This contamination degree evaluation method enlarges a droplet using a magnifying glass or the like, and measures the contact angle of the droplet that changes as the amount of adsorption of the contaminant on the substrate surface increases from the enlarged image of the droplet, This is a method for evaluating the degree of contamination of the substrate surface. Therefore, it is possible to easily evaluate the degree of contamination of the substrate surface without using an expensive device such as GC or MS.
JP 2006-337031 A JP-A-8-338822

しかしながら、上記の液滴の接触角を測定する方法においては、例えば表面に吸着した汚染物質の性質、すなわち汚染物質が親水性か、疎水性か、さらに親水性の汚染物質と疎水性の汚染物質の割合などによって接触角が変わってしまう。このため、正確に基板表面の汚染度を評価することが難しいという問題があった。   However, in the method for measuring the contact angle of the above-mentioned droplet, for example, the nature of the contaminant adsorbed on the surface, that is, whether the contaminant is hydrophilic or hydrophobic, and further, the hydrophilic contaminant and the hydrophobic contaminant The contact angle changes depending on the ratio of For this reason, there is a problem that it is difficult to accurately evaluate the degree of contamination of the substrate surface.

本発明は、上記事情に鑑み、吸着した汚染物質の性質などによって被検体の表面性状が変化する場合においても、表面汚染度を評価することが可能な表面汚染度評価方法及び表面汚染度評価装置を提供することを目的とする。   In view of the above circumstances, the present invention provides a surface contamination degree evaluation method and a surface contamination degree evaluation apparatus capable of evaluating the degree of surface contamination even when the surface property of the subject changes depending on the nature of the adsorbed contaminants. The purpose is to provide.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の表面汚染度評価方法は、所定の清浄度を保持することが求められる被検体に対し、空気中の汚染物質が吸着することによる前記被検体の表面の汚染度を評価する表面汚染度評価方法であって、前記空気中の水蒸気が吸着することによる前記表面の吸着水分量を測定し、該吸着水分量に基づいて前記表面の汚染度を評価することを特徴とする。   The surface contamination degree evaluation method of the present invention is a surface contamination degree for evaluating the degree of contamination of the surface of the subject due to adsorption of contaminants in the air to the subject that is required to maintain a predetermined cleanliness. An evaluation method is characterized in that the amount of moisture adsorbed on the surface due to adsorption of water vapor in the air is measured, and the degree of contamination of the surface is evaluated based on the amount of adsorbed moisture.

この発明においては、被検体の表面に汚染物質が吸着すると、表面の物理化学的性質(表面性状)が変化し、表面の吸着水分量が汚染物質の吸着量に応じて変化するため、この表面の吸着水分量を測定することで、表面の汚染度を評価することが可能になる。すなわち、清浄な状態の表面に吸着する吸着水分量に対し、親水性の汚染物質が吸着した場合には吸着水分量が増加し、疎水性の汚染物質が吸着した場合には吸着水分量が減少する。このため、被検体の表面に吸着した汚染物質によって表面性状が変化した場合においても、表面の吸着水分量を測定し、この吸着水分量の変化量(増減量)に基づいて、汚染の進行状況を確認することが可能になり、従来の液滴の接触角を測定する方法に対し比較的正確に表面の汚染度を評価することが可能になる。   In this invention, when contaminants are adsorbed on the surface of the subject, the physicochemical properties (surface properties) of the surface change, and the amount of moisture adsorbed on the surface changes according to the amount of contaminant adsorbed. It is possible to evaluate the degree of surface contamination by measuring the amount of adsorbed water. That is, the amount of moisture adsorbed on a clean surface increases when hydrophilic contaminants are adsorbed, and the amount of adsorbed moisture decreases when hydrophobic contaminants are adsorbed. To do. For this reason, even when the surface properties change due to contaminants adsorbed on the surface of the subject, the amount of moisture adsorbed on the surface is measured, and the progress of contamination based on the amount of change (increase / decrease) in the amount of adsorbed moisture Thus, it becomes possible to evaluate the degree of surface contamination relatively accurately with respect to the conventional method for measuring the contact angle of a droplet.

また、本発明の表面汚染度評価方法においては、前記空気の湿度を一定にして前記表面の吸着水分量を測定し、基準の被検体の表面に吸着した吸着水分量との差に基づいて前記被検体の表面の汚染度を評価することが望ましい。   Further, in the surface contamination degree evaluation method of the present invention, the amount of moisture adsorbed on the surface is measured with the humidity of the air constant, and based on the difference from the amount of adsorbed moisture adsorbed on the surface of the reference specimen It is desirable to evaluate the degree of contamination on the surface of the subject.

この発明においては、空気の湿度を一定にした状態で、この湿度に応じて被検体の表面に吸着する吸着水分量を測定し、基準の被検体の吸着水分量と、汚染度の評価を行う被検体の吸着水分量との差(変化量)を確認することによって、確実に汚染の進行状況を捉えて表面の汚染度を評価することが可能になる。   In this invention, with the humidity of the air constant, the amount of adsorbed moisture adsorbed on the surface of the subject is measured according to the humidity, and the amount of adsorbed moisture of the reference subject and the degree of contamination are evaluated. By confirming the difference (change amount) from the amount of adsorbed moisture of the object, it is possible to reliably grasp the progress of contamination and evaluate the degree of surface contamination.

さらに、本発明の表面汚染度評価方法においては、前記空気の湿度を変化させ、複数の湿度条件で前記表面の吸着水分量を測定して前記湿度の変化量に対する前記吸着水分量の変化量の割合を求め、基準の被検体の前記湿度の変化量に対する前記吸着水分量の変化量の割合との差に基づいて前記被検体の表面の汚染度を評価することがより望ましい。   Further, in the surface contamination degree evaluation method of the present invention, the humidity of the air is changed, the amount of adsorbed moisture on the surface is measured under a plurality of humidity conditions, and the amount of change in the amount of adsorbed moisture relative to the amount of change in humidity is calculated. More preferably, the ratio is obtained, and the degree of contamination of the surface of the subject is evaluated based on the difference between the amount of change in the amount of adsorbed moisture relative to the amount of change in the humidity of the reference subject.

この発明においては、複数の湿度条件で表面の吸着水分量を測定し、基準の被検体の湿度の変化量に対する吸着水分量の変化量の割合と、汚染度の評価を行う被検体の前記割合との差(変化量)を確認することによって、より正確に汚染の進行状況を捉えて表面の汚染度を評価することが可能になる。   In the present invention, the amount of moisture adsorbed on the surface is measured under a plurality of humidity conditions, the ratio of the amount of change in the amount of adsorbed moisture to the amount of change in the humidity of the reference sample, and the ratio of the sample for which the degree of contamination is evaluated. By confirming the difference (amount of change), the degree of contamination of the surface can be evaluated more accurately by capturing the progress of contamination.

すなわち、表面が清浄な状態である場合や表面に吸着した汚染物質の吸着量が少ない場合には、湿度を変化させると表面に吸着する吸着水分量が変化する。このとき、湿度が高くなると吸着水分量も増加する単調増加の関係があり、異なる湿度条件における吸着水分量を測定することで湿度の変化量に対する吸着水分量の変化量の割合が得られる。そして、この湿度に対する吸着水分量の変化の割合は、汚染の進行により変化するので、この割合を確認することによって、汚染の進行状況を捉えて表面の汚染度を評価することが可能になる。また、このように複数の湿度条件で吸着水分量を測定し、吸着水分量の変化量の割合に基づいて汚染度を評価する場合には、一つの湿度条件で吸着水分量を測定し、この一つの湿度条件における吸着水分量の変化量に基づいて汚染度を評価する場合と比較し、より正確に表面の汚染度を評価することが可能になる。   That is, when the surface is clean or when the amount of contaminants adsorbed on the surface is small, the amount of adsorbed moisture adsorbed on the surface changes when the humidity is changed. At this time, there is a monotonically increasing relationship in which the amount of adsorbed water increases as the humidity increases, and by measuring the amount of adsorbed water under different humidity conditions, the ratio of the amount of change in adsorbed water to the amount of change in humidity can be obtained. Since the rate of change in the amount of adsorbed moisture with respect to humidity changes due to the progress of contamination, it is possible to evaluate the degree of surface contamination based on the progress of contamination by checking this rate. In addition, when the amount of adsorbed moisture is measured under a plurality of humidity conditions and the degree of contamination is evaluated based on the rate of change in the amount of adsorbed moisture, the amount of adsorbed moisture is measured under one humidity condition. Compared with the case where the degree of contamination is evaluated based on the amount of change in the amount of adsorbed water under one humidity condition, the degree of contamination of the surface can be more accurately evaluated.

また、本発明の表面汚染度評価方法においては、前記空気の湿度を変化させ、複数の湿度条件で前記表面の吸着水分量を測定して前記湿度と前記吸着水分量の関係を求め、該関係が直線的な関係となる基準の被検体に対し、該関係からの変化を捉えて前記被検体の表面の汚染度を評価することがさらに望ましい。   Further, in the surface contamination degree evaluation method of the present invention, the humidity of the air is changed, and the amount of moisture adsorbed on the surface is measured under a plurality of humidity conditions to obtain the relationship between the humidity and the amount of adsorbed moisture. It is further desirable to evaluate the degree of contamination of the surface of the subject by capturing a change from the reference subject having a linear relationship.

この発明においては、複数の湿度条件で表面の吸着水分量を測定し、基準の被検体の湿度と吸着水分量の直線的な関係が崩れることを確認することで、汚染の進行状況を捉えて表面の汚染度を評価することが可能になる。   In this invention, the amount of moisture adsorbed on the surface is measured under a plurality of humidity conditions, and it is confirmed that the linear relationship between the humidity of the reference specimen and the amount of adsorbed moisture is broken, so that the progress of contamination can be captured. It becomes possible to evaluate the degree of contamination of the surface.

すなわち、表面に吸着した汚染物質の吸着量が多くなるに従い(汚染の進行に従い)、湿度と吸着水分量の直線的な関係(直線性)が崩れ、湿度と吸着水分量の関係が曲線的な関係に変化する。このため、この直線性からの変化を捉えることによって(直線的な関係が成立しなくなることを捉えることによって)、さらに直線的な関係の吸着水分量に対する吸着水分量の変化量を確認することで、確実に汚染の進行状況を捉え、被検体の表面の汚染度を評価することが可能になる。   That is, as the amount of contaminant adsorbed on the surface increases (as the contamination progresses), the linear relationship (linearity) between the humidity and the amount of adsorbed moisture breaks down, and the relationship between the humidity and the amount of adsorbed moisture becomes a curve. Change into a relationship. For this reason, by grasping the change from this linearity (by grasping that the linear relationship is no longer established), and further confirming the amount of change in the amount of adsorbed moisture relative to the amount of adsorbed moisture having a linear relationship. It is possible to reliably grasp the progress of contamination and evaluate the degree of contamination on the surface of the subject.

さらに、本発明の表面汚染度評価方法においては、赤外線水分計を用いて前記吸着水分量を測定することが望ましい。   Furthermore, in the surface contamination degree evaluation method of the present invention, it is desirable to measure the amount of adsorbed moisture using an infrared moisture meter.

この発明においては、ガスクロマトグラフ(GC)や質量分析装置(MS)などの高価な装置ではなく、比較的安価で取扱いが容易な赤外線水分計を用いて表面の汚染度を評価することが可能になる。   In this invention, it is possible to evaluate the degree of surface contamination using an infrared moisture meter that is relatively inexpensive and easy to handle, rather than an expensive device such as a gas chromatograph (GC) or mass spectrometer (MS). Become.

また、このように赤外線水分計を用いる場合には、水分に吸収される例えば1.92〜1.95μmの特定吸収波長で吸着水分量を測定することができる。そして、この特定吸収波長は、例えば半導体素子や液晶ディスプレイなどを製造する際に、クリーンルームや保管庫の空気中に存在するアルコール類やヒドロキシカルボン酸などの有機化合物(汚染物質)の水酸基(OH)、アミノ基(NH)の特定吸収波長と近い。このため、被検体の表面の吸着水分量を測定した際には、実際の吸着水分量に、表面に吸着した汚染物質の水酸基やアミノ基を合わせた見かけの吸着水分量として測定され得る。これにより、吸着水分量だけを検出する場合よりも吸着した汚染物質に関する情報を含んだ測定結果が得られるため、この見かけの吸着水分量によって汚染状況をより詳細に評価することも可能になる。 Moreover, when using an infrared moisture meter in this way, the amount of adsorbed moisture can be measured at a specific absorption wavelength of, for example, 1.92 to 1.95 μm, which is absorbed by moisture. The specific absorption wavelength is determined by, for example, hydroxyl groups (OH) of organic compounds (pollutants) such as alcohols and hydroxycarboxylic acids present in the air of clean rooms and storages when manufacturing semiconductor devices and liquid crystal displays. , Close to the specific absorption wavelength of the amino group (NH 2 ). For this reason, when the amount of moisture adsorbed on the surface of the subject is measured, it can be measured as an apparent amount of adsorbed moisture obtained by combining the actual amount of adsorbed moisture with the hydroxyl group or amino group of the contaminant adsorbed on the surface. As a result, a measurement result including information on the adsorbed contaminants can be obtained as compared with the case where only the adsorbed moisture amount is detected, so that the contamination state can be evaluated in more detail based on the apparent adsorbed moisture amount.

本発明の表面汚染度評価装置は、所定の清浄度を保持することが求められる被検体に対し、空気中の汚染物質が吸着することによる前記被検体の表面の汚染度を評価するための表面汚染度評価装置であって、前記被検体を収容する容器と、該容器内の湿度を調整する湿度調整手段と、前記容器に収容した前記被検体の表面の吸着水分量を測定する水分計とを備えて構成されていることを特徴とする。   The surface contamination degree evaluation apparatus of the present invention is a surface for evaluating the degree of contamination of the surface of the subject due to adsorption of contaminants in the air to the subject that is required to maintain a predetermined cleanliness. A contamination degree evaluation apparatus, a container for storing the subject, a humidity adjusting means for adjusting the humidity in the container, a moisture meter for measuring the amount of adsorbed moisture on the surface of the subject stored in the container, It is characterized by comprising.

この発明においては、上記の本発明の表面汚染度評価方法と同様の効果を得ることが可能である。   In the present invention, it is possible to obtain the same effect as the above-described surface contamination degree evaluation method of the present invention.

本発明の表面汚染度評価方法及び表面汚染度評価装置によれば、従来の液滴の接触角を測定する方法と比較し、被検体の表面に吸着した汚染物質によって表面性状が変化した場合においても、表面性状の変化に応じて表面に吸着する吸着水分量を測定し、この吸着水分量の変化量(増減量)を捉えることで、汚染の進行状況を確認することが可能になり、表面の汚染度を評価することが可能になる。   According to the surface contamination degree evaluation method and the surface contamination degree evaluation apparatus of the present invention, when the surface property is changed by the contaminant adsorbed on the surface of the subject, compared to the conventional method of measuring the contact angle of the droplet. However, by measuring the amount of adsorbed moisture adsorbed on the surface according to the change in surface properties and capturing the amount of change (increase / decrease) in the amount of adsorbed moisture, it becomes possible to check the progress of contamination. It becomes possible to evaluate the degree of contamination.

また、このように表面の吸着水分量を測定して表面の汚染度を評価できることにより、ガスクロマトグラフ(GC)や質量分析装置(MS)などの高価な装置を用いる必要がなく、簡便に表面の汚染度を評価することが可能になる。   In addition, by measuring the amount of moisture adsorbed on the surface in this way and evaluating the degree of surface contamination, it is not necessary to use an expensive device such as a gas chromatograph (GC) or a mass spectrometer (MS), and the surface It becomes possible to evaluate the degree of contamination.

以下、図1から図5を参照し、本発明の第1実施形態に係る表面汚染度評価方法及び表面汚染度評価装置について説明する。本実施形態では、所定の清浄度を保持することが求められる半導体ウエハや液晶ディスプレイのガラス基板の基板(被検体)表面の汚染度を評価するものとして説明を行う。   Hereinafter, a surface contamination degree evaluation method and a surface contamination degree evaluation apparatus according to a first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the description will be made on the assumption that the degree of contamination of the surface of a semiconductor wafer or a glass substrate of a liquid crystal display (subject) required to maintain a predetermined cleanliness is evaluated.

本実施形態の表面汚染度評価装置Aは、図1に示すように、基板(被検体)1を収容する容器2と、容器2内に湿度センサ3aを配置して容器2内の湿度を計測する湿度計3と、容器2内の湿度(相対湿度)を調整する湿度調整手段4と、容器2に収容した基板1の表面1aに吸着された吸着水分量を測定する赤外線水分計(水分計)5と、湿度計3及び赤外線水分計5の測定値を記録して処理するパソコンなどの処理装置6とを備えて構成されている。   As shown in FIG. 1, the surface contamination degree evaluation apparatus A according to the present embodiment measures the humidity in the container 2 by arranging a container 2 that houses a substrate (subject) 1 and a humidity sensor 3 a in the container 2. A humidity meter 3 that adjusts the humidity (relative humidity) in the container 2, and an infrared moisture meter (moisture meter) that measures the amount of moisture adsorbed on the surface 1 a of the substrate 1 accommodated in the container 2. ) 5 and a processing device 6 such as a personal computer for recording and processing the measured values of the hygrometer 3 and the infrared moisture meter 5.

容器2には、湿度調整手段4が繋がり、この湿度調整手段4から送気された湿度調整空気を内部に取り込むための給気口2aと、内部空気を外部に排出するための排気口2bとを備えて形成されている。また、容器2内に収容した基板1がその表面1aを上方に向けて載置される反射板2cが内部に設けられている。   Humidity adjusting means 4 is connected to the container 2, an air supply port 2 a for taking in the humidity adjusting air sent from the humidity adjusting means 4, and an exhaust port 2 b for discharging the internal air to the outside It is formed with. In addition, a reflecting plate 2c on which the substrate 1 accommodated in the container 2 is placed with its surface 1a facing upward is provided inside.

湿度調整手段4は、乾燥空気製造装置4aと湿度調整装置4bとを備え、乾燥空気製造装置4aで製造した乾燥空気を湿度調整装置4bに送気し、この湿度調整装置4bで所望の湿度に調整した湿度調整空気を給気口2aから容器2内に供給するように構成されている。   The humidity adjusting means 4 includes a dry air manufacturing device 4a and a humidity adjusting device 4b, and feeds the dry air manufactured by the dry air manufacturing device 4a to the humidity adjusting device 4b. The humidity adjusting device 4b adjusts the humidity to a desired humidity. The adjusted humidity adjustment air is configured to be supplied into the container 2 from the air supply port 2a.

赤外線水分計5は、光ファイバケーブル5aが外側から容器2の内部に延設され、この光ファイバケーブル5aの先端から基板1の表面1aに赤外線を照射するように設けられている。また、この赤外線水分計5は、水分に吸収されやすい例えば1.92〜1.95μmの波長の水分吸収波長光と、水分の影響を受けにくい例えば1.80μmの波長と例えば2.10μmの波長の参照波長光とをそれぞれ交互に基板1の表面1aに照射し、これらの反射光を受光して、含水率に対応した水分計出力値(IM−D値(mV))を処理装置6に出力する。そして、処理装置6によってIM−D値から基板1の表面1aの吸着水分量が算出される。ちなみに、参照波長光は、基板1の表面1aの色調などの影響を除いて安定した測定を行うために照射される。   The infrared moisture meter 5 is provided so that an optical fiber cable 5a extends from the outside into the container 2 and irradiates the surface 1a of the substrate 1 with infrared rays from the tip of the optical fiber cable 5a. The infrared moisture meter 5 has a water absorption wavelength light having a wavelength of 1.92 to 1.95 μm, which is easily absorbed by water, a wavelength of 1.80 μm and a wavelength of 2.10 μm, which are not easily affected by moisture, for example. The reference wavelength light is alternately irradiated onto the surface 1a of the substrate 1, and the reflected light is received, and the moisture meter output value (IM-D value (mV)) corresponding to the moisture content is given to the processing device 6. Output. Then, the amount of moisture adsorbed on the surface 1a of the substrate 1 is calculated from the IM-D value by the processing device 6. Incidentally, the reference wavelength light is irradiated to perform stable measurement excluding the influence of the color tone of the surface 1a of the substrate 1 and the like.

ついで、上記構成からなる表面汚染度評価装置Aを用いて基板1の表面1aの汚染度を評価する方法について説明するとともに、本実施形態の表面汚染度評価方法及び表面汚染度評価装置Aの作用及び効果について説明する。   Next, a method for evaluating the contamination degree of the surface 1a of the substrate 1 using the surface contamination degree evaluation apparatus A having the above configuration will be described, and the surface contamination degree evaluation method and the surface contamination degree evaluation apparatus A according to the present embodiment will be described. The effects will be described.

本実施形態においては、表面汚染度評価装置Aの容器2の内部空気(空気)の湿度を湿度調整手段4によって一定に保持する。これにより、この一定の湿度条件に応じて内部空気中の水蒸気が反射板2c上に設置した基板1の表面1aに吸着し、この基板1の表面1aに吸着する吸着水分量を赤外線水分計5によって測定する。   In the present embodiment, the humidity of the internal air (air) of the container 2 of the surface contamination degree evaluation apparatus A is kept constant by the humidity adjusting means 4. Thus, water vapor in the internal air is adsorbed on the surface 1a of the substrate 1 installed on the reflector 2c according to the constant humidity condition, and the amount of adsorbed moisture adsorbed on the surface 1a of the substrate 1 is determined as the infrared moisture meter 5. Measure by.

このとき、清浄な状態の基板(基準の被検体)1の表面1aに吸着する吸着水分量に対し、基板1の表面1aに汚染物質が吸着した場合には、汚染物質の吸着量に応じて表面性状が変化し、湿度を一定に保持した場合においてもこの基板1の表面1aに吸着する吸着水分量が増減する。   At this time, when a contaminant is adsorbed on the surface 1a of the substrate 1 with respect to the amount of adsorbed moisture adsorbed on the surface 1a of the clean substrate (reference object) 1, it depends on the amount of adsorbed contaminant. Even when the surface properties change and the humidity is kept constant, the amount of adsorbed moisture adsorbed on the surface 1a of the substrate 1 increases or decreases.

すなわち、親水性の汚染物質が吸着し、表面性状が親水性になった場合には、図2に示すように、清浄な状態の表面(清浄面)1aに吸着する吸着水分量に対して吸着水分量が増加し、疎水性の汚染物質が吸着して表面性状が疎水性になった場合には、図3に示すように、清浄面1aに吸着する吸着水分量に対して吸着水分量が減少する。また、このような吸着水分量の増減量(変化量)は、基板1の表面1aに吸着する汚染物質の吸着量などに応じて変化する。   That is, when hydrophilic contaminants are adsorbed and the surface properties become hydrophilic, as shown in FIG. 2, the adsorbed amount of adsorbed water adsorbs on the clean surface (clean surface) 1a. When the amount of water increases and the hydrophobic contaminants adsorb and the surface properties become hydrophobic, the amount of adsorbed water is less than the amount of adsorbed water adsorbed on the clean surface 1a as shown in FIG. Decrease. Further, such an increase / decrease amount (change amount) of the amount of adsorbed water changes according to the amount of adsorbed contaminants adsorbed on the surface 1 a of the substrate 1.

このため、湿度を一定にした状態で、この湿度に応じて基板表面1aに吸着する吸着水分量を測定し、清浄な状態の基板の表面1aに吸着した吸着水分量と、汚染度の評価を行う基板1の表面1aに吸着した吸着水分量との差(変化量)を確認することで、表面1aの汚染度を評価することが可能になる。   Therefore, with the humidity kept constant, the amount of moisture adsorbed on the substrate surface 1a is measured according to the humidity, and the amount of adsorbed moisture adsorbed on the surface 1a of the clean substrate and the degree of contamination are evaluated. By confirming the difference (change amount) from the amount of adsorbed moisture adsorbed on the surface 1a of the substrate 1 to be performed, it becomes possible to evaluate the degree of contamination of the surface 1a.

また、半導体素子や液晶ディスプレイを製造する際には、半導体ウエハや液晶ガラス基板(基板1)が多くの製造工程を経て完成品に至る。そして、各製造工程を行うクリーンルームや、一時的に基板1を保管する保管庫(ストッカー)の空気中の化学物質等(汚染物質)が基板1の表面1aに吸着し、基板1の表面1aが汚染される。   Moreover, when manufacturing a semiconductor element or a liquid crystal display, a semiconductor wafer or a liquid crystal glass substrate (substrate 1) reaches a finished product through many manufacturing processes. And the chemical substance etc. (contaminant) in the air of the clean room which performs each manufacturing process, and the storage (stocker) which temporarily stores the board | substrate 1 adsorb | suck to the surface 1a of the board | substrate 1, and the surface 1a of the board | substrate 1 becomes Contaminated.

このため、清浄な状態の基板1の表面1aに吸着する吸着水分量を測定し、製造工程を経た段階で(例えば各製造工程の完了後毎に)、同一基板1の表面に吸着する吸着水分量を測定して、清浄な状態の基板表面1aの吸着水分量と製造工程後の基板表面1aの吸着水分量との差(変化量)、あるいは前工程における基板(基準の被検体)表面1aの吸着水分量と後工程における基板(被検体)表面1aの吸着水分量との差(変化量)を確認することで、汚染の進行状況を確認することが可能になる。  Therefore, the amount of adsorbed moisture adsorbed on the surface 1a of the substrate 1 in a clean state is measured, and the adsorbed moisture adsorbed on the surface of the same substrate 1 after the manufacturing process (for example, after each manufacturing process is completed). The amount is measured and the difference (change amount) between the amount of adsorbed moisture on the substrate surface 1a in a clean state and the amount of adsorbed moisture on the substrate surface 1a after the manufacturing process, or the substrate (reference object) surface 1a in the previous process By confirming the difference (change amount) between the amount of adsorbed moisture and the amount of adsorbed moisture on the substrate (subject) surface 1a in the subsequent process, the progress of contamination can be confirmed.

したがって、本実施形態の表面汚染度評価方法及び表面汚染度評価装置Aにおいては、基板1の表面1aに吸着した汚染物質によって表面性状が変化した場合においても、空気の湿度を一定にした状態で、この湿度に応じて基板1の表面1aに吸着する吸着水分量を測定し、基準の基板1の吸着水分量と、汚染度の評価を行う基板1の吸着水分量との差を確認することによって(吸着水分量の変化量に基づいて)、確実に汚染の進行状況を捉えて、従来の液滴の接触角を測定する方法に対し比較的正確に表面1aの汚染度を評価することが可能になる。   Therefore, in the surface contamination degree evaluation method and the surface contamination degree evaluation apparatus A of the present embodiment, even when the surface property changes due to the contaminant adsorbed on the surface 1a of the substrate 1, the humidity of the air is kept constant. Measure the amount of moisture adsorbed on the surface 1a of the substrate 1 according to the humidity, and confirm the difference between the amount of moisture adsorbed on the reference substrate 1 and the amount of moisture adsorbed on the substrate 1 for evaluating the degree of contamination. (Based on the change in the amount of adsorbed water) to reliably grasp the progress of contamination and to evaluate the contamination degree of the surface 1a relatively accurately with respect to the conventional method of measuring the contact angle of a droplet. It becomes possible.

さらに、比較的安価で取扱いが容易な赤外線水分計5を用いて表面1aの汚染度を評価することが可能になるため、ガスクロマトグラフ(GC)や質量分析装置(MS)などの高価な装置を用いる必要がなく、簡便に表面1aの汚染度を評価することが可能になる。   Furthermore, since it becomes possible to evaluate the contamination degree of the surface 1a using the infrared moisture meter 5 which is relatively inexpensive and easy to handle, an expensive apparatus such as a gas chromatograph (GC) or a mass spectrometer (MS) can be used. There is no need to use it, and the contamination degree of the surface 1a can be easily evaluated.

ここで、このように赤外線水分計5を用いる場合には、水分に吸収される例えば1.92〜1.95μmの特定吸収波長で吸着水分量を測定することができる。そして、この特定吸収波長は、半導体素子や液晶ディスプレイなどを製造する際に、クリーンルームや保管庫の空気中に存在するアルコール類やヒドロキシカルボン酸などの有機化合物(汚染物質)の水酸基(OH)、アミノ基(NH)の特定吸収波長と近い。このため、基板1の表面1aの吸着水分量を測定した際には、図4(親水性の汚染物質が表面1aに吸着した場合)及び図5(疎水性の汚染物質が表面1aに吸着した場合)に示すように、実際の吸着水分量に、表面1aに吸着した汚染物質の水酸基やアミノ基を合わせた見かけの吸着水分量として測定され得る。これにより、吸着水分量だけを検出する場合よりも吸着した汚染物質に関する情報を含んだ測定結果が得られる。そして、半導体素子や液晶ディスプレイを製造するクリーンルームや保管庫のように空気中の汚染物質の種類、濃度などが既知である場合には、一定湿度条件における表面1aに吸着する吸着水分量と汚染物質の吸着量の関係を予め求めておくことで、このような見掛けの吸着水分量から汚染状況をより詳細に評価することも可能になる。 Here, when the infrared moisture meter 5 is used in this way, the amount of adsorbed moisture can be measured at a specific absorption wavelength of, for example, 1.92 to 1.95 μm absorbed by moisture. And when this specific absorption wavelength manufactures a semiconductor element, a liquid crystal display, etc., hydroxyl groups (OH) of organic compounds (pollutants) such as alcohols and hydroxycarboxylic acids present in the air of a clean room or a storage room, close to the specific absorption wavelength of the amino group (NH 2). Therefore, when the amount of moisture adsorbed on the surface 1a of the substrate 1 is measured, FIG. 4 (when hydrophilic contaminants are adsorbed on the surface 1a) and FIG. 5 (hydrophobic contaminants adsorb on the surface 1a). As shown in the case), it can be measured as an apparent amount of adsorbed moisture obtained by combining the actual amount of adsorbed moisture with the hydroxyl group or amino group of the contaminant adsorbed on the surface 1a. As a result, a measurement result including information on the adsorbed contaminants can be obtained as compared with the case where only the amount of adsorbed moisture is detected. And when the type and concentration of contaminants in the air are known, such as in clean rooms and storages for manufacturing semiconductor elements and liquid crystal displays, the amount of adsorbed moisture and contaminants adsorbed on the surface 1a under constant humidity conditions By preliminarily obtaining the relationship between the adsorbed amounts, it becomes possible to evaluate the contamination state in more detail from the apparent adsorbed water amount.

ついで、図6及び図7を参照し、本発明の第2実施形態に係る表面汚染度評価方法について説明する。本実施形態では、第1実施形態と同様に、表面汚染度評価装置Aを用いて、所定の清浄度を保持することが求められる半導体ウエハや液晶ディスプレイのガラス基板の基板(被検体)表面の汚染度を評価するものとして説明を行う。   Next, a surface contamination degree evaluation method according to the second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, similarly to the first embodiment, the surface contamination degree evaluation apparatus A is used to measure the surface of a substrate (subject) of a semiconductor wafer or a glass substrate of a liquid crystal display that is required to maintain a predetermined cleanliness. The description will be made on the assumption that the degree of contamination is evaluated.

ここで、第1実施形態のように、湿度を一定にした状態で測定した基準の基板1の吸着水分量と、汚染度の評価を行う基板1の吸着水分量との差を確認して表面1aの汚染度を評価する場合には、基板の設置状態や赤外線水分計の例えば電圧などの変化で測定値(IM−D値、吸着水分量)全体が上下にシフトしたり、赤外線水分計の特性上時間とともにベースラインが変動するなどして、誤差が生じる場合がある。   Here, as in the first embodiment, the difference between the adsorbed moisture amount of the reference substrate 1 measured in a state where the humidity is constant and the adsorbed moisture amount of the substrate 1 on which the contamination degree is evaluated is confirmed to be the surface. When evaluating the contamination level of 1a, the entire measured value (IM-D value, amount of adsorbed water) is shifted up and down due to changes in the installation state of the substrate and, for example, the voltage of the infrared moisture meter, An error may occur due to characteristics such as the baseline changing with time.

これに対し、本実施形態の表面汚染度評価方法では、表面汚染度評価装置Aの容器2の内部空気(空気)の湿度を湿度調整手段4によって変化させ、複数の湿度条件で基板1の表面1aに吸着する吸着水分量を測定する。   On the other hand, in the surface contamination degree evaluation method of the present embodiment, the humidity of the internal air (air) of the container 2 of the surface contamination degree evaluation apparatus A is changed by the humidity adjusting means 4, and the surface of the substrate 1 under a plurality of humidity conditions. The amount of moisture adsorbed on 1a is measured.

そして、表面1aが清浄な状態である場合や、表面1aに吸着した汚染物質の吸着量が少ない場合には、湿度を変化させると表面1aに吸着する吸着水分量が変化し、このとき、湿度と吸着水分量の関係を直線回帰して求めることができる。すなわち、表面1aが清浄な状態である場合や、汚染物質の吸着量が少ない場合には、湿度と吸着水分量の関係が直線的な関係となる。   When the surface 1a is in a clean state or when the amount of adsorbed contaminants adsorbed on the surface 1a is small, the amount of adsorbed moisture adsorbed on the surface 1a changes when the humidity is changed. And the amount of adsorbed water can be obtained by linear regression. That is, when the surface 1a is in a clean state or when the amount of contaminants adsorbed is small, the relationship between the humidity and the amount of adsorbed water is a linear relationship.

そして、親水性の汚染物質が吸着し、表面性状が親水性になった場合には、図6に示すように、表面1aが清浄な状態の基板(基準の被検体)1の湿度の変化量に対する吸着水分量の変化量の割合、すなわち表面1aが清浄な状態の基板1の湿度と吸着水分量の直線的な関係の傾きに対し、この汚染物質が吸着した基板1の湿度と吸着水分量の関係の傾きが大きくなる。   Then, when hydrophilic contaminants are adsorbed and the surface properties become hydrophilic, as shown in FIG. 6, the amount of change in the humidity of the substrate (reference specimen) 1 having a clean surface 1a. The ratio of the amount of change in the amount of adsorbed water to the surface, that is, the slope of the linear relationship between the humidity of the substrate 1 and the amount of adsorbed water with the clean surface 1a, and the amount of adsorbed moisture and the amount of adsorbed water The slope of the relationship increases.

また、疎水性の汚染物質が吸着し、表面性状が疎水性になった場合には、図7に示すように、表面1aが清浄な状態の基板1の湿度と吸着水分量の直線的な関係の傾きに対し、この汚染物質が吸着した基板1の湿度と吸着水分量の関係の傾きが小さくなる。   In addition, when hydrophobic contaminants are adsorbed and the surface properties become hydrophobic, as shown in FIG. 7, the linear relationship between the humidity of the substrate 1 with the clean surface 1a and the amount of adsorbed water is obtained. The inclination of the relationship between the humidity of the substrate 1 to which the contaminant is adsorbed and the amount of adsorbed water becomes smaller.

このため、汚染の進行に応じて変化する湿度の変化量に対する吸着水分量の変化量の割合(傾き)の変化量を確認することによって、汚染の進行状況を捉えて表面1aの汚染度を評価することが可能になる。また、このように複数の湿度条件で吸着水分量を測定して傾きの変化量に基づいて汚染度を評価することで、一つの湿度条件で吸着水分量を測定し、この一つの湿度条件における吸着水分量の変化量に基づいて汚染度を評価する場合に生じる誤差を抑制することができ、より正確に表面1aの汚染度を評価することが可能になる。また、経時的に傾きの変化量を確認することで、汚染の進行状況を確認することが可能になる。なお、本実施形態においては、傾きの変化量を確認する方法であるため、少なくとも2つの湿度条件で測定を行うことにより、評価を行うことが可能である。   For this reason, the degree of contamination of the surface 1a is evaluated by grasping the progress of contamination by checking the amount of change (slope) of the amount of change in the amount of adsorbed moisture relative to the amount of change in humidity that changes with the progress of contamination. It becomes possible to do. In addition, by measuring the amount of adsorbed moisture under a plurality of humidity conditions and evaluating the degree of contamination based on the amount of change in slope, the amount of adsorbed moisture is measured under one humidity condition. An error that occurs when the degree of contamination is evaluated based on the amount of change in the amount of adsorbed moisture can be suppressed, and the degree of contamination of the surface 1a can be more accurately evaluated. In addition, it is possible to check the progress of contamination by checking the amount of change in inclination over time. In the present embodiment, since the change amount of the tilt is confirmed, the evaluation can be performed by performing the measurement under at least two humidity conditions.

ついで、図8を参照し、本発明の第3実施形態に係る表面汚染度評価方法について説明する。   Next, a surface contamination degree evaluation method according to a third embodiment of the present invention will be described with reference to FIG.

本実施形態は、第2実施形態と同様に、表面汚染度評価装置Aの容器2の内部空気の湿度を湿度調整手段4によって変化させ、複数の湿度条件で基板1の表面1aに吸着する吸着水分量を測定する。   In the present embodiment, as in the second embodiment, the humidity of the internal air of the container 2 of the surface contamination degree evaluation apparatus A is changed by the humidity adjusting means 4 and is adsorbed on the surface 1a of the substrate 1 under a plurality of humidity conditions. Measure moisture content.

そして、湿度と吸着水分量の関係を求める。このとき、第2実施形態のように測定する湿度条件が2条件ではなく、3条件以上にすることで、湿度変化に対する吸着水分量の変化が直線性の高いものであるかどうか、また直線性からのずれを把握することができる。   Then, the relationship between the humidity and the amount of adsorbed moisture is obtained. At this time, if the humidity condition to be measured is not two conditions but three conditions or more as in the second embodiment, whether or not the change in the amount of adsorbed moisture with respect to the humidity change is highly linear, and the linearity The deviation from can be grasped.

例えば、図8に示すように、表面1aの汚染の進行に従い、湿度と吸着水分量の関係性(直線性、あるいは直線性からのずれ)が変化する。   For example, as shown in FIG. 8, the relationship between the humidity and the amount of adsorbed moisture (linearity or deviation from linearity) changes with the progress of contamination of the surface 1a.

したがって、本実施形態の表面汚染度評価方法においては、この湿度と吸着水分量の関係が、直線性から変化することを捉えることによって(比例関係が成立しなくなることを捉えることによって)、さらに直線的な関係の吸着水分量に対する吸着水分量の変化量を確認することで、汚染の進行状況を捉え、基板1の表面1aの汚染度を評価することが可能になる。また、経時的に直線性からの変化量を捉えることで、確実に汚染の進行状況を確認することが可能になる。なお、本実施形態においては、直線的な関係からの変化を捉える方法であるため、3つ以上の湿度条件で測定することが望ましい。   Therefore, in the surface contamination degree evaluation method of the present embodiment, by capturing that the relationship between the humidity and the amount of adsorbed water changes from linearity (by capturing that the proportional relationship is no longer established), a straight line is further obtained. By confirming the amount of change in the amount of adsorbed water relative to the amount of adsorbed water having a general relationship, it becomes possible to grasp the progress of contamination and evaluate the degree of contamination of the surface 1a of the substrate 1. Also, by capturing the amount of change from linearity over time, it is possible to reliably check the progress of contamination. In the present embodiment, since it is a method of capturing a change from a linear relationship, it is desirable to measure under three or more humidity conditions.

以上、本発明に係る表面汚染度評価方法及び表面汚染度評価装置の第1、第2及び第3実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、第1〜第3本実施形態では、表面汚染度評価装置Aの水分計が赤外線水分計5であるものとし、この赤外線水分計5で表面1aに吸着する吸着水分量を測定するものとしたが、本発明に係る水分計は、吸着水分量を測定することが可能であれば、赤外線水分計5に限定する必要はない。   The first, second, and third embodiments of the surface contamination degree evaluation method and the surface contamination degree evaluation device according to the present invention have been described above, but the present invention is not limited to the above embodiments, and the gist thereof As long as it does not deviate from the above, it can be appropriately changed. For example, in the first to third embodiments, the moisture meter of the surface contamination degree evaluation apparatus A is the infrared moisture meter 5, and the infrared moisture meter 5 measures the amount of moisture adsorbed on the surface 1a. However, the moisture meter according to the present invention need not be limited to the infrared moisture meter 5 as long as the amount of adsorbed moisture can be measured.

また、第1〜第3実施形態では、本発明に係る被検体が半導体ウエハやガラス基板などの基板1であるものとして説明を行ったが、本発明は、基板表面1aの汚染度評価への適用に限定されるものではなく、所定の清浄度を保持することが求められる全ての被検体に適用することが可能である。   In the first to third embodiments, the subject according to the present invention has been described as being the substrate 1 such as a semiconductor wafer or a glass substrate. However, the present invention is applicable to the evaluation of the contamination level of the substrate surface 1a. The present invention is not limited to the application, and can be applied to all subjects that are required to maintain a predetermined cleanliness.

さらに、第1〜第3実施形態では、表面汚染度評価装置Aの容器2内に基板(被検体)1を収容して、この基板表面1aの汚染度を評価するものとしたが、例えば半導体素子や液晶ディスプレイを製造する空間(クリーンルーム内や製造装置内)は温度、湿度ともに制御されているため、このような湿度環境が安定した室内であれば、被検体を容器2に入れる必要はなく、オープンな状態で評価することが可能である。   Further, in the first to third embodiments, the substrate (subject) 1 is accommodated in the container 2 of the surface contamination degree evaluation apparatus A, and the contamination degree of the substrate surface 1a is evaluated. Since the space for manufacturing the element and the liquid crystal display (in the clean room or in the manufacturing apparatus) is controlled in both temperature and humidity, there is no need to put the subject in the container 2 if the humidity environment is stable. It is possible to evaluate in an open state.

以下に本発明の実施例を具体的に説明する。但し、本発明はこの実施例に限定されるものではない。   Examples of the present invention will be specifically described below. However, the present invention is not limited to this example.

本実施例は、図1に示した汚染度評価装置Aを用い、実際に液晶ガラス基板と半導体ウエハのそれぞれの基板1の表面1aの吸着水分量を測定し、基板表面1aの汚染度評価を行ったものである。   In this embodiment, the contamination level evaluation apparatus A shown in FIG. 1 is used to actually measure the amount of adsorbed moisture on the surface 1a of the substrate 1 of each of the liquid crystal glass substrate and the semiconductor wafer, and evaluate the contamination level of the substrate surface 1a. It is what I did.

はじめに、液晶ガラス基板1の評価について説明する。
本実施例では、0.7mmの厚さで形成した液晶ガラス基板1を用いるとともに、この液晶ガラス基板1の表面1aの吸着水分量の測定に、反射式の赤外線水分計5(株式会社フジワーク製IM−3SCV MODEL−1900)を用いた。また、液晶ガラス基板表面1aをエチルアルコールとヘキサンで交互に洗浄して清浄にし、この清浄な状態の液晶ガラス基板1を、容量が約2.3リットルの容器2の内部に収容して試験を行った。さらに、容器2内の温度を常時20〜21℃で保持し、試験開始前の段階では、湿度(相対湿度)が0.4〜0.5%の乾燥空気を1.0SLMの流量で供給し、容器2内の空気環境を乾燥状態にした。
First, evaluation of the liquid crystal glass substrate 1 will be described.
In the present embodiment, a liquid crystal glass substrate 1 formed with a thickness of 0.7 mm is used, and a reflective infrared moisture meter 5 (manufactured by Fuji Work Co., Ltd.) is used for measuring the amount of adsorbed moisture on the surface 1a of the liquid crystal glass substrate 1. IM-3SCV MODEL-1900) was used. In addition, the liquid crystal glass substrate surface 1a is cleaned by alternately washing with ethyl alcohol and hexane, and the clean liquid crystal glass substrate 1 is accommodated in a container 2 having a capacity of about 2.3 liters for testing. went. Further, the temperature in the container 2 is always kept at 20 to 21 ° C., and in the stage before the start of the test, dry air having a humidity (relative humidity) of 0.4 to 0.5% is supplied at a flow rate of 1.0 SLM. The air environment in the container 2 was dried.

そして、本実施例では、容器2内に液晶ガラス基板1を収容してから、1日後、3日後、4日後、7日後、9日後にそれぞれ湿度操作を行い、湿度を約0.5%から約80%まで変化させて、赤外線水分計5の出力値(IM−D値(mV))の変化を測定した。このとき、乾燥空気製造装置4aで製造した乾燥空気と、乾燥空気の一部を湿度調整装置4bの純水インピンジャーに導入して作った高湿度空気を混合して、混合空気(湿度調整空気)を1.0SLMの流量で容器2内に供給し、湿度を約0.5%から約80%まで連続的に変化させるようにした。   In this embodiment, after the liquid crystal glass substrate 1 is accommodated in the container 2, the humidity operation is performed after 1 day, 3 days, 4 days, 7 days, and 9 days, and the humidity is reduced from about 0.5%. The change of the output value (IM-D value (mV)) of the infrared moisture meter 5 was measured by changing the level to about 80%. At this time, the dry air produced by the dry air production device 4a is mixed with the high-humidity air produced by introducing a part of the dry air into the pure water impinger of the humidity adjustment device 4b. ) Was supplied into the container 2 at a flow rate of 1.0 SLM, and the humidity was continuously changed from about 0.5% to about 80%.

図9は、上記の条件で行った試験結果であり、湿度に対するIM−D値を示している。この結果から、液晶ガラス基板1では、全ての湿度条件において、洗浄後の経過日数とともにIM−D値が上昇することが確認された。つまり、いずれの湿度で測定した場合においても、IM−D値は経過日数に応じて上昇することが認められ、容器2内の液晶ガラス基板1の表面1aに、内部空気に含まれた汚染物質が吸着して、経時的に且つ継続的に汚染が進行することが確認された。   FIG. 9 shows test results obtained under the above-described conditions, and shows IM-D values with respect to humidity. From this result, in the liquid crystal glass substrate 1, it was confirmed that IM-D value rose with the elapsed days after washing | cleaning in all humidity conditions. That is, in any humidity measurement, it is recognized that the IM-D value rises according to the number of days elapsed, and the contaminant contained in the internal air on the surface 1a of the liquid crystal glass substrate 1 in the container 2 It was confirmed that the contamination progressed over time and continuously.

ついで、図10は、湿度に対するIM−D値の変化量(△IM−D値)を示している。そして、この結果から、洗浄後の日数の経過とともに、IM−D値の変化量が減少することが確認された。特に7日後以降は、湿度の上昇に対する吸着水分量の変化が小さく、疎水性の汚染物質が液晶ガラス基板1の表面1aに吸着し、この疎水性の汚染物質の影響が強く出ている。   Next, FIG. 10 shows a change amount (ΔIM-D value) of the IM-D value with respect to humidity. From this result, it was confirmed that the amount of change in the IM-D value decreased with the passage of days after washing. In particular, after 7 days, the change in the amount of adsorbed moisture with respect to the increase in humidity is small, and hydrophobic contaminants are adsorbed on the surface 1a of the liquid crystal glass substrate 1, and the influence of this hydrophobic contaminant is strong.

これにより、本実施例において、液晶ガラス基板1の表面1aは、1日後と3日後の間から汚染が進行し始め、日数が経過するとともに汚染が徐々に進行してゆくことが、IM−D値、すなわち吸着水分量の測定によって確認できる。そして、日数が経過するとともにIM−D値の変化量が減少し、さらに直線性が崩れてゆくことから、液晶ガラス基板1には疎水性の汚染物質が吸着されて、表面性状が徐々に疎水性を強めるように変化することが確認できる。   As a result, in this example, the surface 1a of the liquid crystal glass substrate 1 starts to progress contamination between 1 day and 3 days later, and the contamination gradually proceeds as the number of days elapses. It can be confirmed by measuring the value, that is, the amount of adsorbed water. Then, as the number of days elapses, the amount of change in the IM-D value decreases, and the linearity is further lost. Therefore, hydrophobic contaminants are adsorbed on the liquid crystal glass substrate 1, and the surface properties gradually become hydrophobic. It can be confirmed that it changes to enhance sex.

よって、赤外線水分計5を用いて液晶ガラス基板1の表面1aの吸着水分量を測定することができるとともに、このように吸着水分量を測定し、変化量や直線性の崩れを確認することで、汚染の進行を捉え、液晶ガラス基板1の表面汚染度の評価を行えることが実証された。   Therefore, the amount of adsorbed moisture on the surface 1a of the liquid crystal glass substrate 1 can be measured using the infrared moisture meter 5, and the amount of adsorbed moisture is measured in this way to confirm the amount of change and the collapse of linearity. It has been proved that the progress of contamination can be grasped and the surface contamination degree of the liquid crystal glass substrate 1 can be evaluated.

ここで、9日後の測定終了した段階で、容器2から液晶ガラス基板1を取り出し、室内にてさらに9日間暴露、放置した。そして、この液晶ガラス基板1を9日間の暴露後(18日後)に乾燥空気を供給した容器2に戻し、その3日後(21日後)に再測定を行ってみた。   Here, at the stage where the measurement was completed after 9 days, the liquid crystal glass substrate 1 was taken out of the container 2 and exposed and left for 9 days in the room. The liquid crystal glass substrate 1 was returned to the container 2 supplied with dry air after 9 days of exposure (18 days later), and remeasured 3 days later (21 days later).

この結果、図11に示すように、室内空気の暴露により、湿度に対するIM−D値の変化量の応答が回復することが確認された。しかしながら、湿度とIM−D値の変化量の関係においては、図10の3日後と同様の曲線的な関係が維持されていた。このような湿度に対するIM−D値の変化量の応答性の回復は、液晶ガラス基板1の表面1aの疎水性が回復したことを示唆している。一方で、直線関係からの変化の維持(曲線的な関係の維持)は、液晶ガラス基板1の表面1aに汚染物質が残存していることを示唆する。そして、このように、湿度とIM−D値の関係を詳細に調べることで、単に湿度に対するIM−D値の変化量の変化では捉えられない表面汚染の存在を把握することも可能になる。   As a result, as shown in FIG. 11, it was confirmed that the response of the change amount of the IM-D value with respect to humidity was recovered by exposure to room air. However, in the relationship between the humidity and the amount of change in the IM-D value, a curved relationship similar to that after 3 days in FIG. 10 was maintained. The recovery of the responsiveness of the change amount of the IM-D value with respect to the humidity suggests that the hydrophobicity of the surface 1a of the liquid crystal glass substrate 1 has been recovered. On the other hand, maintaining the change from the linear relationship (maintaining the curved relationship) suggests that contaminants remain on the surface 1 a of the liquid crystal glass substrate 1. Thus, by examining the relationship between the humidity and the IM-D value in detail, it is also possible to grasp the presence of surface contamination that cannot be detected simply by changing the amount of change in the IM-D value with respect to the humidity.

ついで、半導体ウエハ1の評価について説明する。
本実施例では、CZp型で、方位が100、厚さが625±25μmの半導体ウエハ1を用いた。また、湿度操作を2日後、6日後、8日後に行っており、その他の条件は、液晶ガラス基板1の評価と同様にして試験を行った。
Next, evaluation of the semiconductor wafer 1 will be described.
In this example, a CZp type semiconductor wafer 1 having an orientation of 100 and a thickness of 625 ± 25 μm was used. The humidity operation was performed after 2 days, 6 days, and 8 days, and other conditions were tested in the same manner as the evaluation of the liquid crystal glass substrate 1.

図12は、湿度(相対湿度)に対するIM−D値を示している。この結果から、半導体ウエハ1では、全ての湿度条件において、洗浄後の経過日数とともにIM−D値が上昇することが確認された。つまり、いずれの湿度で測定した場合においても、IM−D値は経過日数に応じて上昇することが認められ、容器2内の半導体ウエハ1の表面1aの汚染は、経時的に且つ継続的に進行することが確認された。また、2日後に対して6日後と8日後では低湿度域でIM−D値の応答が低下した。   FIG. 12 shows the IM-D value with respect to humidity (relative humidity). From this result, in the semiconductor wafer 1, it was confirmed that the IM-D value increased with the elapsed days after cleaning in all humidity conditions. That is, it is recognized that the IM-D value rises according to the number of days elapsed even when measured at any humidity, and the contamination of the surface 1a of the semiconductor wafer 1 in the container 2 continues with time. Confirmed to proceed. Moreover, the response of IM-D value fell in the low humidity region after 6 days and 8 days after 2 days.

ついで、図13は、湿度に対するIM−D値の変化量(△IM−D値)を示している。そして、この結果から、洗浄後の日数の経過とともに、IM−D値の変化量が減少することが確認された。特に6日後以降は、湿度の上昇に対する吸着水分量の変化が小さく、疎水性の汚染物質が液晶ガラス基板の表面に吸着し、この疎水性の汚染物質の影響が強くでている。また、2日後では、湿度とIM−D値の変化量の関係がほぼ直線的な関係を示しているのに対し、6日後以降では、その直線性が崩れている。   Next, FIG. 13 shows a change amount (ΔIM-D value) of the IM-D value with respect to humidity. From this result, it was confirmed that the amount of change in the IM-D value decreased with the passage of days after washing. In particular, after 6 days, the change in the amount of adsorbed moisture with respect to the increase in humidity is small, and hydrophobic contaminants are adsorbed on the surface of the liquid crystal glass substrate, and the influence of this hydrophobic contaminant is strong. In addition, the relationship between the humidity and the amount of change in the IM-D value shows a substantially linear relationship after 2 days, whereas the linearity is broken after 6 days.

よって、半導体ウエハ1に対しても、吸着水分量を測定し、変化量や直線性の崩れを確認することで、汚染の進行を捉え、表面汚染度の評価を行えることが実証された。   Therefore, it was proved that the amount of adsorbed moisture was measured on the semiconductor wafer 1 and the amount of change and linearity were confirmed to catch the progress of contamination and evaluate the degree of surface contamination.

本発明の実施形態に係る表面汚染度評価装置を示す図である。It is a figure which shows the surface contamination degree evaluation apparatus which concerns on embodiment of this invention. 湿度を一定にした状態における清浄な表面と親水性の汚染物質が吸着した表面の吸着水分量の違いを示す図である。It is a figure which shows the difference in the amount of adsorption | suction water | moisture content of the clean surface in the state which made humidity constant, and the surface which the hydrophilic contaminant adsorb | sucked. 湿度を一定にした状態における清浄な表面と疎水性の汚染物質が吸着した表面の吸着水分量の違いを示す図である。It is a figure which shows the difference of the adsorption | suction moisture content of the surface in which the humidity was made constant and the surface which the hydrophobic contaminant adsorb | sucked. 湿度を一定にした状態における清浄な表面と親水性の汚染物質が吸着した表面の見かけの吸着水分量の違いを示す図である。It is a figure which shows the difference of the apparent amount of adsorption | suction water | moisture contents of the surface where the humidity was made constant and the surface which the hydrophilic contaminant adsorb | sucked. 湿度を一定にした状態における清浄な表面と疎水性の汚染物質が吸着した表面の見かけの吸着水分量の違いを示す図である。It is a figure which shows the difference in the amount of apparent adsorption | suction moisture of the clean surface in the state which made humidity constant, and the surface which the hydrophobic contaminant adsorb | sucked. 清浄な表面と親水性の汚染物質が吸着した表面における湿度と吸着水分量の関係の傾きの違いを示す図である。It is a figure which shows the difference in the inclination of the relationship between humidity and the amount of adsorption | suction moisture in the surface which the clean surface and the hydrophilic contaminant adsorb | sucked. 清浄な表面と疎水性の汚染物質が吸着した表面における湿度と吸着水分量の関係の傾きの違いを示す図である。It is a figure which shows the difference in the inclination of the relationship between humidity and the amount of adsorption | suction moisture in the surface which the clean surface and the hydrophobic contaminant adsorb | sucked. 汚染の進行に伴う湿度と吸着水分量の関係の変化を示す図である。It is a figure which shows the change of the relationship between humidity and the amount of adsorption | suction water accompanying the progress of contamination. 実施例の液晶ガラス基板を用いた評価試験の結果を示した図であり、湿度に対するIM−D値を示す図である。It is the figure which showed the result of the evaluation test using the liquid crystal glass substrate of an Example, and is a figure which shows the IM-D value with respect to humidity. 実施例の液晶ガラス基板を用いた評価試験の結果を示した図であり、湿度に対するIM−D値の変化量を示す図である。It is the figure which showed the result of the evaluation test using the liquid crystal glass substrate of an Example, and is a figure which shows the variation | change_quantity of the IM-D value with respect to humidity. 実施例の液晶ガラス基板を用いた評価試験の結果を示した図であり、洗浄21日後の湿度に対するIM−D値の変化量を示す図である。It is the figure which showed the result of the evaluation test using the liquid crystal glass substrate of an Example, and is a figure which shows the variation | change_quantity of the IM-D value with respect to the humidity 21 days after washing | cleaning. 実施例の半導体ウエハを用いた評価試験の結果を示した図であり、湿度に対するIM−D値を示す図である。It is the figure which showed the result of the evaluation test using the semiconductor wafer of an Example, and is a figure which shows the IM-D value with respect to humidity. 実施例の半導体ウエハを用いた評価試験の結果を示した図であり、湿度に対するIM−D値の変化量を示す図である。It is the figure which showed the result of the evaluation test using the semiconductor wafer of an Example, and is a figure which shows the variation | change_quantity of the IM-D value with respect to humidity.

符号の説明Explanation of symbols

1 被検体(基板、液晶ガラス基板、半導体ウエハ)
1a 表面
2 容器
2a 給気口
2b 排気口
2c 反射板
3 湿度計
3a 湿度センサ
4 湿度調整手段
4a 乾燥空気製造装置
4b 湿度調整装置
5 赤外線水分計(水分計)
5a 光ファイバケーブル
6 処理装置
A 表面汚染度評価装置
1 Subject (substrate, liquid crystal glass substrate, semiconductor wafer)
DESCRIPTION OF SYMBOLS 1a Surface 2 Container 2a Air supply port 2b Exhaust port 2c Reflector 3 Hygrometer 3a Humidity sensor 4 Humidity adjustment means 4a Dry air manufacturing apparatus 4b Humidity adjustment apparatus 5 Infrared moisture meter (moisture meter)
5a Optical fiber cable 6 Processing device A Surface contamination degree evaluation device

Claims (6)

所定の清浄度を保持することが求められる被検体に対し、空気中の汚染物質が吸着することによる前記被検体の表面の汚染度を評価する表面汚染度評価方法であって、
前記空気中の水蒸気が吸着することによる前記表面の吸着水分量を測定し、該吸着水分量に基づいて前記表面の汚染度を評価することを特徴とする表面汚染度評価方法。
A surface contamination degree evaluation method for evaluating the degree of contamination of the surface of the subject by adsorbing contaminants in the air for the subject required to maintain a predetermined cleanliness,
A surface contamination degree evaluation method, comprising measuring an amount of moisture adsorbed on the surface due to adsorption of water vapor in the air, and evaluating the degree of contamination of the surface based on the amount of adsorbed moisture.
請求項1記載の表面汚染度評価方法において、
前記空気の湿度を一定にして前記表面の吸着水分量を測定し、基準の被検体の表面に吸着した吸着水分量との差に基づいて前記被検体の表面の汚染度を評価することを特徴とする表面汚染度評価方法。
In the surface contamination degree evaluation method according to claim 1,
Measuring the amount of moisture adsorbed on the surface with the humidity of the air constant, and evaluating the degree of contamination of the surface of the subject based on the difference from the amount of adsorbed moisture adsorbed on the surface of the reference subject A method for evaluating surface contamination.
請求項1または請求項2に記載の表面汚染度評価方法において、
前記空気の湿度を変化させ、複数の湿度条件で前記表面の吸着水分量を測定して前記湿度の変化量に対する前記吸着水分量の変化量の割合を求め、基準の被検体の前記湿度の変化量に対する前記吸着水分量の変化量の割合との差に基づいて前記被検体の表面の汚染度を評価することを特徴とする表面汚染度評価方法。
In the surface contamination degree evaluation method according to claim 1 or 2,
Changing the humidity of the air, measuring the amount of moisture adsorbed on the surface under a plurality of humidity conditions, determining the ratio of the amount of change in the amount of adsorbed moisture to the amount of change in humidity, and changing the humidity of the reference specimen A method for evaluating the degree of contamination of a surface, wherein the degree of contamination of the surface of the subject is evaluated on the basis of the difference between the amount of change in the amount of adsorbed water and the amount of adsorption.
請求項1から請求項3のいずれかに記載の表面汚染度評価方法において、
前記空気の湿度を変化させ、複数の湿度条件で前記表面の吸着水分量を測定して前記湿度と前記吸着水分量の関係を求め、該関係が直線的な関係となる基準の被検体に対し、該関係からの変化を捉えて前記被検体の表面の汚染度を評価することを特徴とする表面汚染度評価方法。
In the surface contamination degree evaluation method according to any one of claims 1 to 3,
The humidity of the air is changed, and the amount of moisture adsorbed on the surface is measured under a plurality of humidity conditions to determine the relationship between the humidity and the amount of adsorbed moisture, and for a reference specimen in which the relationship is a linear relationship A method for evaluating the degree of contamination of a surface, characterized in that the degree of contamination on the surface of the subject is evaluated by capturing a change from the relationship.
請求項1から請求項4のいずれかに記載の表面汚染度評価方法において、
赤外線水分計を用いて前記吸着水分量を測定することを特徴とする表面汚染度評価方法。
In the surface contamination degree evaluation method in any one of Claims 1-4,
A method for evaluating the degree of surface contamination, wherein the amount of adsorbed moisture is measured using an infrared moisture meter.
所定の清浄度を保持することが求められる被検体に対し、空気中の汚染物質が吸着することによる前記被検体の表面の汚染度を評価するための表面汚染度評価装置であって、
前記被検体を収容する容器と、該容器内の湿度を調整する湿度調整手段と、前記容器に収容した前記被検体の表面の吸着水分量を測定する水分計とを備えて構成されていることを特徴とする表面汚染度評価装置。
A surface contamination degree evaluation apparatus for evaluating the degree of contamination of the surface of the subject by adsorbing contaminants in the air for the subject required to maintain a predetermined cleanliness,
A container that contains the subject, humidity adjusting means for adjusting the humidity in the container, and a moisture meter that measures the amount of moisture adsorbed on the surface of the subject contained in the container. Surface contamination degree evaluation device characterized by
JP2008000429A 2008-01-07 2008-01-07 Surface contamination degree evaluation method and surface contamination degree evaluation apparatus Expired - Fee Related JP4936186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000429A JP4936186B2 (en) 2008-01-07 2008-01-07 Surface contamination degree evaluation method and surface contamination degree evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000429A JP4936186B2 (en) 2008-01-07 2008-01-07 Surface contamination degree evaluation method and surface contamination degree evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2009162609A true JP2009162609A (en) 2009-07-23
JP4936186B2 JP4936186B2 (en) 2012-05-23

Family

ID=40965393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000429A Expired - Fee Related JP4936186B2 (en) 2008-01-07 2008-01-07 Surface contamination degree evaluation method and surface contamination degree evaluation apparatus

Country Status (1)

Country Link
JP (1) JP4936186B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202664A (en) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 Rifs (reflection interference spectroscopy) measuring device
JP2017151021A (en) * 2016-02-26 2017-08-31 Imv株式会社 Test device
JP2022534041A (en) * 2019-05-23 2022-07-27 アルセロールミタル strip moisture detector
CN115793416A (en) * 2023-01-16 2023-03-14 广州粤芯半导体技术有限公司 Semiconductor device preparation method and method for monitoring chemical impurities in photoetching process

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280938A (en) * 1988-09-16 1990-03-22 Hitachi Ltd Sensor for magnetic memory device, magnetic memory device using said sensor and control of said device
JPH1031009A (en) * 1996-07-17 1998-02-03 Nec Corp Silicon wafer for environmental cleanliness evaluation
JPH10256330A (en) * 1997-03-07 1998-09-25 Samsung Electron Co Ltd Liquid droplet processing method for optical analysis in semiconductor manufacturing process, and equipment and control method thereof
JPH1174324A (en) * 1997-08-28 1999-03-16 Matsushita Electron Corp Cleanliness evaluating and cleaning method of dummy wafer
JP2000111457A (en) * 1998-10-07 2000-04-21 Tokai Paudekkusu:Kk Sampling device
JP2001276760A (en) * 2000-04-03 2001-10-09 Toshiba Corp Method for evaluating cleanness component and apparatus therefor and cleaning method
JP2001311682A (en) * 2000-04-28 2001-11-09 Ishikawajima Harima Heavy Ind Co Ltd Sample-preparing apparatus
JP2005049217A (en) * 2003-07-29 2005-02-24 Tokyo Electric Power Co Inc:The Rusting time estimating method, reinforcing steel corrosion rate estimating method and reinforcing steel corrosion estimating method of reinforcing steel in reinforced concrete, and durability diagnosing method of reinforced concrete
JP2006144133A (en) * 2004-11-16 2006-06-08 Oji Paper Co Ltd Spacer paper for glass
JP2006308503A (en) * 2005-05-02 2006-11-09 Fujinon Sano Kk Method for measuring cleanliness of object to be measured
JP2007070752A (en) * 2005-09-06 2007-03-22 Oji Paper Co Ltd Slip sheet for glass sheet and method for pulp for slip sheet for glass sheet
JP2007275803A (en) * 2006-04-07 2007-10-25 Shimizu Corp Cleanliness evaluation method of clean room
JP2008008742A (en) * 2006-06-29 2008-01-17 Toshiba Corp Circuit deterioration testing device and circuit deterioration test method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280938A (en) * 1988-09-16 1990-03-22 Hitachi Ltd Sensor for magnetic memory device, magnetic memory device using said sensor and control of said device
JPH1031009A (en) * 1996-07-17 1998-02-03 Nec Corp Silicon wafer for environmental cleanliness evaluation
JPH10256330A (en) * 1997-03-07 1998-09-25 Samsung Electron Co Ltd Liquid droplet processing method for optical analysis in semiconductor manufacturing process, and equipment and control method thereof
JPH1174324A (en) * 1997-08-28 1999-03-16 Matsushita Electron Corp Cleanliness evaluating and cleaning method of dummy wafer
JP2000111457A (en) * 1998-10-07 2000-04-21 Tokai Paudekkusu:Kk Sampling device
JP2001276760A (en) * 2000-04-03 2001-10-09 Toshiba Corp Method for evaluating cleanness component and apparatus therefor and cleaning method
JP2001311682A (en) * 2000-04-28 2001-11-09 Ishikawajima Harima Heavy Ind Co Ltd Sample-preparing apparatus
JP2005049217A (en) * 2003-07-29 2005-02-24 Tokyo Electric Power Co Inc:The Rusting time estimating method, reinforcing steel corrosion rate estimating method and reinforcing steel corrosion estimating method of reinforcing steel in reinforced concrete, and durability diagnosing method of reinforced concrete
JP2006144133A (en) * 2004-11-16 2006-06-08 Oji Paper Co Ltd Spacer paper for glass
JP2006308503A (en) * 2005-05-02 2006-11-09 Fujinon Sano Kk Method for measuring cleanliness of object to be measured
JP2007070752A (en) * 2005-09-06 2007-03-22 Oji Paper Co Ltd Slip sheet for glass sheet and method for pulp for slip sheet for glass sheet
JP2007275803A (en) * 2006-04-07 2007-10-25 Shimizu Corp Cleanliness evaluation method of clean room
JP2008008742A (en) * 2006-06-29 2008-01-17 Toshiba Corp Circuit deterioration testing device and circuit deterioration test method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202664A (en) * 2013-04-08 2014-10-27 コニカミノルタ株式会社 Rifs (reflection interference spectroscopy) measuring device
JP2017151021A (en) * 2016-02-26 2017-08-31 Imv株式会社 Test device
JP2022534041A (en) * 2019-05-23 2022-07-27 アルセロールミタル strip moisture detector
JP7333415B2 (en) 2019-05-23 2023-08-24 アルセロールミタル strip moisture detector
CN115793416A (en) * 2023-01-16 2023-03-14 广州粤芯半导体技术有限公司 Semiconductor device preparation method and method for monitoring chemical impurities in photoetching process

Also Published As

Publication number Publication date
JP4936186B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP6038950B2 (en) Method for identification and quantitative measurement of unknown organic compounds in gaseous media
JP6876721B2 (en) Porosity measurement of semiconductor structures
JP4936186B2 (en) Surface contamination degree evaluation method and surface contamination degree evaluation apparatus
TWI703654B (en) Method and station for measuring the contamination of a transport box for the atmospheric conveyance and storage of substrates
JP2007171204A (en) Determination method for solvent permeability in film
JP2009539064A5 (en)
US10101258B2 (en) Detection system for determining filtering effectiveness of airborne molecular contamination
CN1241009C (en) In-situ monitoring method and apparatus for ultracritical fluid technology condition
Chen et al. Integrated on-site collection and off-site analysis of airborne molecular contamination in cleanrooms for integrated circuit manufacturing processes
JP2007088133A (en) Method and device for measuring surface state
JP2001165769A (en) Contaminant or contaminant gas detecting method
JP3632748B2 (en) Method for evaluating solid surface adsorption of pollutants
JPH0431740A (en) Method for inspecting presence or absence of contaminant in atmosphere
Lobert et al. Measurement of low molecular weight silicon AMC to protect UV optics in photo-lithography environments
Favard et al. Ionic liquids filter for humidity effect reduction on metal oxide gas sensor response
JP5181299B2 (en) Material evaluation method
JP4566032B2 (en) measuring device
Favard et al. Humidity impact reduction on WO3 Gas microsensor response using new filters based on ionic liquid
JP2011149771A (en) Method for evaluating surface contamination of substrate, and instrument for measuring surface resistivity
RU2666576C1 (en) Semiconductor gas analyzer of carbon oxide
Favard et al. Sensors & transducers humidity impact reduction on WO 3 gas microsensor response using new filters based on ionic liquid
JP5207076B2 (en) Pollution assessment method for chemical pollutants
Landoni et al. Increased yield and tool life by reduction of DUV photo contamination using parts-per-trillion pure purge gases
JP2003042951A (en) Simple method for analyzing adsorbed gas component
JP2009240959A (en) Estimation method of absorption capacity to 90% removal service life of ion-exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees